微专题十五 巧用旋转进行证明与计算
沪科版九年级数学下册-解题技巧专题:巧用旋转进行计算或证明
解题技巧专题:巧用旋转进行计算或证明——体会旋转中常见解题技巧◆类型一利用旋转结合等腰(边)三角形、垂直、平行的性质求角度1.(2016·合肥校级模拟)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC于点F,则∠BAC的度数为()A.60°B.85°C.75°D.90°第1题图第2题图第3题图2.(2016·株洲中考)如图,在△ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C 沿顺时针方向旋转后得到△A′B′C.若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°3.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为________.4.如图,P是正三角形ABC内的一点,且P A=5,PB=12,PC=13,若将△P AC绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.◆类型二利用旋转结合特殊三角形判定、性质或勾股定理求长度或证明5.如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=6,则AD的长为() A.2 B.3 C.2 3 D.3 26.如图,Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM的长是________.7.(2016·娄底中考)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=α度时,判定四边形A1BCE的形状,并说明理由.◆类型三利用旋转计算面积8.如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转,则这两个正方形重叠部分的面积是()A.2-1B.2+1C. 2D. 3第8题图第9题图9.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则△DCE的面积为________.【方法3】参考答案与解析1.B 解析:∵△ABC 绕点A 逆时针旋转得到△ADE ,∴∠C =∠E =70°,∠BAC =∠DAE .∵AD ⊥BC ,∴∠AFC =90°,∴∠CAF =90°-∠C =90°-70°=20°,∴∠DAE =∠CAF +∠EAC =20°+65°=85°,∴∠BAC =∠DAE =85°.2.B3.90° 解析:∵将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,∴∠BAB ′=∠CAC ′=120°,AB =AB ′,∴∠AB ′B =12(180°-120°)=30°.∵AC ′∥BB ′,∴∠C ′AB ′=∠AB ′B =30°,∴∠CAB ′=∠CAC ′-∠C ′AB ′=120°-30°=90°.4.解:连接PP ′.∵△ABC 为等边三角形,∴AB =AC ,∠BAC =60°.∵△P AC 绕点A 逆时针旋转后,得到△P ′AB ,∴∠P ′AP =∠BAC =60°,AP ′=AP ,BP ′=CP =13,∴△AP ′P 为等边三角形,∴PP ′=AP =5,∠APP ′=60°.在△BPP ′中,∵PP ′=5,BP =12,BP ′=13,∴PP ′2+BP 2=BP ′2,∴△BPP ′为直角三角形,∠BPP ′=90°,∴∠APB =∠APP ′+∠BPP ′=60°+90°=150°.即点P 与点P ′之间的距离为5,∠APB 的度数为150°.5.D 解析:在Rt △ABC 中,AB =AC 2+BC 2=62+62=62,则AB ′=AB =6 2.在Rt △B ′AD 中,∠B ′AD =180°-∠BAC -∠BAB ′=180°-45°-75°=60°.则AD =AB ′·cos ∠B ′AD =62×12=3 2. 6.2+6 解析:连接AM ,由题意,得CA =CM ,∠ACM =60°,∴△ACM 为等边三角形,∴AM =CM ,∠MAC =∠MCA =∠AMC =60°.∵∠ABC =90°,AB =BC =2,∴AC =CM =2 2.∵AB =BC ,CM =AM ,∴BM 垂直平分AC ,∴BO =12AC =2,OM =CM ·sin60°=6,∴BM =BO +OM =2+ 6.7.(1)证明:∵△ABC 是等腰三角形,∴AB =BC ,∠A =∠C .∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴A 1B =AB =BC ,∠A =∠A 1=∠C ,∠A 1BD =∠CBC 1.在△BCF 与△BA 1D 中,⎩⎪⎨⎪⎧∠A 1=∠C ,A 1B =BC ,∠A 1BD =∠CBF ,∴△BCF ≌△BA 1D ; (2)解:四边形A 1BCE 是菱形.理由如下:∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴∠A 1=∠A .∵∠ADE =∠A 1DB ,∴∠AED =∠A 1BD =α,∴∠DEC =180°-α.∵∠C =α,∴∠A 1=α,∴∠A 1BC =360°-∠A 1-∠C -∠A 1EC =180°-α,∴∠A 1=∠C ,∠A 1BC =∠A 1EC ,∴四边形A 1BCE 是平行四边形.∵A 1B =BC ,∴四边形A 1BCE 是菱形.8.A 解析:连接AE ,∵四边形ABCD 为正方形,∴AB =BC =1,且∠B =90°,∠D ′CE =45°,由勾股定理得AC =12+12= 2.由题意,得AD ′=AB =1,∠AD ′E =90°,∴D ′C =2-1,∠D ′EC =∠D ′CE =45°,∴D ′E =D ′C =2-1,∴S △D ′EC =12(2-1)2=32-2,∴S 阴影=S △ABC -S △D ′EC =12×1×1-⎝⎛⎭⎫32-2=2-1. 9.1547 解析:由旋转的性质得△ACE ≌△ABD ,∴AE =AD =5,CE =BD =6,∠DAE =60°,∴DE =5.作EH ⊥CD 垂足为H .设DH =x .由勾股定理得EH 2=CE 2-CH 2=DE 2-DH 2,即62-(4-x )2=52-x 2,解得x =58,∴DH =58.由勾股定理得EH =DE 2-DH 2=52-⎝⎛⎭⎫582=1587,∴△DCE 的面积=12CD ·EH =1547.。
沪科版九年级数学下册第二十四章《巧用旋转进行计算或证明》优课件
4.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为 α(0°<α<90°),若 ∠1=110°,则∠α=__20°__.
5.(2015·梧州)如图,在△ABC 中,∠A=70°,AC= BC,以点 B 为旋转中心把△ABC 按顺时针旋转α度,得到 △A′BC′,点 A′恰好落在 AC 上,连接 CC′,求∠ACC′的度 数.
11.如图,在四边形 ABCD 中,AB⊥AD,CD⊥AD,将 BC 按 逆时针方向绕点 B 旋转 90°得到线段 BE,连接 AE.若 AB= 2,DC=4,求△ABE 的面积.
