直线与圆的位置关系1ppt
合集下载
第一课时直线和圆的位置关系PPT课件(人教版)
探究新知 直线与圆有__三___种位置关系,是用直线与圆的__公__共__点__的个数 来定义的.这也是判断直线与圆的位置关系的重要方法.
(1)相交 (2)相切 (3)相离
两个公共点 一个公共点 没有公共点
探究新知
O
l
相交
O
l
A
相切
O
l
相离
上述变化过程中,除了公共点的个数产生了变化,还有什么量在 改变?你能否用数量关系来判别直线与圆的位置关系?
13
时,
线段AB与⊙C只有一个公共点.
60
CD= cm
13
B
13
12
D
C5A
归纳总结
图形
直线与圆的 位置关系
公共点的个数
圆心到直线的距离 d 与半径 r 的关系
公共点的名称 直线名称
.O r d┐ l
相离
0
d>r
.o
.O
d .┐r l
A.Br 来自d .lC相切 相交
1
2
d=r 切点 切线
d<r 交点 割线
24 圆
24.2.2.1 直线和圆的位置关系
课时目标
1.掌握直线和圆的三种位置关系的定义及其判定方法和性质。
2.通过直线和圆的位置关系的探究,渗透类比,分类, 数形结合思想,培养视察、分析和发现问题的能力。
探究新知
A B
C
点和圆的位置关系有几种?
点到圆心的距离为d,
圆的半径为r,则:
点在圆外 点在圆上 点在圆内
d>r; d=r; d<r.
数量关系
探究新知
把太阳看成一个圆,地平线看成一条直线,注意视
察直线与圆的公共点的个数.
直线与圆的位置关系课件
研究图形性质
通过研究直线与圆的位置关系,可以进一步研究图形的性质 。例如,通过观察直线与圆的位置关系,可以研究圆的对称 性、中心性等性质。
在物理学中的应用
研究运动轨迹
在物理学中,直线与圆的位置关系可以用于研究物体的运动轨迹。例如,在研究抛物线运动时,可以 通过设定一个初始位置和初始速度,利用直线与圆的位置关系来研究物体的运动轨迹。
几何解释能够直观地描述直线与圆的 位置关系,有助于深入理解相关概念 和性质。
通过几何解释,可以更好地掌握解析 几何的基本思想和方法,提高解决实 际问题的能力。
直线与圆的位置关
04
系的代数表示
代数表示的方法
直线方程
一般式 $Ax + By + C = 0$,斜截式 $y = mx + b$,点斜式 $y - y_1 = m(x - x_1)$
圆方程
一般式 $(x - h)^2 + (y - k)^2 = r^2$,标准式 $x^2 + y^2 + Dx + Ey + F = 0$
直线与圆的位置关系判断
将圆心坐标代入直线方程,根据判别式 $Delta = b^2 - 4ac$ 的 值判断。
代数表示的应用场景
解析几何问题
在解析几何中,直线与圆的位置关系是常见的问题,通过代数表示可以方便地 解决这类问题。
实际应用
在工程、建筑、地理等领域中,经常需要用到直线与圆的位置关系来解决问题 。例如,建筑设计中的平面布局、地理测量中的数据解析等。
代数表示的重要性
简化问题
通过代数表示,可以将复 杂的问题简化为易于处理 的形式,从而方便解决问 题。
提高效率
使用代数表示可以快速地 计算和比较数据,提高解 决问题的效率。
通过研究直线与圆的位置关系,可以进一步研究图形的性质 。例如,通过观察直线与圆的位置关系,可以研究圆的对称 性、中心性等性质。
在物理学中的应用
研究运动轨迹
在物理学中,直线与圆的位置关系可以用于研究物体的运动轨迹。例如,在研究抛物线运动时,可以 通过设定一个初始位置和初始速度,利用直线与圆的位置关系来研究物体的运动轨迹。
几何解释能够直观地描述直线与圆的 位置关系,有助于深入理解相关概念 和性质。
通过几何解释,可以更好地掌握解析 几何的基本思想和方法,提高解决实 际问题的能力。
直线与圆的位置关
04
