常系数高阶齐次线性微分方程

合集下载

高阶常系数齐次线性微分方程的解法

高阶常系数齐次线性微分方程的解法

高阶常系数齐次线性微分方程的解法
高阶常系数齐次线性微分方程(HCCLDE)是一类常见的微分方程,由一个高次项和多个常系数组成。

它可以用来描述许多物理系统的运动规律,如波动方程,动力学系统,电磁学系统等。

因此,解决高阶常系数齐次线性微分方程是一件重要而又复杂的工作。

首先,为了解决HCCLDE,需要根据给定的方程确定一
个基本的解,可以使用求解基本解的常用方法,如解析法、拉普拉斯变换、Fourier级数展开等。

其次,要求出方程的通解,需要对基本解进行叠加,也就是找到该方程的特解,可以采用求解特解的常用方法,如换元法、拉普拉斯变换、Laplace变
换等。

最后,将基本解和特解叠加,就可以得到高阶常系数齐次线性微分方程的通解。

为了求解HCCLDE,必须了解其特性,并利用相应的数
学方法。

根据HCCLDE的特性,可以把HCCLDE的解分为基本解和特解,并通过叠加这两类解得到它的通解。

此外,可以利用常用的方法求解基本解和特解,例如解析法、拉普拉斯变换、Fourier级数展开、换元法、Laplace变换等。

总之,解决高阶常系数齐次线性微分方程是一项复杂的任务,需要结合相关知识和技术,并利用一些常用的数学方法来解决。

通过了解HCCLDE的特性,可以将它的解分为基本解
和特解,并将它们叠加,最终得到HCCLDE的通解。

常系数高阶齐次线性微分方程市公开课获奖课件省名师示范课获奖课件

常系数高阶齐次线性微分方程市公开课获奖课件省名师示范课获奖课件
故所求通解为 y C1ex (C2 C3 x)cos x (C4 C5 x)sin x.
四、小结
二阶常系数齐次微分方程求通解旳一般环节: (1)写出相应旳特征方程; (2)求出特征根; (3)根据特征根旳不同情况,得到相应旳通解.
(见下表)
y py qy 0 r 2 pr q 0
y py qy f ( x)
n阶常系数线性微分方程旳原则形式
y(n) p1 y(n1) pn1 y pn y f ( x) (1) n阶常系数齐次线性微分方程旳原则形式
y(n) p1 y(n1) pn1 y pn y 0
(2)
由(2)的项的特点及 y erx的特点:
特征根的情况
实根r1 r2 实根r1 r2
复根r1,2 i
通解的表达式
y C1e r1 x C2e r2 x y (C1 C2 x)er2 x
y ex (C1 cos x C2 sin x)
思索题 求微分方程 yy y2 y2 ln y 旳通解.
思索题解答
y 0,
特征根
相应旳特解
k重实根r
erx , xerx ,, x k1erx
k重共轭复ex cos x, xex cos x,, xk1ex cos x
根 i ex sin x, xex sin x,, x e k1 x sin x
注 1、n次代数方程恰有n个根。 2、属于不同特征根旳解线性无关。
注意
n次代数方程有n个根, 而特征方程旳每一种 根都相应着通解中旳一项, 且每一项各一种 任意常数.
y1 e r1x ,
y2 e r2x ,
得齐次方程旳通解为
y
C e r1x 1
C 2e r2x ;

高(二)阶常系数线性微分方程-齐次方程解法

高(二)阶常系数线性微分方程-齐次方程解法

定义 设 y1 , y2 ,, yn为定义在区间 I 内
n 的n个函数.如果存在 个不全为零的常
数,使得当x 在该区间内有恒等式成立
k1 y1 k2 y2 kn yn 0,
那么称这 n 个函数在区间 I 内线性相
关.否则称线性无关。
例如 当x (, )时, e x,ex , e2x线性无关
例3:求微分方程y''-2y' 5 y 0的通解
解:特征方程2 2 5 0 特征根为一对共轭虚根1 1 2i,2 1 2i
故通解为:y ex (C1 cos 2x C2 sin 2x)
练习1 求方程 y 4 y 4 y 0的通解. 解 特征方程为 r 2 4r 4 0 ,
(4)
y c1( x) y1 c2 ( x) y2 c1( x) y1 c2( x) y2
将 y, y, y 代入方程(2), 得
c1( x) y1 c2 ( x) y2 c1( x)( y1 P( x) y1 Q( x) y1) c2( x)( y2 P( x) y2 Q( x) y2 ) f ( x)
y py qy f ( x)
当 f ( x) 0时, 二阶常系数线性齐次微分方程
当 f ( x) 0时,二阶常系数线性非齐次微分方程
二、二阶常系数齐次线性微分方程
1.二阶常系数齐次线性微分方程的标准形式:
y py qy 0
(1)
2.二阶齐次微分方程的解的结构:
(2)求出特征方程的两个根1、2
(3)根据特征根的不同情况写出通解
例1:求微分方程y''+4y' 3y 0的通解 解:特征方程2 +4 3 0 特征根为1 3,2 1