解:过点 B 作 BG⊥DC 于点 G,过点 E 作 EF⊥AB 与 AB 的延长线交于点 F,∵∠BAD=∠D=∠DGB=90°, ∴四边形 ABGD 是矩形,∴DG=AB=2,∴CG=DC-DG =4-2=2,∵∠CBG+∠CBF=90°,∴∠EBF+∠CBF =90°,∴∠CBG=∠EBF,在△BCG 与△BEF 中,∠ CBG = ∠ EBF , ∠ CGB = ∠EFB = 90 ° , BC = BE , ∴ △ BCG≌△BEF,∴CG=EF=2,∴S△ABE=12AB·EF=2
+∠FAB=180°,∴AF∥BP,∴∠F、∠FPC=60°,∴∠
FPC=∠B=60°,∴AB∥FP,∴四边形 ABPF 是平行四边
形,又∵AB=AF,∴平行四边形 ABPF 是菱形
13.将一副三角尺(在 Rt△ABC 中,∠ACB=90°,∠B =60°;在 Rt△DEF 中,∠EDF=90°,∠E=45°)如图① 摆放,点 D 为 AB 的中点,DE 交 AC 于点 P,DF 经过点 C.
解:(1)证明:由旋转可知,AB=AF,∠BAM=∠FAN,
沪科版九级数学下册练习:解题技巧专题:巧用旋转进行计算或证明
沪科版九级数学下册练习:解题技巧专题:巧用旋转进行计算或证明——体会旋转中常见解题技巧◆类型一利用旋转结合等腰(边)三角形、垂直、平行的性质求角度1.(2016·合肥校级模拟)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC于点F,则∠BAC的度数为() A.60° B.85° C.75° D.90°第1题图第2题图第3题图2.(2016·株洲中考)如图,在△ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到△A′B′C.若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50° B.60° C.70° D.80°3.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为________.4.如图,P是正三角形ABC内的一点,且PA=5,PB=12,PC=13,若将△PAC 绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.◆类型二利用旋转结合特殊三角形判定、性质或勾股定理求长度或证明5.如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=6,则AD的长为()A.2 B.3 C.2D.326.如图,Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM的长是________.7.(2016·娄底中考)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=α度时,判定四边形A1BCE的形状,并说明理由.◆类型三利用旋转计算面积8.如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转,则这两个正方形重叠部分的面积是()A.-1B.+1C.D.3第8题图第9题图9.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则△DCE的面积为________.【方法3】参考答案与解析1.B 解析:∵△ABC绕点A逆时针旋转得到△ADE,∴∠C=∠E=70°,∠BAC =∠DAE.∵AD⊥BC,∴∠AFC=90°,∴∠CAF=90°-∠C=90°-70°=20°,∴∠DAE=∠CAF+∠EAC=20°+65°=85°,∴∠BAC=∠DAE=85°.2.B3.90°解析:∵将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,∴∠BAB′=∠CAC′=120°,AB=AB′,∴∠AB′B=(180°-120°)=30°.∵AC′∥BB′,∴∠C′AB′=∠AB′B=30°,∴∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.4.解:连接PP′.∵△ABC为等边三角形,∴AB=AC,∠BAC=60°.∵△PAC绕。
2019届中考数学专题提升(十五)巧用旋转进行证明与计算
专题提升(十五) 巧用旋转进行证明与计算【经典母题】已知等边三角形ABC(如图Z15-1).(1)以点A为旋转中心,将△ABC按逆时针方向旋转30°,作出旋转后的图形;(2)经第(1)题旋转所得的图形与△ABC之间有没有互相垂直的边?证明你的判断.图Z15-1 经典母题答图解:(1)如答图所示;(2)AD⊥BC,DE⊥AC,AB⊥AE.证明略.【思想方法】旋转前、后的图形全等,所以借此可以在较复杂的图形中发现等量(或全等)关系,或通过旋转(割补)图形,把分散的已知量聚合起来,便于打通解题思路,找到解题突破口.【中考变形】1.如图Z15-2,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连结OC,FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,其中正确结论的个数是 ( D )图Z15-2A.1个B.2个C.3个D.4个2.如图Z15-3,P是等腰直角三角形ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B =135°,P′A∶P′C=1∶3,则P′A∶PB=( B )A.1∶ 2 B.1∶2C.3∶2 D.1∶ 3图Z15-3 中考变形2答图【解析】如答图,连结AP,PP′,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°.∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP =∠CBP′.在△ABP 和△CBP′中,⎩⎪⎨⎪⎧BP =BP′,∠ABP =∠CBP′,AB =CB ,∴△ABP ≌△CBP ′(SAS),∴AP =P′C.∵P′A∶P′C=1∶3,∴AP =3P′A.∵△PBP′是等腰直角三角形,∴∠BP ′P =45°,PP ′=2PB.∵∠AP ′B =135°,∴∠AP ′P =135°-45°=90°,∴△APP ′是直角三角形.设P′A=x ,则AP =3x ,根据勾股定理,得PP′=AP 2-P′A 2=(3x )2-x 2=22x ,∴P ′B =PB =2x ,∴P ′A ∶PB =x∶2x=1∶2.3.[2019·徐州]如图Z15-4,已知AC⊥BC,垂足为C ,AC =4,BC =33,将线段AC 绕点A 按逆时针方向旋转60°,得到线段AD ,连结DC ,DB. (1)线段DC =__4__; (2)求线段DB 的长度.图Z15-4中考变形3答图解:(1)∵AC=AD ,∠CAD =60°, ∴△ACD 是等边三角形,∴DC =AC =4; (2)如答图,作DE⊥BC 于点E. ∵△ACD 是等边三角形, ∴∠ACD =60°,又∵AC⊥BC,∴∠DCE =∠ACB-∠ACD=90°-60°=30°,在Rt △CDE 中,DE =12DC =2,CE =DC·cos30°=4×32 =23,∴BE =BC -CE =33-23= 3.在Rt △BDE 中,BD =DE 2+BE 2=22+(3)2=7.4.