系的代数表示
代数表示的方法
直线方程
一般式 $Ax + By + C = 0$,斜截式 $y = mx + b$,点斜式 $y - y_1 = m(x - x_1)$
圆方程
一般式 $(x - h)^2 + (y - k)^2 = r^2$,标准式 $x^2 + y^2 + Dx + Ey + F = 0$
直线与圆的位置关系判断
将圆心坐标代入直线方程,根据判别式 $Delta = b^2 - 4ac$ 的 值判断。
代数表示的应用场景
解析几何问题
在解析几何中,直线与圆的位置关系是常见的问题,通过代数表示可以方便地 解决这类问题。
实际应用
在工程、建筑、地理等领域中,经常需要用到直线与圆的位置关系来解决问题 。例如,建筑设计中的平面布局、地理测量中的数据解析等。
代数表示的重要性
简化问题
通过代数表示,可以将复 杂的问题简化为易于处理 的形式,从而方便解决问 题。
提高效率
使用代数表示可以快速地 计算和比较数据,提高解 决问题的效率。
直线与圆的位置关系 课件
则Δ=(2k2+2k-4)2-4(1+k2)(k2+2k+4)=0, 解得 8k2+6k=0,即 k=0 或 k=-34, 因此,所求直线 l 的方程为 y=4 或 3x+4y-13=0.
类型 3 弦长问题 [典例 3] 设直线 y=x+2a 与圆 C:x2+y2-2ay-2 =0 相交于 A,B 两点,若|AB|=2 3,则圆 C 的面积为 ________.
解析:由圆 C:x2+y2-2ay-2=0 可得 x2+(y-a)2= |-a+2a|
a2+2,所以圆心 C(0,a),由题意可知 2 = a2+2-3, 解得 a2=2,所以圆 C 的面积为π(a2+2)=4π.
答案:4π
归纳升华 1.求弦长常用的三种方法: (1)利用圆的半径 r,圆心到直线的距离 d,弦长 l 之 间的关系 r2=d2+2l 2求弦长.
0)为圆心,以 3为半径长的圆.
设xy=k,即 y=kx. 当直线 y=kx 与圆相切时,斜率 k 取最大值和最小值.
|2k-0|
此时
= 3,
k2+1
解得 k=± 3. 故xy的最大值为 3,最小值为- 3.
(2)设 y-x=b,即 y=x+b,当直线 y=x+b 与圆相 切时,纵截距 b 取得最大值和最小值.
法二 (几何法)圆 x2+y2=100 的圆心为(0,0),半径
r=10, 则圆心到直线的距离 d= 3|2a+| 42=|a5|, ①当直线和圆相交时,d<r,即|a5|<10,-50<a<50; ②当直线和圆相切时,d=r,即|a5|=10,a=50 或 a
=-50;
③当直线和圆相离时,d>r, 即|a5|>10,a<-50 或 a>50.
直线与圆的位置关系ppt课件
新知讲解
想一想:自一点引圆的切线的条数 (1)若点在圆外,则过此点可以作几条切线? 若点在圆外,则过此点可以作圆的两条切线. (2)若点在圆上,则过此点只能作几条切线? 若点在圆上,则过此点只能作圆的一条切线,且此点是切点. (3)若点在圆内,则过此点能作几条切线? 若点在圆内,则过此点不能作圆的切线,即可以作0条. 问题:如何刻画直线与圆相切? 公共点的个数只有1个; 圆心到直线的距离等于半径.
2
因此所求切线l的方程为y=-2x或y= 1 x.
2
新知讲解
例2:已知直线l经过点 O (0,0),且与圆C:(x-1)2 + (y-3)2 =5相切,求直线l的方程.
解法2:当直线l的斜率不存在时,直线l的方程为x=0,圆
心C(1,3)到直线l的距离为1≠ 5 ,不合题意.
当直线l的斜率存在时,设直线l的方程为y=kx,即kx-y=0,
新知讲解
例2:已知直线l经过点 O (0,0),且与圆C:(x-1)2 + (y-3)2 =5相切,求直线l的方程.
