苏科版九年级数学上册全册知识点归纳
数学-九年级上册数学苏教版知识点最新归纳
![数学-九年级上册数学苏教版知识点最新归纳](https://img.taocdn.com/s3/m/8354b7e890c69ec3d4bb75d3.png)
九年级上册数学苏教版知识点最新归纳对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。
下面是小编为大家整理的有关九年级上册数学苏教版知识点归纳,希望对你们有帮助!九年级上册数学苏教版知识点归纳11、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
(1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即:﹝另有两种写法﹞(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离.(3)几个非负数的和等于零则每个非负数都等于零。
注意:│a│≥0,符号"││"是"非负数"的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。
2、解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
(1)直接开平方法:用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.直接开平方法就是平方的逆运算.通常用根号表示其运算结果.(2)配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)2)系数化1:将二次项系数化为13)移项:将常数项移到等号右侧4)配方:等号左右两边同时加上一次项系数一半的平方5)变形:将等号左边的代数式写成完全平方形式6)开方:左右同时开平方7)求解:整理即可得到原方程的根(3)公式法公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
苏科版九年级数学上册全册知识点归纳
![苏科版九年级数学上册全册知识点归纳](https://img.taocdn.com/s3/m/a2ade66989eb172dec63b730.png)
)的方程两边直接开平方而转化为两个一元一次方程的方③化二次项系数为方,即方程两边都加上一次项系数的一半的平方;化原方程为可以用两边开平方来求出方程的解;如果公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二±因式分解的方法:提公因式、公式法、十字相乘法。
.一元二次方程的注意事项:、一个四边形的四个顶点都在同一个圆上,这个四边形叫做圆的内接四边形。
、圆内接四边形的对角互补。
x n,我们把n个数的算术平均数,简称平通常,平均数可以用来表示一组数据的并不总是相同的,有时有些数据比其他的更重要.所以,我们在计算这组数据的平均数时,往往根据其重要程度,分别给每个数据一个”n个数据,个数据的权数,则称为这组数据的加权平均数.将一组数据按从小到大排列,处于中间位置的数(奇数个数时)或中间两个数的平均数(偶数个数时)叫做这组数据的中位数.在生活中可用平均数、众数和中位数这三个特征数来描述一组数据的集中趋势,它们各有不同的侧重点,需联系实际选择。
)如何理解众数是指一组数据中出现次数最多的那个数据,它的大小只与一组一组数据中的部分数据有关,一组数据的众数可能有一个或几个,也可能没有。
.描述一组数据的离散程度可采取许多方法,在统计中常先求这组数据的平均数,再求这组数据与平均数的差的平方和的平均数,用这个平均数来衡量这组数据的波动大小-)-)-)-)(二)通常,一组数据的方差越小,这组数据的离散程度越小,这组数据也就越稳定..标准差:有些情况下,需用到方差的算术平方根,即,一般地,设一个试验的所有可能发生的结果有中的一个结果出现.如果每个结果出现的机会均等,那么我们说这出现的机会都一样,那么我们就称这个试验的结果具有等可能性.表示一次试验所有等可能出现的结果数)树状图它可以帮助我们不重复、不遗漏地列出所有可能出现的结果。
小结:当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不。
初三上册数学知识点总结苏科版
![初三上册数学知识点总结苏科版](https://img.taocdn.com/s3/m/86c383d40975f46527d3e18a.png)
※菱形的性质具有平行四边形的性质,且四条边都相等,两条对 角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
12 矩形的性质与判定※矩形的定义有一个角是直角的平行四边 形叫矩形。
矩形是特殊的平行四边形。
※矩形的性质具有平行四边形的性质,且对角线相等,四个角都 是直角。
矩形是轴对称图形,有两条对称轴※矩形的判定有一个内角是直 角的平行四边形叫矩形根据定义。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论直角三角形斜边上的中线等于斜边的一半。
13 正方形的性质与判定正方形的定义一组邻边相等的矩形叫做 正方形。