如图Z15-5①,在△ABC 中,AE ⊥BC 于点E ,AE =BE ,D 是AE 上的一点,且DE =CE ,连结BD ,CD. (1)判断BD 与AC 的位置关系和数量关系,并给出证明;(2)如图②,若将△DCE 绕点E 旋转一定的角度后,BD 与AC 的位置关系和数量关系是否发生变化?为什么?(3)如图③,将(2)中的等腰直角三角形都换成等边三角形,其他条件不变,求BD 与AC 夹角的度数.图Z15-5解:(1)BD 与AC 的位置关系是BD⊥AC,数量关系是BD =如答图①,延长BD 交AC 于点F. ∵AE ⊥BC 于点E , ∴∠BED =∠AEC=90°. ∵AE =BE ,DE =CE , ∴△DBE ≌△CAE(SAS),∴BD =AC ,∠DBE =∠CAE,∠BDE =∠ACE.∵∠BDE =∠ADF,∴∠ADF =∠ACE.∵∠ACE +∠CAE=90°,∴∠ADF +∠CAE=90°,∴BD ⊥AC ; (2)否.证明:如答图②,AC 与BD 交于点F , ∵∠AEB=∠DEC=90°,∴∠AEB+∠AED=∠DEC+∠AED, 即∠BED=∠AEC. ∵AE=BE ,DE =CE , ∴△BED≌△AEC(SAS),∴BD=AC ,∠BDE=∠ACE,∠DBE=∠CAE.∵∠BFC=∠ACD+∠CDE+∠BDE=∠ACD+∠CDE+∠ACE=90°,∴BD⊥AC; (3)如答图③,AC 与BD 交于点F. ∵△ABE 和△DEC 是等边三角形,∴AE=BE ,DE =EC ,∠EDC=∠DCE=60°, ∠BE A =∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED, ∴∠BED=∠AEC, 在△BED 和△AEC 中,⎩⎪⎨⎪⎧BE =AE ,∠BED=∠AEC,DE =CE ,∴△BED≌△AEC(SAS),∴∠BDE=∠ACE, 中考变形4答图②中考变形4答图③∴∠DFC=180°-(∠BDE+∠EDC+∠DCF)=60°,∴BD与AC的夹角度数为60°或120°.5.阅读下面的材料:小伟遇到这样一个问题:如图Z15-6①,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图②,利用旋转和全等的知识构造△AP′C,连结PP′,得到两个特殊的三角形,从而将问题解决.(1)请你回答:图①中∠APB=__150°__;参考小伟同学思考问题的方法,解决下列问题:(2)如图③,在正方形ABCD内有一点P,且PA=22,PB=1,PD=17,求∠APB的度数和正方形的边长.图Z15-6解:(1)如答图①,把△APB绕点A逆时针旋转60°得△AP′C,由旋转的性质,得P′A=PA=3,P′C=PB=4,∠PAP′=60°,∴△APP′是等边三角形,∴PP′=PA=3,∠AP′P=60°,∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°,∴∠APB=∠AP′C=150°;(2)如答图②,把△APB绕点A逆时针旋转90°得到△AP′D,由旋转的性质,得P′A=PA=22,P′D=PB=1,∠PAP′=90°,∴△APP′是等腰直角三角形,∴PP′=2PA=2×22=4,∠AP′P=45°,∵PP′2+P′D2=42+12=17,PD2=(17)2=17,∴PP′2+P′D2=PD2,∴∠PP′D=90°,中考变形5答图①中考变形5答图②∴∠AP ′D =∠AP′P+∠PP′D=45°+90°=135°, ∴∠APB =∠AP′D=135°.∵∠APB +∠APP′=135°+45°=180°, ∴P ′,P ,B 三点共线.过点A 作AE⊥PP′于点E ,则AE =PE =12PP ′=2,∴BE =PE +PB =2+1=3,在Rt△ABE 中,AB =AE 2+BE 2=22+32=13. 【中考预测】(1)如图Z15-7①,在正方形ABCD 中,△AEF 的顶点E ,F 分别在BC ,CD 边上,高线AG 与正方形的边长相等,求∠EAF 的度数;(2)如图②,在Rt △ABD 中,∠BAD =90°,AB =AD ,M ,N 是BD 边上的任意两点,且∠MAN=45°,将△ABM 绕点A 逆时针旋转90°至△ADH 位置,连结NH ,试判断MN 2,ND 2,DH 2之间的数量关系,并说明理由;(3)在图①中,若EG =4,GF =6,求正方形ABCD 的边长.图Z15-7解:(1)在正方形ABCD 中,∠B =∠D=90°, ∵AG ⊥EF ,∴△ABE 和△A GE 是直角三角形. 在Rt △ABE 和Rt △AGE 中,⎩⎪⎨⎪⎧AB =AG ,AE =AE , ∴△ABE ≌△AGE(HL),∴∠BAE =∠GAE. 同理,∠GAF =∠DAF.∴∠EAF =∠EAG+∠FAG=12∠BAD =45°;(2)MN 2=ND 2+DH 2.由旋转可知,∠BAM =∠DAH, ∵∠BAM +∠DAN=45°, ∴∠HAN =∠DAH+∠DAN=45°. ∴∠HAN =∠MAN.在△AMN 与△AHN 中,⎩⎪⎨⎪⎧AM =AH ,∠MAN =∠HAN,AN =AN ,∴△AMN ≌△AHN(SAS),∴MN =HN.∵∠BAD =90°,AB =AD ,∴∠B =∠ADB=45°, ∴∠HDN =∠HDA+∠ADB=90°, ∴NH 2=ND 2+DH 2,∴MN 2=ND 2+DH 2; (3)由(1)知,BE =EG =4,DF =FG =6.设正方形ABCD 的边长为x ,则CE =x -4,CF =x -6. ∵CE 2+CF 2=EF 2,∴(x -4)2+(x -6)2=102, 解得x 1=12,x 2=-2(不合题意,舍去). ∴正方形ABCD 的边长为12.2019-2020学年数学中考模拟试卷一、选择题1.已知二次函数y=kx 2﹣7x ﹣7的图象与x 轴有两个交点,则k 的取值范围为( ) A .k >﹣74B .k >﹣74且k≠0 C .k≥﹣74D .k≥﹣74且k≠0 2.有理数﹣12的倒数是( ) A .12B .﹣2C .2D .13.下列计算中,不正确的是( ) A .222a 2ab b (a b)-+=- B .2510a a a ⋅=C .()a b b a--=-D .32223a b a b 3a ÷=4.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a =4,b =5,则该矩形的面积为( )A.50B.40C.30D.205.如图,等腰△ABC 中,AB =AC =5cm ,BC =8cm .动点D 从点C 出发,沿线段CB 以2cm/s 的速度向点B 运动,同时动点O 从点B 出发,沿线段BA 以1cm/s 的速度向点A 运动,当其中一个动点停止运动时另一个动点也随时停止.设运动时间为t (s ),以点O 为圆心,OB 长为半径的⊙O 与BA 交于另一点E ,连接ED .当直线DE 与⊙O 相切时,t 的取值是( )A. B. C. D.6.如图,四边形ACBD 是⊙O 的内接四边形,AB 是⊙O 的直径,点E 是DB 延长线上的一点,且∠DCE =90°,DC 与AB 交于点G .当BA 平分∠DBC 时,BDDE的值为( )A .12B .13C .-2D .27.下列运算中正确的是( ) A .236x x x ⋅=B .238()x x =C .222()xy x y -=- D .633x x x ÷=8.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )A .