(完整版)高一物理-关联速度专题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一物理-关联速度专题
一、定义:
绳、杆等有长度的物体,在运动过程中,如果两端点的速度方向不在绳、杆所在直线上,两端的速度通常是不一样的,但两端点的速度是有联系的,称之为“关联”速度。
二、特点:
①沿杆或绳方向的速度分量大小必相等;
②物体实际运动方向就是合速度的方向;
③当物体实际运动方向与绳或杆成一定夹角时,可将合速度分解为沿绳或杆方向和垂直
于绳或杆方向的两个分速度。
三、解题思路和方法:
先确定合运动的方向,即物体实际运动的方向,然后分析这个合运动所产生的实际效果,即一方面使绳或杆伸缩的效果;另一方面使绳或杆转动的效果。以确定两个分速度的方向,沿绳或杆方向的分速度和垂直绳或杆方向的分速度,而沿绳或杆方向的分速度大小相同。
四、题型分类
1.基础题型
【例1】如图1所示, 人在岸上拉船,已知船的质量为m,水的阻力恒为f,当轻绳与水平面的夹角为θ时,船的速度为v,此时人的拉力大小为T,则此时
A.人拉绳行走的速度为v cosθB.人拉绳行走的速度为v/cosθ
C.船的加速度为D.船的加速度为
解析:船的速度产生了两个效果: 一是滑轮与船间的绳缩短, 二是绳绕滑轮顺时针转动, 因此将船的速度进行分解如图所示, 人拉绳行走的速度v人=v cosθ, A对, B错;绳对船的拉力等于人拉绳的力,即绳的拉力大小为T,与水平方向成θ角,因此T cosθ-f=ma,
解得:,C正确,D错误。
答案:AC。
点评:人拉绳行走的速度即绳的速度,易错误地采用力的分解法则,将人拉绳行走的速度。即若按图3所示进行分解,则水平分速度为船的速度,得人拉绳行走的速度为v/cosθ,会错选B选项。
【例2】如图4所示,在河岸上利用定滑轮拉绳索使小船靠岸,拉绳的速度为v,当拉船头的绳索与水平面的夹角为α时,船的速度是多少?
解析:方法1——微元分析法(不要求掌握)
取小量θ,如图5所示,设角度变化θ所需的时间为Δt,取CD=CB,在Δt时间内船的位移为AB,绳子端点C的位移大小为绳子缩短的长度AD。由于θ→0°,所以∠BDA→90°。所以AD=ABcosα①
又AD=vΔt②
AB=v船Δt③
由上述三式可得:v船=v/cosα
方法2——运动等效法(本节重点,必须掌握)
因为定滑轮右边的绳子既要缩短又要偏转,所以定滑轮右边绳上的A点的运动情况可以等效为:先以滑轮为圆心,以AC为半径做圆周运动到达B,再沿BC直线运动到D。做圆周运动就有垂直绳子方向的线速度,做直线运动就有沿着绳子方向的速度,也就是说船的速度(即绳上A点的速度)的两个分速度方向是:一个沿绳缩短的方向,另一个垂直绳的方向。作矢量三角形如图6所示,v船=v/cosα。
点拨:方法1利用几何知识构建三角形,找出在Δt时间内绳与船的位移关系,进而确定速度关系;方法2利用了实际运动为合运动,按效果对船的速度进行分解。
【例3】A、B两物体通过一根跨过定滑轮的轻绳相连放在水平面上,现物体A以v1的速度向右匀速运动,当绳被拉成与水平面夹角分别是α、β时,如图9所示。物体B的运动速度v B为(绳始终有拉力)
A.B.C. D.
解析:A、B两物体通过绳相连接,且两物体都是运动的,物体的实际运动速度是合速度,物体的速度都产生了沿绳方向和垂直于绳方向两个作用效果。设物体B的运动速度为v B,此速度为物体B合运动的速度,根据它的实际运动效果,两分运动分别为:沿绳收缩方向的分运动,设其速度为v绳B;垂直绳方向的圆周运动,速度分解如图10所示,则有v B=
①
物体A的合运动对应的速度为v1,它也产生两个分运动效果,分别是:沿绳伸长方向的分运动,设其速度为v绳A;垂直绳方向的圆周运动,它的速度分解如图11所示,则有v =v1cosα②由于对应同一根绳,其长度不变,故v绳B=v绳A③
绳A
根据三式解得:v B=。选项ABC错误D正确。
答案:D
点评:此题涉及多个物体的速度分解,应用隔离法将每个物体的速度进行分解,再通过关联速度进行求解。
【例4】如图14所示,一根长直轻杆AB在墙角沿竖直墙和水平地面滑动,当AB杆和墙的夹角为θ时,杆的A端沿墙下滑的速度大小为v1,B端沿地面的速度大小为v2。则v1、v2的关系是()
A.v1=v2 B.v1=v2cosθC.v1=v2tanθ D.v1=v2sinθ
解析:如图15所示,轻杆A端下滑速度v1可分解为沿杆方向的速度v1′和垂直于杆的方向速度v1″,B端水平速度v2可分解为沿杆方向的速度v2′和垂直于杆的方向速度v2″,由于沿杆方向的速度相等v1′=v2′,由数学知识可知,v1′=v1cosθ,v2′=v2sinθ,v1=v2tanθ。故C项正确。
答案:C
点评:对于直杆的运动,一般将其两端的运动速度沿杆和垂直于杆的两个方向分解,两端速度沿杆的分量相等。
2、进阶题型
【例5】一根长为L的杆OA,O端用铰链固定,另一端固定
着一个小球A,靠在一个质量为M,高为h的物块上,如图5-7
所示,若物块与地面摩擦不计,试求当物块以速度v向右运动时,
小球A的线速度v A(此时杆与水平方向夹角为θ)
解析:选取物与棒接触点B为连结点.(不直接选A点,因为A点与物块速度的v的关系不明显).因为B点在物块上,该点运动方向不变且与物块运动方向一致,故B点的合速度(实际速度)也就是物块速度v;B点又在棒上,参与沿棒向A点滑动的速度v1和绕O点转动的线速度v2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v2=v sinθ.
设此时OB长度为a,则a=h/sinθ.
令棒绕O 点转动角速度为ω,则:ω=v2/a=v sin2θ/h.
故A的线速度v A=ωL=vL sin2θ/h.
【例6】如图所示,S为点光源,M为一平面镜,光屏与平面镜平行放置.SO
是一条垂直照射在M上的光线.已知SO=L,若M以角速度ω绕O点逆时针匀
速转动,则转过30°时光线S′O在屏上移动的瞬时速度v的大小为()