思路1 直线与圆相切
直线的方程,
圆的方程
0
直线方程
思路2
d r
新知讲解
例2:已知直线l经过点 O (0,0),且与圆C:(x-1)2 + (y-3)2 =5相切,求直线l的方程.
当堂检测
1.(1)直线x+y-2=0与圆x2+y2=2的位置关系为__相__切____ (2)直线x-y-2=0与圆(x-1)2+(y-1)2=1的位置关系为___相__离___ (3)直线x+2y-1=0和圆x2-2x+y2-y+1=0的位置关系为__相__交____
2.5.1直线与圆的位置关系 课件【可编辑图片版】【共40张PPT】
题型三 有关圆的弦长问题 例 2 求直线 l:3x+y-6=0 被圆 C:x2+y2-2y-4=0 截得 的弦长.
分析:弦心距、半弦长与半径构成的直角三角形求解.
解析:法一:圆C:x2+y2-2y-4=0 可化为x2+(y-1)2=5, 其圆心坐标为(0,1),半径r= 5. 点(0,1)到直线l的距离为d=|3×03+2+11-2 6|= 210, l=2 r2-d2= 10,所以截得的弦长为 10. 法二:设直线l与圆C交于A、B两点.
所成的切点处时,DE为最短距离.此时DE的最小值为
|0+0-8| 2
-
1=(4 2-1) km.
即DE的最短距离为(4 2-1) km.
[方法技巧] 求解直线与圆的方程的实际应用问题的四个步骤
1.认真审题,明确题意. 2.建立平面直角坐标系,用方程表示直线和圆,从而在实际 问题中建立直线与圆的方程. 3.利用直线与圆的方程的有关知识求解问题. 4.把代数结果还原为实际问题的解释.
将A′(x0,-3)代入圆的方程,得x0= 51, ∴当水面下降1 m后,水面宽为2x0=2 51(m).
答案:(1)B (2)2 51
易错辨析 忽略了圆的一个隐含条件 例 4 已知圆的方程为 x2+y2+ax+2y+a2=0,一定点 A(1,2), 要使过定点 A(1,2)作圆的切线有两条,则 a 的取值范围为________.
5,则弦长=2
r2-d2=4
5.
答案:4 5
题型一 直线与圆位置关系的判断
1.直线 y=x+1 与圆 x2+y2=1 的位置关系为( )
A.相切
B.相交但直线不过圆心
C.直线过圆心 D.相离
解析:圆心(0,0)到直线y=x+1的距离d=
中职数学基础模块下册直线与圆的位置关系 ppt课件全
d> r
∟
数形结合: 位置关系 ppt课件 数量关系
11
例2:如图,已知直线l:3x y 6 0 和圆心为C的圆 , x2 y2 2y 4 0 判断直线 l 与圆的位置关系;
分析:依据圆心到直线的距离与半径长的关系,
判断直线与圆的位置关系(几何法);
解法一:圆 x2 y2 2y 4 0可化为 x2 ( y 1)2 5.
求实数m的值。
解法二:把直线方程与圆的方程联立得
y mx 2① x2 y2 1② 把①代入②中得
(1 m2 )x2 4mx 3 0
由直线和圆相切可得:
16m2 43 (1 m2 ) 0
y 2 x O
m2 3m 3
ppt课件
15
归纳小节
几何方法
直线和圆的位置关系的判断方法
其圆心C的坐标为(0,1),半径长为 5,点C (0,1)到直
线 l 的距离
d | 3016| 5 5 5 r
32 12
10 2
所以,直线 l 与圆相交.
ppt课件
12
分析 :根据直线与圆的方程组成的方程组解的情况来判断(代数法)
解法二:
建立方程组
3x
x2
y60 y2 2y
4
①
0
d r 相切
ppt课件
C l
5
2、现在,如何用直线方程和圆的方程判断它们 之间的位置关系?
先看以下问题,看看你能否从问题中总结来.
ppt课件
6
例1:已知直线 3x 4y 5 0 与圆 x2 y2 1 ,
判断它们的位置关系。
3x 4y 5 0 ①
建立方程组
x2 y2 1
②
第24章圆期末复习圆与直线的位置关系PPT课件(沪科版)
P
∵OP2=OA2+ AP2,∴OP= 3 5 . A
∵AC∥OP,∴AC:OP=AE:PE,
∴AC=
65 5
.
