[烟草亚细胞定位]农杆菌瞬时侵染烟草-激光扫描共聚焦法

合集下载

烟草瞬时转化实验步骤

烟草瞬时转化实验步骤

烟草叶片瞬时转化实验试验方法一、实验材料及药品pCAMBIA 1381Z-Luc载体、Gv3101农杆菌菌株及其感受态、MES、MgCl2、乙酰丁香通、5-6周本氏烟草等二、载体构建及农杆菌转化烟草瞬时转化实验选用融合Luc信号的pCAMBIA 1381Z-Luc载体,载体构建过程是将拟南芥及菊花的FT启动子分别采用双切双连的常规载体构建方式将启动子构建到pCAMBIA 1381Z-Luc载体上,同时将目的基因构建到pMDC43或pMDC32或pORE载体上作为超表达载体进行后续的瞬时转化实验。

通过农杆菌转化的方式,将上述构建好的质粒转化到农杆菌菌株GV3101的感受态细胞中。

三、材料的准备1、烟草植株5-6周幼嫩未开花植株2、携带质粒的农杆菌(GV3101或An105均可)3、YEB培养液(一瓶+K+R、一瓶只+R——pCAMBIA 1381Z-Luc载体为卡纳氯霉素抗性、Gv3101只有r抗性)4、处理液:10mL配方如下母液配方(10ml配方):0.5M MES 200ul 0.976g1M MgCl2100ul 2.03g100mM乙酰丁香酮10ul 0.196g(使用DMSO溶解)灭菌水加至10ml (若长时间保存,需避光!)四、操作步骤1、农杆菌转化2、转化正确的农杆菌进行过夜培养,同时培养P19菌株(最好先进行划线)3、确定不同农杆菌所加菌液的量:计算公式:V=n×Vfinal×0.5/OD600 VP19= n×Vfinal×0.3/OD600OD600最好在1以上n=注射叶片数Vfinal=悬浮后的终体积多为2ml或3ml 注:在进行转录激活或抑制实验时,一般加入四种农杆菌(包括P19)而对照组往往只加入两种或三种菌液,此时,应使用Gv3101对体系进行补充,计算方法为公式一,具体加入量视对照组缺失的量确定,分别加入一倍或两倍Gv3101进行补充。

烟草瞬时表达步骤电子版

烟草瞬时表达步骤电子版

烟草瞬时表达步骤电子版亚细胞定位准备(用烟草ck)MS无抗培养基倒平皿,铺二层滤纸于培养基上;吸水纸(卫生纸一卷),小滤纸,用10ml 离心管代替打孔器,50ml离心管;小三角瓶(均需要灭菌,115℃,30min)1.将保存的农杆菌划线(kan+rif),第三天中午挑菌于(kan+rif)LB培养基中28-30℃,摇床20h至第四天早上;2.以1:25比例(1ml接种于25ml)接菌液于25mlLB(含kan+rif,50nmAS)28-30℃,摇床培养至OD=0.6-0.8,约5h。

3.用50mL离心管收集菌体,常温,5000rpm,离心5min,弃上清;4.用以下溶液重悬菌体等体积25ml(10mM MgCL2,10mM MES, 150nM AS)放入小三角瓶,室温下静置活化2h,(铺滤纸于已凝的无抗MS培养基);5.将叶片打孔,圆状的叶片浸泡在菌液中,真空渗透30min-1h (0.85Mpa)。

6.用灭菌的吸水纸吸干表面的菌液,平铺放置于MS培养基上,光照培养48h。

7.观察。

GUS定量分析所用试剂:1、0.1M磷酸缓冲液)(pH7.0)1M Na2PO4 11.54ml1M NaH2PO4 8.46mlAdd ddH2O TO 200ml2、GUS 蛋白提取液 (现用现配)0.1M磷酸缓冲液(pH7.0) 100ml10% SDS 2ml0.5M EDTA(Ph8.0) 4mlTritonx-100 200ulβ-巯基乙醇 200uladd ddH2O TO 200ml121℃灭菌室温保存3、gus蛋白分析buffer每100ml的蛋白提取液加入4-MUG 70.46mg,-20℃保存,现配现用。

4、0.2M Na2CO3 buffer。

Gus蛋白提取方法(全过程于冰上操作)取适量烟草叶片,加入适量PVP,加液氮研磨成粉末,取约0.6g装入15ml离心管中?预先加入500ml蛋白提取液,摇匀,在冰上放置置沉淀4℃,13000prm离心15min.吸取上清到另一管中进行下一步实验,(未及时做放-20℃)Gus活性测定取20ul蛋白加入37℃预热的180ulgus 蛋白分析buffer中,37℃温浴。