齐次高阶线性微分方程

齐次高阶线性微分方程

齐次高阶线性微分方程是微积分学中的一类重要问题,其解析式和性质深受学者们的关注和研究。

本文将对进行探讨,首先从概念及其特点入手,然后介绍的求解方法以及一些特殊情况下的性质。

一、概念及其特点是指形如以下形式的微分方程:$$L[y]=\frac{d^n y}{dx^n}+a_{n-1}\frac{d^{n-1} y}{dx^{n-1}}+\cdots+a_1\frac{dy}{dx}+a_0y=0$$其中$n$为正整数,$y$是$x$的函数,$a_i(i=0,1,2,\cdots,n-1)$是常数。

如果方程中$a_i$皆为零,则该微分方程为常系数齐次线性微分方程。

有以下几个特点:1、是线性微分方程。

即方程中只包含$y$及其各阶导数的线性组合。

2、是高阶微分方程。

即方程中最高阶导数的阶数为$n$。

3、是齐次微分方程。

即方程右侧为零。

二、求解方法的求解可以按照如下步骤进行:1、先求出方程的特征方程。

特征方程形如:$$L(\lambda)=\lambda^n+a_{n-1}\lambda^{n-1}+\cdots+a_1\lambda+a_0=0$$2、根据特征方程求得特征根$\lambda_1,\lambda_2,\cdots,\lambda_n$。

这个步骤可以使用求根公式解决。

3、根据特征根求解的通解。

通解可以表示为:$$y=c_1e^{\lambda_1 x}+c_2e^{\lambda_2x}+\cdots+c_ne^{\lambda_n x}$$其中$c_1,c_2,\cdots,c_n$是常数。

三、特殊情况下的性质1、相等特征根的情况:如果特征方程$L(\lambda)$存在$k$个相等的特征根,比如$\lambda_1=\lambda_2=\cdots=\lambda_k=\lambda$,那么相应的$k$个方程通解中,必然包含$k$个线性无关的解:$$y_1=e^{\lambda x},y_2=xe^{\lambda x},\cdots,y_k=x^{k-1}e^{\lambda x}$$也就是说,一个$n$阶的,如果其特征方程有$k$个相等的特征根,那么其对应的$k$个线性无关的解中,必定有$k$个函数及其前$n-k$阶导数的线性组合能够满足方程的要求。

微分方程解法总结

微分方程解法总结

微分方程解法总结微分方程是数学中的重要概念,广泛应用于自然科学和工程技术领域。

解微分方程的方法繁多,但主要可以归纳为以下几种常见的解法:分离变量法、齐次方程法、一阶线性常微分方程法、常系数线性齐次微分方程法、变量可分离的高阶微分方程法和常系数高阶线性齐次微分方程法等。

一、分离变量法分离变量法是解微分方程最基本的方法之一,适用于可以把方程中的变量分离开的情况。

其基本思想是将微分方程两边进行分离,将含有未知函数和其导数的项移到方程的一边,含有自变量的项移到另一边,并对两边同时进行积分。

最后,再通过反函数和常数的替换,得到完整的解。

二、齐次方程法齐次方程法适用于微分方程中,当未知函数和其导数之间的比值是关于自变量的函数时,可以通过引入新的变量进行转换,将微分方程转化为可分离变量或者常微分方程的形式。