EC
D OB
∵OC⊥AB,
B
∴∠CED=∠OEB=90°–∠B.
∵∠CDE=90°–∠ODB, ∴∠CDE=∠CED.
(2)连接AD,
A D
∵AB是⊙O的直径, ∴∠ADB=90°.
O
C
E
∵AB=13, ∴OB=6.5
B
∵∠ADB=∠BOE=90°,∠B=∠B,
∴△ABD∽△EBO.
∴AB:EB=DB:BO,
CD
AO E
B
解:(1)连接OD.
∵AB为直径, ∴∠ACB=900,
CD
∵OA=OD,
AO E
B
∴∠ODA=∠OAD,
∵AD平分∠CAB, ∴∠OAD=∠CAD,
∴∠ODA=∠CAD,
∴OD∥AC,
∴∠ODB=∠ACB=90°,
∴BD是⊙O的切线.
(2)∵
AC AB
=
1 4
,
∴AB=4AC,
∵BC2=AB2-AC2, ∴15AC2=80.
4.圆的切线的定义 直线和圆只有 一个公共点时,这条直线叫做圆的
切线;这个唯一的公共点叫做 切点 .
5.圆的切线的性质 圆的切线垂直于过切点的 半径 ;
6.圆的切线的判定 经过直径的 外端 ,并且垂直于这条的直线是圆的
切线.
7.切线长 经过圆外一点作圆的切线,这点和 切点 之间的 线段的长,叫做这点到圆的切线长。从圆外一点可以 作出 两 条圆的切线,它们的切线长 相等 ;这点与圆 心的连线 平分 两切线的夹角. 8.三角形内切圆 和三角形各边都 相切的圆叫做三角形的内切圆, 内切圆的圆心是三角形三条 角平分线 的交点,它到 三边的距离相等,叫做三角形的 内 心.
浙教版九年级下册2.1.3直线和圆的位置关系课件(共21张PPT)
3.AB是⊙O的直径,AE平分∠BAC交⊙O于点E,过点E 作⊙O的切线交AC于点D,试判断△AED的形状,并 说明理由.
练一练
4、如图,∠APC=50°,PA、PC、DE都为⊙O的切线,
则∠DOE为 65° 。 变式:改变切线DE的位置,
C D
则∠DOE= 6;5°
CD
F
O
P
F
E
O
P
A
E
A
归纳:只要∠APC的大小不变,∠DOE也不变.
切线的性质3、4、5可归纳为:已知直线满 足a、过圆心,b、过切点,c、垂直于切线中任 意两个,便得到第三个结论。
试一试
1、如图,直线l切⊙O于点P,弦AB∥l,请说明 AP=PB
的理由
圆的切线垂直于经过切点的半径 T
C
O
A
B
BOA
P
l
2、如图,AT切⊙O于点A,AB⊥AT,交⊙O于点B,BT
交⊙O于点C。已知∠B=300,AT= 3 。求⊙O的直径
如图,直线AB与⊙O相切于点C,射线AO交⊙O于点D,E, 连结CD,CE.
1)求证: ∠ACD=∠AEC
2)找出图中的一对相似三角形,并说明理由。
E O
D
A
C
B
弦切角
弦切角定义:
顶点在圆上,一边与圆相交,另一边与 圆相切的角叫弦切角.
C
∠BAC的特征:
(1) 顶点在圆上;
B
(2) 一边和圆相交; A B (3) 一边和圆相切。
练一练
练习1、判别下列图形中的角是不是弦切角, 并说明理由。(图中AB与圆相切于A)( D)
A
B
C
D
弦切角
直线与圆的位置关系ppt课件
x 2 y 2 Dx Ey F 0
( D 2 +E 2 4 F 0)
代数方法
几何
图形性质究过程,如何通过代数方法,
研究直线与圆的位置关系?
联立两直线方程
两直线的位置关系
方程组解的情况
直线与圆的位置关系
联立直线与圆方程
方程组解的情况
求直线被圆截得的弦长.