农杆菌侵染烟草原理

农杆菌侵染烟草原理

农杆菌侵染烟草原理
农杆菌是一种重要的植物病原菌,对烟草等植物的侵染具有很强的病原性。

其侵染烟草的原理主要有以下几个方面:
1. 构建T-DNA
农杆菌通过水平转移(plasmid)方式,将其含有的T-DNA转移到宿主细胞内。

T-DNA包含了多个基因,这些基因能够通过改变植物细胞的代谢和生长,从而使农杆菌得以侵染宿主细胞。

2. 激活植物细胞
T-DNA进入植物细胞后,由于其带有一个转录起始子,可以激活植物细胞的转录和翻译系统。

T-DNA序列会在宿主植物的基因组中插入,并产生一些蛋白质,例如植物生长激素和生长素,这些蛋白质会改变宿主植物的生长,从而使其更易受到农杆菌的侵染。

3. 抵抗机制
为了抵御农杆菌的侵染,植物细胞会产生一些反应,包括抗生素和抗菌蛋白,来抵抗农杆菌的入侵。

然而,农杆菌也会产生一些抗性基因,能够逃避植物细胞的抵抗,并使其成功侵染植物细胞。

总之,农杆菌通过构建T-DNA和激活植物细胞的生长和代谢,以及逃避植物细胞的抵抗机制,成功侵染了烟草等植物。

对于农业生产来说,防治农杆菌侵染十分重要,需要采取科学的防治措施。

- 1 -。

烟草DXS基因的克隆及其亚细胞定位分析

烟草DXS基因的克隆及其亚细胞定位分析

烟草DXS基因的克隆及其亚细胞定位分析李尊强;王春军;杨爱国;丁安明;冯全福;徐剑;焦惠鹏;高堃宇【期刊名称】《安徽农业科学》【年(卷),期】2013(000)030【摘要】[目的]从烟草cDNA中扩增出1-脱氧木酮糖-5-磷酸合成酶(DXS)基因(去除终止密码子TAA),并对其进行亚细胞定位分析.[方法]利用RT-PCR技术分离、克隆DXS,将烟草DXS基因与绿色荧光蛋白(GFP)基因重组构建亚细胞定位表达载体,转入根癌农杆菌LBA4404后注射侵染本氏烟烟草幼苗进行瞬时表达;并利用激光共聚焦扫描显微镜观察转GFP植株的表达情况.[结果]显微镜观察发现,DXS和GFP 融合蛋白仅在本氏烟叶肉细胞(尤其是保卫细胞)的叶绿体中产生绿色荧光,DXS基因在叶绿体中特异表达.[结论]DXS定位在叶绿体中,为接下来对DXS基因功能研究提供了理论依据.【总页数】4页(P11957-11960)【作者】李尊强;王春军;杨爱国;丁安明;冯全福;徐剑;焦惠鹏;高堃宇【作者单位】牡丹江烟草科学研究所,黑龙江牡丹江157011;牡丹江烟草科学研究所,黑龙江牡丹江157011;中国农业科学院烟草研究所,烟草行业烟草基因资源利用重点实验室,山东青岛266101;中国农业科学院烟草研究所,烟草行业烟草基因资源利用重点实验室,山东青岛266101;中国农业科学院烟草研究所,烟草行业烟草基因资源利用重点实验室,山东青岛266101;哈尔滨烟叶公司肇东分公司,黑龙江肇东151100;哈尔滨烟叶公司肇东分公司,黑龙江肇东151100;哈尔滨烟叶公司肇东分公司,黑龙江肇东151100【正文语种】中文【中图分类】S572【相关文献】1.东方百合‘演员’DXS基因的克隆与表达分析 [J], 张浩宇;樊俊苗;王婷;杜方2.烟草氧化胁迫相关基因NtOSA1的克隆表达及亚细胞定位分析 [J], 刘继恺;高永峰;吴婵娟;张林;陈彩霞3.马铃薯StPSKRs基因的克隆及其亚细胞定位分析 [J], 卢瑶; 胡金雪; 金鑫; 陈越; 陈勤; 卢海彬4.薰衣草DXS基因的克隆、表达分析及原核表达 [J], 龚林涛;苏秀娟;尹松松;孙明辉;闫博文;阿迪莱·阿布都热依木;陈全家5.枳两个GRAS基因cDNA全长的克隆及其亚细胞定位分析 [J], 李阿英;刘洪;李晓颖;郭磊;宋长年因版权原因,仅展示原文概要,查看原文内容请购买。

小麦籽粒大小相关基因TaGS2克隆及功能分析

小麦籽粒大小相关基因TaGS2克隆及功能分析

DOI: 10.3724/SP.J.1006.2022.11067小麦籽粒大小相关基因TaGS2克隆及功能分析王沙沙1黄超1汪庆昌1晁岳恩1,*陈锋2,*孙建国3宋晓41 河南省农业科学院/ 小麦研究所/河南省小麦生物学重点实验室,河南郑州450002;2 河南农业大学农学院/ 省部共建小麦玉米作物学国家重点实验室/ 河南省粮食作物协同创新中心,河南郑州450002;3 濮阳市农业农村局,河南濮阳457000;4 河南省农业科学院植物营养与资源环境研究所,河南郑州450002摘要:籽粒大小影响小麦粒重,进而影响产量。

目前,对小麦籽粒大小相关基因的研究已有报道,但其潜在的分子机制尚不清楚。

本研究通过同源克隆的方法从普通小麦中克隆了小麦籽粒大小相关基因TaGS2,并对其序列进行生物信息学分析。

烟草亚细胞定位结果表明,TaGS2定位在细胞核和细胞质内。

不同组织材料qRT-PCR分析表明,TaGS2基因在小麦籽粒不同发育时期的表达量最高。

构建TaGS2-PLGY-02-RNAi表达载体,转化小麦。

研究结果表明,TaGS2基因在RNAi转基因小麦中表达量显著降低。

RNAi转基因小麦的籽粒长度变短,籽粒宽度变窄,千粒重也降低。

因此推测TaGS2基因可能参与小麦籽粒大小或者千粒重的调控。

本研究初步揭示了TaGS2基因功能,并为小麦高产育种中千粒重的提高提供重要的基因资源。

关键词:小麦;籽粒大小;TaGS2基因;亚细胞定位;表达分析;RNAi干扰Cloning and functional identification of TaGS2 gene related to kernel size in bread wheatWANG Sha-Sha1, HUANG Chao1, W ANG Qing-Chang1, CHAO Yue-En1,*, CHEN Feng2,*, SUN Jian-Guo3, and SONG Xiao41 Wheat Research Institute, Henan Academy of Agricultural Science / Henan Province Key Laboratory of Wheat Biology, Zhengzhou 450002, Henan, China;2 Agronomy College, National Key Laboratory of Wheat and Corn Crop Science / Collaborative Innovation Center of Henan Grain Crops/Agronomy College, Henan Agricultural University, Zhengzhou 450002, Henan, China;3 Department of Agricultural and Rural Affairs of Puyang, Puyang 457000, Henan, China;4 Institute of Plant Nutrient and Environmental Resources, Henan Academy of Agricultural Science, Zhengzhou 450002, Henan, ChinaAbstract: The kernel size affects kernel weight in wheat, and then affects yield. Up to date, the genes related to kernel size have been reported in bread wheat. However, the underlying molecular mechanisms that regulates the size of wheat kernels remains unclear. In this study, the TaGS2 gene related to kernel size was successfully cloned from bread wheat based on in silico cloning and its sequence was analyzed by bioinformatics. Subcellular localization analysis of tobacco indicated that TaGS2 was localized in the nucleus and cytoplasm. Relative expression levels of different tissues showed that the TaGS2 gene was highly expressed at different developmental stages of the kernels. RNA interference vector TaGS2-PLGY-02-RNAi was constructed and transferred into wheat. The results本研究由河南省青年科学基金项目(202300410527),省部共建小麦玉米作物学国家重点实验室开放课题(30500772)和国家青年科学基金项目(31801261)资助。