※正方形的性质正方形具有平行四边形、矩形、菱形的一切性质。
正方形是轴对称图形,有两条对称轴※正方形常用的判定有一个 内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等 的菱形是正方形;对角线互相垂直的矩形是正方形。
正方形、矩形、菱形和平行边形四者之间的关系如图 3 所示※梯 形定义一组对边平行且另一组对边不平行的四边形叫做梯形。
※两条腰相等的梯形叫做等腰梯形。
※一条腰和底垂直的梯形叫做直角梯形。
※等腰梯形的性质等腰梯形同一底上的两个内角相等,对角线相 等。
同一底上的两个内角相等的梯形是等腰梯形。
※三角形的中位线平行于第三边,并且等于第三边的一半。
※夹在两条平行线间的平行线段相等。
※在直角三角形中,斜边上的中线等于斜边的一半第二章一元二 次方程 21 认识一元二次方程 22 用配方法求解一元二次方程 23 用公 式法求解一元二次方程 24 用因式分解法求解一元二次方程 25 一元二 次方程的跟与系数的关系 26 应用一元二次方程※只含有一个未知数 的整式方程,且都可以化为、、为常数,≠0 的形式,这样的方程叫 一元二次方程。
苏科版初三上册数学知识点综述
![苏科版初三上册数学知识点综述](https://img.taocdn.com/s3/m/e33e18b99b6648d7c0c746ce.png)
苏科版初三上册数学知识点综述自己整理的苏科版初三上册数学知识点综述相关文档,希望能对大家有所帮助,谢谢阅读![因式分解]1.因式分解:把一个多项式转化成几个代数表达式的乘积,叫做因式分解这个多项式;注意:因式分解和乘法是两种相反的变换。
2.因子分解法:常用的有:“常用因子提取法”、“公式法”、“分组分解法”、“交叉乘法”。
3.公因数的确定:系数的公约数?相同因子的最低幂。
注意公式:a b=b a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3。
4.因式分解公式:(1)平方差分公式:a2-B2=(ab)(a-b);(2)完全平方公式:a2 2ab b2=(a b)2,a2-2ab B2=(a b)2。
5.因子分解的注意事项:(1)选择因式分解法的一般顺序是:一次提取,两个公式,三组,四十个字;(2)使用因式分解公式时,要特别注意公式中字母的完整性;(3)因式分解的最终结果需要分解,直到每个因子都不能分解;(4)因式分解的最终结果要求每个因子的第一个符号为正;(5)因式分解的最终结果需要整理;(6)因式分解的最终结果要求同一因子以幂的形式写出,则公式称为分数。
2.有理公式:代数表达式和分式统称为有理公式;那就是。
3.关于分数的两个重要判断:(1)如果分数的分母为零,则分数没有意义,反之亦然;(2)如果分数的分子为零,分母不为零,则分数的值为零;注意:如果一个分数的分子和分母都为零,那么这个分数就没有意义。
4.分数的基本性质和应用;(1)如果分数的分子和分母乘以(或除以)同一个非零代数表达式,则分数的值保持不变;(2)注:在分数中,分数本身的分子、分母、符号改变其中任意两个,分数的值不变;(3)在简化复数分数时,采用分子和分母乘以小分母的最小公倍数的方法相对简单。
5.分数:分数分子和分母的公因数称为分数;注意:分数除法之前往往需要因式分解。
6.极简分数:分数的分子和分母之间没有公因数。
苏教版九年级上册数学知识点归纳
![苏教版九年级上册数学知识点归纳](https://img.taocdn.com/s3/m/c0ff67c285254b35eefdc8d376eeaeaad0f31655.png)
【导语】学习中的困难莫过于⼀节⼀节的台阶,虽然台阶很陡,但只要⼀步⼀个脚印的踏,攀登⼀层⼀层的台阶,才能实现学习的理想。
祝你学习进步!下⾯是⽆忧考为您整理的《苏教版九年级上册数学知识点归纳》,仅供⼤家参考。
【篇⼀】 ⼀、圆的定义 1、以定点为圆⼼,定长为半径的点组成的图形。
2、在同⼀平⾯内,到⼀个定点的距离都相等的点组成的图形。
⼆、圆的各元素 1、半径:圆上⼀点与圆⼼的连线段。
2、直径:连接圆上两点有经过圆⼼的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:⼩于半圆周的弧。
(2)优弧:⼤于半圆周的弧。
5、圆⼼⾓:以圆⼼为顶点,半径为⾓的边。
6、圆周⾓:顶点在圆周上,圆周⾓的两边是弦。
7、弦⼼距:圆⼼到弦的垂线段的长。
三、圆的基本性质 1、圆的对称性 (1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中⼼对称图形,它的对称中⼼是圆⼼。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论: 平分弦(⾮直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆⼼⾓的度数等于它所对弧的度数。
圆周⾓的度数等于它所对弧度数的⼀半。
(1)同弧所对的圆周⾓相等。
(2)直径所对的圆周⾓是直⾓;圆周⾓为直⾓,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周⾓、两个圆⼼⾓、两条弦⼼距五对量中只要有⼀对量相等,其余四对量也分别相等。