甲队员成绩的平均数比乙队员的大B .乙队员成绩的平均数比甲队员的大C .甲队员成绩的中位数比乙队员的大D .甲队员成绩的方差比乙队员的大9.点A ,点B 的位置如图所示,抛物线y =ax 2﹣2ax 经过A ,B ,则下列说法不正确的是( )A.点B 在抛物线对称轴的左侧;B.抛物线的对称轴是x =1C.抛物线的开口向上 ;D.抛物线的顶点在第四象限.10.小红同学5月份各项消费情况的扇形统计图如图所示,其中小红在学习用品上共支出100元,则她在午餐上共支出( )A .50元B .100元C .150元D .200元11.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是( )已知:如图,在ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE //BC ,DF//AC , 求证:ADE ∽DBF . 证明:①又DF//AC ,DE //BC ②,A BDF ∠∠∴=③,ADE B ∠∠∴=④,ADE ∴∽DBF .A.③②④①B.②④①③C.③①④②D.②③④①12.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学知道自己的成绩后,要判断能否进入决赛,还需知道这9名同学成绩的( ) A .众数 B .中位数C .平均数D .方差二、填空题13.如图,在每个小正方形的边长为1的网格中,点,A B 均在格点上,12,l l 是一条小河平行的两岸. (Ⅰ)AB 的距离等于_____;(Ⅱ)现要在小河上修一座垂直于两岸的桥MN (点M 在1l 上,点N 在2l 上,桥的宽度忽略),使AM MN NB ++最短,请在如图所示的网格中,用无刻度的直尺,画出MN ,并简要说明点M ,N 的位置是如何找到的(不要求证明)_________________________________.14.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,点D 是AB 的中点,点P 是直线AC 上一点,将△ADP 沿DP 所在的直线翻折后,点A 落在A 1处,若A 1D ⊥AC ,则点P 与点A 之间的距离为______.15.用48m 长的篱笆在空地上围成一个正六边形的绿化场地,则其面积为______2m16.如图,△ABC 中,点D 、E 分別在AB 、AC 上,DE ∥BC ,AD :DB=1:2,则△ADE 与△ABC 的面积的比为__________.17.如图,在Rt △ABC 中,∠BAC =90°,AB =1,AC =4,点A 在y 轴上,点C 在x 轴上,则点A 在移动过程中,BO 的最大值是_____.18.如图,在平面直角坐标系xOy 中,已知抛物线y =﹣x (x ﹣3)(0≤x≤3)在x 轴上方的部分,记作1C ,它与x 轴交于点O ,1A ,将1C 绕点1A 旋转180°得2C ,2C 与x 轴交于另一点2A .请继续操作并探究:将2C 绕点2A 旋转180°得3C ,与x 轴交于另一点3A ;将3C 绕点3A 旋转180°得4C ,与x 轴交于另一点4A ,这样依次得到x 轴上的点1A ,2A ,3A ,…,n A ,…,及抛物线1C ,2C ,…,n C ,…则n C 的顶点坐标为_____.三、解答题19.如图,直线y 1=2x+1与双曲线y 2=kx相交于A (﹣2,a )和B 两点. (1)求k 的值;(2)在点B上方的直线y=m与直线AB相交于点M,与双曲线y2=kx相交于点N,若MN=32,求m的值;(3)在(2)前提下,请结合图象,求不等式2x<kx﹣1<m﹣1的解集.20.随着生活水平的提高,人们对饮水品质的需求越来越高,某市某公司根据市场需求代理A,B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等,(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划购进A,B两种型号的净水器共55台进行试销,其中A型净水器为m台,购买两种净水器的总资金不超过10.8万元.试销时A型净水器每台售价2500元,B型净水器每台售价2180元,该公司决定从销售A型净水器的利润中按每台捐献a(70<a<80)元作为公司帮扶贫困村饮水改造资金,设该公司售完55台净水器并捐献扶贫资金后获得的利润为W元,求W的最大值.21.2﹣|1|﹣tan45°+(π﹣1978)0.22.如图,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2是,求⊙P的半径;(2)求y关于x的函数解析式,在图②中画出此函数图像;(3)请类比圆的定义(圆可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图像进行定义:此函数图像可以看成是到的距离等于到的距离的所有点的集合;(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,则cos∠APD= .23.《中国诗词大会》栏目中,外卖小哥击败北大硕士引发新一轮中华优秀传统文化热。
初中数学破题致胜微方法(巧用旋转)
1111例:在△ABC 中, ∠BAC=45°,AD ⊥BC 于D 点,已知:BD=6,CD=4,则高AD的长为_____.分析:此题看到45°,可以将它扩大到90°,将△BCD 沿BC 翻折,使D 到D 1处,△ADB 沿AB 翻折,使D 到D 2处,则C D 1=CD=4, B D 2=BD=6,∠D 1AD 2=90°,四边形A D 1 D 3 D 2为正方形,利用△AD 3C 为直角三角形,根据勾股定理有22233BC BD CD =+, B D 3= D 2D 3- B D 2= AD-BD=AD-6, C D 3= D 1D 3- C D 1=AD-CD=AD-4,可求得12AD =. 答案:12总结:如图,涉及三角形内45°角对边上的高时,对应的高,底边上被高分成的两个线段这三量知二求一时,可考虑翻折+半角的反应用,把半角扩大到90°,再利用翻折的性质、正方形的性质把相关量转移到直角三角形中,应用勾股定理解决.练习:1. 如图,在△ABC 中, ∠BAC=45°,AD ⊥BC 于D 点,已知:BD=3,CD=2,则△ABC 的面积为_____.22. 如图,在△ABC 中, ∠ABC=45°, BD ⊥AC 于D 点,已知:BD=6,AC=5,则CD=_____.答案:1. 6分析:参考例题做法,则此时四边形A D 1 D 3 D 2为正方形,利用△BD 3C 为直角三角形,根据勾股定理有22233BC BD CD =+, B D 3= D 2D 3- B D 2=AD-BD=AD-3, C D 3= D 1D 3- C D 1=AD-CD=AD-3,可求得6AD=.2. 2或3分析:参考例题做法,则此时四边形B D 1 D 3 D 2为正方形,利用△BD 3C 为直角三角形,根据勾股定理有22233AC AD CD =+, A D 3= D 2D 3- A D 2=BD-AD=6-(AC-CD)=1+CD, C D 3= D 1D 3- C D 1=BD-CD,可求得3CD =或2CD =.3例:已知:在△ABC 中,60BAC ∠=︒.(1)如图1,若AB =AC ,点P 在△ABC 内,且150APC ∠=︒,3PA =,4PC =,把△APC 绕着点A 顺时针旋转,使点C 旋转到点B ,得到△ADB ,连结DP .①依题意补全图1;②直接写出PB 的长;(2)如图2 ,若AB =AC ,点P 在△ABC 外,且3PA =,5PB =,4PC =,求APC ∠的度数;(3)如图3,若2AB AC =,点P 在△ABC 内,且3PA =5PB = ,120APC ∠=︒,直接写出PC 的长.CBAP图2图3图1CBAPBAP分析:(1)画出旋转后的图形,根据旋转的性质,旋转前后所对应的两个三角形全等,∴△ADB≌△APC,则AD=AP,BD=CP,∠ADB=∠APC,又∠BAC=60°,则旋转角是60°,则∠ADP=60°,∴△ADP为等边三角形,∴∠BDP=120°-60°=90°,DP=AP=3,则BP=5。