农杆菌侵染烟草原理

农杆菌侵染烟草原理

农杆菌侵染烟草原理农杆菌(Agrobacterium tumefaciens)是一种常见的细菌,它引起了许多植物疾病,并广泛应用于植物基因转化和构建转基因植物。

农杆菌感染的方式分为两个主要步骤:附着和转化。

首先,农杆菌通过其特殊的附着鞭毛附着在植物细胞的表面。

这些附着鞭毛具有与植物表面组织相互作用的能力,帮助菌体在细胞壁上定位。

然后,农杆菌进一步通过组成细菌群体的多聚糖特异性识别植物细胞并贴附在其表面。

这个过程涉及的多聚糖是菌体外表面中的一种多糖物质,称为Beta-1,2-葡聚糖。

该多糖与植物细胞表面的特定受体结合,使细菌固定在植物细胞表面。

接下来,农杆菌通过化学信号释放细菌表面小分子信号物质,称为诱导物质。

这些诱导物质与植物细胞的感受器相互作用,诱导植物细胞启动反响。

在感染过程中,农杆菌释放的Ti质粒在接触植物表面后激活,融入植物细胞胞质。

这个过程主要涉及到Ti质粒上的一些基因区域,称为过渡区,它负责将外源基因转移到植物细胞中。

接下来,T DNA被运送到植物细胞的细胞核中。

T DNA的传输过程主要受T基因(vir基因)的操控,这些基因编码用于T DNA传输的蛋白质。

一旦T DNA被引入细胞核,它会被整合到植物细胞的基因组中,并在细胞分裂过程中通过传代进行稳定遗传。

这个过程涉及到转座酶(T nase)等蛋白质的参与,它们帮助将T DNA插入植物基因组的特定区域。

总之,农杆菌侵染烟草的原理涉及一系列复杂的分子交互作用和基因调控过程。

通过附着、感染、引入TDNA以及其整合到植物基因组中,农杆菌成功地将外源基因引入烟草细胞,并构建转基因烟草。

这为基因工程研究和转基因植物生产提供了重要的工具和方法。

亚细胞定位的实验报告

亚细胞定位的实验报告

一、实验背景亚细胞定位是指某种生物大分子物质或脂类在细胞内存在的具体位置。

了解蛋白的亚细胞定位对于研究基因的功能、蛋白互作及其作用机理具有重要意义。

本实验旨在利用荧光蛋白原位鉴定法,观察目标蛋白在细胞内的具体位置,从而了解其亚细胞定位。

二、实验材料与仪器1. 实验材料:(1)烟草种子;(2)农杆菌(GV3101、EHA105、LB4404等);(3)构建好的载体质粒;(4)亚细胞定位培养基;(5)10ml YEB液体培养基;(6)10mM MgCl2悬浮液;(7)1ml注射器;(8)激光共聚焦显微镜。

2. 实验仪器:(1)电子显微镜;(2)PCR仪;(3)电泳仪;(4)凝胶成像系统;(5)激光共聚焦显微镜。

三、实验方法1. 烟草培养:播种烟草种子,12h光照培养,培养一个月后用于实验。

2. 农杆菌培养:将构建好的载体质粒电转化法转入农杆菌,30℃培养2天。

3. 悬浮农杆菌:用接种环将农杆菌从固体培养皿上刮下,接于10ml YEB液体培养基中,170rpm/min培养1h。

4. 收集菌体:4000rpm/min,离心4min,去上清。

5. 重悬:用10mM MgCl2(含120uM AS)悬浮液重悬菌体,调OD600至0.6左右。

6. 注射:挑选生长状况良好的烟草植株,用去枪头的1ml注射器从烟草叶片下表皮注射,并做好标注。

7. 培养:将注射完成的烟草植株弱光培养2天,即可观察。

8. 观察:取标记的农杆菌注射的烟草叶片,制作成玻片,在激光共聚焦显微镜下观察,并拍照。

四、实验结果与分析1. 叶绿体荧光信号:叶绿体荧光信号激发波长为640nm,发射波长为675nm。

2. GFP信号:绿色荧光蛋白GFP,激发光波长为488nm,发射光波长为510nm。

根据实验结果,可以观察到目标蛋白在烟草叶片细胞内的具体位置,从而了解其亚细胞定位。

五、实验结论通过本实验,我们成功利用荧光蛋白原位鉴定法,观察了目标蛋白在细胞内的具体位置,实现了对其亚细胞定位的研究。

绿色荧光蛋白(GFP)标记亚细胞定位与农杆菌瞬时侵染方法

绿色荧光蛋白(GFP)标记亚细胞定位与农杆菌瞬时侵染方法

绿色荧光蛋白(GFP)标记亚细胞定位与农杆菌瞬时侵染方法转基因技术,生物定向改良,分子育种基因工程和育种的最有效途径,转基因技术有农杆菌介导法、花粉通道法、显微注射法、基因枪法、离子束介导法。