三、一阶线性常微分方程法一阶线性常微分方程可以表示为dy/dx + p(x)y = q(x),其中p(x)和q(x)是已知函数。

解这类方程需要使用一阶线性常微分方程解的通解公式,即y=e^(-∫p(x)dx)*∫[e^(∫p(x)dx)]q(x)dx。

通过对p(x)和q(x)的积分以及指数函数的运用,可以得到最终的解。

四、常系数线性齐次微分方程法常系数线性齐次微分方程可以表示为ay'' + by' + cy = 0,其中a、b、c为常数。

解这类方程需要使用特征根的方法。

通过假设y=e^(mx)的形式,将其带入方程中,并解出方程的特征根m1和m2,再根据数学推导,可以得到最终的通解。

五、变量可分离的高阶微分方程法变量可分离的高阶微分方程适用于可以将高阶微分方程转化为一阶微分方程的情况。

其基本思想是对微分方程两边进行合理的转化和变量替换,将高阶微分方程转化为一阶微分方程的形式,然后使用分离变量法进行求解。

六、常系数高阶线性齐次微分方程法常系数高阶线性齐次微分方程可以表示为ay^n + by^(n-1) + ... + cy = 0,其中a、b、c为常数。

常系数高阶齐次线性微分方程

常系数高阶齐次线性微分方程

总结词
通过幂级数展开来求解高阶线性微分方 程的一种方法。
VS
详细描述
幂级数法的基本思想是将未知函数表示为 一个幂级数,然后利用微分方程的性质, 将原方程转化为一个递推关系式,求解这 个递推关系式可以得到幂级数的系数,从 而得到原方程的解。这种方法适用于具有 特定形式的未知函数的高阶线性微分方程 。
积分因子法
计算
根据求解方法,通过计算得到通解的具体形 式。
05 方程的应用实例
在物理问题中的应用
量子力学
常系数高阶齐次线性微分方程在 量子力学中用于描述粒子的波函 数随时间的变化。例如,在求解 氢原子能级问题时,需要用到此 类方程。
波动问题
在研究波动问题,如声波、电磁 波等时,常系数高阶齐次线性微 分方程可以用来描述波的传播和 演化。
热传导问题
在求解热传导问题时,常系数高 阶齐次线性微分方程可以用来描 述温度随时间和空间的变化。
在工程问题中的应用
控制系统
在控制系统的分析和设计中,常系数高阶齐次线性微分方程用于描述系统的动态特性。例如,在航空航天、化工等领 域中,此类方程被广泛应用于各种控制系统的建模和仿真。
信号处理
在信号处理中,常系数高阶齐次线性微分方程用于描述信号的滤波、预测和补偿等过程。例如,在通信、雷达和图像 处理等领域中,此类方程被广泛应用于信号处理算法的设计和实现。
02 方程的解法
特征方程法
总结词
通过解特征方程来求解高阶线性微分方程的一种方法。
详细描述
特征方程法的基本思想是将高阶线性微分方程转化为多个一阶线性微分方程来求解。首先,我们对方程进行整理, 得到一个关于未知函数和其导数的多项式方程,然后令其为0,得到一个关于未知函数的多项式方程,即特征方 程。求解特征方程,可以得到一组根,对应于原方程的一组解。

推导微分方程的高阶线性微分方程与常系数齐次线性微分方程的解法

推导微分方程的高阶线性微分方程与常系数齐次线性微分方程的解法

推导微分方程的高阶线性微分方程与常系数齐次线性微分方程的解法微分方程(Differential Equation)是描述自然界中变化规律的重要数学工具。

在微分方程的研究中,高阶线性微分方程与常系数齐次线性微分方程是常见且具有重要意义的两个类型。

本文将介绍这两种微分方程的解法,并进行推导。

一、高阶线性微分方程高阶线性微分方程(High-order Linear Differential Equation)是指方程中包含高于一阶的导数的线性微分方程。

一般形式可以表示为:\[ a_n(x)y^{(n)}(x) + a_{n-1}(x)y^{(n-1)}(x) + \cdots + a_1(x)y'(x) + a_0(x)y(x) = 0 \]其中,$y^{(n)}(x)$表示导数的$n$次导数,$a_n(x), a_{n-1}(x),\cdots, a_1(x), a_0(x)$为已知的函数。

解法如下:1. 设方程的$n$个线性无关的特解为$y_1(x), y_2(x), \cdots, y_n(x)$2. 利用特解组合构造齐次线性微分方程的解\[ y(x) = C_1 y_1(x) + C_2 y_2(x) + \cdots + C_n y_n(x) \]其中,$C_1, C_2, \cdots,C_n$为常数。

3. 求解常数$C_1, C_2, \cdots, C_n$的值,得到齐次线性微分方程的通解。

二、常系数齐次线性微分方程常系数齐次线性微分方程(Homogeneous Linear Differential Equation with Constant Coefficients)是指系数为常数的齐次线性微分方程。

一般形式可以表示为:\[ a_ny^{(n)}(x) + a_{n-1}y^{(n-1)}(x) + \cdots + a_1y'(x) + a_0y(x) =0 \]其中,$a_n, a_{n-1}, \cdots, a_1, a_0$为已知的常数。

