线性代数 矩阵 PPT课件
线性代数Ⅱ—矩阵.ppt
2
2
4
26
(八) 设四阶方阵 A (,1,2,3), B ( ,1,2,3) 其中1,2,3, , 均为四维列向量,若 A 2, B 1 则 A B 及 A B 的值分别 为[ ]
b3
b1a1 b1a2 b1a3
AB (a1b1 a2b2 a3b3)
BA b2a1 b3a1
b2a2 b3a2
b2a3 b3a3
1 0 0
单位阵
En
0
1
0
或记 In
0 0 1
6
运算律: (1) (AB)C A(BC) (2) A(B C) AB AC (B C)A BA CA (3) (AB) (A)B A(B) (4) EA AE A
22
分块矩阵的乘法
7 2 1 0
0 0
例:A 8 9
6 5
1 0
1 0
B 0
0
1 1
4 3
0
0
1
2
分块对角矩阵
求 AB
A1
A
A2
其中A1, A2,, Ak
均为方阵,有 A A1 A2 Ak
Ak
A11
当 A1, A2,, Ak
均可逆,则A可逆,且
A1
A21
(B) 若 A BC 则AT BTCT
(C) 若 A BC 则 A B C (D) 若A B C 则 A B C
(四) 设方阵 A 满足 A2 A 7E 0 ,则 (A 3E)1 [ ]
(A) A 3E (B) A 2E (C) A 7E
(D) A E
25
(五)
设
Th:设A为n阶方阵,则A可逆的充要条件为 A 0
线性代数及应用PPT课件
上列各式出现的运算皆可行的前提是:矩阵的维数满 足运算要求。
证明矩阵乘法结合律:(AB)C=A(BC)=ABC 证:设
记
证明DC=AG。 因为 元为:
A的 i 行乘以B的 l 列
,
, 则DC的第i,j
得到DC的第i,j元等于AG的第i,j元。
证明 (AB)T =BTAT
证:
即
。
剩下的要证明它们的第i, j元都对应相等。设
通大学出版社
第一章 矩阵
§1.1 矩阵概念 1.1.1 矩阵概念 定义1 m × n元,排成m行n列的矩形阵列:
称作为:维是m × n的矩阵。 一般用黑体大写字母 A,B,C等表示。
简记为:
确定一个矩阵的两要素:
1.元:a ij 的值; 2.维:m,n的值。
矩阵的例: 问题:A的元和维是什么?
广矩阵进行一系列行初等变换,使得
R1R2 ••• R s [A |b]= [R1R2 ••• R s A | R1R2 ••• R s b ]=[ I n | Rb ]
(R= R1R2 ••• R s)。事实上R=A-1
可见只要将增广矩阵中A对应的那一块通过行初等变换化成 单位阵,对应b的那一块变成Rb= A-1 b,即
1.1.2 一些特殊矩阵 对于矩阵
本课程仅限于实矩阵。
n阶方阵:m=n时的矩阵,
a11 a12 a1n
A
a21 a22 a2n
或 An n
an1 an2 ann
列矩阵(列向量):n=1,
行矩阵(行向量):m=1,
数或标量:m=n=1。 向量的元称为分量,分量的个数称为向量的维。
例:
分别是3维列向量和4维行向量。
学习参考书目
线性代数课件第2章矩阵
于乘法中的数1. 课件
20
定义5 方阵 A 的 n 次幂定义为 n 个方阵 A 连
乘,即
6 47n个48
An A AL A
其中 n 为正整数,规定 A0 E ,其运算规律:
(1)AkAl Akl ;
(2)(Ak)l Akl (k,l为正整数) .
因为矩阵乘法不满足交换律,所以两个 n 阶方
数,记 A ( a ij ) , A 称为 A的共轭矩阵.
其运算规律(设 A,B为复矩阵,为复数,且
运算都是可行的):
(1) ABAB; (2) AA ;
(3) ABAB.