农杆菌瞬时侵染方法(1) 转入目的载体的农杆菌EHA105单菌落接入4mL LB-50ug/mL-Kan, 30℃摇床震荡培养20h;(2) 转接3mL菌液进入30 mL LB-50ug/ml-Kan, 30℃摇床震荡培养6-8h;(3) 收集菌体,用10mL 1/2 Ms(1.5% sucrose)液体培养基悬浮菌体,加入5ul 100mM As, 混合均匀;(4) 切洋葱内表皮,撕开后内表皮,切开的宽度控制在0.5-0.7cm, 浸入农杆菌菌液,浸泡30min;(5) 滤纸轻轻吸去洋葱表皮表面可见的农杆菌菌液,放置在1×Ms+1.5%Sucrose固体培养基上,25℃培养18-20h;(6) 用1XPBS (pH7.0)溶液轻轻漂洗洋葱表皮两次,无菌水漂洗1次;(7) 在荧光显微镜下观察,采用激光共聚集显微镜采集图像;绿色荧光蛋白(GFP)标记亚细胞定位一、原理利用绿色荧光蛋白(GFP)来示踪胞内蛋白的技术。

利用GFP融合蛋白技术来进行活细胞定位研究是目前较为通行的一种方法,在光镜水平进行研究,不需要制样,没有非特异性标记的影响。

并且GFP的分子量为27kD,经激光扫描共聚集显微镜激光照射后,可产生一种绿色荧光,从而对蛋白质进行精确定位。

激光扫描共聚焦显微镜(Laser Scanning Confocal Microscope, LSCM, 以下简称共聚焦显微镜)因其独特的设计原理,有效地排除了非焦平面信息,提高了分辨率及对比度,使图像更为精确清晰,因此极其适于进行活细胞内蛋白质、核酸等定位及活体动态研究。

二、主要步骤1.真核表达载体的构建①引物设计利用引物设计软件,根据pEGFP-N1的酶切位点设计目的基因引物:②载体构建将PCR产物酶切后插入pEGFP-N1,得到表达目的基因与EGFP融合蛋白质的真核表达载体。

亚细胞定位实验报告(3篇)

亚细胞定位实验报告(3篇)

第1篇实验目的:本研究旨在通过亚细胞定位技术,确定目标蛋白质在细胞内的具体分布位置,为进一步研究该蛋白质的生物学功能提供实验依据。

实验材料:1. 目标蛋白质表达质粒2. 表达载体(如pEGFP-N1)3. 农杆菌(如GV3101)4. 烟草植株5. 激光共聚焦显微镜6. 其他实验试剂和仪器实验方法:1. 构建表达载体:将目标蛋白质基因与表达载体(如pEGFP-N1)连接,构建融合表达质粒。

2. 农杆菌转化:将构建好的融合表达质粒电转化农杆菌,获得转化子。

3. 农杆菌培养:将转化子接种于YEB液体培养基中,在170rpm/min的条件下培养1小时。

4. 农杆菌悬浮:用接种环将农杆菌从固体培养皿上刮下,接于10ml YEB液体培养基中,悬浮农杆菌。

5. 收集菌体: 4000rpm/min,离心4分钟,去除上清。

6. 重悬菌体:用10mM MgCl2(含120uM AS)悬浮液重悬菌体,调整OD600至0.6左右。

7. 注射烟草:挑选生长状况良好的烟草植株,用去枪头的1ml注射器从烟草叶片下表皮注射,并做好标注。

8. 培养烟草:将注射完成的烟草植株弱光培养2天。

9. 观察与拍照:取标记的农杆菌注射的烟草叶片,制作成玻片,在激光共聚焦显微镜下观察,并拍照。

实验结果:通过激光共聚焦显微镜观察,发现融合表达质粒中的绿色荧光蛋白(GFP)信号在烟草叶片中呈现明显的细胞内分布。

根据GFP信号的位置,可以初步判断目标蛋白质在细胞内的分布情况。

结果分析:1. 细胞核定位:若GFP信号主要分布在细胞核区域,则表明目标蛋白质定位于细胞核。

2. 细胞质定位:若GFP信号主要分布在细胞质区域,则表明目标蛋白质定位于细胞质。

3. 细胞膜定位:若GFP信号主要分布在细胞膜区域,则表明目标蛋白质定位于细胞膜。

根据实验结果,可以初步判断目标蛋白质在烟草细胞中的定位情况,为进一步研究其生物学功能提供实验依据。

讨论:1. 亚细胞定位实验是研究蛋白质生物学功能的重要手段之一。

植物亚细胞定位(范文2篇)

植物亚细胞定位(范文2篇)

植物亚细胞定位(范文2篇)以下是网友分享的关于植物亚细胞定位的资料2篇,希望对您有所帮助,就爱阅读感谢您的支持。

植物亚细胞定位(1)第42卷第4期东北农业大学学报42(4):83~87植物亚细胞定位载体卡盒pCEG的构建及验证朱丹,王希,朱延明*,陈超,李勇,柏锡,才华,纪(东北农业大学生命科学学院,哈尔滨150030)巍摘要:GFP基因被广泛地应用于植物转基因以及基因功能验证研究,然而构建与GFP融合的植物表达载体,常会因酶切位点难以选择,而使得载体构建过程复杂,周期长。

以含GFP的质粒pCAMBIA-1302为基础,消除此质粒本身的多克隆位点(MCS),并在此质粒GFP基因序列前插入原核表达载体pET-32b的多克隆位点,构建了植物GFP亚细胞定位载体卡盒pCEG;采用农杆菌介导的转化方法,将此载体卡盒pCEG导入模式植物烟草叶片中进行瞬时表达,用激光共聚焦显微镜观察GFP蛋白的亚细胞定位情况,发现GFP蛋白均匀的在细胞质和细胞核中表达,证明此载体卡盒可用于植物基因的亚细胞定位分析,并为构建目的基因与GFP融合的植物表达载体提供了很多可用的酶切位点,对植物基因功能验证提供了分子操作简便的植物表达载体卡盒,具有重要的利用价值。

