常系数线性微分方程组的解法
常系数线性微分方程组解法
dy (1) dx = 3 y 2 z , 例1 解微分方程组 dz = 2 y z . ( 2) dx 解 设法消去未知函数 y , 由(2)式得 式得
1 dz y = + z ( 3) 2 dx dy 1 d 2 z dz = 2 + , 两边求导得, 两边求导得, dx 2 dx dx
原方程组的通解为
1 y = ( 2C1 + C 2 + 2C 2 x )e x 2 , z = ( C + C x )e x 1 2
d 用 D 表示对自变量 x求导的运算 , dx
例如, 例如, y
(n)
+ a1 y ( n 1 ) + L + a n 1 y ′ + a n y = f ( x )
类似解代数方程组消去一个未知数,消去 类似解代数方程组消去一个未知数 消去 x
(1) ( 2) × D :
x D3 y = et , ( D 4 + D 2 + 1) y = De t .
4 2 t
(3) 3 (4) 4 (5) 5
( 2) ( 3) × D :
即
( D + D + 1) y = e
二、常系数线性微分方程组的解法
步骤: 步骤: 1. 从方程组中消去一些未知函数及其各阶导 数,得到只含有一个未知函数的高阶常系数线性 微分方程. 微分方程. 2.解此高阶微分方程,求出满足该方程的未知 解此高阶微分方程, 函数. 函数. 3.把已求得的函数带入原方程组,一般说来, 把已求得的函数带入原方程组,一般说来, 不必经过积分就可求出其余的未知函数. 不必经过积分就可求出其余的未知函数.
代入(1)式并化简 把(3), (4)代入 式并化简 得 代入 式并化简,
微分方程中的常系数齐次线性方程求解
微分方程中的常系数齐次线性方程求解在微积分学中,常系数齐次线性方程是一类常见的微分方程。
它们的解可以通过一定的方法得到。
在本文中,我们将介绍如何求解常系数齐次线性方程。
一、什么是常系数齐次线性方程常系数齐次线性方程是指形如y″+ay′+by=0的微分方程,其中a和b为常数。
它们的特点是方程中的未知函数及其导数的系数都是常数。
二、求解常系数齐次线性方程的方法1. 特征方程法特征方程法是求解常系数齐次线性方程的一种常用方法。
具体步骤如下:(1)写出微分方程的特征方程,特征方程就是对应的代数方程。
对于y″+ay′+by=0,其特征方程为r²+ar+b=0。
(2)解特征方程,求得特征根。
设特征根为r₁和r₂,则特征方程的解为r₁和r₂。
根的个数和重根的情况会影响方程的解形式。
(3)根据特征根求解原方程的解。
当r₁和r₂为不同的实根时,原方程的通解可以表示为y=C₁e^(r₁x)+C₂e^(r₂x),其中C₁和C₂为常数。
当r₁和r₂为不同的复数根时,通解可以表示为y=e^(αx)(C₁cos(βx)+C₂sin(βx)),其中α为实部,β为虚部。
2. 代入法代入法也是一种常用的求解常系数齐次线性方程的方法。
具体步骤如下:(1)设定未知函数的形式。
根据方程的阶数,设定未知函数的形式,如y=e^(mx)。
(2)将未知函数及其导数带入微分方程,消去常数,得到相应的代数方程。
(3)解代数方程,得到未知函数的表达式。
根据代数方程的解,确定未知函数的形式。
(4)确定未知函数的常数。
根据给定的初始条件,确定未知函数中的常数值。
3. 傅里叶级数法对于特定的边界条件,常系数齐次线性方程还可以通过傅里叶级数法进行求解。
该方法主要适用于周期性边界条件的问题。
三、实例分析为了更好地理解求解常系数齐次线性方程的方法,我们来看一个具体的实例。
例题:求解方程y″+3y′+2y=0.解法:首先写出特征方程r²+3r+2=0,解得特征根r₁=-1,r₂=-2.特征根不相等,所以方程的通解为y=C₁e^(-x)+C₂e^(-2x)。
消元法求解常系数线性微分方程组