5、夹在平⾏线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆⼼⼀定在两点间连线段的中垂线上。
(2)不在同⼀直线上的三点确定⼀个圆,圆⼼是三边中垂线的交点,它到三个点的距离相等。
(直⾓的外⼼就是斜边的中点。
) 8、直线与圆的位置关系。
d表⽰圆⼼到直线的距离,r表⽰圆的半径。
(完整版)苏教版九年级数学全册知识点汇总
![(完整版)苏教版九年级数学全册知识点汇总](https://img.taocdn.com/s3/m/cae9e1a7a32d7375a517805c.png)
第一章教学内容:证明(二)重点:直角三角形,线段垂直平分线与角平分线的证明难点:证明逆命题的真假,角平分线的证明及其对逆命题的理解易错点:线段的垂直平分线和角平分线的定理及逆定理的判别第二章教学内容:一元一次方程重点:用配方法,公式法,分解因式法解一元一次方程难点:黄金分割点的理解,用配方法解方程易错点:利用因式分解法和公式法解方程第三章教学内容:证明(三)重点:特殊的平行四边形的性质与判定,平行四边形的性质与判定难点:特殊的平行四边形的证明易错点:各定理之间的判别第四章教学内容:视图与投影重点:某物体的三视图与投影难点:理解平行投影与中心投影的区别易错点:三视图的理解,中心投影与平行投影的区别第五章教学内容:反比例函数重点:反比例函数的表达式,反比例函数的图像的概念与性质难点:反比例函数的运用,猜想,证明与拓展易错点:主要区别反比例函数与 x轴和与y轴无限靠近第六章教学内容:频率与概率定义和命题:频率与概率的概念难点:理解用频率去估计概率易错点:频率是样本中才出现的,概率是整体中出项的苏教版九年级数学上知识点汇总第一章图形与证明(二)1.1 等腰三角形的性质定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)。
等腰三角形的两底角相等(简称“等边对等角”)。
等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。
1.2 直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(简称“HL”)。
角平分线的性质:角平分线上的点到这个角的两边的距离相等。
角平分线的判定:角的内部到角的两边距离相等的点,在这个角的平分线上。
直角三角形中,30°的角所对的直角边事斜边的一半。
1.3 平行四边形的性质与判定:定义:两组对边分别平行的四边形是平行四边形。
定理1:平行四边形的对边相等。
定理2:平行四边形的对角相等。
定理3:平行四边形的对角线互相平分。
九年级上册数学圆知识点苏科版
![九年级上册数学圆知识点苏科版](https://img.taocdn.com/s3/m/8c7b9020fe00bed5b9f3f90f76c66137ee064f8a.png)
九年级上册数学圆知识点苏科版九年级上册数学圆知识点数学中的圆是一个经典的几何形状,它在生活和科学中有着广泛的应用。
在九年级上册数学课程中,我们将学习有关圆的一系列知识点,包括圆的定义、圆心角、弧长和扇形面积的计算等内容。
下面将逐一介绍这些知识点。
一、圆的定义圆是由平面上所有到一个固定点距离相等的点构成的图形。
这个固定点称为圆心,到圆心距离相等的点称为圆上的点,这个相等的距离称为半径。
圆通常用大写字母O来表示圆心,用小写字母r来表示半径。
圆可以通过圆心和半径来描述,也可以通过圆心和圆上的两点来描述。
二、圆心角和弧度制圆心角是以圆心为顶点的角,它所对的弧称为圆心角所对的弧。
当圆心角的两边的长度相等时,我们称之为等弧。
圆心角的大小可以用度数来表示,也可以用弧度制来表示。
我们知道,在一个完整的圆内,一个圆心角的度数是360°。
而弧度制中,一个完整的圆对应的弧度数是2π。
三、弧长的计算弧是圆上的一段曲线,弧长是弧曲线的长度。
圆的弧长公式是L = 2πr,其中L表示弧长,r表示半径。
这个公式的推导可以通过圆周长公式C = 2πr来得到。
如果我们知道圆心角所对的弧的度数,也可以利用角度和圆的周长比例关系来计算弧长。
四、扇形的面积计算扇形是以圆心角为顶角的三角形,它的底边是圆上的一段弧。
扇形的面积可以通过圆心角的度数与圆面积的比例来计算。
设圆的半径为r,圆心角的度数为α,圆的面积为S。
那么扇形的面积可以用公式A = (α/360°) * πr²来表示。
我们可以看出,扇形的面积与圆的面积成正比。
五、切线和切点切线是与圆相切且只与圆相交于切点的直线。
切点是切线与圆相交的点,它在这个交点处垂直于切线。
圆有无数个切线,每个切点所对的切线都垂直于半径,垂直于半径的直线被称为半径的垂线。
六、相交弧和相交角当两个圆相交时,它们会形成两个相交的弧,这两个弧的长度加起来等于圆周上的一段弧。
相交弧所对的相交角是两个圆心角的度数之和。
苏科版数学九年级知识点
![苏科版数学九年级知识点](https://img.taocdn.com/s3/m/c9b60344df80d4d8d15abe23482fb4daa48d1d7d.png)
苏科版数学九年级上册的知识点包括:
- 第一章《一元二次方程》
- 1.1 一元二次方程