关键词:载体卡盒构建;亚细胞定位;GFP;烟草中图分类号:Q782文献标志码:A文章编号:1005-9369(2011)04-0083-05 Constructionandapplicationofaplantsubcellularlocalization vectorboxofpCEG/ZHUDan,WANGXi,ZHUYanming,CHEN Chao,LIYong,BAIXi,CAIHua,JIWei(CollegeofLifeSciences,NortheastAgriculturalUniversit y,Harbin150030,China)Abstract:GFPgenewaswidelyappliedinthetransgenicplants andgenesfunction’sprovingstudy.However,theconstructionofGFPfusedplantexpressionvector swasalwayscomplicatedandtimeconsumingduetothehardchoo eplasmidpCAMBIA-130 2whichincludedGFPgeneasaoriginalvector,andeliminateditso wnmultipleclonesite(MCS),andtheninsertedpET-32b’smultip leclonesiteinfrontofGFPgenesequences,namedtheeventualpla ntGFPsubcellularlocalizationvectorboxpCEG.ByAgrobacteri um-mediatedtransformationmethod,pCEGinstantaneousexp ressedintobaccoleaves,andGFPproteinsubcellularlocalization wasobservedbylaserconfocalmicroscope.Theresultdisplayedt hattheGFPproteinsexpressedinbothcytoplasmandnucleus,thi smeansthepCEGboxcanbeusedconvenientlyforplantgenessub cellularlocalizationanalysisandprovidealotofusablerestrictio nenzymecuttingsiteforplantgenesfusionedwithGFP,andthepC EGboxisconvenientforplantgenesfunctionanalysisandhasgre atusevalue.Keywords:constructionofvectorbox;subcellularlocalization ;GFP;tobacco在基因的功能研究过程中,外源重组基因表达产物的功能与其在宿主细胞中的定位有重要的关系,特别是对于真核细胞,蛋白质位于不同的细胞部位所行使的功能也不同,所以研究其在宿主细胞收稿日期:2011-01-12基金项目:国家高科技发展计划(863计划)(2008AA10Z153);国家自然科学基金资助项目(30570990);黑龙江省科技厅重大攻关项目(GA06B10);黑龙江省教育厅科技项目(11521024);黑龙江省教育厅科技项目(11521021)作者简介:朱丹(1986-),女,硕士研究生,研究方向为植物基因工程与分子生物学。

[烟草亚细胞定位]农杆菌瞬时侵染烟草-激光扫描共聚焦法

[烟草亚细胞定位]农杆菌瞬时侵染烟草-激光扫描共聚焦法

[植物科学领域]利用农杆菌侵染烟草进行体内瞬时表达的方法Method for transient expression in vivo by infecting tobacco with Agrobacterium一、原理(Principle)烟草叶片的瞬时表达系统常用来进行基因的亚细胞定位监测,监测蛋白在细胞中分布的位置,从而对其功能进行预测。

通过基因翻译的蛋白与绿色荧光蛋白构成融合蛋白,在激光共聚焦仪器下观测绿色荧光的分布,判断蛋白表达的部位。

同时,还可根据荧光的光强度检测蛋白的表达量。

该过程是经根癌农杆菌介导的,进而将目的基因整合到到烟草的细胞内的。

Tobacco leaf transient expression systems are often used to monitor the subcellular localization of genes, monitor the distribution of proteins in cells, and predict their function. The gene translated protein and green fluorescent protein constitute a fusion protein. The distribution of green fluorescence is observed under a laser confocal instrument to determine the protein expression site. At the same time, the expression level of the protein can also be detected based on the light intensity of the fluorescence. This process is mediated by Agrobacterium tumefaciens, which integrates the gene of interest into tobacco cells.二、材料与试剂1. 携带表达载体的农杆菌菌株(通常表达载体由35S启动子驱动)2. 2-4周的烟草植株3. LB培养基4. 乙酰丁香酮5. MES: 2-(N-吗啉代)乙磺酸6. 抗生素7. 注射器Materials and reagents1. Agrobacterium strain carrying an expression vector (usually the expression vector is driven by the 35S promoter)2. Tobacco plants for 2-4 weeks3.LB medium4.Acetosyringone5.MES: 2- (N-morpholino) ethanesulfonic acid6.Antibiotics7. syringe三、仪器1. 50 ml 离心管2. 光谱仪3. 紫外灯4. 荧光显微镜Third, the instrument1. 50 ml centrifuge tube2. spectrometer3. UV lamp4. fluorescence microscope四、步骤1. 挑取单克隆于5 ml LB液体培养中,28~30°C震荡培养。

农杆菌侵染烟草原理

农杆菌侵染烟草原理

农杆菌侵染烟草原理农杆菌(Agrobacterium tumefaciens)是一种特殊的细菌,它能够侵染许多植物,将其基因组改变为自己的目的基因组,导致植物产生肿瘤和其他异常表型。

这种现象被称为植物农杆菌病(Agrobacterium tumefaciens),这种病在园艺学中非常重要,因为它是研究植物基因工程的基石之一。

在农杆菌侵染烟草的过程中,第一步是农杆菌识别和攀附植物细胞。

这是由于农杆菌的一个称为T介导的转移蛋白,该蛋白帮助农杆菌在植物细胞表面形成一个特殊的结构,称为T长度发生器(T-pilus)。

这个结构能够锚定农杆菌在植物表面并促进接触和进一步的识别。

接下来,农杆菌产生特殊的类EB(virulence)素,它是一种特殊的分子信使,这种信使能够刺激植物细胞对农杆菌的进一步感知。

类EB素结合到细胞表面的接收器上,这是植物生长激素的一个重要接受者。

一旦类EB素与植物细胞膜上的接受器结合,它会导致激活一系列的蛋白酶和磷酸酶,这些蛋白酶和磷酸酶控制细胞基因表达和突变。

类EB素还有能力诱导细胞分裂和增殖,这是导致肿瘤形成的关键步骤。

农杆菌还会在细胞表面释放和合成许多其它信使,例如放屈酸等酚酸类化合物。

当植物细胞对类EB素信号的响应被激活后,农杆菌便通过它的第二种转移蛋白,称为T-DNA转移蛋白,将它的DNA片段传入植物细胞中。

T-DNA片段是农杆菌基因组中的一个片段,包含一些促进肿瘤形成或生物合成其它类型激素的基因,也可以包含一些抗生素或草甘膦抗性基因。

这个T-DNA片段被农杆菌员工特殊的切割酶切割成几个区域,第一个区域包含向植物细胞转座所需要的转座酶和反转座酶基因,另外一个区域包含转录的启动子,可以在细胞中启动其它T-DNA区域的基因表达,一个区域包含蛋白合成序列,以及一个主要的T-DNA区域,它编码产生激素,激发植物细胞分裂和生长,产生肿瘤。