(法1) 圆心为C (1, 2), 半径为r 2,
圆心C到直线l的距离d
| 2 2+2 |
2 5 2 8 5
2 2 5
2
弦长为2 (2) (
)
.
=
2
5
5
5
5
22 12
x2 y 2 2x 4 y 1 0
(法2)解 : 联立
2.5.1直线与圆的位置关系
春
来
江
水
绿
如
蓝
日
出
江
花
红
胜
火
问题1:把太阳看作一个圆,海天交线看作一条直线,那么在日出的过程中,
体现了直线和圆的哪些位置关系?
相交
相切
相离
探究交流
问题2:如何判断直线与圆的位置关系?
d
d
d
r
r
r
地平线
直线与圆相切
直线与圆相交
1.通过直线与圆的公共点个数判断
直线与圆有两个公共点
2.弦心距:圆心到弦所在直线的距离;
弦心距
A
O
l
C
O
3.垂径定理:垂直于弦的直径平分这条弦,且平分弦所对的两条弧。
4.求弦长:
①两点距离:联立直线与圆的方程求两交点A,B的坐标
2.5.1直线和圆的位置关系课件(人教版)
所以直线与圆相离,故轮船沿直线返航不会有触礁危险.
典型例题
例2 一个小岛周围有环岛暗礁,暗礁散布在以小岛中心为圆心,半径
为20km的圆形区域内.已知小岛中心位于轮船正西40km处,港口位于
小岛中心正北30km处.如果轮船沿直线返航,那么它是否会有触礁危险?
解法二:圆心坐标为(0,0),半径为2;
直线方程为 + − = .
的方程.
解:∵圆C为(x-2)2+(y-2)2=1,
∴圆C关于x轴对称的圆C′为(x-2)2+(y+2)2=1.
令l为y-3=k(x+3),则kx-y+3+3k=0,
∴圆心C′到直线l
|2+2+3+3|
4
3
的距离
=1,∴k=- 或k=- .
2+1
3
4
∴光线l所在直线的方程为3x+4y-3=0或4x+3y+3=0.
则港口的位置坐标为 , ,船的位置坐标为 , .
则暗礁所在圆形区域边缘对应圆O的方程为 + = 4,
其圆心坐标为(0,0),半径为2;
轮船航线所在直线的方程为:
+
=1,即
+ − = .
典型例题
例2 一个小岛周围有环岛暗礁,暗礁散布在以小岛中心为圆心,半径
所以,直线和圆相交,有两个公共点.
把1 = 2,2 = 1分别代入方程3 + − 6 = 0,
得1 = 0,2 = 3,所以直线和圆的两个交点
为 2,1 , 1,3 .
因此, =
1−2
2
+ 3−0
2
= 10 .
典型例题
直线与圆的位置关系- 完整版课件
直线和圆的位置关系
直线和圆有两个公共点时,叫做直线
•o
和圆相交。这时直线叫做圆的割线
l
直线和圆有唯一公共点时,叫做直
•o
线和圆相切。这时直线叫做圆的切
l 线。唯一的公共点叫切点。
M
直线和圆没有公共点时,叫做直
•o
线和圆相离。
l
直线和圆的位置关系及其判定
直线和圆的位置 相交
图形
公共点个数 圆心到直线距离 d与半径r的关系 公共点名称
变式:若AB等于6cm,
O
则∠AOB=___9_0_°__.
AC
B
2、已知⊙O的半径为2cm,圆心O到直线l 的距离为 3 cm,那么直线l与⊙O的位置关 系是_____
3、已知⊙O的直径为6cm,如果直线l上的一 点C到圆心的距离为3cm,则直线l与⊙O的位 置关系是 _____
4、等边三角形的周长为18,则它的内切圆 面积是_____
直线名称
r •Od
2
d<r
交点 割线
相切
•O rd
1 d=r
相离
•O rd
0
d>r
切点
无
切线 无
切的判定方法有:
①、直线与圆有一个公共点。
②、直线到圆心的距离等于圆的半径。 ③、切线的判定定理。
切线的判定定理:经过半径外端 并且垂直于这条半径的直线是圆 的切线。
切线的性质
1、经过切点的半径垂直于圆的切线
2、经过切点垂直于切线的直线必经
过圆心.