消元法求解常系数线性微分方程组下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!消元法求解常系数线性微分方程组导言在微积分和线性代数领域,线性微分方程组是一类重要的数学问题,它们在物理学、工程学以及其他科学领域中有着广泛的应用。
常微分方程中的常系数线性方程及其解法
常微分方程中的常系数线性方程及其解法常微分方程(Ordinary Differential Equation,ODE)是一种数学模型,用于描述时间或空间上量的变化规律。
常微分方程中的常系数线性方程是ODE中一个重要的类别,其解法具有一定的规律性和普适性。
本文将就常微分方程中的常系数线性方程及其解法做简要介绍。
一、常系数线性方程的定义常系数线性方程是指其系数不随自变量t的变化而改变的线性方程。
一般写为:$$\frac{d^n}{dt^n}y(t)+a_{n-1}\frac{d^{n-1}}{dt^{n-1}}y(t)+...+a_1\frac{d}{dt}y(t)+a_0y(t)=f(t)$$其中a的值为常数,f(t)为已知函数,y(t)为未知函数,方程中最高阶导数的阶数为n。
n阶常系数线性方程也称为n阶齐次线性方程;当f(t)≠0时,称其为n阶非齐次线性方程。
二、常系数线性方程的解法对于一般形式的常系数线性方程,我们常用特征根的方法来求解。
具体来说,先考虑对应的齐次线性方程$$\frac{d^n}{dt^n}y(t)+a_{n-1}\frac{d^{n-1}}{dt^{n-1}}y(t)+...+a_1\frac{d}{dt}y(t)+a_0y(t)=0$$设y(t)=e^{rt},则有$$r^ne^{rt}+a_{n-1}r^{n-1}e^{rt}+...+a_1re^{rt}+a_0e^{rt}=0$$整理得到$$(r^n+a_{n-1}r^{n-1}+...+a_1r+a_0)e^{rt}=0$$根据指数函数的性质得到$$r^n+a_{n-1}r^{n-1}+...+a_1r+a_0=0$$求解方程$$r^n+a_{n-1}r^{n-1}+...+a_1r+a_0=0$$可得到n个特征根,设其为$r_1,r_2,...,r_n$。
则对于齐次线性方程,其通解为$$y(t)=c_1e^{r_1 t}+c_2e^{r_2 t}+...+c_ne^{r_n t}$$其中$c_1,c_2,...,c_n$为待定常数。
常微分方程4.4常系数齐线性方程组
目录
• 常系数齐线性方程组的定义 • 常系数齐线性方程组的解法 • 常系数齐线性方程组的应用 • 常系数齐线性方程组的扩展
01
常系数齐线性方程组的 定义
定义与特性
定义
常系数齐线性方程组是由n个一阶常微分方程组成的方程组,形如$y' = f(x) = a_{1}y + a_{2}y' + ldots + a_{n}y^{(n-1)}$,其中$a_{1}, a_{2}, ldots, a_{n} FOR WATCHING
感谢您的观看
02
常系数齐线性方程组的 解法
特征值与特征向量
特征值
对于常系数齐线性方程组,其特征值是方程组的解,对应于特征值的线性无关的解称为特征向量。
特征向量的求解
通过将特征值代入方程组,可以得到特征向量。
方程组的解法
代数解法
通过对方程组进行代数运算,求解出方 程组的解。
VS
微分方程解法
通过对方程组进行微分运算,求解出方程 组的解。
04
常系数齐线性方程组的 扩展
高阶线性方程组
01
高阶线性方程组是指微分方程中未知数的导数次数 高于一次的方程组。
02
高阶线性方程组在物理、工程和经济学等领域有广 泛应用。
03
解决高阶线性方程组的方法包括分离变量法、幂级 数法等。
非线性方程组
01 非线性方程组是指微分方程中包含未知数及其导 数的非线性项的方程组。
解的稳定性与不稳定性
要点一
稳定性
当方程组的解在时间变化过程中保持稳定时,称为稳定。
要点二
不稳定性
当方程组的解在时间变化过程中发生振荡或发散时,称为 不稳定。
常系数线性微分方程的解法
(4.2)的解.