微积分(高阶线性微分方程

微积分(高阶线性微分方程
tan x
y 2 sin x ,
常数, 通解
y C1 cos x C2 sin x.
8
可推广到n阶齐次线性方程.
推论 如果函数 y 1 ( x ), y 2 ( x ), , y n ( x )是n 阶齐次 线性方程
y
( n)
P1 ( x ) y
( n 1 )
Pn1 ( x ) y Pn ( x ) y 0
( B ) C1 y1 C 2 y2 ( C1 C 2 ) y3 ;
(89考研)
(C ) C1 y1 C 2 y2 ( 1 C1 C 2 ) y3 ;
提示
y1 y3 , y2 y3 是对应齐次方程的解,
二者线性无关 . (解的叠加原理可证)
14
已知微分方程 y p( x ) y q( x ) y f ( x )有三 个解 y1 x , y2 e , y3 e , 求此方程满足初始条件
( r pr q ) e
2 rx
0
e
rx
0,
故有
r pr q 0
2
特征方程
2
特征根 r1, 2
p
p 4q 2
20
特征根r的不同情况决定了方程 y py qy 0 的通解的不同形式.
r pr q 0
2
设解y e
rx
特征方程
(1)有两个不相等的实根 ( 0)
y P ( x ) y Q( x ) y
0
(1)
定理 如果函数 y 1 ( x )与 y 2 ( x )是方程 (1 )的两个解 ,
那末 y C 1 y 1 ( x ) C 2 y 2 ( x )也是 (1 )的 解, ( C 1 , C 2 是常数 ).

线性齐次微分方程与常系数齐次微分方程

线性齐次微分方程与常系数齐次微分方程

线性齐次微分方程与常系数齐次微分方程线性齐次微分方程是微分方程中的常见类型之一,特点是方程中只包含未知函数及其导数,且各项的系数是常数。

常系数齐次微分方程是线性齐次微分方程的一种特殊形式,其中各项的系数都是常数。

一、线性齐次微分方程的定义与性质在数学中,线性齐次微分方程的一般形式可表示为:$$\frac{{d^n y}}{{dx^n}} + a_{n-1}\frac{{d^{n-1} y}}{{dx^{n-1}}} + \cdots + a_1\frac{{dy}}{{dx}} + a_0y = 0$$其中,$a_0, a_1, \cdots, a_{n-1}$为常数,$y$为未知函数,$n$为正整数。

线性齐次微分方程的性质如下:1. 线性齐次微分方程是n阶微分方程,其解包括n个独立的任意常数;2. 如果$y_1(x), y_2(x), \cdots, y_n(x)$是齐次方程的解,那么对应的线性组合$c_1y_1(x) + c_2y_2(x) + \cdots + c_ny_n(x)$也是方程的解;3. 如果$y_1(x)$和$y_2(x)$分别是齐次方程的解,那么它们的线性组合$c_1y_1(x) + c_2y_2(x)$也是齐次方程的解;4. 对于齐次方程的任意解$y(x)$,可以通过乘以任意非零常数$k$得到另一个解$k\cdot y(x)$。

二、常系数齐次微分方程的解法常系数齐次微分方程是线性齐次微分方程的特殊形式,其特点是方程中各项的系数均为常数。

对于一阶常系数齐次微分方程,其一般形式为:$$\frac{{dy}}{{dx}} + ay = 0$$其中,$a$为常数。

常系数齐次微分方程的解法如下:1. 将方程改写为$\frac{{dy}}{{dx}} = -ay$;2. 将方程分离变量,得$\frac{{dy}}{{y}} = -a\,dx$;3. 对两边同时求不定积分,得到$\ln|y| = -ax + C$;4. 解出原方程的解为$y(x) = Ce^{-ax}$,其中$C$为任意常数。

高阶常系数齐次线性微分方程的解法

高阶常系数齐次线性微分方程的解法

高阶常系数齐次线性微分方程的解法凯歌【摘要】常微分方程是微积分学的重要组成部分,求解高阶微分方程是常微分方程的一难点问题,通常用适当的变量代换,达到降阶的目的来解决问题。

结合多年的教学经验,归纳总结给出高阶常系数齐次线性微分方程的一些求解方法,包括常系数齐次线性微分方程和欧拉方程以及可降阶的高阶微分方程等,并通过例题阐述各种方法。

%Ordinary Differential equation is an important part of differential and integration. Solving Ordinary Differential equation of difficult prob-lem is the differential equations of high order. Generally, in order to achieve the purpose to solve problems, it uses an appropriate variable substitution. With many years of teaching experience, summarizes to give some methods for solving the linear differential equation of higher-order, including homogeneous linear differential equation with constant coefficient, Euler equations and higher-order differential of reduce order and so on, gives an example to explain a variety of methods.【期刊名称】《现代计算机(专业版)》【年(卷),期】2016(000)002【总页数】4页(P26-28,51)【关键词】微分方程;特征方程;欧拉方程;齐次方程【作者】凯歌【作者单位】内蒙古财经大学统计与数学学院,呼和浩特 010070【正文语种】中文求解常微分方程的问题,常常通过变量分离、两边积分,如果是高阶微分方程则通过适当的变量代换,达到降阶的目的来解决问题。