- 1.2 解一元二次方程(一)——配方法
- 1.3 解一元二次方程(二)——公式法
- 1.4 解一元二次方程(三)——因式分解法 - 1.5 实际问题与一元二次方程
- 第二章《二次函数》
- 2.1 二次函数的定义
- 2.2 二次函数图象上点的坐标特征
- 2.3 二次函数图象的绘制
- 2.4 二次函数的性质
- 2.5 二次函数与一元二次方程
- 第三章《旋转》
- 3.1 图形的旋转
- 3.2 中心对称
- 3.3 课题学习设计图案
- 第四章《圆》
- 4.1 圆的相关概念
- 4.2 圆心角、弧、弦的关系
- 4.3 圆周角定理
- 4.4 确定圆的条件
- 4.5 直线和圆的位置关系判断
- 4.6 课题学习设计图案。
苏教版九年级数学上册知识点总结(苏科版)
![苏教版九年级数学上册知识点总结(苏科版)](https://img.taocdn.com/s3/m/e745de8427d3240c8547ef17.png)
苏教版九年级数学上册(义务教育教科书)第1章一元二次方程直接开平方法配方法公式法b²-4ac根的判别式因式分解法*1.3 一元二次方程的根玉系数的关系数学活动矩形绿地中的花圃设计2.1 圆(圆心半径)同心圆等圆2.2 圆的对称性2.3 确定圆的条件直尺和圆规作三角形的外接圆2.4 圆周角*判定正多边形的条件2.8 圆锥的侧面积数学活动图形的密铺第3章数据的集中趋势和离散程度3.1 平均数/算术平均数权3.2 中位数与众数3.3 用计算器求平均数3.4 方差读一读标准差3.5 用计算器求方差数学活动估测时间第4章等可能条件下的概率4.1 等可能性4.2 等可能条件下的概率一4.3 等可能条件下的概率二数学活动调查"小概率事件"课题学习收集数据分析数据探索规律知识点总结第一章一元二次方程定义方程是只含有一个未知数的整式方程,并且可以化成ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样的方程叫做一元二次方程。
2用配方法求解一元二次方程思路:将方程转化为(x+m)2=n的形式,它的一边是一个完全平方式,另一边是一个常数,当n≥0时,两边同时开平方,转化为一元一次方程,便可求出它的根。
我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法。
3。
用公式法求解一元二次方程对于一元二次方程,当b2-4ac≥0时,它的根是:上面这个公式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为公式法。
对于ax2+bx+c=0(a,b,c为常数,a≠0),当b2-4ac>0时,方程有两个不相等的实数根。
当b2-4ac=0时,方程有两个相等的实数根。
当b2-4ac<0时,方程没有实数根。
4、用因式分解法求解一元二次方程当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,我们就可以将方程分解成两个一元一次方程,这两个一元一次方程的解就是一元二次方程的根,这种解一元二次方程的方法,叫做因式分解法。
九年级上册数学苏教版知识点归纳
![九年级上册数学苏教版知识点归纳](https://img.taocdn.com/s3/m/4b454b2d0166f5335a8102d276a20029bd6463ce.png)
九年级上册数学苏教版知识点归纳编辑短评提高数学考试成绩诀窍方法之一是,在考试前进行高水平高效率的复习和知识点总结,花时间去攻克自己不熟悉的题目,不断地把陌生转化为熟悉。
下面提供九年级上册数学苏教版知识点归纳给教师和学生,仅供学习参考!前言下载提示:经验是数学的基础,问题是数学的心脏,思考是数学的核心,发展是数学的目标,思想方法是数学的灵魂。
Download tips:Experience is the foundation of mathematics, problems are the heart of mathematics, thinking is the core of mathematics, development is the goal of mathematics, and methods of thinking are the soul of mathematics.九年级上册数学苏教版知识点归纳11、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
(1)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.即:﹝另有两种写法﹞(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值就是数轴上表示这个数的点到原点的距离.(3)几个非负数的和等于零则每个非负数都等于零。
注意:│a│≥0,符号"││"是"非负数"的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有"││"出现,其关键一步是去掉"││"符号。
2、解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