定理4.2.2 设方程
dnx
d n1 x
dx
dt n a1(t ) dt n1 L an1(t ) dt an(t)x u(t ) iv(t )
§4.2 常系数线性微分方程的解法
一、复值函数与复值解 二、常系数齐线性微分方程的解法 三、常系数非齐线性微分方程的解法
一. 复值函数与复值解
定义 : 如果对于区间a t b中的每一个实数t,有复
数z(t)=(t)+i (t)与它对应,则称z(t)是定义在实值
区间[a, b]上的一个复值函数.
例1:求方程
d3 dt
x
3
d2x dt 2
2x
0的一个基本解组。
问题:如何求实系数方程的实值基本解组?
结果1':如果L[ x] 0的特征方程F n a1 n1 ... an 0 有k个互异的实根1,2,...,k , 及2l(k 2l n)个复根
为代数方程
F n a1 n1 ... an 0
的根。
定义1:
称多项式F n a1 n1 ... an为L[ x] 0的特征多项式; 称方程F n a1 n1 ... an 0为L[ x] 0的特征方程; 称方程F n a1 n1 ... an 0的根为L[ x] 0的特征根。
实变量的复值函数的极限, 连续性, 可导性与实 变量的实值函数相应概念一致.
设K i是任一复数,定义
常系数线性微分方程组的解法举例
给定一个n阶常系数线性微分方程组,其一般形式为y' = Ay,其中y是一个n维向量,A是一个n×n的常数 矩阵。
线性微分方程组的分类
按照矩阵A的特征值分类
根据矩阵A的特征值,可以将线性微分方 程组分为稳定、不稳定和临界稳定三种 类型。
VS
按照解的形态分类
根据解的形态,可以将线性微分方程组分 为周期解、极限环解和全局解等类型。
总结解法技巧与注意事项
• 分离变量法:将多变量问题转化 为单变量问题,通过分别求解每 个变量的微分方程来找到整个系 统的解。
总结解法技巧与注意事项
初始条件
在求解微分方程时,必须明确初始条件,以便确定解 的唯一性。
稳定性
对于某些微分方程,解可能随着时间的推移而发散或 振荡,因此需要考虑解的稳定性。
常系数线性微分方程组的 解法举例
• 引言 • 常系数线性微分方程组的定义与性质 • 举例说明常系数线性微分方程组的解
法 • 实际应用举例 • 总结与展望
01
引言
微分方程组及其重要性
微分方程组是描述物理现象、工程问 题、经济模型等动态系统的重要工具。
通过解微分方程组,我们可以了解系 统的变化规律、预测未来的状态,并 优化系统的性能。
04
实际应用举例
物理问题中的应用
电路分析
在电路分析中,常系数线性微分方程组可以用来描述电流、电压和电阻之间的关系。通过解方程组,可以确定电 路中的电流和电压。
振动分析
在振动分析中,常系数线性微分方程组可以用来描述物体的振动行为。通过解方程组,可以预测物体的振动模式 和频率。
经济问题中的应用
供需关系
要点二
详细描述
初始条件是微分方程组中描述系统在初始时刻状态的约束 条件。它们对微分方程组的解具有重要影响,决定了解的 初始状态和行为。在求解微分方程组时,必须考虑初始条 件的影响,以确保得到的解是符合实际情况的。不同的初 始条件可能导致完全不同的解,因此在求解微分方程组时 ,需要仔细选择和确定初始条件。
常系数线性微分方程的求解
2(#
,(#
.