微分方程的特解形式大全

微分方程的特解形式大全

微分方程的特解形式大全微分方程是数学中一类重要的方程,其解决了许多实际问题。

对于一个微分方程,一般情况下存在通解和特解两种解。

通解是该微分方程的所有解的集合,而特解是满足特定条件或给定初值条件的解。

下面将介绍一些常见微分方程的特解形式。

1. 一阶线性常微分方程:一阶线性常微分方程的一般形式为dy/dx + P(x)y = Q(x)。

其特解形式可以通过常数变易法得到。

假设通解为y = c(x)y_1(x),其中c(x)为未知函数,y_1(x)为已知解。

将这个形式代入方程中可以得到c(x)的微分方程,通过求解这个微分方程可以得到特解。

2. 二阶常系数齐次线性微分方程:二阶常系数齐次线性微分方程的一般形式为d^2y/dx^2 + a(dy/dx) + by = 0。

其特解形式可以通过假设y = e^(rx)的形式,然后代入方程得到关于r的代数方程。

通过求解代数方程可以获得特解的形式。

3. 二阶非齐次线性微分方程:二阶非齐次线性微分方程的一般形式为d^2y/dx^2 + a(dy/dx) + by = f(x)。

其中f(x)为已知函数。

特解的形式可以通过常数变易法或待定系数法得到。

常数变易法假设特解为y = u(x)v(x),其中u(x)和v(x)为未知函数。

待定系数法假设特解为已知函数的线性组合,通过代入方程得到待定系数。

4. 高阶常系数齐次线性微分方程:高阶常系数齐次线性微分方程的形式为d^n y/dx^n + a_1 d^(n-1) y/dx^(n-1) + ... + a_n y = 0。

其特解形式可以通过假设y = e^(rx)的形式,然后代入方程得到关于r的代数方程。

通过求解代数方程可以获得特解的形式。

5. 高阶非齐次线性微分方程:高阶非齐次线性微分方程的形式为d^n y/dx^n + a_1 d^(n-1)y/dx^(n-1) + ... + a_n y = f(x)。

其中f(x)为已知函数。

常系数齐次线性微分方程(13)

常系数齐次线性微分方程(13)
经转化后
只需要求特征方程(代数方程)之根
整理课件
4
二阶常系数齐次线性—微分方程:

我们猜想①的解为
和它的导数只差常数因子,
( r 为待定常数 ), 代入①得

称②为微分方程①的特征方程, 其根称为特征根.
1. 当
时, ②有两个相异实根则ຫໍສະໝຸດ 分方程有两个线性无关的特解:
因此方程的通解为
整理课件
5
2. 当

故所求方程为
由通解知特征方程有根 : P327 2(2) 以

整理课件
19
?
3. 设
是某二阶线性非齐次微分方程的解,求此微分方程. 解:
是所求方程对应的齐次方程的解 对应的齐次方程的特征方程 :
对应的齐次方程为: 又
所以所求微分方程为
整理课件
20
作业 P340 1 (3) , (6) , (10) ;
时, 通解为
(2) 当
时, 通解为
(3) 当
时, 通解为
可推广到高阶常系数线性齐次方程求通解 .
整理课件
15
思考与练习
求方程 答案:
的通解 . 通解为 通解为 通解为
整理课件
16
作业 P340 1 (3) , (6) , (10) ;
2 (2) , (3) , (6) ; 3
整理课件
17
备用题 1.
时, 特征方程有两个相等实根
则得微分方程有一个特解
也是解
设另一特解
(目的是找出与y1线性无关的解)
代入方程得: (常系数变易法)
是特征方程的二重根
取 C(x) = x , 则得
因此原方程的通解为

常微分方程高阶方程解法

常微分方程高阶方程解法

常微分方程高阶方程解法常微分方程是描述变量关系的数学方程。

常微分方程可以分为一阶方程和高阶方程两种形式。

一阶方程是指方程中最高阶导数的阶数为一阶,高阶方程则是指方程中最高阶导数的阶数高于一阶。

高阶常微分方程解法较为复杂,需要借助一些特定的方法和技巧。

下面将介绍几种常见的高阶常微分方程解法。

1.常系数线性齐次方程的解法:齐次方程是指方程中没有出现自变量的项,且系数是常数的方程。

对于常系数线性齐次方程:a_n*y^n + a_(n-1)*y^(n-1) + ... + a_0*y = 0可以使用特征根法来求解。

假设y=e^(rx)是方程的解,代入方程可得:a_n*r^n*e^(rx) + a_(n-1)*r^(n-1)*e^(rx) + ... + a_0*e^(rx) = 0化简得到特征方程:a_n*r^n + a_(n-1)*r^(n-1) + ... + a_0 = 0解特征方程得到方程的特征根r1, r2, ..., rn,则方程的通解为:y = C1*e^(r1x) + C2*e^(r2x) + ... + Cn*e^(rnx)其中,C1, C2, ..., Cn为任意常数。