(1)直接开平方法:用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.直接开平方法就是平方的逆运算.通常用根号表示其运算结果.(2)配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
最新苏科版数学九年级上册知识梳理
![最新苏科版数学九年级上册知识梳理](https://img.taocdn.com/s3/m/365d47ff5f0e7cd185253631.png)
苏科版数学九年级上册知识梳理苏科版数学九年级上册知识梳理第一章一元二次方程1.1一元二次方程1、概念:只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程2、一元二次方程的一般形式(1)形如ax2+bx+c=0(a、b、c是常数,a≠0),其中ax2、bx、c分别叫做二次项、一次项和常数项,a、b分别叫做二次项系数、一次项系数(2)特殊的一元二次方程ax2=0(a≠0,b=0,c=0)ax2+c=0(a≠0,b=0,c≠0)ax2+bx=0(a≠0,b≠0,c=0)注意:二次项系数a≠0(3)化一元二次方程为一般形式的方法:整理一元二次方程的常用手段是去分母、去括号、移项、合并同类项等(4)一元二次方程的一般形式的特征:等号的左边是按x的降幂进行排列,右边等于03、根据实际问题列出一元二次方程从实际问题中抽象一元二次方程的一般步骤:(1)审题,认真阅读题目,弄清未知量和已知量之间的关系(2)设出合适的未知数(3)确定相等关系(4)根据等量关系列出方程1.2一元二次方程的解法直接开平方法1、如果一个一元二次方程的左边是一个含有未知数的完全平方式,右边是一个非负数,就可以用直接开平方法求解2、直接开平方法的使用范围和理论依据:(1)直接开平方法适合解形如x2=b和(x-a)2=b的方程,其中b≥0,因为若b<0,方程无解(2)直接开平方法的实质是吧一个一元二次方程降次为两个一元一次方程来求方程的根,因此要注意方程应该有两个根配方法配方法是通过配方将一元二次方程左边化为完全平方的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫做配方法。
配方法是一种重要的数学思想,它以a2±2ab+b2=(a±b)2为依据,其基本步骤为:(1)在方程两边同除以二次项系数a,把二次项系数化为1;(2)把常数项移到等式的右边;(3)方程两边同时加上一次项系数一半的平方;(4)方程左边写成完全平方式,右边化简为常数;(5)利用直接开平方法解方程。
九年级上册苏教版数学知识点归纳
![九年级上册苏教版数学知识点归纳](https://img.taocdn.com/s3/m/283a8f10a31614791711cc7931b765ce05087a57.png)
九年级上册苏教版数学知识点归纳编辑短评提高数学考试成绩诀窍方法之一是,在考试前进行高水平高效率的复习和知识点总结,花时间去攻克自己不熟悉的题目,不断地把陌生转化为熟悉。
下面提供九年级上册苏教版数学知识点归纳给教师和学生,仅供学习参考!前言下载提示:经验是数学的基础,问题是数学的心脏,思考是数学的核心,发展是数学的目标,思想方法是数学的灵魂。
Download tips:Experience is the foundation of mathematics, problems are the heart of mathematics, thinking is the core of mathematics, development is the goal of mathematics, and methods of thinking are the soul of mathematics.九年级上册苏教版数学知识点归纳1一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
苏科版九年级数学上册知识点总结
![苏科版九年级数学上册知识点总结](https://img.taocdn.com/s3/m/9f287cfad0d233d4b04e692a.png)
苏教版初三上册数学知识点整合第一章图形与证明(二)1、等腰三角形(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、(2)等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。
判定定理:有一个角是60度的等腰三角形是等边三角形。
或者三个角都相等的三角形是等边三角形。
(4)含30度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。
2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。
(3)直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)3、线段的垂直平分线(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