! 11(+))]*($&1")+那么右端为:5*(4(+))%[0(+)./0"+&1(+)012"+]*$+所以#%%&1", 32+.(2 2(#
%0(+)(11(+),仍是求如(4)的特解。如果由方程(4)求得的特解为"*(+),对应的方程(3)的特解
是:"(+)%5*("*(+)*($&1")+)。
" %(7’./0!+&7!012!+)*+&5*("*)
%(7’./0!+&7!012!+)*+&’+,[!((+&’)./0!+&($+&))012!+]*+。
(’!)
利用通常的比较系数法要求出通解(’!)是相当困难的,作变量代换后把求解方程(’#)的问题
变得得容易了。
参考文献:
[’] 王高雄等8常微分方程8北京:高等教育出版社,!###
"& (%( ((%($
"& ! &$$! "$! ! &$
)(()" (( (%( ((%( ,)$!(&)" ! ! & " ! & & ,
#(( & (%(%
#! & !% #! $! !%
" (!*()(%(
$((%( ((%($
常系数线性齐次微分方程组的矩阵解法
常系数线性齐次微分方程组的矩阵
解法
常系数线性齐次微分方程组(LCCDE)是一类与定常差分方程组(LDE)类似的微分方程组,区别在于其中的系数是常数。
例如,LCCDE可以被表述为:
dy/dx + p_1(x)y + p_2(x)y' + ... + p_n(x)y^(n-1)=0
其中p_1(x),p_2(x),...,p_n(x)是常数。
矩阵解法是根据LCCDE来计算特解的一种解法,它基于Cramer规则对LCCDE给出解析解。
更具体地说,矩阵解法将LCCDE转换为一组线性方程组,采用矩阵乘法来求解此方程组,并将答案代入原微分方程组中,从而求得特解。
例如,考虑以下LCCDE:
dy/dx + 4y + 5y' + 6y''=0
我们可以将其转换为一组线性方程组:
a_0y+a_1y'+a_2y''=0 a_3y+a_4y'+a_5y''=0
a_6y+a_7y'+a_8y''=0
其中a_i (i=0,1,...,8)是常数,可以根据上面的LCCDE逐步求得。
然后,我们可以将上面的方程组转换为形如Ax=b的矩阵相乘方程,其中A是系数矩阵,x是未知向量,b是右端项向量。
矩阵相乘方程可以用Cramer规则计算得到解析解,然后将解代入原LCCDE,就可以求得特解。
常系数线性常微分方程
03 线性微分方程组的解法
矩阵表示法
矩阵表示法是一种将线性微分方程组 转换为矩阵形式的方法,通过矩阵运 算来求解微分方程组。
矩阵表示法可以简化计算过程,提高 求解效率,尤其适用于高阶线性微分 方程组。
特征值和特征向量
特征值和特征向量是线性微分方程组解的重要性质,它们描述了微分方程 组的解的特性。
投资回报
在金融领域,常系数线性常微分方程可以用来描述投资回报率随时 间的变化,为投资者提供决策依据。
经济增长模型
通过建立常系数线性常微分方程,可以分析一个国家或地区的经济 增长趋势,预测未来的经济状况。
在生物中的应用
1 2 3
生态模型
常系数线性常微分方程在生态学中广泛应用于描 述种群数量的变化规律,如种群增长、竞争等。
积分因子法
总结词
通过寻找一个积分因子,将微分方程转化为 积分方程,从而求解。
详细描述
积分因子法是一种求解常系数线性常微分方 程的方法。通过寻找一个积分因子,可以将 微分方程转化为积分方程,然后通过求解积 分方程得到原微分方程的解。这种方法在求 解某些特定类型的微分方程时非常有效,例 如通过寻找适当的积分因子可以将一阶线性
热传导问题
在热传导过程中,常系数线性常 微分方程可以用来描述温度随时 间的变化,从而分析热量传递的 规律。
波动方程
在声学和电磁学中,常系数线性 常微分方程可以用来描述波动现 象,如声波和电磁波的传播。
在经济中的应用
供需模型
常系数线性常微分方程可以用来描述市场的供需关系,分析价格 随时间的变化,预测市场趋势。
02
线性微分方程组的解还具有唯 一性和存在性,即对于给定的 初始条件和边界条件,存在唯 一的解。
常系数线性微分方程组的解法
即(p(t)二泌为(5.33)解o (肛-A)c = 0,有非零解
例3试求矩阵入= 特征值和特征向量.