课件
27
2.3 逆矩阵
课件
28
2.3.1 逆矩阵的定义及性质
定义9 设 A 为 n 阶方阵,若存在 n 阶方阵 B ,
课件
23
所以
0 17
( A B )T
1
4
1
3
3 1 0
解法2 (AB)TBTAT
1 4 2 2 1 0 17 7 2 0 0 314 13
1 3 11 2 3 10
课件
24
定义7 设 A为 n阶方阵,若满足 AT A ,则
称 A为对称矩阵,即 ai jaji(i,j1 ,2,,n)
a21
b21
M
a12 b12 L a22 b22 L
M
am1
bm1
am2 bm2
L
a1n b1n
a2n
b2n
M
amn
bmn
= (aij + bij ) 课件
10
例1 设
A
3 1
0 4
75,
则
线性代数第二章矩阵及其运算2-3PPT课件
CHAPTER 02
矩阵的乘法
矩阵乘法的定义
01
矩阵乘法是将两个矩阵对应位置的元素相乘,得到一个新的矩 阵。
02
矩阵乘法的结果是一个矩阵,其行数等于左矩阵的行数,列数
等于右矩阵的列数。
矩阵乘法的操作顺序是先进行行操作,再进行列操作。
CHAPTER 05
矩阵的秩
秩的定义
秩的定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
秩的Байду номын сангаас质
矩阵的秩是唯一的,且其值满足 特定的性质,如对于任何矩阵A, r(A)≤min(m,n),其中m和n分别 为矩阵A的行数和列数。
秩的计算方法
可以通过多种方法计算矩阵的秩, 如高斯消元法、行变换法、初等 行变换法等。
线性代数第二章矩阵及 其运算2-3ppt课件
CONTENTS 目录
• 矩阵的加法与数乘 • 矩阵的乘法 • 逆矩阵与伴随矩阵 • 矩阵的行列式 • 矩阵的秩 • 矩阵的应用
CHAPTER 01
矩阵的加法与数乘
矩阵的加法
矩阵加法定义
两个矩阵A和B的和记作A+B,定义 为满足以下条件的矩阵C,即C的元 素Cij=Aij+Bij(i,j=1,2,…,n)。
03
矩阵乘法的性质
1 2
结合律
$(AB)C=A(BC)$,即矩阵乘法满足结合律。
分配律
$A(B+C)=AB+AC$,即矩阵乘法满足分配律。
3
单位元
存在一个单位矩阵,使得任意矩阵与单位矩阵相 乘都等于原矩阵。
线性代数第2章矩阵PPT课件
目录 CONTENT
• 矩阵的定义与性质 • 矩阵的逆与行列式 • 矩阵的秩与线性方程组 • 矩阵的特征值与特征向量 • 矩阵的对角化与相似变换
01
矩阵的定义与性质
矩阵的基本概念
矩阵是一个由数字组 成的矩形阵列,行数 和列数可以不同。
矩阵的维度是指行数 和列数的数量。
矩阵的元素通常用方 括号括起来,并用逗 号分隔。
矩阵的运算规则
01
02
03
加法
两个矩阵的加法是将对应 位置的元素相加。
数乘
一个数乘以一个矩阵是将 该数乘以矩阵的每个元素。
乘法
两个矩阵的乘法只有在第 一个矩阵的列数等于第二 个矩阵的行数时才能进行。
特殊类型的矩阵
对角矩阵
对角线上的元素非零,其他元素为零的矩阵。
行列式的递推公式法
递推公式法是一种常用的计算行列式 的方法,它通过递推关系式将n阶行 列式转化为低阶行列式进行计算。这 种方法在计算较大行列式时非常有效。
03
矩阵的秩与线性方程组
矩阵的秩
矩阵的秩定义
矩阵的秩是其行向量组或列向量 组的一个极大线性无关组中向量 的个数。
矩阵的秩的性质
矩阵的秩是唯一的,且满足行秩 等于列秩。矩阵的秩等于其任何 子矩阵的秩。
02
特征值和特征向量与矩阵的乘法 运算有关,即如果Ax=λx,那么 (kA)x=(kλ)x,其中k是任意常数。
03
特征值和特征向量与矩阵的转置 运算有关,即如果Ax=λx,那么 A^Tx=(λ^T)x。
特征值与特征向量的计算方法
定义法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特
征值和特征向量。
《线性代数》课件-第3章 矩阵
§3.1 矩阵的运算(1)第三章矩阵矩阵的加法定义1111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b a b a b a b +++⎡⎤⎢⎥+++⎢⎥+=⎢⎥⎢⎥+++⎣⎦A B 设有两个 矩阵 和 n m ⨯[]ij a =A [],ij b =B 那么矩阵与 的和 A B 记作 规定为,+A B 只有当两个矩阵是同型矩阵时,才能进行加法运算.(可加的条件)注矩阵的加法235178190, 645, 368321-⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设矩阵矩阵则A B 213758169405336281+-++⎡⎤⎢⎥=+-++⎢⎥⎢⎥+++⎣⎦3413755.689⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦对应元相加例1+A B矩阵的加法;+=+A B B A ()()++=++A B C A B C ;+=+=;A OO A A 矩阵加法的运算律 [],ij a =A 设矩阵 (交换律)(结合律)(加法单位元)(1)(2) (3) (4) 规定 [],ija -=-A 称之为 的负矩阵.A ()(),+-=-+=A A A A O ().-=+-A B A B (加法逆元)规定矩阵的减法为:+=+⇒=.A B A C B C (5) 加法消去律成立,即数量乘法111212122211[].n nij m n m m mn ka ka ka kaka ka k ka ka ka ka ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦A 规定数 k 与矩阵 A 的数量乘积为定义2数量乘法()();k l kl =A A ()k l k l +=+A A A ;()k k k +=+.A B A B 数量乘法的运算规律(1) (2)(3)矩阵的加法和数量乘法统称为矩阵的线性运算 .设为A , B 为矩阵,k, l 为数: m n ⨯矩阵的乘法(矩阵与矩阵相乘)定义3设 是一个 矩阵, m n ⨯[]ij a =A 记作 C =AB.