B
O
A
T
三角形的内切圆
1、三角形的内切圆的圆心是_______的 交点
2、三角形的内心的性质_______
直线和圆有两个公共点时,叫做直线
•o
和圆相交。这时直线叫做圆的割线
l
直线和圆有唯一公共点时,叫做直
•o
线和圆相切。这时直线叫做圆的切
l 线。唯一的公共点叫切点。
M
直线和圆没有公共点时,叫做直
•o
线和圆相离。
l
直线和圆的位置关系及其判定
直线和圆的位置 相交
图形
公共点个数 圆心到直线距离 d与半径r的关系 公共点名称
变式:若AB等于6cm,
O
则∠AOB=___9_0_°__.
AC
B
2、已知⊙O的半径为2cm,圆心O到直线l 的距离为 3 cm,那么直线l与⊙O的位置关 系是_____
3、已知⊙O的直径为6cm,如果直线l上的一 点C到圆心的距离为3cm,则直线l与⊙O的位 置关系是 _____
4、等边三角形的周长为18,则它的内切圆 面积是_____
直线名称
r •Od
2
d<r
交点 割线
相切
•O rd
1 d=r
相离
•O rd
0
d>r
切点
无
切线 无
切的判定方法有:
①、直线与圆有一个公共点。
②、直线到圆心的距离等于圆的半径。 ③、切线的判定定理。
切线的判定定理:经过半径外端 并且垂直于这条半径的直线是圆 的切线。
切线的性质
1、经过切点的半径垂直于圆的切线
2、经过切点垂直于切线的直线必经
过圆心.
B
O
A
T
三角形的内切圆
1、三角形的内切圆的圆心是_______的 交点
2、三角形的内心的性质_______
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、已知⊙O的半径为5cm, 圆心O与直线AB的距离为d, 根据 条件填写d的范围: 1)若AB和⊙O相离, 则
d > 5cm
; ;
2)若AB和⊙O相切, 则 d = 5cm
3)若AB和⊙O相交,则 0cm≤ d < 5cm.
B
B
B D
D
D C A
C
A
C
A
2
AC
2
2
BC
2
3
S 1 2
30°
A
2.5
5
B M
A
45°
30°
B
D
C
思考:如图,公路MN和PQ在P处交汇, 且∠QPN=300 , 点A处 有一所中学, AP=160米, 假设拖拉机行使时, 周围100米 以内会受到噪音的影响, 已知拖拉机的速度为18千米/时, 那么学校会受到影响吗? 如果会, 受到影响的时间多长?
N
P M
A
Q
四、课堂小结:
直线和圆的三种位置关系 直线与圆的位置关系 公共点个数
相交
相切
相离
2
交点
1
切点
0
无
公共点名称
直线名称 数量关系
割线
切线
无
d<r
d=r
d>r
(第一课时)
1、点和圆的位置关系有几种?
(1)d<r
(2)d=r
点在圆内
点在圆上
(3)d>r
点 在圆外
2、“大漠孤烟直,长河落日圆” 是唐朝诗人王 维的诗句,它描述了黄昏日落时分塞外特有的景 象。如果我们把太阳看成一个圆,地平线看成一 条直线,那你能根据直线与圆的公共点的个数想象 一下,直线和圆的位置关系有几种?
1、直线与圆ቤተ መጻሕፍቲ ባይዱ离、相切、相交的定义。
切点 切线
交点
交点
割线
相离
相切
相交
直线和圆的位置关系是用直线和圆的公共点的个数来 定义的,即直线与圆没有公共点、只有一个公共点、有两 个公共点时分别叫做直线和圆相离、相切、相交。 思考:一条直线和一个圆,如果有公共点能不能多于两个呢?