-5 3
解掘特征值就是特征方程
与—3 ~5 一
det(4E — A) =
— X2 — 62 + 34 = 0
常系数线性方程组
筒壬一页帛啊下一页「'惭返回'
证明:由上面讨论知,每一个向量函数
都是(5①.3⑺3)/=的'v[e解j气=,,因le,2外此,・2矩,・阵…・,,n/"J* ]
是(5.33由)的于解*,矩V阵2,,v〃线性无关, de所t 0以(0 = det(e%i, e^v2,…,e^vn)。0 故①⑴是(5.33)的基解矩阵
⑴
(2) ^AB^BA^\eA+B =eAeB.
对任何矩阵A,(expA)T存在,且
(expA)"1=exp (-A).
(3) 若『是非奇异的,则 exp (T-1AT) = T-1(expA)T.
3常系数齐线性微分方程组的基解矩阵
(1)定理9矩阵
(0)二E.
0(0 = exp At 是(5.33)的基解矩阵,且①
程
类似第四章4.2.2,寻求
尤=Ax, (5.33)
形 口 (p(f) — e%c,c。0, (5.43)
的解,其中常数人和向量c是待定的
将(5.43)代入(5.33)得 人 = Ae^c,
因泌、0,上式变为 (2E - A)c = 0, (5.44)
方程(5.44)有非零解的充要条件是
det(2E -A) = 0,
大学常微分方程组的解法与稳定性分析
大学常微分方程组的解法与稳定性分析常微分方程组是研究多个未知函数随自变量变化而产生关系的数学工具。
在大学数学课程中,常微分方程组是一个重要的内容,它应用广泛,被用于解决各种实际问题。
本文将介绍常微分方程组的解法和稳定性分析方法。
一、常微分方程组的解法常微分方程组可以通过不同的方法进行求解,常用的有以下几种方法:1. 矩阵法对于线性常微分方程组,可以将其表示为矩阵形式,通过求解矩阵的特征值和特征向量,可以得到方程组的通解。
假设常微分方程组为: dX/dt = AX其中,A为方程组的系数矩阵,X为未知函数的列向量。
利用矩阵的特征值和特征向量,可以将方程组转化为对角标准型,从而求得方程组的通解。
2. 分离变量法对于一些特殊形式的常微分方程组,可以通过将方程组的未知函数分离出来,从而化为多个单变量的微分方程。
利用分离变量法可以对这些单变量微分方程进行求解,最终得到方程组的通解。
3. 指数矩阵法指数矩阵法是求解常系数线性微分方程组的一种有效方法。
通过将方程组视为向量值函数的导数,利用指数函数的性质,将解表示为指数矩阵的乘积形式。
指数矩阵法适用于一些特殊的常系数线性微分方程组,例如常微分方程组的系数矩阵可对角化的情况。
二、稳定性分析稳定性分析是研究方程组解的性质,包括解的存在性、唯一性和稳定性。
常微分方程组的稳定性分析方法主要有以下几种:1. 平衡点与稳定性常微分方程组的平衡点是指使方程组右端项为零的解。
平衡点的稳定性分为两类:渐近稳定和不稳定。
通过计算方程组的雅可比矩阵,并求出其特征值,可以判断平衡点的稳定性。
2. 线性化法对于非线性常微分方程组,可以利用线性化法进行稳定性分析。
线性化法将非线性方程组在平衡点处进行线性近似,得到一个线性常微分方程组。
然后利用线性方程组的特征值来判断非线性方程组在平衡点处的稳定性。
3. 相图法相图法是一种几何方法,通过绘制方程组解的相轨线来分析方程组的稳定性。
相轨线是解在相平面上的轨迹,可以反映解的演化变化。
常系数线性微分方程的解法
常系数线性微分方程的简介
常系数线性微分方程是微分方程的一种形式,其特点是方程中的未知函数和其导数都是一次的,且系 数是常数。
这种类型的微分方程在解决实际问题中非常有用,因为它们能够描述许多自然现象和系统的动态行为 。
解法的历史背景和发展
早期解法