[]ij b =B 是一个 矩阵, n s ⨯规定矩阵 与 的乘积是一个 的矩阵 A Bm s ⨯[],ij c =C 其中 11221nij i j i j in nj ikkjk c a b a b a b ab ==+++=∑()1,2,;1,2,,,i m j s ==矩阵的乘法1212[,,,]j j i i in nj b b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1122i j i j in nj a b a b a b =+++1n ik kj ij k a b c ===∑行乘列法则可乘条件:左矩阵的列数=右矩阵的行数11211300514-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦设,A 034121.311121⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦B 例20311212113031051412⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦-⎣⎦C AB .⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5-61022-17乘积矩阵的“型” ? A m n ⨯B n s ⨯C m s⨯=1111⎡⎤=⎢⎥--⎣⎦设,A 例300,00⎡⎤=⎢⎥⎣⎦AB 22,22⎡⎤=⎢⎥--⎣⎦BA .BA AB ≠故1111-⎡⎤=⎢⎥-⎣⎦,B 则矩阵的乘法(1)矩阵乘法一般不满足交换律; 若 ,则称矩阵 与是乘法可交换的. =AB BA A B 定义3=AB O ⇒;==或A O B O (2) ()≠-=若而A O A B C O,⇒=B C.注意:(),+=+A B C AB AC ();+=+B C A BA CA ()()()k k k ==AB A B A B (其中 k 为数);n m ;m n m n m n ⨯⨯⨯==A E E A A 矩阵的乘法()();=AB C A BC 矩阵乘法的运算规律 (1) (2) (3) (4) (结合律) (左分配律)(右分配律)(乘法单位元)11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩,,,11121121222212n n m m mn n a a a x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111122121122221122n n n n m m mn n a x a x a x a x a x a x a x a x a x ⎡⎤+++⎢⎥+++⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦12m b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦=AX =β⇔=(矩阵形式)AX β ==00(齐次线性方程当时组的矩阵形式),AX β .例4cos sin ,,sin cos OP ϕϕϕϕ-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦设矩阵平面向量x A y cos ,sin ,x r y r θθ=⎧⎨=⎩于是x y ⎡⎤⎢⎥⎣⎦A cos sin sin cos x y ϕϕϕϕ-⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦cos()sin()r r θϕθϕ+⎡⎤=⎢⎥+⎣⎦例5cos cos sin sin cos sin sin cos r r r r θϕθϕθϕθϕ-⎡⎤=⎢⎥+⎣⎦,,OP r θ设的长度为幅角为则cos sin sin cos x y x y ϕϕϕϕ-⎡⎤=⎢⎥+⎣⎦111x OP y ⎡⎤==⎢⎥⎣⎦.OP ϕ这是把向量按逆(或顺)时针旋转角的旋转变换xyopp 1θϕ11cos sin ,sin cos .x x y y x y ϕϕϕϕ=-⎧⎨=+⎩(线性变换)小结(1)只有当两个矩阵是同型矩阵时,才能进行加法运算;(2) ≠=若而A O AB AC ,⇒;=B C 且矩阵相乘一般不满足交换律;(3)只有当左矩阵的列数等于右矩阵的行数时,两个矩阵才能相乘,矩阵的数乘运算与行列式的数乘运算不同; 可交换的典型例子:同阶对角阵;数量阵与任何同阶方阵. k n E ≠=若而A O BA CA ,⇒=B C.( 4 )§3.1 矩阵的运算(2)方阵的幂·矩阵多项式·迹第三章矩阵定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.一般地, (),,.AB A B A B ⨯≠∈k k k n n注2 注3时,以下结论成立:AB BA =当 (1)();AB A B =kkk222(2)()2;A B A AB B +=++22(3)()();A B A B A B +-=-,,A B ⨯∈n n11(4)()C C .A B A AB AB B --+=+++++mmm k m kkmmm例1解 ,A ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2121214=01010112.01A A ⎡⎤=⎢⎥⎣⎦设求其中为正整数mm ,()32141216,010101A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()122.01A ⎡⎤=≥⎢⎥⎣⎦mm m 由此归纳出方阵的幂112(1)1212,010101A A A --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦k k k k ()122.01A ⎡⎤=≥⎢⎥⎣⎦m m m 用数学归纳法证明当 时,显然成立.2=m 假设 时成立, 1=-m k 所以对于任意的m 都有=m k 则时,方阵的幂解法二 利用二项式定理122()m m m mA EB EC B=+=+202,.00⎡⎤=⎢⎥⎣⎦B B O 其中=且这种方法适用于主对角元全相同的三角形矩阵求幂 2,=+A E B ,E B 显然与乘法可交换由二项式定理有2E B=+m 100212.010001m ⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦m1110()A A A A E --=++++m m m m n f a a a a 为方阵 A 的矩阵多项式.