2.可降阶的高阶常微分方程的解法:可降阶的高阶常微分方程是指可以通过变量代换和符号分解等方法将高阶方程转化为一阶方程的形式。

例如,对于二阶常系数线性非齐次方程:a_2*y'' + a_1*y' + a_0*y = f(x)可以通过令z=y'代换变量,得到一阶常系数线性非齐次方程:a_2*z' + a_1*z + a_0*y = f(x)这样,高阶方程就转化为了一阶方程,可以采用一阶方程的解法来求解。

解出z后再求一次积分即可得到y的解。

3.常微分方程的级数解法:对于某些高阶常微分方程,可以采用级数展开的方法得到解的近似表达式。

假设方程的解可以表示为幂级数的形式:y = ∑(n=0 to ∞) a_n*x^n将该表达式代入方程,逐次求出各个系数a_n,即可得到解的级数表达式。

常微分方程的高阶线性方程

常微分方程的高阶线性方程

常微分方程的高阶线性方程常微分方程是数学中的重要分支,涉及到多种类型的方程。

其中,高阶线性方程是常微分方程的一种,其解决的问题属于物理学、工程学、生物学等多个领域。

在本文中,我们将着重讨论常微分方程中高阶线性方程的相关知识。

一、基本概念高阶线性方程是指带有自变量 x 及其导数y, y', y'',…,y(n) 的线性方程。

其一般形式可表示为:a_n(x)y(n) + a_{n-1}(x)y(n-1) + … + a_1(x)y' + a_0(x)y = f(x)其中,a_i(x) 和 f(x) 是已知的函数。

需要注意的是,高阶线性方程中的 y(n) 表示 y 的 n 阶导数,而不是 y 的 n 次方。

同时,这里的方程是线性的,即 y 与其导数之间的系数 a_i(x) 是不依赖于y, y', y'',…,y(n) 的,而仅依赖于自变量x。

二、解法解高阶线性方程是常微分方程研究的重点之一。

一般来说,解法可以分为两种:通过代数方法直接求解,或将高阶线性方程转化为一些比较简单的方程进行求解。

下面我们将分别介绍这两种解法。

1、通过代数方法直接求解通过代数方法求解高阶线性方程的方法很多,这里我们先介绍其中比较基础的几种方法。

(1)特征方程法将常微分方程中的 y(n), y(n-1), …, y' 都看成一个元素,构造一个伴随矩阵和一个行列式,然后根据行列式的性质求解,就可以得到一个方程的特征根,再根据这些特征根和特征向量的性质构造出通解。

这种方法适用于方程系数都不为零的情况。

(2)欧拉方程法如果高阶线性方程的系数中含有 x 跟y, y', y'',…,y(n),而且都是乘在一起的幂函数形式,那么就可以考虑利用欧拉方程法。

这种方法先要将变量转化成同一形式,然后分离变量,再对两端的积分形式进行分析,最后就可以求得通解。

(3)待定系数法这种方法适用于方程的非齐次项 f(x) 是已知函数的情况。

高阶线性微分方程的常系数法

高阶线性微分方程的常系数法

高阶线性微分方程的常系数法引言:线性微分方程是数学中的重要分支,常系数法是求解高阶线性微分方程的一种常用方法。

本文将介绍高阶线性微分方程的常系数法及其应用。

一、一阶线性微分方程的常系数法一阶线性微分方程的一般形式为:dy/dx + P(x)y = Q(x)其中P(x)和Q(x)为已知函数。

利用常系数法,我们可以将一阶线性微分方程转化为常微分方程来求解。

具体步骤如下:步骤一:求解齐次线性微分方程首先,我们求解齐次线性微分方程:dy/dx + P(x)y = 0其中P(x)为一阶线性微分方程的已知函数。

解该齐次线性微分方程,可以得到通解y0(x)。

步骤二:求取特解其次,我们利用常数变易法求取特解y1(x)。

设特解为y1(x) = u(x)e^(lx)其中l为待定常数,u(x)为待定函数。

将y1(x)代入原方程,则可以得到:d(u(x)e^(lx))/dx + P(x)u(x)e^(lx) = Q(x)化简后得到:e^(lx) * (d(u(x))/dx + l * u(x)) + P(x)u(x)e^(lx) = Q(x)化简后得到:d(u(x))/dx + (l + P(x))u(x) = Q(x)e^(-lx)根据等号两边系数对应相等原则,我们可以得到:l + P(x) = 0l = -P(x)对上式进行求解,可以得到l的值。

将l的值代入上式,可以得到u(x)的表达式。

因此,特解y1(x) = u(x)e^(lx)的表达式为已知。

步骤三:求取通解最后,我们可以得到一阶线性微分方程的通解为:y(x) = y0(x) + y1(x)其中y0(x)为齐次线性微分方程的通解,y1(x)为特解。

二、高阶线性微分方程的常系数法高阶线性微分方程的一般形式为:a_n * d^n(y)/dx^n + a_{n-1} * d^{n-1}(y)/dx^{n-1} + ... + a_1 * dy/dx + a_0 * y = f(x)其中a_n, a_{n-1}, ..., a_0为常数,f(x)为已知函数。