在17世纪,数学家开始研究常系数线性微分方程的解法,如牛顿 和莱布尼茨等。
经济学问题
根据经济学原理和经济数据,建立微分方程 描述经济系统的变化趋势。
几何问题
通过几何图形和空间关系,建立微分方程描 述物体的运动轨迹。
生物学问题
根据生物学原理和实验数据,建立微分方程 描述生物种群的增长规律。
常系数线性微分方程的一般形式
y'' + p*y' + q*y = f(x)
其中,y''表示y的二阶导数,p和q是常数,f(x)是x的函数。
变量代换法
总结词
通过引入新的变量代换,将微分方程转化为 更容易求解的形式。
详细描述
首先,选择一个新的变量代换,将微分方程 中的未知函数表示为这个新变量的函数。然 后,将这个新变量的函数代入微分方程,得 到一个更容易求解的方程。最后,对方程进 行求解,得到未知函数的通解。
积分因子法
总结词
通过寻找一个积分因子,将微分方程转化为 一个更简单的方程,从而求解。
数值解法
对于难以解析求解的方程,可以采 用数值方法进行近似求解,如欧拉
法、龙格-库塔法等。
A
B
C
D
人工智能算法
结合人工智能技术,如神经网络、遗传算 法等,可以提供新的求解思路和方法。
自适应算法
根据问题的具体情况,采用自适应算法可 以更好地控制求解精度和计算量。
42常系数线性微分方程的解法
为什么?
内江师范学院数学与信息科学学院 吴开腾 制作
例2 求方程 y(4) 6y(3) 15y 18y 10y 0 的通解
解:(复单根)特征方程为:
4 63 152 18 10 0
特征根 对应的基本解组
1 1 i,2 1 i,3 2 i,4 2 i
, t k1 e 1 1 t , t k2 1e2t
, t km e 1 mt
内江师范学院数学与信息科学学院 吴开腾 制作
对于特征方程有复重根的情况,结合前面的两种情况就可以讨论了。
要(4.20)是方程(4.2)的解的充要条件为:
F () n a1 n1 an1 an 0 (4.21)
称(4.21)是方程(4.19)的特征方程,它的根称为特征根。
内江师范学院数学与信息科学学院 吴开腾 制作
于是有
求解常系数线性微分方程问题
L[ x]
dnx dt n
z2
(t)]
dz1(t) dt
ห้องสมุดไป่ตู้
dz2 (t) dt
dz dt
[c
z1
(t
)]
c
dz1(t dt
)
乘积性
dz dt [z1(t) z2 (t)]
dz1(t dt
)
z2
(t
)
z1
(t
)
dz2 (t dt
)
注意:同实值函数的微分运算法则一样。
内江师范学院数学与信息科学学院 吴开腾 制作
假如有下面形式(4.20)是方程(4.19)的解
常系数微分方程组的解法
将高阶线性微分方程转化为幂级数形式,然后通过幂 级数的性质求解方程。
高阶非线性微分方程的解法
分离变量法
将非线性微分方程转化为多个一阶微分方程 ,然后分别求解。
迭代法
通过迭代公式逐步逼近非线性微分方程的解。
数值解法
利用数值计算方法求解非线性微分方程的近 似解,如欧拉法、龙格-库塔法等。
05
解决微分方程组对于理解复杂系统的 行为和预测未来发展趋势具有重要意 义。
常系数微分方程组的定义
常系数微分方程组是指方程中的系数 为常数的一类微分方程组。
常系数微分方程组的一般形式为 dy/dx = f(x, y),其中 f(x, y) 是已知 的函数。
02
线性常系数微分方程组的解法
特征根法
总结词
神经传导
在神经传导过程中,微分方程组可以用来描述神 经信号的传递速度和传导通路的建立。
生态系统的稳定性
微分方程组可以用来分析生态系统的稳定性,如 物种之间的相互作用和生态平衡的维持。
THANKS
感谢观看