例如 2()524,f x x x =--12,11⎡⎤=⎢⎥-⎣⎦A 22524A A E --1412101116524211101811--⎡⎤⎡⎤⎡⎤⎡⎤=--=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦定义2A ⨯∈设n n ,称()A =f:注f g g fA A A A()()()()运算性质 定义3设A 是n 阶方阵,称A 的主对角线上所有元素之和为方阵的迹(trace ),记为11221tr .A ==+++=∑nnn ii i a a a a (1) tr()tr tr ;A B A B ⨯⨯⨯⨯+=+n n n n n n n n (2) tr()tr();A A ⨯⨯=n n n n k k (3) tr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m ntr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m n设A , B 为 n 阶方阵, 求证.AB BA E -≠n tr()tr()tr()0,--AB BA =AB BA = 证明: tr()0,n n =≠E 故 . n -≠AB BA E 例2§3.1 矩阵的运算(3)矩阵的转置·方阵的行列式第三章矩阵例 123,458A ⎡⎤=⎢⎥⎣⎦T ;A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦142538叫做 的转置矩阵, m n A ⨯m n A ⨯把矩阵的行依次变为同序数的列得到的新矩阵, 定义1T A 记作. 思考 T A A 与的关系?⨯→⨯的变化型m n n m(1) : '(,)=元的变化ij ji i j a a (2) :TA A 与的关系?矩阵的转置()()T T 1;=A A ()()T T T 2;+=+A B A B ()()T T 3;A A =k k 注 性质(2)和(4)可推广到有限个矩阵的情形()()T T T T12122;s s '+=+A A ++A A A ++A ()()T T T T 12114.s s s -'=A A A A A A ()()T T T 4.=AB B A (倒序)矩阵的转置与其它矩阵运算的关系若矩阵A 满足 A A =T ,()n ,,,j ,i a a ji ij 21==201035.157A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦例为对称阵如注:对称矩阵为方阵,元素以主对角线为对称轴 对应相等 .例1 (对称矩阵)则称 A 为对称矩阵 .注 对任意矩阵 A,和 均是对称矩阵. T A A T AA对称矩阵的数乘、和、乘积是否为对称矩阵?思考:练习1 对任意实矩阵 A, 若 则 . T A A =O ,A =O练习2 若实对称矩阵 A 满足 则 . 2A =O ,A =O 设A ,B 为同阶实对称矩阵,则AB 为实对称矩阵当且仅当AB =BA .若矩阵A 满足 A A =-T ,013105.350A ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦例为反对称阵如注:反对称矩阵为方阵,且例2 (反对称矩阵)则称 A 为反对称矩阵 . 0-≠⎧=⎨=⎩ji ij a i j a i j证明任一 n 阶方阵 A 都可表示成一个对称矩阵与一个反对称矩阵之和. 证明: ()T T A A +T A A =+()T T A A -T A A =-22T T A A A A A -++=证毕.例3所以 为对称矩阵.T A A +T ,A A =+T ()A A =-- 所以 为反对称矩阵. T A A -方阵的行列式设 A 与 B 都是数域 上的 n 阶方阵, 则()T1;A A =()3;AB A B =()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系方阵的行列式n n n n n A O E B ⨯⨯-A B =n n nO AB E B ⨯=-2(1)n n E AB =--2(1)n n AB +=-.AB =证明: 22222A O E B ⨯⨯-111221221112212200001001a a a a b b b b =--12111111122122111221220001001a a b a b a a b b b b =--111112211112122221221112212200001001a b a b a b a b a a b b b b ++=--111112211112122221112221211222221112212200001001a b a b a b a b a b a b a b a b b b b b ++++=--222O AB E B ⨯=-设 A 与 B 都是数域 上的 n 阶方阵, 则 ()T 1;A A =()3;AB A B =(可推广到有限个) 一般的, +.A B A B ≠+特别地 ,A A =mm ()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系 其中m 为非负整数.24000200,00430034A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦设2.A 求k 22A A =k k2242443()(4(25))10.0234=⋅=⋅-=-k k k 解 例4证明奇数阶反对称矩阵的行列式为零.例5§3.2 初等矩阵第三章矩阵定义1elementary matrix 阶单位矩阵经过一次矩阵的初等变换所得到的矩阵称为阶即初等矩阵n n (),E B −−−−−→一次初等变换行或列为一个初等矩阵n 1,23100010010100.001001E B ⎡⎤⎡⎤⎢⎥⎢⎥=−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦对换行为一个初等矩阵例如初等矩阵的类型及表示方法1[()],0E ≠初等倍乘矩阵n i k k ) .0E ≠即以数乘单位矩阵的第行(或第列).n k i i i i r c 11[()]11E E ⨯⨯⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦kn n ki k k 或i ←第行初等矩阵的类型及表示方法2[()],0E +≠初等倍加矩阵n i j k k ) .0E ≠即将的某行元素的倍加到另一行(或列)上去.n k 11[())]11E E ++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i jj ir kr n n c kc k i j k 或←i 第行←j 第行[()]E >+n i j k i j 当时,为下三角 .