高阶常系数线性微分方程

高阶常系数线性微分方程

y e x (C 1 cos x C 2 sin x)
可推广到高阶常系数线性齐次方程求通解 .
2.已知y1 e , y2 e 是二阶常系数线性齐次 方程
r1 x r2 x
的解,如何求微分方程 ?
特征根为 特征方程:
则齐次方程为 :
3.已知y xe 是二阶常系数线性齐次 方程的解,
推论.
是 n 阶齐次方程
的 n 个线性无关解, 则方程的通解为
y C1 y1 Cn yn (Ck 为任意常数)
三、二阶常系数齐次线性微分方程
① 和它的导数只差常数因子, 所以令①的解为 y e r x ( r 为待定常数 ), 代入①得
(r pr q ) e
2
rx
0 r 2 pr q 0
§7.4 高阶线性微分方程
一、二阶微分方程:
d2y dy P ( x ) Q( x ) y f ( x ) 2 dx dx
当 f ( x ) 0时, 二阶线性齐次微分方程 当 f ( x ) 0时,二阶线性非齐次微分方程
其中,P(x)、Q(x)、f(x)为x的已知函数;
当P(x)、Q(x)为常数时,称为常系数二阶线性 微分方程;否则为变系数二阶线性微分方程。
r1 x
3. 当 p 2 4 q 0 时, 特征方程有一对共轭复根
这时原方程有两个复数解:
y1 e ( i ) x e x (cos x i sin x ) y2 e ( i ) x e x (cos x i sin x )
利用解的叠加原理 , 得原方程的线性无关特解:

称②为微分方程①的特征方程, 其根称为特征根.

高数 第三节 高阶微分方程

高数 第三节  高阶微分方程

线性无关. 线性无关 则称这 n个函数在 I 上线性相关,否则称为线性无关 例如, 在(−∞ , +∞ )上都有 故它们在任何区间 I 上都线性相关 线性相关; 线性相关 又如, 必需全为 0 , 若在某区间 I 上 在任何区间 I 上都 线性无关 线性无关.
机动 目录 上页 下页 返回 结束
则根据二次多项式至多只有两个零点 , 可见
利用解的叠加原理 , 得原方程的线性无关特解:
1 y1 = 2 ( y1 + y2) = eα x cos β x 1 y2 = 2i ( y1 − y2) = eα x sin β x
因此原方程的通解为
y = eα x (C cos β x +C2 sin β x) 1
机动 目录 上页 下页 返回 结束
2
y
x =0
=1, y′
x =0
=3
代入方程得
(1+ x )p′ = 2xp
2
分离变量
2
积分得 ln p = ln(1+ x ) + ln C , 1 利用 y′
= 3, 得C = 3,于是有 y′ = 3(1+ x2 ) x =0 1
3
两端再积分得 y = x +3x +C2 利用 y
x =0
, =1, 得C2 =1 因此所求特解为
第三节 高阶微分方程
一、 y
(n)
第六章
= f (x) 型的微分方程
二、线性微分方程的解的结构 三、二阶常系数线性齐次微分方程
一、1、y(n) = f (x) 型的微分方程 、
令 z=y
(n−1)
,
因此
z = ∫ f (x)dx + C 1

高阶线性、常系数齐次微分方程.

高阶线性、常系数齐次微分方程.
给出k 项: e r x (c1 c2 x ck x k 1 )
x k 1 e [( c c x c x ) cos x 1 2 k 2k项 : (d1 d 2 x d k x k 1 ) sin x ]
k 重实根 r
一对 k 重复根 r1, 2 i
y y x 2 的通解为:
y c1 sin x c2 cos x x 2 2 .
小结 : 求解 y P( x) y Q( x) y f ( x)
(2)
先求 y P( x ) y Q( x ) y 0 的通解 Y c1 y1 c2 y2 ,
(5)
分三种情况讨论:
r1 , r2 为两个不相同的实根 , r x r x y1 1 2 则 y1 e , y2 e 都是 (1) 的解 , 且 y e ( r1 r2 ) x 常数 . 2
所以, y c1e
r x
1
1). p 2 4q 0 ,
c2e
r x
2
是齐次方程(1) 的通解 .
( 证明略 )
y 2 是 y P( x) y Q( x) y f 2 ( x) 的一个特解,
定理 2 ~ 4 都可以推广到n 阶线性方程上去.
例. 设线性无关函数 都是二阶非齐次线 性方程 y P( x) y Q( x) y f ( x) 的解, C1 , C2 是任意 常数, 则该方程的通解是 ( D ).
是 (1)的通解.
3). p 4q 0 ,
2
p r(1) 的一个解 y1 e
,
y1 e 1
r x
r x
1