2020届中考数学总复习课件:微专题十五 巧用旋转进行证明与计算 (共29张PPT)
(2)MN2=ND2+DH2.理由如下: 由旋转可知,∠BAM=∠DAH, ∵∠BAM+∠DAN=45°, ∴∠HAN=∠DAH+∠DAN=45°. ∴∠HAN=∠MAN. 在△AMN 与△AHN 中,A∠MM=AANH=,∠HAN,
AN=AN,
∴△AMN≌△AHN(SAS),∴MN=HN. ∵∠BAD=90°,AB=AD, ∴∠B=∠ADB=45°, ∴∠HDN=∠HDA+∠ADB=90°, ∴NH2=ND2+DH2,∴MN2=ND2+DH2;
(3)如答图①,∵∠AEB=∠ACB=90°, ∴A,B,C,E 四点共圆, ∴∠CEB=∠CAB=30°,∠ABD=∠ACE, ∵∠DAE=∠BAC=30°,∴∠BAD=∠CAE, ∴△BAD∽△CAE,∴BEDC=AACB=cos30°= 23, ∴EC= 23BD, 在 Rt△ABE 中,∵AB=5,AE=3,
∴PP′2+P′D2=PD2,∴∠PP′D=90°,
中考变形4答图
∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,
∴∠APB=∠AP′D=135°. ∵∠APB+∠AP′P=135°+45°=180°, ∴P′,P,B 三点共线. 过点 A 作 AE⊥PP′于点 E,则 AE=PE=12PP′=2, ∴BE=PE+PB=2+1=3, 在 Rt△ABE 中,AB= AE2+BE2= 22+32= 13.
3.如图 Z15-4,已知 AC⊥BC,垂足为 C,AC=4,BC=3 3,将线段 AC 绕点 A 按 逆时针方向旋转 60°,得到线段 AD,连结 DC,DB. (1)线段 DC=__4__; (2)求线段 DB 的长度.
图 Z15-4
解:(1)∵AC=AD,∠CAD=60°, ∴△ACD 是等边三角形,∴DC=AC=4; (2)如答图,作 DE⊥BC 于点 E. ∵△ACD 是等边三角形, ∴∠ACD=60°,又∵AC⊥BC, ∴∠DCE=∠ACB-∠ACD=90°-60°=30°. 在 Rt△CDE 中,DE=12DC=2,CE= 23DC=2 3, ∴BE=BC-CE=3 3-2 3= 3. 在 Rt△BDE 中,BD= DE2+BE2= 22+( 3)2= 7.
专题提升(15) 巧用旋转进行证明与计算共31页文档
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称证明与计算
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
解题技巧专题:巧用旋转进行计算或证明
解题技巧专题:巧用旋转进行计算或证明——体会旋转中常见解题技巧◆类型一利用旋转结合等腰(边)三角形、垂直、平行的性质求角度1.(2016·合肥校级模拟)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC于点F,则∠BAC的度数为()A.60°B.85°C.75°D.90°第1题图第2题图第3题图2.(2016·株洲中考)如图,在△ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C 沿顺时针方向旋转后得到△A′B′C.若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°3.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为________.4.如图,P是正三角形ABC内的一点,且P A=5,PB=12,PC=13,若将△P AC绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.◆类型二利用旋转结合特殊三角形判定、性质或勾股定理求长度或证明5.如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=6,则AD的长为() A.2 B.3 C.2 3 D.3 26.如图,Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM的长是________.7.(2016·娄底中考)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=α度时,判定四边形A1BCE的形状,并说明理由.◆类型三利用旋转计算面积8.如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转,则这两个正方形重叠部分的面积是()A.2-1B.2+1C. 2D. 3第8题图第9题图9.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则△DCE的面积为________.【方法3】参考答案与解析1.B 解析:∵△ABC 绕点A 逆时针旋转得到△ADE ,∴∠C =∠E =70°,∠BAC =∠DAE .∵AD ⊥BC ,∴∠AFC =90°,∴∠CAF =90°-∠C =90°-70°=20°,∴∠DAE =∠CAF +∠EAC =20°+65°=85°,∴∠BAC =∠DAE =85°.2.B3.90° 解析:∵将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,∴∠BAB ′=∠CAC ′=120°,AB =AB ′,∴∠AB ′B =12(180°-120°)=30°.∵AC ′∥BB ′,∴∠C ′AB ′=∠AB ′B =30°,∴∠CAB ′=∠CAC ′-∠C ′AB ′=120°-30°=90°.4.解:连接PP ′.∵△ABC 为等边三角形,∴AB =AC ,∠BAC =60°.∵△P AC 绕点A 逆时针旋转后,得到△P ′AB ,∴∠P ′AP =∠BAC =60°,AP ′=AP ,BP ′=CP =13,∴△AP ′P 为等边三角形,∴PP ′=AP =5,∠APP ′=60°.在△BPP ′中,∵PP ′=5,BP =12,BP ′=13,∴PP ′2+BP 2=BP ′2,∴△BPP ′为直角三角形,∠BPP ′=90°,∴∠APB =∠APP ′+∠BPP ′=60°+90°=150°.即点P 与点P ′之间的距离为5,∠APB 的度数为150°.5.D 解析:在Rt △ABC 中,AB =AC 2+BC 2=62+62=62,则AB ′=AB =6 2.在Rt △B ′AD 中,∠B ′AD =180°-∠BAC -∠BAB ′=180°-45°-75°=60°.则AD =AB ′·cos ∠B ′AD =62×12=3 2. 6.2+6 解析:连接AM ,由题意,得CA =CM ,∠ACM =60°,∴△ACM 为等边三角形,∴AM =CM ,∠MAC =∠MCA =∠AMC =60°.