特征根法是一种通过解方程的特征方程来求解线性常系数微 分方程组的方法。
详细描述
特征根法的基本思想是,对于形如$y'' + py' + qy = 0$的一阶 线性常系数微分方程,通过求解其特征方程$lambda^2 + plambda + q = 0$,得到其特征根$lambda_1$和 $lambda_2$,然后利用这些特征根来求解原微分方程。
线性微分方程的方法。
02
通过将多个变量分离,可以将一个复杂的微分方程组
分解为多个简单的微分方程,从而简化求解过程。
03
常系数线性微分方程的解法
常系数线性微分方程的解法在微积分学中,常系数线性微分方程是一类重要的微分方程,其形式为:\[a_ny^{(n)}+a_{n-1}y^{(n-1)} + \cdots + a_1y' + a_0y = 0\]其中,\(y^{(n)}\) 表示 \(y\) 的 \(n\) 阶导数,\(a_n, a_{n-1}, \ldots, a_1, a_0\) 是常数系数。
解常系数线性微分方程有多种方法,下面将介绍其中两种常见的解法:特征根法和常数变易法。
一、特征根法特征根法是解常系数线性微分方程的一种常用方法。
它的基本思想是假设解具有指数形式:\[y = e^{rx}\]其中,\(r\) 是待定的常数。
代入微分方程得:\[a_nr^n e^{rx} + a_{n-1}r^{n-1}e^{rx} + \cdots + a_1re^{rx} +a_0e^{rx} = 0\]化简后得:\[e^{rx}(a_nr^n + a_{n-1}r^{n-1} + \cdots + a_1r + a_0) = 0\]由指数函数的性质可知,对于任意 \(x\),\(e^{rx} \neq 0\),因此上式成立等价于:\[a_nr^n + a_{n-1}r^{n-1} + \cdots + a_1r + a_0 = 0\]这个方程被称为特征方程。
解特征方程,求得所有的根 \(r_1, r_2, \ldots, r_n\)。
根据根的个数和重数,我们可以得到不同类型的解:1. 根为实数如果根 \(r\) 是实数,那么相应的解为:\[y = C_1e^{r_1x} + C_2e^{r_2x} + \cdots + C_ne^{r_nx}\]其中,\(C_1, C_2, \ldots, C_n\) 是待定常数。
2. 根为复数如果根 \(r\) 是复数,那么相应的解为:\[y = e^{\alpha x}(C_1\cos(\beta x) + C_2\sin(\beta x))\]其中,\(\alpha\) 和 \(\beta\) 是复数的实部和虚部,\(C_1\) 和 \(C_2\) 是待定常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A k ck ,
t c,
k!
k!
而数项级数
A k ck
k 1 k !
收敛 .
常系数线性方程组
2 矩阵指数的性质
(1) 若AB BA,则eAB eAeB. (2) 对任何矩阵A, (exp A)1存在,且
(exp A)1=exp(-A). (3) 若T是非奇异的,则
exp(T-1AT ) T-1(exp A)T.
,
0.
常系数线性方程组
例4
试求矩阵A=
2 1
1 4
特征值和特征向量.
解 特征方程为
det(
E
A)
1
2
1
4
2
6
9
0
因此 3为两重特征根, 为求其对应的特征向量
考虑方程组
1
(E A)c 1
1 1
c1 c2
例3
试求矩阵A=
3 5
5 3
特征值和特征向量.
解 A的特征值就是特征方程
det( E
A)
5
3
5
3
2
6
34
0
的根, 1 3 5i, 2 3 5i.