初等矩阵的类型及表示方法3[,],E 初等对换矩阵n i j ) E n 即对调的某两行或某两列.11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行11[()]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n i k k i ←第行1[()],0E ≠初等倍乘矩阵n i k k ) .2[()],0E +≠初等倍加矩阵n i j k k ) .11[())]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n k i j k ←i 第行←j 第行()i j <3[,],E 初等对换矩阵n i j ) 11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行注初等矩阵的转置矩阵仍为同类型的初等阵.Ti k i k=1)[()][()];E En nT+=+i j k j i kE E2)[()][()];n nTi j i j=3)[,][,].E En n初等矩阵的应用揭示: 初等矩阵与矩阵的初等变换的关系.11121314212223243132333411⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦a a a a a a a a k a a a a 111213142122232313233434⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦k a a a a a a a a a ka ka ka 111213142122232431323334111a a a a a a a a k a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111214212221323343133234a a a a a a a a a ka ka a k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦()i k A i r k ⨯相当于以数乘的第行;111211212[()]E A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦n m m m m i i in n a a a i k a ka ka a a a k i ←第行[()]E A 左以矩阵乘m i k ,[()]n E i k A 右乘而以矩阵,其结果结论: 相当于以数k 乘A 的第i 列 .()i c k ⨯。
《线性代数》课件-第二章 矩阵及其运算
a11
A
A
a21
am1
a12 a22
am1
a1n
a2n
amn
数乘矩阵的运算规律
a, b, c R 结 合 (ab)c a(bc) 律 分 (a b) c ac bc 配 律 c (a b) ca cb
设 A、B是同型矩阵, , m 是数 (m)A (m A)
a11
a12
a13
a14
4
c11 a1kbk1
b11
b21
b31
b41
k 1
4
c12 a11b12 a12b22 a13b32 a14b42 a1k bk 2 k 1
一般地,
4
cij ai1b1 j ai 2b2 j ai 3b3 j ai4b4 j aikbkj k 1
行列式
矩阵
a11 a12
a1n
a21 a22
a2n
an1 an2
ann
(1) a a t( p1 p2 pn ) 1 p1 2 p2
p1 p2 pn
行数等于列数
共有n2个元素
a11 a12
a21
a22
am1 am1
anpn
a1n
a2n
amn
行数不等于列数 共有m×n个元素 本质上就是一个数表
第二章 矩阵及其运算
§1 矩阵
一、矩阵概念的引入 二、矩阵的定义 三、特殊的矩阵 四、矩阵与线性变换
B
一、矩阵概念的引入
例 某航空公司在 A、B、C、D 四座 A
城市之间开辟了若干航线,四座城市 之间的航班图如图所示,箭头从始发 地指向目的地.
城市间的航班图情况常用表格来表示:
线性代数课件第三章矩阵的秩
线性方程组的解 与矩阵的秩的关 系
利用矩阵的秩判 断线性方程组是 否有解
利用矩阵的秩求 解线性方程组的 步骤和方法
矩阵的秩在判断向量组线性相关性的应用
矩阵的秩与向量组 线性相关性的定义
矩阵的秩在判断向 量组线性相关性中 的应用
矩阵的秩与向量组 线性相关性的关系
矩阵的秩在解决实 际问题中的应用
矩阵的秩在求向量空间维数中的应用
汇报人:PPT
PPT,a click to unlimited possibilities汇报人Leabharlann PPT目录矩阵秩的定义
矩阵的秩的概念
矩阵秩的几何意义
矩阵秩的计算方法
矩阵秩的性质和定理
矩阵的秩的计算方法
定义:矩阵的秩是其行向量或列向量的最大线性无关组的个数
计算方法:通过初等行变换或初等列变换将矩阵化为阶梯形矩阵,然后数非零行数或非零列 数
利用初等列变换求矩阵的秩的证明
初等列变换的定义和性质
阶梯形矩阵的秩的计算方法
添加标题
添加标题
添加标题
添加标题
利用初等列变换将矩阵化为阶梯形 矩阵
证明利用初等列变换求矩阵的秩的 正确性
零矩阵的秩
零矩阵的定义:所 有元素都为0的矩 阵
零矩阵的秩为0
零矩阵与任何矩阵 相乘都等于0
零矩阵在数学中的 意义和作用
性质:矩阵的秩与行数和列数有关,且不超过行数和列数中的最小值
应用:矩阵的秩在解线性方程组、判断向量组的线性相关性等方面有重要应用
矩阵的秩的性质
矩阵的秩等于其行秩或列秩
矩阵的秩是其所有子矩阵的 秩的最大值
矩阵的秩是唯一的
矩阵的秩等于其转置矩阵的 秩
矩阵的秩在解线性方程组中的应用
线性代数-线性方程组与矩阵PPT课件
k 1
k 1
k 1
s
aik bk1
c1
j
s
aikbk 2
c2
j
s
aikbkp
c
pj
p
s
aikbktctj .
k1
k1
k1
t1 k 1
ps
同理可以验证矩阵 Ams (BspC pn ) 中 (i, j) 元素也是 aikbktctj ,所以矩阵乘法的结合律成立. t1 k 1
aij bij
.
mn
2. 矩阵的数乘
第1章 线性方程组与矩阵 12
定义4 用一个数 k 乘矩阵 A (aij )mn 的所有元素得到的矩阵 kaij mn 称为矩阵的数乘,记为 kA 或者 Ak ,
即
kA Ak kaij mn .
矩阵的数乘运算满足如下的运算规律: 设 k,l 是任意两个数, A, B 是任意两个 m n 矩阵,
21 21 0 2
21 21 01
2 0 21 0 1
4 4
3 0
2
2
.
三、矩阵的乘法
例3
求矩阵
A
1 2
1 2
与
B
2 6
1 3
的乘积
AB
及
BA
.
解
AB
1 2
1 2
2
6
1 3
8 16
4 8
;
BA
2 6
1 1
3
2
1 2
0 0
0 0
.
第1章 线性方程组与矩阵 16
3
A Omn Omn A A .