∵∠ABC =90°,AB =BC =2,∴AC =CM =2 2.∵AB =BC ,CM =AM ,∴BM 垂直平分AC ,∴BO =12AC =2,OM =CM ·sin60°=6,∴BM =BO +OM =2+ 6.7.(1)证明:∵△ABC 是等腰三角形,∴AB =BC ,∠A =∠C .∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴A 1B =AB =BC ,∠A =∠A 1=∠C ,∠A 1BD =∠CBC 1.在△BCF 与△BA 1D 中,⎩⎪⎨⎪⎧∠A 1=∠C ,A 1B =BC ,∠A 1BD =∠CBF ,∴△BCF ≌△BA 1D ; (2)解:四边形A 1BCE 是菱形.理由如下:∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴∠A 1=∠A .∵∠ADE =∠A 1DB ,∴∠AED =∠A 1BD =α,∴∠DEC =180°-α.∵∠C =α,∴∠A 1=α,∴∠A 1BC =360°-∠A 1-∠C -∠A 1EC =180°-α,∴∠A 1=∠C ,∠A 1BC =∠A 1EC ,∴四边形A 1BCE 是平行四边形.∵A 1B =BC ,∴四边形A 1BCE 是菱形.8.A 解析:连接AE ,∵四边形ABCD 为正方形,∴AB =BC =1,且∠B =90°,∠D ′CE =45°,由勾股定理得AC =12+12= 2.由题意,得AD ′=AB =1,∠AD ′E =90°,∴D ′C =2-1,∠D ′EC =∠D ′CE =45°,∴D ′E =D ′C =2-1,∴S △D ′EC =12(2-1)2=32-2,∴S 阴影=S △ABC -S △D ′EC =12×1×1-⎝⎛⎭⎫32-2=2-1. 9.1547 解析:由旋转的性质得△ACE ≌△ABD ,∴AE =AD =5,CE =BD =6,∠DAE =60°,∴DE =5.作EH ⊥CD 垂足为H .设DH =x .由勾股定理得EH 2=CE 2-CH 2=DE 2-DH 2,即62-(4-x )2=52-x 2,解得x =58,∴DH =58.由勾股定理得EH =DE 2-DH 2=52-⎝⎛⎭⎫582=1587,∴△DCE 的面积=12CD ·EH =1547.。
中考数学 专题提升十五 巧用旋转进行证明与计算复习
【思想方法】 旋转前、后的图形全等,所以借此可以在较复 杂的图形中发现等量(或全等)关系,或通过旋转(割补)图形, 把分散的已知量聚合起来,便于打通解题思路,疏通解题突破 口.
【中考变形】
1.如图Z15-2,已知△ABC和△DCE均是等边三角形,点B,
C,E在同一条直线上,AE与BD交于
点O,AE与CD交于点G,AC与BD交于点
F,连结OC,FG,则下列结论:①AE=
BD;②AG=BF;③FG∥BE;④∠BOC =∠EOC,其中正确结论的个数是 ( D )
图Z15-2
A.1
B.2
C.3
D.4
2.如图Z15-3,P是等腰直角△ABC外一点,把BP绕点B顺时
针旋转90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,
图Z15-7
(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图②, 试判断AD与CF还相等吗?说明你的理由; (2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上, 如图③,请你求出CF的长. 解:(1)AD与CF还相等. 理由:∵四边形ODEF,四边形ABCO为正方形, ∴∠DOF=∠COA=90°,DO=OF,CO=OA, ∴∠COF=∠AOD,∴△COF≌△AOD(SAS), ∴AD=CF;
∵在Rt△ABC中,∠ACB=90°,∠B=30°, ∴∠A=60°, ∴△ACD是等边三角形, ∴∠ACD=60°, ∴n=60; (2)四边形ACFD是菱形.理由如下: ∵△ACD是等边三角形, ∴AC=CD=AD,∠ADC=60°. 又∵∠ACB=90°,∴∠DCB=30°, ∴∠DCB=∠B,
专题提升(十五) 巧用旋转进行证明与计算
【教材母题】 已知等边三角形ABC(如图Z15-1). (1)以点A为旋转中心,将△ABC按逆时针方向 旋转30°,作出旋转后的图形; (2)经第(1)题旋转所得的图形与△ABC之间有没 有互相垂直的边?证明你的判断.(浙教版九上 图Z15-1 P110第5题) 解:(1)如答图所示; (2)AD⊥BC,DE⊥AC,AB⊥AE.证明略.
专题提升(15) 巧用旋转进行证明与计算
(十五)巧用旋转进行证明与计算人教版九上P63习题第10题)如图,△ABD,△AEC都是等边三角形.BE与DC有什么关系?你能用旋转的性质说明上述关系成立的理由吗?【思想方法】旋转前、后的图形全等,借此可以在较复杂的图形中发现等量(或全等)关系,或通过旋转(割补)图形,把分散的已知量聚合起来,便于疏通解题思路,找出解题突破口.1.[2020·中考预测]如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,有以下结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④PQ∥AC.其中结论正确的有()A.1个B.2个C.3个D.4个2.[2019·北京]如图,已知∠AOB=30°,H为射线OA上一定点,OH=3+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.3.[2018·烟台]【问题解决】一节数学课上,老师提出了一个这样问题:如图①,点P是正方形ABCD内一点,PA=1,PB=2,PC=3,你能求出∠APB的度数吗?小明他通过观察、分析、思考,形成了如下思路:思路一:将△PBC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP′B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图②,若点P是正方形ABCD外一点,PA=3,PB=1,PC=11,求∠APB的度数.①②如图,在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图①,直接写出∠ABD的大小(用含α的式子表示);(2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形状,并加以证明;(3)如图③,在(2)的条件下,连接DE,若∠DEC=45°,求α的值.参考答案【教材母题】BE=DC,理由略【中考变形】 1.D2.(1)略(2)略(3)OP=2,证明略.3.【问题解决】∠APB=135°,解答过程略【类比探究】∠APB=45°【中考预测】(1)∠ABD=30°-12α(2)△ABE为等边三角形,证明略(3)30°。
解题技巧专题:巧用旋转进行计算或证明