(2)三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(3)如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。
4、角平分线(1)角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。
初三年级第一学期数学知识点苏教版
![初三年级第一学期数学知识点苏教版](https://img.taocdn.com/s3/m/5248fa0ed15abe23492f4d9b.png)
初三年级第一学期数学知识点苏教版【一元二次方程】(一)列一元一次方程解应用题得方法步骤列一元二次方程解应用题是列一元一次方程解应用题的拓展,两者的解题方法类似,但由于一元二次方程有两个实数解,所以要注意检验得出的方程的解是否符合实际意义.其步骤如下:(1)审:读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的等量关系.(2)设:选用适当的方式设未知数(直接设未知数或间接设未知数),不要漏写单位,用含未知数的代数式表示题目中涉及的量.(3)列:根据题目中的等量关系,用含未知数的代数式表示其他未知数,列出含未知数的等式.注意等号两边量的单位必须一致.(4)解:解所列方程,求出未知数的值.(5)验:一是检验得到的未知数的值是否为方程的解,二是检验方程的解是否符合题意.(6)答:怎么问就怎么答,注意不要漏写单位.(二)主要题型列一元二次方程解应用题在日常生活、生产、科技等方面有着广泛的应用,如增长率(降低率)问题、利息问题、数字问题、利润问题、动点问题等.方法技巧(一)增长率(降低率)问题的解题方法(1)增长量=原产量×增长率;(2)增产后的产量=原产量×(1+增长率).点拨增长率问题:若设基数为,平均增长率为,则增长次后的值为.(二)利息问题的解题方法解答此类问题的关键是理解实际生活中的一些概念,如本金、利率、利息等.注意对于存款利息问题,解题时一定要注意每次增长的基础量是否相同.【用配方法求解一元二次方程】1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、配方法的应用对所有一元二次方程都适用,但特别对于二次项系数为1,一次项系数为偶数的一元二次方程用配方法会更为简单。
苏教版初三数学九年级上册知识点总结归纳
![苏教版初三数学九年级上册知识点总结归纳](https://img.taocdn.com/s3/m/e6233db2964bcf84b8d57b1c.png)
苏教版初三数学九年级上册知识点总结归纳第一章一元二次方程思维导图:知识点归类知识点一一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
注意:一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2.同时还要注意在判断时,需将方程化成一般形式。
一元二次方程的解法用一元二次方程解决问题列一元二次方程解应用题时,我们一般将解题过程归结为“审、设、列、解、检验、答”六步。
(1) “审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的等量关系.(2) “设”是指设未知数,在一道应用题中,往往含有几个未知量,应恰当地选择其中的一个未知量用字母x表示,然后根据各量之间的数量关系,将其他几个未知量用含x的代数式表示出来.(3) “列”就是指列方程,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程.(4) “解”是指解方程,即求出未知数的值。
(5) “检验”是指检验方程的解能否保证实际问题有意义.在解实际应用题时,一定要注意检验求得的一元二次方程的根是否与题意相符,不相符的一定要舍去。
(6) “答”是指完成以上步骤后,回归到原始问题,写出答案。
第2章对称图形-圆圆是轴对称图形,每一条直径都是它的对称轴,因此圆有无数条对称轴。
精品学习网初中频道为大家编辑了对称图形圆知识点,希望对大家有帮助。
2.1 圆1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
2.2 圆的对称性(1)圆是满足x轴对称的,这样只需要计算原来的1/2点的位置;(2)圆是满足y轴对称的,这样只需要计算原来的1/2点的位置;(3)圆是满足y = x or y = -x轴对称的,这样只需要计算原来的1/2点的位置;2.3 确定圆的条件1.定理:不在同一直线上的三个点确定一个圆.定理中“不在同一直线”这个条件不可忽略,“确定”一词应理解为“有且只有” .2.通过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心为三角形的外心,这个三角形叫圆的内接三角形.只要三角形确定,那么它的外心和外接圆半径也随之确定了.2.4 圆周角圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半。
苏教版【数学】九年级全册知识点梳理
![苏教版【数学】九年级全册知识点梳理](https://img.taocdn.com/s3/m/1191813dbb1aa8114431b90d6c85ec3a87c28b27.png)
