备战中考数学平行四边形综合经典题及详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、平行四边形真题与模拟题分类汇编(难题易错题)
1.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).
(1)当点N落在边BC上时,求t的值.
(2)当点N到点A、B的距离相等时,求t的值.
(3)当点Q沿D→B运动时,求S与t之间的函数表达式.
(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.
【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)
t=1或
【解析】
试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;
(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.
(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.
试题解析:(1)∵△PQN与△ABC都是等边三角形,
∴当点N落在边BC上时,点Q与点B重合.
∴DQ=3
∴2t=3.
∴t=;
(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,
∴PD=DQ,
当0<t<时,
此时,PD=t,DQ=2t
∴t=2t
∴t=0(不合题意,舍去),
当≤t<3时,
此时,PD=t,DQ=6﹣2t
∴t=6﹣2t,
解得t=2;
综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t
当点M在BC边上时,
∴MN=BQ
∵PQ=MN=3t,BQ=3﹣2t
∴3t=3﹣2t
∴解得t=
如图①,当0≤t≤时,
S△PNQ=PQ2=t2;
∴S=S菱形PQMN=2S△PNQ=t2,
如图②,当≤t≤时,
设MN、MQ与边BC的交点分别是E、F,
∵MN=PQ=3t,NE=BQ=3﹣2t,
∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,
∵△EMF是等边三角形,
∴S△EMF=ME2=(5t﹣3)2
.
;
(4)MN、MQ与边BC的交点分别是E、F,
此时<t<,
t=1或.
考点:几何变换综合题
2.如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M 沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.
(1)P点的坐标为多少(用含x的代数式表示);
(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;
(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.
【答案】(1)P点坐标为(x,3﹣x).
(2)S的最大值为,此时x=2.
(3)x=,或x=,或x=.
【解析】
试题分析:(1)求P点的坐标,也就是求OM和PM的长,已知了OM的长为x,关键是求出PM的长,方法不唯一,①可通过PM∥OC得出的对应成比例线段来求;
②也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ的长和∠ACB的正切值求出PQ的长,然后根据PM=AB﹣PQ来求出PM的长.得出OM和PM的长,即可求出P点的
坐标.
(2)可按(1)②中的方法经求出PQ的长,而CN的长可根据CN=BC﹣BN来求得,因此根据三角形的面积计算公式即可得出S,x的函数关系式.
(3)本题要分类讨论:
①当CP=CN时,可在直角三角形CPQ中,用CQ的长即x和∠ABC的余弦值求出CP的表达式,然后联立CN的表达式即可求出x的值;
②当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ的长,然后根据QN=CN﹣CQ求出QN的表达式,根据题设的等量条件即可得出x的值.
③当CN=PN时,先求出QP和QN的长,然后在直角三角形PNQ中,用勾股定理求出PN 的长,联立CN的表达式即可求出x的值.
试题解析:(1)过点P作PQ⊥BC于点Q,
有题意可得:PQ∥AB,
∴△CQP∽△CBA,
∴
∴
解得:QP=x,
∴PM=3﹣x,
由题意可知,C(0,3),M(x,0),N(4﹣x,3),
P点坐标为(x,3﹣x).
(2)设△NPC的面积为S,在△NPC中,NC=4﹣x,
NC边上的高为,其中,0≤x≤4.
∴S=(4﹣x)×x=(﹣x2+4x)
=﹣(x﹣2)2+.
∴S的最大值为,此时x=2.
(3)延长MP交CB于Q,则有PQ⊥BC.
①若NP=CP,
∵PQ⊥BC,
∴NQ=CQ=x.
∴3x=4,
∴x=.
②若CP=CN,则CN=4﹣x,PQ=x,CP=x,4﹣x=x,
∴x=;
③若CN=NP,则CN=4﹣x.
∵PQ=x,NQ=4﹣2x,
∵在Rt△PNQ中,PN2=NQ2+PQ2,
∴(4﹣x)2=(4﹣2x)2+(x)2,
∴x=.
综上所述,x=,或x=,或x=.
考点:二次函数综合题.
3.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.
(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;
(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).
【答案】(1)作图参见解析;(2)作图参见解析.
【解析】