解题技巧专题:巧用旋转进行计算或证明——体会旋转中常见解题技巧◆类型一利用旋转结合等腰(边)三角形、垂直、平行的性质求角度1.(2016·合肥校级模拟)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC于点F,则∠BAC的度数为()A.60°B.85°C.75°D.90°第1题图第2题图第3题图2.(2016·株洲中考)如图,在△ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C 沿顺时针方向旋转后得到△A′B′C.若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°3.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为________.4.如图,P是正三角形ABC内的一点,且P A=5,PB=12,PC=13,若将△P AC绕点A逆时针旋转后,得到△P′AB,求点P与点P′之间的距离及∠APB的度数.◆类型二利用旋转结合特殊三角形判定、性质或勾股定理求长度或证明5.如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=6,则AD的长为() A.2 B.3 C.2 3 D.3 26.如图,Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,那么BM的长是________.7.(2016·娄底中考)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=α度时,判定四边形A1BCE的形状,并说明理由.◆类型三利用旋转计算面积8.如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转,则这两个正方形重叠部分的面积是()A.2-1B.2+1C. 2D. 3第8题图第9题图9.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则△DCE的面积为________.【方法3】参考答案与解析1.B 解析:∵△ABC 绕点A 逆时针旋转得到△ADE ,∴∠C =∠E =70°,∠BAC =∠DAE .∵AD ⊥BC ,∴∠AFC =90°,∴∠CAF =90°-∠C =90°-70°=20°,∴∠DAE =∠CAF +∠EAC =20°+65°=85°,∴∠BAC =∠DAE =85°.2.B3.90° 解析:∵将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,∴∠BAB ′=∠CAC ′=120°,AB =AB ′,∴∠AB ′B =12(180°-120°)=30°.∵AC ′∥BB ′,∴∠C ′AB ′=∠AB ′B =30°,∴∠CAB ′=∠CAC ′-∠C ′AB ′=120°-30°=90°.4.解:连接PP ′.∵△ABC 为等边三角形,∴AB =AC ,∠BAC =60°.∵△P AC 绕点A 逆时针旋转后,得到△P ′AB ,∴∠P ′AP =∠BAC =60°,AP ′=AP ,BP ′=CP =13,∴△AP ′P 为等边三角形,∴PP ′=AP =5,∠APP ′=60°.在△BPP ′中,∵PP ′=5,BP =12,BP ′=13,∴PP ′2+BP 2=BP ′2,∴△BPP ′为直角三角形,∠BPP ′=90°,∴∠APB =∠APP ′+∠BPP ′=60°+90°=150°.即点P 与点P ′之间的距离为5,∠APB 的度数为150°.5.D 解析:在Rt △ABC 中,AB =AC 2+BC 2=62+62=62,则AB ′=AB =6 2.在Rt △B ′AD 中,∠B ′AD =180°-∠BAC -∠BAB ′=180°-45°-75°=60°.则AD =AB ′·cos ∠B ′AD =62×12=3 2. 6.2+6 解析:连接AM ,由题意,得CA =CM ,∠ACM =60°,∴△ACM 为等边三角形,∴AM =CM ,∠MAC =∠MCA =∠AMC =60°.∵∠ABC =90°,AB =BC =2,∴AC =CM =2 2.∵AB =BC ,CM =AM ,∴BM 垂直平分AC ,∴BO =12AC =2,OM =CM ·sin60°=6,∴BM =BO +OM =2+ 6.7.(1)证明:∵△ABC 是等腰三角形,∴AB =BC ,∠A =∠C .∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴A 1B =AB =BC ,∠A =∠A 1=∠C ,∠A 1BD =∠CBC 1.在△BCF 与△BA 1D 中,⎩⎪⎨⎪⎧∠A 1=∠C ,A 1B =BC ,∠A 1BD =∠CBF ,∴△BCF ≌△BA 1D ; (2)解:四边形A 1BCE 是菱形.理由如下:∵将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1BC 1的位置,∴∠A 1=∠A .∵∠ADE =∠A 1DB ,∴∠AED =∠A 1BD =α,∴∠DEC =180°-α.∵∠C =α,∴∠A 1=α,∴∠A 1BC =360°-∠A 1-∠C -∠A 1EC =180°-α,∴∠A 1=∠C ,∠A 1BC =∠A 1EC ,∴四边形A 1BCE 是平行四边形.∵A 1B =BC ,∴四边形A 1BCE 是菱形.8.A 解析:连接AE ,∵四边形ABCD 为正方形,∴AB =BC =1,且∠B =90°,∠D ′CE =45°,由勾股定理得AC =12+12= 2.由题意,得AD ′=AB =1,∠AD ′E =90°,∴D ′C =2-1,∠D ′EC =∠D ′CE =45°,∴D ′E =D ′C =2-1,∴S △D ′EC =12(2-1)2=32-2,∴S 阴影=S △ABC -S △D ′EC =12×1×1-⎝⎛⎭⎫32-2=2-1. 9.1547 解析:由旋转的性质得△ACE ≌△ABD ,∴AE =AD =5,CE =BD =6,∠DAE =60°,∴DE =5.作EH ⊥CD 垂足为H .设DH =x .由勾股定理得EH 2=CE 2-CH 2=DE 2-DH 2,即62-(4-x )2=52-x 2,解得x =58,∴DH =58.由勾股定理得EH =DE 2-DH 2=52-⎝⎛⎭⎫582=1587,∴△DCE 的面积=12CD ·EH =1547.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微专题十五巧用旋转进行证明与计算[见学用《高分作业》PB60]【经典母题】已知等边三角形ABC(如图Z15-1).(1)以点A为旋转中心,将△ABC按逆时针方向旋转30°,作出旋转后的图形;(2)经第(1)题旋转所得的图形与△ABC之间有没有互相垂直的边?证明你的判断.图Z15-1 经典母题答图解:(1)如答图所示;(2)AD⊥BC,DE⊥AC,AB⊥AE.证明略.【思想方法】旋转前、后的图形全等,所以借此可以在较复杂的图形中发现等量(或全等)关系,或通过旋转(割补)图形,把分散的已知量聚合起来,便于打通解题思路,找到解题突破口.【中考变形】1.[2018·淄博]如图Z15-2,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为(A)A.9+2534B.9+2532C.18+25 3 D.18+253 2图Z15-2 中考变形1答图【解析】 ∵△ABC 为等边三角形,∴BA =BC ,如答图,可将△BPC 绕点B 逆时针旋转60°得△BEA ,连结EP ,且延长BP ,作AF ⊥BP 于点F .