1. 矩阵的加法
第1章 线性方程组与矩阵 11
线性代数第一章、矩阵PPT课件
可以通过初等行变换或初等列变换将矩阵转化为行阶梯形或列阶梯形,然后数非零行的个数即为矩阵的秩。
矩阵的秩的定义
矩阵的秩是其行向量组或列向量组的一个极大线性无关组中向量的个数。
矩阵的秩
通过初等行变换将增广矩阵化为行阶梯形,然后回代求解。
高斯消元法
克拉默法则
迭代法
适用于线性方程组系数行列式不为0的情况,通过解方程组求出方程的解。
n阶方阵A的行列式记为det(A),是一个n阶的方阵,其值是一个实数。
行列式与转置矩阵的行列式相等,即det(A^T) = det(A);行列式的乘法性质,即det(kA) = k^n * det(A);行列式的初等变换性质,即行列式在初等变换下保持不变。
行列式的定义与性质
行列式的性质
行列式的定义
线性代数第一章、矩阵ppt课件
目录
CONTENTS
矩阵的定义与性质 矩阵的逆与行列式 矩阵的秩与线性方程组 矩阵的特征值与特征向量 矩阵的分解与正交矩阵 矩阵在实际问题中的应用
01
矩阵的定义与性质
CHAPTER
矩阵的定义与性质
about the subject matter here refers to the subject matter here.
相似法
如果存在可逆矩阵P,使得P^(-1)AP=B,则矩阵A的特征值和特征向量可以通过矩阵B的特征值和特征向量来求解。
特征值与特征向量的计算方法
如果矩阵A的所有特征值都是实数且没有重复,则矩阵A可以对角化。
判断矩阵是否可对角化
求解线性方程组
判断矩阵是否相似
优化问题
通过将线性方程组Ax=b转化为特征值问题,可以求解线性方程组。
线性代数矩阵PPT课件
•课程的重要性 ➢工科基础 ➢考研基础 •课程要求
➢综合考评
❖期末成绩 ❖平时成绩
➢课时分配
❖授课学时 36
❖习题课 1*4=4
•如何学好
➢做好预习复习
➢按时完成作业 A B C ➢多看多练多想
教材与参考书目
•教材 ➢线性代数 科学出版社,2007.2
作者:陈建龙,周建华,韩瑞珠,周后型
•参考书目
➢工程数学—线性代数,第4版,同济大学 应用数学系,2003,高教出版社 ➢线性代数附册—学习辅导与习题选解,第 4版,同济大学应用数学系,2003,高教出 版社
线性代数
一、核心工具 解线性方程组
线性方程组 考虑
Ax b 再学
方程间 方程对应一个向量
的关系
再学
向量间 向量组构成矩阵 矩阵的性 方阵
3. 单位矩阵
A
1
= (ij)
E
n
1
=
(ij)
1
引入Kronecker记号 ij =
1, i = j 0, i j
4. 三角矩阵
上三角矩阵:方阵的主对角线下的元素全为0
a11 a12 … a1n 0 a22 … a2n … ………
0 0 … ann
a11 … a1n-1 a1n a21 … a2n-1 0 …………
若A有零行(元素全为零的行), 则零行位于最下方; 非零行的非零首元 (自左至右第一个不为零的元, 称为主元) 的列标随行标的递增而递增.
称A中非零行的行数为A的阶梯数, 记为 r(A).
1 1 2 0 4 0 1 3 2 2 0 0 0 2 3 00 0 0 0
r(A)=3
11 0 0 4 0 1 0 2 2 0 0 0 2 3 00 0 0 4
线性代数教学课件:矩阵的概念
代
当i>j时, aij 0
数
2 3 0 1
如
0
1
1
1
=
0 0 0 2 0 0 0 1
=
▪下三角矩阵
a11 0
0
a21
a22
0
线
an1 , aij 0
1 0 0 0
数
如
2
4
0
0
=
3 0 1 0
1 2 1 1
=
可以建立线性方程组与矩阵的一一对应:
=
0 0 1
可以建立线性方程组与矩阵的一一对应:
如,称 A 2 1 1
线
1 0 1
为线性代数方程组
2 x1 x1
x2
x3 x3
1 的系数矩阵; 2
性 代
系数及常数项组成的矩阵
—
A
2
1
1
1
数
1 0 1 2
称为方程组的增广矩阵.
=
=
1.1 矩阵及其运算
同型矩阵: Amn , Bmn
例1.2 某企业生产4种产品,各种产品的季度产值
(单位:万元)如下表:
线
产值
季节 产品1 产品2 产品3 产品4
性
1 80 58 75 78
代
2 98 70 85 84
3 90 75 90 90
数
4 88 70 82 80
80
这个数表 98
90
58 70 75
75 85 90
78 84
具体描述了这家企业各种产品 各季度的产值,同时也揭示了
代
▪行矩阵或行向量
a1 a2 an 如(1 0 1 2) 数
线性代数第2章 矩阵PPT课件
行矩阵(Row Matrix):
只有一行的矩阵 A a 1 ,a 2 , ,a n ,
称为行矩阵(或行向量).
列矩阵(Column Matrix):
a 1
只有一列的矩阵
B
a2
,
称为列矩阵(或列向量).
a n
暨大珠院
方阵(Square Matrix):
n 行数与列数都等于 的矩阵,称为 n阶方阵.也可记作 An .