同时,农杆菌会生成一个称为细胞外多聚糖(EPS)的多糖复合物,它可以隐藏T-DNA 分子并保护它不被宿主植物细胞发现和破坏。

农杆菌介导的烟草瞬时表达影响因素研究

农杆菌介导的烟草瞬时表达影响因素研究

农杆菌介导的烟草瞬时表达影响因素研究孙蔓莉;孟玉玲;张强;黄桂艳;单卫星【摘要】通过探究根癌农杆菌(Agrobacterium tume aciens)介导的烟草瞬时表达体系的影响因素,确定烟草瞬时表达的最佳条件,为目的基因的功能研究提供技术支持.利用马铃薯晚疫病抗性基因RB和致病疫霉菌效应基因Avrblb1作为报告基因,采用农杆菌介导的注射渗透法,摸索农杆菌菌悬液OD600值和菌系(遗传背景)、烟草品种及其生长时期等因素,确定烟草高效的基因瞬时表达条件.研究结果表明:介导烟草基因瞬时表达的根癌农杆菌菌悬液适宜OD600值为0.3~0.8;在菌悬液OD600值为0.1及以上时,AGL1、GV3101和C58C1介导的报告基因瞬时表达效率相似,均引发较强的叶片坏死反应;在农杆菌菌悬液0D600值小于0.1时,AGL1介导的瞬时表达效率最高.测试的烟草品种都具备较高的瞬时表达效率,苗龄6~8周的烟草适合分析.通过测试农杆菌菌悬液OD600值和菌系(遗传背景)、烟草品种及其生长时期等因素,确定本氏烟和普通烟均可实现基因高效瞬时表达的条件.【期刊名称】《西北农业学报》【年(卷),期】2015(024)001【总页数】5页(P161-165)【关键词】烟草;基因瞬时表达;注射渗透法【作者】孙蔓莉;孟玉玲;张强;黄桂艳;单卫星【作者单位】西北农林科技大学植物保护学院,陕西杨凌712100;西北农林科技大学植物保护学院,陕西杨凌712100;西北农林科技大学植物保护学院,陕西杨凌712100;西北农林科技大学生命科学学院,陕西杨凌712100;西北农林科技大学植物保护学院,陕西杨凌712100;旱区作物逆境生物学国家重点实验室,陕西杨凌712100【正文语种】中文【中图分类】S432.2在植物组织中可通过2种方法表达异源基因:稳定表达和瞬时表达[1]。

瞬时表达较前者具有简单、快速、周期短、准确等优点,表达效率稳定,转化率高,并且不产生可遗传的子代,生物安全性高[2]。

利用烟草花叶病毒瞬时表达目的基因

利用烟草花叶病毒瞬时表达目的基因

利用烟草花叶病毒瞬时表达目的基因一、实验目的蛋白瞬时表达方法已被用于烟草当中,例如来定位绿色荧光蛋白等标记物标记的目的蛋白的亚细胞位置,或者在不利用转基因植物的条件下生产和诱导大量蛋白。

可利用基因工程改造后的根癌农杆菌来引导目的基因进入烟草叶中进行表达。

二、实验原理烟草花叶病毒(TMV)表达载体30B是一个目前广泛应用的植物病毒表达载体,但用其生产外源蛋白时,必须先将它体外转录成RNA,才能被用来接种宿主植物。

但RNA体外转录费用昂贵、操作复杂。

用农杆菌接种法(a-groinnoculation)接种该病毒载体,即将30B cDNA 置于花椰菜花叶病毒(CaMV)的35启动子和终止子之间,再将整个表达框架插人到农杆菌T-DNA的左边界和右边界之内,构建成质粒p35S-30B,将转人该质粒的农杆菌注射到植物的叶片中,30B cDNA随T-DNA进人植物细胞后,被转录成可自我复制的RNA形式,进而发生系统侵染。

为了检测此接种方式的可行性,绿色荧光蛋白(GFP)报告基因被克隆到p35S-30B中,构建成p35S-30B:GFP,用含有该质粒的农杆菌进行注射操作。

三、实验试剂和仪器1. 带有病毒表达载体的农杆菌菌株(通常由花椰菜花叶病毒35S启动子驱动)2. 健康的烟草(Nicotiana benthamiana)植物(3-4周龄)3. MES / KOH(pH=5.6)4. 氯化镁5. 乙酰丁香酮6. 相应抗性的LB培养基四、实验步骤1、准备激活缓冲液配制母液MgCl2 1 M; MES (pH 5.6) 100 mM; 乙酰丁香酮(Ace)100 mM。

使用时,每1 ml 溶液中加入888 μl无菌水,10 μl MgCl2 1 M,100 μl MES (pH 5.6) 100 mM,2 μl乙酰丁香酮(Ace) 100 mM。

2、挑克隆挑取重组农杆菌单斑接种于含有Kan (50 mg/l) 和Rif (50 mg/l) 抗性的LB 培养基中28℃过夜振荡培养;然后1:100转接到相同抗性的LB培养基中,生长至对数生长期(OD600值约为0.6-0.8),经6000 rpm离心5 min收集菌体3、制备菌液用含终浓度为10 mM MgCl2,10 mM MES (pH=5.6),200 μM乙酰丁香酮(Ace)的无菌水重悬浮,调整菌液浓度至OD600=0.5或者根据需要调整;在室温下放置3 h以上。