∴BE =BP =4,AE =PC =5,∠PBE =60°,∴△BPE 为等边三角形,∴PE =PB =4,∠BPE =60°,在△AEP 中,AE =5,AP =3,PE =4,∴AE 2=PE 2+P A 2,∴△APE 为直角三角形,且∠APE =90°,∴∠APB =90°+60°=150°,∴∠APF =30°,∴在Rt △APF 中,AF =12AP =32,PF =32AP =323,∴在Rt △ABF 中,AB 2=BF 2+AF 2=⎝ ⎛⎭⎪⎫4+3232+⎝ ⎛⎭⎪⎫322=25+123, 则△ABC 的面积是34AB 2=34·(25+123)=9+2534.2.[2018·枣庄]如图Z15-3,在正方形ABCD 中,AD =23,把边BC 绕点B 逆时针旋转30°得到线段BP ,连结AP 并延长交CD 于点E ,连结PC ,则△PCE的面积为.图Z15-3【解析】∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP=60°,AP=AB=23,∵AD=23,∴AE=4,DE=2,∴CE=23-2,PE=4-23,过P作PF⊥CD于F,∴PF=32PE=23-3,∴S△PCE =12CE·PF=12×(23-2)×(23-3)=9-5 3.3.[2017·徐州]如图Z15-4,已知AC⊥BC,垂足为C,AC=4,BC=33,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连结DC,DB.(1)线段DC=__4__;(2)求线段DB的长度.图Z15-4 中考变形3答图解:(1)∵AC=AD,∠CAD=60°,∴△ACD是等边三角形,∴DC=AC=4;(2)如答图,作DE⊥BC于点E.∵△ACD是等边三角形,∴∠ACD=60°,又∵AC⊥BC,∴∠DCE=∠ACB-∠ACD=90°-60°=30°,在Rt△CDE中,DE=12DC=2,CE=32DC=23,∴BE=BC-CE=33-23= 3.在Rt△BDE中,BD=DE2+BE2=22+(3)2=7.4.如图Z15-5①,在△ABC中,AE⊥BC于点E,AE=BE,D是AE上的一点,且DE=CE,连结BD,CD.(1)判断BD与AC的位置关系和数量关系,并给出证明;(2)如图②,若将△DCE绕点E旋转一定的角度后,BD与AC的位置关系和数量关系是否发生变化?为什么?(3)如图③,将(2)中的等腰直角三角形都换成等边三角形,其他条件不变,求BD与AC夹角的度数.图Z15-5解:(1)BD与AC的位置关系是BD⊥AC,数量关系是BD=AC.证明:中考变形4答图①如答图①,延长BD交AC于点F.∵AE⊥BC于点E,∴∠BED=∠AEC=90°.∵AE=BE,DE=CE,∴△DBE≌△CAE(SAS),∴BD=AC,∠DBE=∠CAE,∠BDE=∠ACE.∵∠BDE=∠ADF,∴∠ADF=∠ACE.∵∠ACE+∠CAE=90°,∴∠ADF+∠CAE=90°,∴BD⊥AC;中考变形4答图②(2)否.证明:如答图②,AC与BD交于点F,∵∠AEB=∠DEC=90°,∴∠AEB+∠AED=∠DEC+∠AED,即∠BED=∠AEC.∵AE=BE,DE=CE,∴△BED≌△AEC(SAS),∴BD=AC,∠BDE=∠ACE,∠DBE=∠CAE.∵∠BFC=∠ACD+∠CDE+∠BDE=∠ACD+∠CDE+∠ACE=90°,中考变形4答图③∴BD⊥AC;(3)如答图③,AC与BD交于点F.∵△ABE 和△DEC 是等边三角形,∴AE =BE ,DE =EC ,∠EDC =∠DCE =60°,∠BEA =∠DEC =60°, ∴∠BEA +∠AED =∠DEC +∠AED ,∴∠BED =∠AEC ,在△BED 和△AEC 中,⎩⎪⎨⎪⎧BE =AE ,∠BED =∠AEC ,DE =CE ,∴△BED ≌△AEC (SAS ),∴∠BDE =∠ACE ,∴∠DFC =180°-(∠BDE +∠EDC +∠DCF )=60°,∴BD 与AC 的夹角度数为60°或120°.5.阅读下面的材料:小伟遇到这样一个问题:如图Z15-6①,在正三角形ABC 内有一点P ,且P A =3,PB =4,PC =5,求∠APB 的度数.小伟是这样思考的:如图②,利用旋转和全等的知识构造△AP ′C ,连结PP ′,得到两个特殊的三角形,从而将问题解决.(1)请你回答:图①中∠APB =__150°__;参考小伟同学思考问题的方法,解决下列问题:(2)如图③,在正方形ABCD 内有一点P ,且P A =22,PB =1,PD =17,求∠APB 的度数和正方形的边长.图Z15-6解:(1)由旋转的性质,得P ′A =P A =3,P ′C =PB =4,∠P AP ′=60°,∴△APP′是等边三角形,∴PP′=P A=3,∠AP′P=60°,∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°,∴∠APB=∠AP′C=150°;(2)如答图,把△APB绕点A逆时针旋转90°得到△AP′D,中考变形5答图由旋转的性质,得P′A=P A=22,P′D=PB=1,∠P AP′=90°,∴△APP′是等腰直角三角形,∴PP′=2P A=2×22=4,∠AP′P=45°,∵PP′2+P′D2=42+12=17,PD2=(17)2=17,∴PP′2+P′D2=PD2,∴∠PP′D=90°,∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,∴∠APB=∠AP′D=135°.∵∠APB+∠APP′=135°+45°=180°,∴P′,P,B三点共线.过点A作AE⊥PP′于点E,则AE=PE=12PP′=2,∴BE =PE +PB =2+1=3,在Rt △ABE 中,AB =AE 2+BE 2=22+32=13.【中考预测】(1)如图Z15-7①,在正方形ABCD 中,△AEF 的顶点E ,F 分别在BC ,CD 边上,高线AG 与正方形的边长相等,求∠EAF 的度数;(2)如图②,在Rt △ABD 中,∠BAD =90°,AB =AD ,M ,N 是BD 边上的任意两点,且∠MAN =45°,将△ABM 绕点A 逆时针旋转90°至△ADH 位置,连结NH ,试判断MN 2,ND 2,DH 2之间的数量关系,并说明理由;(3)在图①中,若EG =4,GF =6,求正方形ABCD 的边长.图Z15-7解:(1)在正方形ABCD 中,∠B =∠D =90°,∵AG ⊥EF ,∴△ABE 和△AGE 是直角三角形.在Rt △ABE 和Rt △AGE 中,⎩⎪⎨⎪⎧AB =AG ,AE =AE ,∴△ABE ≌△AGE (HL ),∴∠BAE =∠GAE .同理,∠GAF =∠DAF .∴∠EAF =∠EAG +∠F AG =12∠BAD =45°;(2)MN 2=ND 2+DH 2.由旋转可知,∠BAM =∠DAH ,∵∠BAM +∠DAN =45°,∴∠HAN =∠DAH +∠DAN =45°.∴∠HAN =∠MAN .在△AMN 与△AHN 中,⎩⎪⎨⎪⎧AM =AH ,∠MAN =∠HAN ,AN =AN ,∴△AMN ≌△AHN (SAS ),∴MN =HN .∵∠BAD =90°,AB =AD ,∴∠B =∠ADB =45°, ∴∠HDN =∠HDA +∠ADB =90°,∴NH 2=ND 2+DH 2,∴MN 2=ND 2+DH 2;(3)由(1)知,BE =EG =4,DF =FG =6.设正方形ABCD 的边长为x ,则CE =x -4,CF =x -6. ∵CE 2+CF 2=EF 2,∴(x -4)2+(x -6)2=102, 解得x 1=12,x 2=-2(不合题意,舍去).∴正方形ABCD 的边长为12.。