第一章一元二次方程一元二次方程1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
二、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
三、一元二次方程根的判别式根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即acb 42-=∆四、一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版九年级数学上册全册知识点归纳一元二次方程一.一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0)。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
二.一元二次方程的解法1.直接开平方法:对形如(x+a)2=b(b≥0)的方程两边直接开平方而转化为两个一元一次方程的方法。
X+a=±b∴1x=-a+b2x=-a-b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0)的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a)2=b的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,则原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是a acbbx24 2-±-=(b2-4ac≥0)。
步骤:①把方程转化为一般形式;②确定a,b,c的值;③求出b2-4ac的值,当b2-4ac≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:若ab=0,则a=0或b=0。
步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的注意事项:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c的值;②若b2-4ac<0,则方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2 =3(x +4)中,不能随便约去x +4。
⑷ 注意:解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.6.一元二次方程解的情况⑴b 2-4ac≥0⇔方程有两个不相等的实数根;⑵b 2-4ac=0⇔方程有两个相等的实数根;⑶b 2-4ac≤0⇔方程没有实数根。
解题小诀窍:当题目中含有“两不等实数根”“两相等实数根”“没有实数根”时,往往首先考虑用b 2-4ac 解题。
主要用于求方程中未知系数的值或取值范围。
三.根与系数的关系:韦达定理对于方程ax 2+bx+c=0(a≠0)来说,x1 +x2 =—a b ,x1●x2= a c。
利用韦达定理可以求一些代数式的值(式子变形),如2122122212)(x x x x x x -+=+。
解题小诀窍:当一元二次方程的题目中给出一个根让你求另外一个根或未知系数时,可以用韦达定理。
对称图形---圆一.圆1、定义A :一条线段绕一个端点在平面内旋转一周,另一个端点运动所形成的图形叫圆。
定义B :到定点距离等于定长的点的集合是圆。
2、点与圆的位置关系若⊙O 的半径为r ,点P 到圆心O 的距离为d ,那么:点P 在圆 ⇔ d r点P 在圆 ⇔ d r点P 在圆 ⇔ d r二.相关概念 1、连接圆上任意两点的线段叫做弦。
2、经过圆心的弦叫做直径。
3、圆上任意两点间的部分叫做圆弧,简称弧。
4、圆上任意一条直径的两个端点把圆分成两条弧,每条弧叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。
5、顶点在圆心的角叫做圆心角。
6、圆心相同,半径不相等的两个圆叫做同心圆。
7、能够互相重合的两个圆叫做等圆。
8、能够互相重合的弧叫做等弧。
9、同圆或等圆的半径相等。
三.圆的对称性1、圆是中心对称图形,圆心是它的对称中心。
2、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。
3、在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么他们对应的其余各组量都分别相等。
4、圆心角的度数与它所对的弧的度数相等。
5、圆是轴对称图形,过圆心的任意一条直线都是它的对称轴。
6、垂直于弦的直径平分弦及弦所对的两条弧。
(垂径定理)四.确定圆的条件1、不在同一直线上的三个点确定一个圆。
2、三角形三个顶点确定一个圆,这个圆叫做三角形的外接圆。
外接圆的圆心叫做三角形的外心。
3、三角形的外心是三角形两边中垂线的交点;三角形的外心到三角形个顶点距离相等。
五.圆周角1、顶点在圆上,并且角的两边都和圆相交的角叫做圆周角。
2、圆周角的度数等于它所对弧上圆心角度数的一半,同弧或等弧所对的圆周角相等。