过表达CsMADSs拟南芥的表型变化及CsMADSs表达水平

过表达CsMADSs拟南芥的表型变化及CsMADSs表达水平

过表达CsMADSs拟南芥的表型变化及CsMADSs表达水平安玉兰;翟克清;杨峰;雷玥;胡克玲;甘德芳;汪承刚【摘要】为探究黄瓜CsMADSs的功能,构建了黄瓜CsMADS08及CsMADS21基因的真核表达载体并转化烟草,研究其在烟草中的亚细胞定位;同时通过农杆菌介导法转化拟南芥,经潮霉素筛选及分子检测,获得阳性株,观察转基因后代植株的表型变化情况;实时荧光定量PCR检测CsMADS08和CsMADS21在转基因后代植株各器官中的表达情况.结果显示,CsMADS08定位于细胞膜和细胞核上,而CsMADS21定位于细胞膜上.表型分析结果显示,过表达CsMADS08基因的拟南芥叶片发紫,侧枝少,且侧枝上出现莲座状的茎生叶;而过表达CsMADS21植株的侧生花序及果荚都比野生型多,且花期早,果实成熟早.荧光定量PCR结果显示,Cs-MADS08基因主要在茎中表达,而CsMADS21基因则主要在花中有高表达.该研究可为进一步明确黄瓜Cs-MADSs基因的功能及培育黄瓜新品种提供参考依据.【期刊名称】《浙江农业学报》【年(卷),期】2018(030)010【总页数】9页(P1671-1679)【关键词】CsMADSs;拟南芥;亚细胞定位;表型变化;表达分析【作者】安玉兰;翟克清;杨峰;雷玥;胡克玲;甘德芳;汪承刚【作者单位】安徽农业大学园艺学院,安徽省园艺作物育种工程实验室,安徽合肥230036;安徽农业大学园艺学院,安徽省园艺作物育种工程实验室,安徽合肥230036;安徽农业大学园艺学院,安徽省园艺作物育种工程实验室,安徽合肥230036;安徽农业大学园艺学院,安徽省园艺作物育种工程实验室,安徽合肥230036;安徽农业大学园艺学院,安徽省园艺作物育种工程实验室,安徽合肥230036;安徽农业大学园艺学院,安徽省园艺作物育种工程实验室,安徽合肥230036;安徽农业大学园艺学院,安徽省园艺作物育种工程实验室,安徽合肥230036【正文语种】中文【中图分类】S649黄瓜(Cucumis sativus L.)是葫芦科一年生攀援草本植物,是夏季主要蔬菜之一,全国各地均有栽培。

亚细胞定位之烟草转化方法

亚细胞定位之烟草转化方法

亚细胞定位之烟草转化方法烟草是常见的植物模型,被广泛应用于植物生物学研究中。

研究人员通常通过烟草转化方法,将外源基因导入烟草中,实现对基因的功能研究或产生转基因烟草植株。

烟草转化方法通常包括两个步骤:外源基因构建和烟草转化。

首先,需要构建一个携带外源基因的转化载体。

这个载体通常包含一个启动子、外源基因和终止子。

启动子可以驱动外源基因的转录,终止子可使转录终止。

外源基因可以是一个编码蛋白质的序列,也可以是一个编码RNA或其他功能分子的序列。

构建好转化载体后,接下来可以通过烟草转化方法将其导入烟草中。

烟草转化方法有多种,包括农杆菌介导转化、基因枪法等。

其中,农杆菌介导转化是最常用的方法之一、农杆菌介导转化是利用农杆菌的特性,将外源基因导入烟草细胞中。

首先,需要将转化载体与农杆菌进行共转化,形成转化菌。

接着,将转化菌与烟草叶片进行共同培养,利用农杆菌T-DNA的转移机制,将外源基因导入烟草细胞中。

经过一段时间的培养,将转化的烟草细胞分离培养,最终获得转基因烟草植株。

利用亚细胞定位技术,可以进一步研究转基因烟草植株中外源基因的定位。

常用的方法包括荧光蛋白标记技术和抗体标记技术。

荧光蛋白标记技术可以通过将外源基因与荧光蛋白基因进行融合,使转基因植株产生荧光蛋白标记,从而观察外源基因在细胞内的定位。

抗体标记技术则是将外源基因编码的蛋白质与特异性抗体结合,通过免疫荧光染色等方法观察外源基因的定位。

通过亚细胞定位技术,可以了解转基因烟草植株中外源基因在不同亚细胞位置的分布。

这对于研究外源基因的功能以及其与其他生物分子的相互作用方式非常重要。

此外,亚细胞定位研究也可以为转基因烟草的功能性研究提供重要线索。

总结起来,烟草转化方法是利用烟草作为植物模型,将外源基因导入烟草中的方法。

通过亚细胞定位技术,可以了解外源基因在转基因烟草植株中的定位,进一步研究外源基因的功能和相互作用方式。

烟草转化方法为研究转基因植物提供了重要的工具和方法。

亚细胞定位之烟草转化方法

亚细胞定位之烟草转化方法

本氏烟草(N. benthamian)瞬时表达及相关实验方法:一、农杆菌介导的烟草瞬时转化:A、实验步骤:1、根据实验需要,将所要表达的基因克隆到含有不同标签的双元载体中,并转化农杆菌。

2、将新活化的农杆菌单克隆接种到含有相应抗生素的YEP中,28℃,200rpm过夜。

*估算时间,防止农杆菌液浓度超过1OD,否则会影响转化效率。

3、当菌液OD值介于0.6~1.0之间时,1000g,5min离心收集农杆菌。

4、用2ml Induction medium(without AS)轻柔重悬农杆菌,然后再次离心收集菌液。

5、重复步骤4。

6、所得沉淀用1ml Induction medium 重悬。

7、室温放置1~4小时8、测OD值,根据实验需要,配置侵染液(组合详见下文)。

9、用不加针头的注射器将侵染液注射进6~8周大的本氏烟草叶片中。

*使用注射器时注意安全,防止针头扎到手,使用完的注射器要把针头套套上再扔,或者将针头放到注射器里面,避免伤害他人;注射时应戴乳胶手套并在每次注射完成后清洗手套,防止交叉污染。

B、试剂:Induction medium:MES-KOH PH 5.7 10mMMgCl210mMAS 200uM推荐提前配制母液1M MES-KOH PH5.7 过滤灭菌,4℃保存,用时稀释100倍。