常系数线性方程组
对特征根1 3 5i的特征向量u (u1,u2 )T 满足
§4.3 常系数线性方程组
常系数线性方程组
一阶常系数线性微分方程组:
dx Ax f (t), dt
这里系数矩阵A为n n常数矩阵, f (t)在
a t b上连续的向量函数;
若f (t) 0,则对应齐线性微分方程组为
dx Ax, dt
(5.33)
本节主要讨论(5.33的基解矩阵的求法.
( E
A)u
5i
5
5
5i
u1 u2
0
解得
u
1 i
,
0.
对特征根2 3 5i的特征向量v (v1, v2 )T 满足
(
E
A)u
5i
5
5 5i
v1 v2
0
解得
v
i 1
常系数线性方程组
3 常系数齐线性微分方程组的基解矩阵
(1)定理9 矩阵
(t) exp At 是(5.33)的基解矩阵,且 (0) E.
证明: 当t 0时,由exp At定义知 (0) E;
又因为 '(t) (exp At)'
A A2 t A3 t2 Am tm1
1! 2!
(m 1)!
A(E At A2 t2 Am tm ) Aexp At A(t),
2!
m!
故(t) exp At是基解矩阵
常系数线性方程组
例1 如果A是一个对角矩阵
a1
A
a2
an
试求出x' Ax的基解矩阵.
解 由(5.34)得
因et 0,上式变为
(E A)c 0,
(5.44)
常系数线性方程组
方程(5.44)有非零解的充要条件是
det(E A) 0,
结论 微分方程组(5.33)有非零解(t) etc的充要条件是
是矩阵A的特征根, c是与对应的特征向量.
即 (t) et为(5.33)解 (E A)c 0,有非零解
0
解得
c
1 1
,
0,
是对应于特征根 3的特征向量
常系数线性方程组
2 基解矩阵的计算方法---常系数线性微分方程组的解法
(1) 矩阵A具有n个线性无关的特征向量时
定理10 如果矩阵A具有n个线性无关的特征向量
常系数线性方程组
一、矩阵指数expAt的定义和求法
1 expAt的定义
定义 设A为n n常数矩阵,则定义矩阵指数
expA为下列矩阵级数的和
exp A Ak E A A2 Am
k1 k !
2!
m!
(5.34)
其中E为单位矩阵, Am为A的m次幂, A0 E,0! 1.
,
e
Jnt
常系数线性方程组
二 基解矩阵的计算公式
1 基解矩阵与其特征值和特征向量的关系
类似第四章4.2.2,寻求
x' Ax,
形如 (t) etc, c 0,
(5.33) (5.43)
的解, 其中常数和向量c是待定的.
将(5.43)代入(5.33)得
etc Aetc,
常系数线性方程组
(2) 基解矩阵的一种求法
对n阶矩阵A设 A T 1JT
其中T为奇异矩阵, J为Jordan矩阵.
则 eAt T 1eJtT.
其中 J1
J
J2
e J1t
, eJt
eJ2t
J
n
注1: 由eAtT 1 T 1eJt知,T 1eJt也是基解矩阵.
a1
exp At E
a2
t 1!
a12
a22
an
常系数线性方程组
t
2
2!
an2
a1m
a2m
ea1t
tm
ea2t
m!
anm
eant
注1: 矩阵级数(5.34)是收敛的.
由于
Ak
Ak ,
k! k!
而数项级数
Ak
k1 k !
收敛 .
常系数线性方程组
注2: 级数
exp At Ak tk E At A2 t2 Am tm
k1 k !
2!
m!
在t的任何有限区间上是;
2 0
1 2
x的基解矩阵.
解 因为
2 1 2 0 0 1 A 0 2 0 2 0 0
而后面两个矩阵是可交换的
常系数线性方程组
2 0
0 2
2E,
0 0
12 0 0 0
0 0 ,
故
2 0
0 1
exp At exp(0 2 t) exp(0 0 t)
e2t
0
0 0
e2t
{E
0
1 0 0 t 0
12 0
t2 2!
}
e2t
0
0
e2t
1 0
t 1
e2t
1 0
t 1
.