排成m的 行n列的数表,
称为 m行n列矩. 阵 简m 称 n矩.阵
a11
记作A
a21
a12 a22
a1n a2n
暨大珠院
am1 am2 amn
简记为
Aa ijm n
或 Amn
实矩阵: 元素是实数;复矩阵:元素是复数.
规定:
Aa a 11
例如: 1 0 3 5 是一个 24
9 6 4 3
1
En
1
1 nn
暨大珠院
数量矩阵(Scalar Matrix):
方阵,主对角元素全为非零常数k,
其余元素全为零的矩阵。
k
kEn
k
k nn
暨大珠院
二. 矩阵的基本运算 1. 矩阵相等.
同型矩阵: 两个矩阵的行数相等、列数也相等
矩阵相等: 设 矩 阵 A m n 与 B m n 是 同 型
33 62 81 6 8 9
暨大珠院
负矩阵:称- A 为矩阵 Aaij 的负矩阵。
a11
A
a 21
a12
a 22
a1n
a 2n
aij
am1
am1
am
n
减法: A B A ( B )
线性代数-课件ppt
a11
A
A
a21
a12
a22
a1n
a2n
.
am1 am1 amn
2、数乘矩阵的运算规律
(设 A、B为 m n 矩阵, ,为数)
1 A A; 2 A A A;
3 A B A B.
矩阵相加与数乘矩阵合起来,统称为矩阵的线 性运算.
3 2 7 5
例1:已知
A
1 6
线性代数
• 矩阵的概念 • 矩阵的基本运算 • 矩阵的初等变换与矩阵的秩 • 逆矩阵 • 线性方程组解的判定
矩阵的概念
• 一、矩阵概念的引入 • 二、矩阵的定义 • 三、几种特殊的矩阵 • 四、同型矩阵和矩阵相等
一、矩阵概念的引入
B
某航空公司在A,B,C,D四城市之间
开辟了若干航线 ,如图所示表示了 四城市间的航班图,如果从A到B有
13 6 19 7
7 10
2 28
2 2
21 24
三、矩阵的乘法
引例:某校明后两年计划建筑教学楼和宿舍楼。建筑面积及材料耗用量如表:
建筑面积(单位:100平方米)
教学楼 宿舍楼
材料(每100平方米耗用量,单位:吨)
钢材 水泥 铝材
明年 20
10
教学楼
2
18
0.4
后年 30
20
宿舍楼 1.5
1 2 3 4
解:设A
4 3 2
1 4 3
2 1 4
123 ,
x1
X
x x x
2 3 4
,
1
B
2 2 1
,
所以方程组可表示为 :
1 2 3 4 x1 1
矩阵(Matrix)PPT课件
a11 a12
A
a21
a22
am1 am2
a1n x1 b1
a2n
,
x
x2
,
b
b2
amn xn bn
ai1x1 ai2 x2 ain xn bi
则方程组又可表示为 Ax b.
x1ai1 x2ai2 xnain bi
a11 a21
定义成
a11 a21
x1 x1
a12 x2 a22 x2
x1
a11
a21
x2
a12
a22
x1 1 x2 2
e2
(a12 , a22 )
2
1
y ( y1, y2 )
2
A和x的乘法实质给出了 向量y在A坐标系(β1Oβ2) 下的刻划方法。
e1
(a11,1a21 )
y y1e1 y2e2
ai1b1 j ai 2b2 j a b b 1j is sj
a a a i1 i2
b2 j is
注:A的列数和B的行数相等时 b,sj AB才有意义。
• 例3 设矩阵
1 0 1
A
1
1
3
,
求乘积 AB.
解
1 0
C
AB
1
1
0 3 4 B 1 2 1
3 1 1
B
a12
a22
a1n a2n
am1
am2
y (x1, x2, , xn )
c (b1,b2, ,bm)
amn nm
则方程组又可表示为 yB c.
矩阵向量乘法意义之二:为刻划向量提供了坐标系
根据矩阵乘法定义,m n 阶矩阵A与n维列向
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
元素是复数的矩阵称为复矩阵.
例如 a ij i j , i , j 1 , 2 , 3 . 则
0 1 2 A 1 0 1
2 1 0
例如
13 6 2 2 2 2
1 9
0 6
3 4
5 3
是一个
24实矩阵,
2 i 2 2
是一个
1
33复矩阵,
2 4
是一个 31矩阵,
2359
《线性代数》知个识知识 篇点 五内在联: 系图
线性方程组 求解为核心
行列式
矩阵 一 一 对 应
矩阵运算
一 为主线 一 对
应
线性方程组 一 一 对 应 向量组
特征问题与二次型
核心
aa1211xx11aa1222xx22bb12
a11x1 a12x2
a21x1
a22 x2
am1x1 am2x2
a n
思考题
一维 1矩 是阵 否 等 1?于数
思考题解答
是的!
1 0 0 0
矩阵B
0
1
0
0
是对角阵。 答:错.
0 0 1 0
矩阵棣属关系: 单位阵 数量阵 对角阵 三角阵
(4)既是上三角又是 矩下 阵三 的角 方阵,即
形如
1 0
0 2
O
0 0
的方阵,
称为对角矩阵
(或对角阵).