3、直径所对的圆周角是直角,90°圆周角所对的弦是直径。
六.圆的内接四边形1、一个四边形的四个顶点都在同一个圆上,这个四边形叫做圆的内接四边形。
2、圆内接四边形的对角互补。
七.直线与圆的位置关系1、把圆心到直线的距离记为d,圆的半径为r。
直线与圆⇔;直线与圆⇔;直线与圆⇔;2、切线性质:圆的切线垂直于过切点的半径。
3、切线判定:经过半径的外端并且垂直于这条半径的直线是圆的切线。
八.三角形的内切圆1、与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心。
2、三角形的内心是三角形两角平分线的交点,三角形的内心到三角形各边的距离相等。
3、在经过圆外一点的圆的切线上,这点与切点之间的线段的长,叫做这点到圆的切线长。
4、过圆外一点所画的圆的两条切线长相等。
5、直角三角形的外接圆、内切圆半径公式。
九.正多边形与圆1、各边相等、各角也相等的多边形叫做正多边形。
2、一般地,用量角器把一个圆n (n≥3)等分,依次连接各等分点所得到的多边形是这个圆的内接正多边形,这个圆是这个正多边形的外接圆。
正多边形的外接圆的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径。
十.相关计算 1、弧长:一条弧所对圆心角占360°的几分之几,这条弧长就占圆周长的几分之几。
1802360R n R n l ππ=⨯= 2、扇形面积:扇形圆心角占360°的几分之几,扇形面积就占圆面积的几分之几。
2360R n s π=扇形或者lR R R n R n s 21180213602=••==ππ扇形 3、扇形周长:扇形周长=弧长+2×半径 4、圆锥侧面积:rl l r s ππ=••=221侧(这里的l 是圆锥的母线长) 5、圆锥的全面积:圆锥的全面积=侧面积+底面积数据的集中趋势和离散程度一.平均数的概念1. 如果有n 个数x 1,x 2,…,x n ,我们把1n( x 1+x 2+…+x n ),叫做这n 个数的算术平均数,简称平均数,记做x (读做“x 拔” )通常,平均数可以用来表示一组数据的“集中趋势”。
2.平均数的简化计算方法方法一 : 当一组数据中某些数据重复出现时,可以将相同数据合并计算;方法二 :当一组数据较大且都接近于某一个数时,可将各个数据同时减去这个数,转为计算一组数值较小的新数据的平均数。
3.在实际生活中,各个数据在一组数据中的“重要程度”并不总是相同的,有时有些数据比其他的更重要.所以,我们在计算这组数据的平均数时,往往根据其重要程度,分别给每个数据一个“权”.一般地,设x1,x2,…,x n为n个数据,w1、w2,…,w n依次为这n个数据的权数,则称x1w1+ x2w2+…+ x n w nw1+ w2+…+ w n 为这组数据的加权平均数.二.众数、中位数的概念1.一组数据中出现次数最多的那个数叫做这组数据的众数。
2.将一组数据按从小到大排列,处于中间位置的数(奇数个数时)或中间两个数的平均数(偶数个数时)叫做这组数据的中位数.3. 在生活中可用平均数、众数和中位数这三个特征数来描述一组数据的集中趋势,它们各有不同的侧重点,需联系实际选择。
4.(1)如何理解“中位数”?中位数与数据排列有关,且一组数据的中位数是唯一的,它可以是该组数据中的某个数,也可能不是这组数据的数,中位数和平均数一样也反映了一组数据的“平均水平”,不过考虑角度不同。
(2)如何理解“众数”?众数是指一组数据中出现次数最多的那个数据,它的大小只与一组一组数据中的部分数据有关,一组数据的众数可能有一个或几个,也可能没有。
三.极差:极差=最大值-最小值四.方差1.描述一组数据的离散程度可采取许多方法,在统计中常先求这组数据的平均数,再求这组数据与平均数的差的平方和的平均数,用这个平均数来衡量这组数据的波动大小,并把它叫做这组数据的方差.设一组数据为:x1、x2、x3、…、x n,方差: S2 =1n[(x1-)2+(x2-)2+(x3-)2…+(x n-)2 ](二)通常,一组数据的方差越小,这组数据的离散程度越小,这组数据也就越稳定. 2.标准差:有些情况下,需用到方差的算术平方根,即,并把它叫做这组数据的标准差.它也是一个用来衡量一组数据的波动大小的重要的量.通常,一组数据的方差或标准差越小,这组数据的离散程度越小,这组数据也就越稳定.等可能条件下的概率一.等可能性:1. 一般地,设一个试验的所有可能发生的结果有n个,它们都是随机事件,每次试验有且只有其中的一个结果出现.如果每个结果出现的机会均等,那么我们说这n个事件的发生是等可能的,也称这个试验的结果具有等可能性.2.如果一个试验的所有可能发生的结果有无穷多个,每次只出现其中的某个结果,而且每个结果出现的机会都一样,那么我们就称这个试验的结果具有等可能性.二.概率的计算:1.一般地,如果一个试验有n个等可能的结果,当其中的m个结果之一出现时,事件A发生,那么事件A发生的概率: ()mP An(其中m表示事件A发生可能出现的结果数,n表示一次试验所有等可能出现的结果数).2.树状图它可以帮助我们不重复、不遗漏地列出所有可能出现的结果。
小结:当一次试验要涉及两个因素(例如掷两个骰子)并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.。