1M MgCl2 过滤灭菌,4℃保存,用时稀释100倍。

0.2M AS 溶于DMSO 有机溶剂专用滤膜过滤灭菌,分装(避免反复冻融),-20℃。

用高压灭菌的超纯水稀释。

C、关于表达时间:烟草瞬时表达系统中蛋白的表达可以维持比较长的时间,一般注射24小时之后到一周之内都会有表达。

严格来讲需要摸索每个蛋白的最佳表达时段,但一般注射后48小时至72小时不同蛋白表达量都比较可观,不要错过。

D、关于侵染液浓度:推荐每个菌株的浓度在0.1~0.2之间。

过高的农杆菌浓度会引起叶片萎蔫甚至枯萎。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[植物科学领域]利用农杆菌侵染烟草进行体内瞬时表达的方法
Method for transient expression in vivo by infecting tobacco with Agrobacterium
一、原理(Principle)
烟草叶片的瞬时表达系统常用来进行基因的亚细胞定位监测,监测蛋白在细胞中分布的位置,从而对其功能进行预测。

通过基因翻译的蛋白与绿色荧光蛋白构成融合蛋白,在激光共聚焦仪器下观测绿色荧光的分布,判断蛋白表达的部位。

同时,还可根据荧光的光强度检测蛋白的表达量。

该过程是经根癌农杆菌介导的,进而将目的基因整合到到烟草的细胞内的。

Tobacco leaf transient expression systems are often used to monitor the subcellular localization of genes, monitor the distribution of proteins in cells, and predict their function. The gene translated protein and green fluorescent protein constitute a fusion protein. The distribution of green fluorescence is observed under a laser confocal instrument to determine the protein expression site. At the same time, the expression level of the protein can also be detected based on the light intensity of the fluorescence. This process is mediated by Agrobacterium tumefaciens, which integrates the gene of interest into tobacco cells.
二、材料与试剂
1. 携带表达载体的农杆菌菌株(通常表达载体由35S启动子驱动)
2. 2-4周的烟草植株
3. LB培养基
4. 乙酰丁香酮
5. MES: 2-(N-吗啉代)乙磺酸
6. 抗生素
7. 注射器
Materials and reagents
1. Agrobacterium strain carrying an expression vector (usually the expression vector is driven by the 35S promoter)
2. Tobacco plants for 2-4 weeks
3.LB medium
4.Acetosyringone
5.MES: 2- (N-morpholino) ethanesulfonic acid
6.Antibiotics
7. syringe
三、仪器
1. 50 ml 离心管
2. 光谱仪
3. 紫外灯
4. 荧光显微镜
Third, the instrument
1. 50 ml centrifuge tube
2. spectrometer
3. UV lamp
4. fluorescence microscope
四、步骤
1. 挑取单克隆于5 ml LB液体培养中,28~30°C震荡培养。

通常,LB中加入100 µg/ml 庆大霉素(农杆菌株GV3101携带抗性),50 µg/ml 大观霉素(载体携带)。

2. 将1 ml 过夜培养的农杆菌转接到25 ml LB液体培养基中(加有与1相同的抗生素,另外加入高压灭菌的乙酰丁香酮)。

3. 检测过夜培养的菌液OD600的值。

4. 5000 g,15分钟集菌,用重悬液重悬菌体,最终OD600为0.4。

5. 室温放置2~3 h后注射烟草。

6. 将侵染液装入5 ml 注射器内,用拇指按压注射器反板将液体从叶片下表皮注射到烟草叶片内(勿使用子叶)。

注射后,烟草叶片会出现湿润的现象。

7. 注射后2-5天,在便携式长波长紫外灯下检测GFP荧光信号(只适用于荧光很强的叶片)。

8. 通过荧光显微镜或者激光共聚交荧光显微镜检测GFP信号。

同时,可以提取蛋白,检测蛋白的含量。

Steps
1. Pick a single clone in 5 ml LB liquid culture and shake culture at 28 ~ 30 °C. Generally, LB is added with 100 µg / ml gentamicin (agrobacterium strain GV3101 carries resistance) and 50 µg/ml spectinomycin (carried by carrier).
2. Transfer 1 ml of Agrobacterium cultured overnight to 25 ml of LB liquid medium (add the same antibiotic as 1 and add autoclaved acetylsyringone).
3. Check the OD600 value of the bacterial solution cultured overnight.
4. 5000 g, 15 minutes to collect bacteria, resuspend the bacteria with a resuspension, the final OD600 is 0.4.
5. Inject tobacco after placing at room temperature for 2 ~ 3 hours.
6. Fill the infectious solution into a 5 ml syringe, and press the back of the syringe with your thumb to inject the liquid from the lower epidermis of the leaf into the tobacco leaf (do not use cotyledons). After injection, the tobacco leaves will appear moist.
7. 2-5 days after injection, detect the GFP fluorescence signal under a portable long-wavelength UV lamp (only applicable to highly fluorescent leaves).
8. Detect the GFP signal using a fluorescence microscope or a laser copolymerized fluorescence microscope. At the same time, protein can be extracted and the content of protein can be detected.
五、配方
1. 加有相应抗生素的LB液体培养基(一种抗生素是菌株携带,一种为载体携带)。

2. 乙酰丁香酮(100 mM 溶于乙醇,-20°C储存)。

3. 1 M MgCl2
4. 重悬液(10 mM MgCl2,10 mM 2-(N-吗啉代)乙磺酸(pH
5.6)高温高压灭菌15分钟,100 uM 乙酰丁香酮,高温高压灭菌)。

Five, formula
1. LB liquid medium supplemented with corresponding antibiotics (one antibiotic is carried by the strain and one is carried by the carrier).
2. Acetylsyringone (100 mM in ethanol, stored at -20 °C).
3.1 M MgCl2
4. Resuspend (10 mM MgCl2, 10 mM 2-(N-morpholino) ethanesulfonic acid (pH=
5.6), autoclave for 15 minutes, 100 µM acetylsyringone, autoclave).。

相关文档
最新文档