0 O0 n
记作 A d[ i1 ,a 2 , g ,n ].
(5) 数(纯)量矩阵(标量矩阵)
a 0 0 0
称对角线元相等的对角 矩阵
0
a
0
0
为数量矩阵或标量阵。
0 0 0 a
当 a1时,记作 1
I
In
0
0 1
0
O0
0
O
0
1
全为1
称为单位矩阵(或单位阵).有时也记作E.
(6)元素全为零的矩阵称为零矩阵,m n零
矩阵记作 Omn或 O.
注意 不同阶数的零矩阵是不“相等”的.
例如
0 0 0 0
0 0
0 0
0 0
00""0
0
0
0.
0 0 0 0
则称矩阵 A与B相等,记作 AB.
例1 设 A 123 , 312
B 1x3 , y 1z
已 A 知 B ,求 x ,y ,z . 解 AB,
x 2 ,y 3 ,z 2 .
三、小结
(1)矩阵的概念 m行n列的一个数表
a11
A
a21
a12 a22
a1n a2n
am1 am1 amn
的解取决于
系数 a iji,j 1 ,2 , ,n ,
常数项 b ii1 ,2, ,n
线性方程组的系数与常数项按原位置可排为
a11 a21
a12 a22
a1n a2n
b1 b2
an1 an2 ann bn
对线性方程组的 研究可转化为对 这张表的研究.
线性变换
xy11 scion sxxcsion syy,.
线性代数及其应用
整体概述
概况一
点击此处输入相关文本内容 点击此处输入相关文本内容
概况二
点击此处输入相关文本内容 点击此处输入相关文本内容
概况三
点击此处输入相关文本内容 点击此处输入相关文本内容
教材:线性代数及其应用 主编 刘剑平 华东理工大学出版社
参考教材: 线性代数精析与精练 主编 刘剑平 华东理工大学出版社
O (2) 特殊矩阵
方阵
mn;
上(下)三角阵
a011aa
11 21
a a
12 0 22a 22
0 a n1
0
a
n
2
a 1 n 0
a 2 n 0
a
nna
nn
单位矩阵; 1
对角矩阵;
0
零矩阵. 0
行矩阵与列矩阵;
A 10000 2 Ba 1001 ,a 2 ,aa00 n12 ,100,a n .,
是一个 14矩阵,
4 是一个 11矩阵.
几种特殊矩阵
(1)行数和列n数 的都 矩 A,等 阵 称 于 n 为 阶
方阵.也可记作 An .
例如
13 6 2 i 2 2 2
副(反)对角线 是一个3 阶方阵.
2 2 2 主对角线
(2)只有一行元素的矩阵
A a 1 ,a 2 , ,a n ,
称为行矩阵(或行向量).
对应
cos sin sin cos
这是一个以原点为中心
旋转 角的旋转变换.
Y P 1x1,y1
Px,y
O
X
二、矩阵的定义
由 mn个数 a i j i 1 , 2 , ,m ; j 1 , 2 , ,n
排成的 m行 n列的元数表
a11 a12 a1n
a 21 a 22 a 2 n
a m 1 a m 2 a mn
只有一列元素的矩阵
a 1
B
a2
,
称为列矩阵(或列向量).
a n
a11 a12
(3) 形如 00 Oa022
a1n
a
2
n
即主对角线以
a nn
全为零的方阵称为上三角矩阵。
a11
形如 a21
0
a 22
0
O0
即主对角线以上元
a n1 a n 2 a nn
全为零的方阵称为下三角矩阵。
a1nxn b1 a2nxn b2
amnxn bm
第一章 矩阵
第一节 矩阵
一、 矩阵概念的引入 二、 矩阵的定义
三 、 小 结 、 思 考 题
一、矩阵概念的引入
a11x1 a12x2 a1nxn b1 1. 线性方程组 a21 x1 a22 x2 a2n xn b2
an1x1 an2x2 annxn bn
历史背景 代数由费马和笛卡尔的工作产生于17世纪 关孝和或莱布尼兹引入行列式,雅可比和范德蒙发展 詹姆斯或凯莱引入矩阵 克莱姆,高斯,若当引入方程组 1859 (清朝)李善兰翻译成“代数学” 我国九章算术中有一章方程
线性代数课程在高等工业 学校的教学计划中是一门重要 的基础理论课,也是考研究生 的必考课程,尤其在计算机高 速发展的今天,更显示出其重 要性和应用性。
称为 m n 维矩阵.简称m n矩阵.记作
a11
A
a21
a12 a22
a1n a2n
am1 am1 amn
矩阵 A的
m , n 元
简记为 A A m n a ij m n a i. j
这 m n个数 A 的 称元 ,为 简素 称 (ai为 j 代 元. 表
Hale Waihona Puke 元素是实数的矩阵称为实矩阵,
同维矩阵与矩阵相等的概念
1.两个矩阵的行数相等,列数相等时,称为同 维矩阵.
例如
1 5
2 6
与
14 8
3 4
为同维矩阵.
3 7 3 9
2..两个矩阵 A aij与 B b ij为同维矩阵,并
且对应元素相等,即
a i jb i i j 1 , 2 , , m ; j 1 , 2 , , n ,