r o d l
r o d l d>r d=r d<r
4
1 2 CD AB
AC BC
AC BC AB
3 4
5
(1)当r=2cm时, d>r 因此⊙C和AB相离 (2)当r=2.4cm时,d=r 因此⊙C和AB相切 (3)当r=3cm时, d<r 因此⊙C和AB相交
练习: 3、如图,已知∠AOB= 30°,M为OB上一点,且OM=5cm,若以M 为圆心,r为半径作圆,那么: 0cm < r < 2.5cm 1)当直线AB与⊙M相离时, r的取值范围是______________; r = 2.5cm 2)当直线AB与⊙M相切时, r的取值范围是______________; r≥2.5cm 3)当直线AB与⊙M有公共点时, r的取值范围是___________. C O
r o d
l
(1)直线l 和⊙O相离 (2)直线l 和⊙O相切 (3)直线l 和⊙O相交
三、练习与例题
1、已知圆的直径为13cm,设直线和圆心的距离为d : 2 1)若d=4.5cm ,则直线与圆 相交 , 直线与圆有____个公共点.
1 相切 2)若d=6.5cm ,则直线与圆______, 直线与圆有____个公共点. 0 相离 3)若d= 8 cm ,则直线与圆______, 直线与圆有____个公共点.
d > 5cm
; ;
2)若AB和⊙O相切, 则 d = 5cm
3)若AB和⊙O相交,则 0cm≤ d < 5cm.
B
B
B D
D
D C A
C
A
C
A
2
AC
2
2
BC
2
3
S 1 2
30°
A
2.5
5
B M
A
45°
30°
B
D
C
思考:如图,公路MN和PQ在P处交汇, 且∠QPN=300 , 点A处 有一所中学, AP=160米, 假设拖拉机行使时, 周围100米 以内会受到噪音的影响, 已知拖拉机的速度为18千米/时, 那么学校会受到影响吗? 如果会, 受到影响的时间多长?
N
P M
A
Q
四、课堂小结:
直线和圆的三种位置关系 直线与圆的位置关系 公共点个数
相交
相切
相离
2
交点
1
切点
0
无
公共点名称
直线名称 数量关系
割线
切线
无
d<r
d=r
d>r
(第一课时)
1、点和圆的位置关系有几种?
(1)d<r
(2)d=r
点在圆内
点在圆上
(3)d>r
点 在圆外
2、“大漠孤烟直,长河落日圆” 是唐朝诗人王 维的诗句,它描述了黄昏日落时分塞外特有的景 象。如果我们把太阳看成一个圆,地平线看成一 条直线,那你能根据直线与圆的公共点的个数想象 一下,直线和圆的位置关系有几种?
1、直线与圆ቤተ መጻሕፍቲ ባይዱ离、相切、相交的定义。
切点 切线
交点
交点
割线
相离
相切
相交
直线和圆的位置关系是用直线和圆的公共点的个数来 定义的,即直线与圆没有公共点、只有一个公共点、有两 个公共点时分别叫做直线和圆相离、相切、相交。 思考:一条直线和一个圆,如果有公共点能不能多于两个呢?
r o d l
r o d l d>r d=r d<r
4
1 2 CD AB
AC BC
AC BC AB
3 4
5
(1)当r=2cm时, d>r 因此⊙C和AB相离 (2)当r=2.4cm时,d=r 因此⊙C和AB相切 (3)当r=3cm时, d<r 因此⊙C和AB相交
练习: 3、如图,已知∠AOB= 30°,M为OB上一点,且OM=5cm,若以M 为圆心,r为半径作圆,那么: 0cm < r < 2.5cm 1)当直线AB与⊙M相离时, r的取值范围是______________; r = 2.5cm 2)当直线AB与⊙M相切时, r的取值范围是______________; r≥2.5cm 3)当直线AB与⊙M有公共点时, r的取值范围是___________. C O
r o d
l
(1)直线l 和⊙O相离 (2)直线l 和⊙O相切 (3)直线l 和⊙O相交
三、练习与例题
1、已知圆的直径为13cm,设直线和圆心的距离为d : 2 1)若d=4.5cm ,则直线与圆 相交 , 直线与圆有____个公共点.
1 相切 2)若d=6.5cm ,则直线与圆______, 直线与圆有____个公共点. 0 相离 3)若d= 8 cm ,则直线与圆______, 直线与圆有____个公共点.