4-11-常系数高阶线性齐次方程的解法

4-11-常系数高阶线性齐次方程的解法

4.2 常系数高阶线性方程基本解组求法(How to Solve higher order Linear ODE with constant coefficients)[教学内容] 1. 介绍常系数高阶齐次线性微分方程特征方程的概念; 2.介绍如何由常系数高阶齐次线性微分方程特征方程的根来获得原微分方程基本解组; 3. 介绍如何说明常系数齐次线性微分方程一组解能否构成基本解组;4. 介绍欧拉方程及其解法.[教学重难点] 重点是知道并会常系数高阶齐次线性微分方程(或 欧拉方程)特征方程来获得原微分方程基本解组; 难点是如何由特征方程的特征根来写出原微分方程的基本解组.[教学方法] 预习1、2;讲授3[考核目标]1. 能写出常系数高阶齐次线性微分方程或欧拉方程的特征方程的形式2. 能由常系数高阶齐次线性微分方程或欧拉方程的特征方程的特征根写出原微分方程基本解组; 3. 知道试解法以及微分方程复函数解概念以及其与实函数解关系.1. 认识常系数高阶齐次线性微分方程的试解法.例45. 考察微分方程 x λdtdx =,由分离变量法可得其通解为λt Ce x =. 现考察常系数齐次线性微分方程06x dtdx dt x d 22=--. 大胆假定方程具有形如λt e x =的解,将其代入原方程得到,06)λ(λ e 2λt =--.注意到0e λt ≠,因此λt e x =是方程的解⇔ 06λλ2=--. 我们称代数方程06λλ2=--为微分方程06x dt dx dt x d 22=--的特征方程. ( 如何由常系数齐次线性微分方程来写出其特征方程 ?)由特征方程06λλ2=-- 解出3λ 2,λ21=-=,相应地得到原微分方程的两个解-2t 1e (t )x =,3t 2e x =.下面验证(t) x (t),x 21线性无关:21212)t (33t2t -3t -2t21λλ ,0λλ11e 3e 2e -e e (t)]x (t),W[x ≠≠==-(这里行列式叫做范德蒙行列式,参见《高等代数》 P79例2)因此,(t ) x (t ),x 21构成了原微分方程一个基本解组,原方程的通解为R C ,C ,e C e C x 213t 22t 1∈+=-.例46. Solve the differential equation 02y dtdy 6dt y d 222=++. Solution The associated characteristic equation is 026λ2λ2=++. By applying the quadratic formula, we get two different roots:2532216366λ±-=⋅-±-=。

关于高阶微分方程的解法

关于高阶微分方程的解法

关于高阶微分方程的解法
高阶微分方程是指次数大于等于2的微分方程,解法相对于一阶微分方程更为复杂。

一般来说,高阶微分方程的解法需要用到一些特殊的技巧和方法,以下是一些常见的解法:
1. 常系数齐次线性微分方程的解法:这类方程的特征方程是一
个关于未知函数的二次方程,通过求解特征方程的根可以得到方程的通解。

2. 非齐次线性微分方程的解法:这类方程需要先求解对应的齐
次线性微分方程的通解,然后再通过常数变易法来求解非齐次方程的特解,最终得到方程的通解。

3. 变量分离法:对于一些可化为变量分离形式的高阶微分方程,可以通过变量分离法来求解。

这类方程需要将变量分离后,再进行积分求解。

4. 幂级数法:对于一些特殊的高阶微分方程,可以通过幂级数
法来求解。

这种方法需要将未知函数表示为幂级数的形式,然后带入方程求解。

5. 特殊函数法:对于一些含有特殊函数的高阶微分方程,可以
通过特殊函数的性质和定义来求解。

例如,对于一些含有Bessel函
数的方程,可以通过Bessel函数的性质来求解。

总的来说,高阶微分方程的解法需要掌握一些特殊的技巧和方法,需要对微积分和常微分方程有比较扎实的掌握。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高阶常系数线性微分方程是微分方程领域中的重要内容。本文首先给出了其标准形式,并特别强调了二阶和n阶常系数齐次线性方程的特点。在求解方法上,详细介绍了特征方程法,即通过设定特征方程并求解其特征根来确定原方程的通解。对于二阶方程,根据特征根的不同情况(两个不相等的实根、两个相等的实根、数函数、三角函数以及它们的组合形式,具体取决于特征根的性质。进一步地,本文将二阶方程的解法推广到n阶方程,展示了如何通过类似的方法求解更一般的高阶常系数齐次线性方程。整体而言,特征方程法为这类方程的求解提供了统一且有效的途径。
相关文档
最新文档