马尔可夫链预测方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

马尔可夫链预测方法
一、基于绝对分布的马尔可夫链预测方法
对于一列相依的随机变量,用步长为一的马尔可夫链模型和初始分布推算出未来时段的绝对分布来做预测分析方法,称为“基于绝对分布的马尔可夫链预测方法”,不妨记其为“ADMCP 法”。

其具体方法步骤如下:
1.计算指标值序列均值x ,均方差s ,建立指标值的分级标准,即确定马尔可夫链的状态空间I ,这可根据资料序列的长短及具体间题的要求进行。

例如,可用样本均方差为标准,将指标值分级,确定马尔可夫链的状态空间 I =[1, 2,…,m ];
2.按步骤1所建立的分级标准,确定资料序列中各时段指标值所对应的状态;
3.对步骤2所得的结果进行统计计算,可得马尔可夫链的一步转移概率矩阵1P ,它决定了指标值状态转移过程的概率法则;
4.进行“马氏性” 检验;
5.若以第1时段作为基期,该时段的指标值属于状态i ,则可认为初始分布为
(0)(0,,0,1,0,0)P =
这里P (0)是一个单位行向量,它的第i 个分量为1,其余分量全为0。

于是第2时段的绝对分布为
1(1)(0)P P P =12((1),(1),,(1))m p p p =
则第2时段的预测状态j 满足:(1)max{(1),}j i p p i I =∈;
同样预测第k +1时段的状态,则有
1()(0)k P k P P =12((),(),,())m p k p k p k =
得到所预测的状态j 满足:
()max{(),}j i p k p k i I =∈
6.进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。

二、叠加马尔可夫链预测方法
对于一列相依的随机变量,利用各种步长的马尔可夫链求得的绝对分布叠加来做预测分析,的方法,称为“叠加马尔可夫链预测方法”,不妨记其为“SPMCP 法’。

其具体方法步骤如下:
1) 计算指标值序列均值x ,均方差s ,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体问题的要求进行;
2) 按1)所建立的分级标准,确定资料序列中各时段指标值所对应的状态;
3) 对2)所得的结果进行统计,可得不同滞时(步长)的马尔可夫链的转移概率矩阵,它决定了指标值状态转移过程的概率法则;
4) 马氏性检验;
5) 分别以前面若干时段的指标值为初始状态,结合其相应的各步转移概率矩阵即可预测出该时段指标值的状态概率
(6)将同一状态的各预测概率求和作为指标值处于该状态的预测概率,即
,所对应的i 即为该时段指标值的预测状态。

待该时段的指标值确定之后,将其加
入到原序列之中,再重复步骤"(1)一(6)",可进行下时段指标值状态的预测。

(7)可进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。

相关文档
最新文档