备战中考数学平行四边形综合经典题及详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、平行四边形真题与模拟题分类汇编(难题易错题)

1.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).

(1)当点N落在边BC上时,求t的值.

(2)当点N到点A、B的距离相等时,求t的值.

(3)当点Q沿D→B运动时,求S与t之间的函数表达式.

(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.

【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)

t=1或

【解析】

试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;

(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.

(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.

试题解析:(1)∵△PQN与△ABC都是等边三角形,

∴当点N落在边BC上时,点Q与点B重合.

∴DQ=3

∴2t=3.

∴t=;

(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,

∴PD=DQ,

当0<t<时,

此时,PD=t,DQ=2t

∴t=2t

∴t=0(不合题意,舍去),

当≤t<3时,

此时,PD=t,DQ=6﹣2t

∴t=6﹣2t,

解得t=2;

综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t

当点M在BC边上时,

∴MN=BQ

∵PQ=MN=3t,BQ=3﹣2t

∴3t=3﹣2t

∴解得t=

如图①,当0≤t≤时,

S△PNQ=PQ2=t2;

∴S=S菱形PQMN=2S△PNQ=t2,

如图②,当≤t≤时,

设MN、MQ与边BC的交点分别是E、F,

∵MN=PQ=3t,NE=BQ=3﹣2t,

∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,

∵△EMF是等边三角形,

∴S△EMF=ME2=(5t﹣3)2

(4)MN、MQ与边BC的交点分别是E、F,

此时<t<,

t=1或.

考点:几何变换综合题

2.如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M 沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.

(1)P点的坐标为多少(用含x的代数式表示);

(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;

(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.

【答案】(1)P点坐标为(x,3﹣x).

(2)S的最大值为,此时x=2.

(3)x=,或x=,或x=.

【解析】

试题分析:(1)求P点的坐标,也就是求OM和PM的长,已知了OM的长为x,关键是求出PM的长,方法不唯一,①可通过PM∥OC得出的对应成比例线段来求;

②也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ的长和∠ACB的正切值求出PQ的长,然后根据PM=AB﹣PQ来求出PM的长.得出OM和PM的长,即可求出P点的

坐标.

(2)可按(1)②中的方法经求出PQ的长,而CN的长可根据CN=BC﹣BN来求得,因此根据三角形的面积计算公式即可得出S,x的函数关系式.

(3)本题要分类讨论:

①当CP=CN时,可在直角三角形CPQ中,用CQ的长即x和∠ABC的余弦值求出CP的表达式,然后联立CN的表达式即可求出x的值;

②当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ的长,然后根据QN=CN﹣CQ求出QN的表达式,根据题设的等量条件即可得出x的值.

③当CN=PN时,先求出QP和QN的长,然后在直角三角形PNQ中,用勾股定理求出PN 的长,联立CN的表达式即可求出x的值.

试题解析:(1)过点P作PQ⊥BC于点Q,

有题意可得:PQ∥AB,

∴△CQP∽△CBA,

解得:QP=x,

∴PM=3﹣x,

由题意可知,C(0,3),M(x,0),N(4﹣x,3),

P点坐标为(x,3﹣x).

(2)设△NPC的面积为S,在△NPC中,NC=4﹣x,

NC边上的高为,其中,0≤x≤4.

∴S=(4﹣x)×x=(﹣x2+4x)

=﹣(x﹣2)2+.

∴S的最大值为,此时x=2.

(3)延长MP交CB于Q,则有PQ⊥BC.

①若NP=CP,

∵PQ⊥BC,

∴NQ=CQ=x.

∴3x=4,

∴x=.

②若CP=CN,则CN=4﹣x,PQ=x,CP=x,4﹣x=x,

∴x=;

③若CN=NP,则CN=4﹣x.

∵PQ=x,NQ=4﹣2x,

∵在Rt△PNQ中,PN2=NQ2+PQ2,

∴(4﹣x)2=(4﹣2x)2+(x)2,

∴x=.

综上所述,x=,或x=,或x=.

考点:二次函数综合题.

3.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.

(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;

(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).

【答案】(1)作图参见解析;(2)作图参见解析.

【解析】

相关文档
最新文档