防止汽轮机叶片损坏规定

防止汽轮机叶片损坏规定
防止汽轮机叶片损坏规定

一总则

为防止汽轮机叶片损坏事故的发生,在严格执《行运行规程》《二十五项反事故技术措施》有关规定的同时,结合我厂实际情况,特制定预案。

二职责

1 负责布置和检查本部门应急预案的准备和落实工作。

2 负责指挥本部门汽轮机设备事故发生时的抢险工作。

3 负责本部门应急预案的培训工作。

三组织结构

组长:孙晓峰

副组长:张铁军连向奎

组员:顾剑军窦春林魏东朱先海姜涛张汉吉丁力

四应急抢险准备

1 组织有关人员学习掌握《运行规程》中关于防止汽轮机异常振动事故的技术措施及有关规定。

2 建立健全防止汽轮机叶片损坏事故的组织机构,根据我厂的实际制定相应的安全技术保证措施,明确分工,落实责任。

3 在组长的领导下,各级人员组成抢险应急网络。

4 夜间及节假日应落实好值班工作,随时掌握异常情况,保证信息网络畅通。做到发生事故时及时组织人员进行抢修工作。

5 生产值班人员和抢修人员应按照要求配备劳动保护用品。

6 运行值班人员应经过专门培训及仿真机反事故演习的培训,经考试合格后方可上岗工作。五应急预案目标

1 当发生事故时,能采取有效措施,控制事故扩大和由此引起的人身伤害和设备事故。

2 将发生事故所造成的经济损失减少到最低。

六防止汽轮机叶片损坏的措施

1 加强汽机岗位值班员的技术培训,熟知本岗位的《运行规程》,提高对事故的预防和处理能力。

2 机组启动前,启动中按以下规定执行。

(1)大轴晃动不大于原始值0.02mm

(2 ) 了解本机组临界转数和停机的转子惰走曲线。

(3)高压内缸上,下壁温差不超过35℃,高压外缸,中压缸上,下壁温差不超过50℃(4)主蒸汽温度至少高于汽缸金属温度80℃以上,蒸汽过热度不低于50℃,主蒸汽温度两侧偏差不超过15℃。

(5)汽缸总膨胀表必须好用,并做好启动全过程记录。

(6)汽轮机转子冲动前,转子连续盘车冷态2—4小时,热态启动时不少于4小时,如盘车过程中出现短时间中断,应适当增加盘车时间。

(7)机组启动时主机各项保护必须投入,不能投入时禁止启动汽轮机

(8)冲动前,应全面检查汽缸温度和温差情况,盘车电流,大轴晃动度并进行听音。(9)机组如因振动大,进水和摩擦等原因停机或晃动异常,严禁盲目启动。

(10)机组启动升速过程中,应设专人进行听音,在1000r/min 以前,各瓦振动不超过0.03mm,如超过0.03mm应立即打闸停机,查明原因处理再启动,通过临界转数时各瓦振动不超过0.1mm,否则立即打闸停机,严禁硬闯临界转数。

(11)严密监视排气缸两侧温度偏差,凝结水位等参数。

(12)机组启动过程中,主汽温度在10分钟内下降超过50℃,应立即打闸停机。如主汽温度上,下波动较大或气温下降不超过50℃,应注意胀差,串轴,振动等情况

(13)汽缸膨胀不畅或左右不均时,应查明原因,通知监视机组有无其他异常,发现异常音应立即打闸停机

3.机组正常运行中,应遵守下列原则:

(1)机组正常运行时,应注意汽缸总胀及胀差的变化,发现异常立即检查处理

(2)注意汽缸金属温度的变化,发现上,下温差增大应采取措施,使温度恢复正常。(3)防止汽包满水,汽水沸腾等炉侧进水事故的发生

(4)在锅炉气温明显下降期间,禁止机组进行加负荷操作。

(5)在事故处理的恢复过程中,应根据缸温,汽缸总胀,各轴承振动及胀差将轴封供汽导备用汽源。

(7)保持高,低压加热器在规定的正常水位运行,禁止满水运行。

(8)正常运行时,振动监测装置必须好用并投入,当振动监测装置失灵时及时联系检修处理,在处理过程中每小时不少于两次对机组轴承进行手动测量。

4 停机中和停机后应遵守下列原则:

(1)在停机过程中,当主汽温度低于调节级后蒸汽温度10℃时,应停止降温,降压减负荷。(2)在停机过程中,再热器温度低于主汽温度时,应停止降温降压减负荷。

(3)停机过程中,如主汽过热度消失,应立即打闸停机。

七应急处理

1机组运行中突然发生汽缸内有异常音响并伴有轴瓦振动值较相同状态下增加0.02mm时,立即打闸停机。停机过程中发现凝汽器水位异常升高,立即进行调整,根据振动情况判断凝结器铜管漏泄位置,停机后立即采取一台循环水泵带两台凝结器运行。凝结器水位继续升高时,停止循环水泵运行,投入排汽室冷却水,防止汽缸进水。

2 机组运行中发现振动增加或异音时,立即查明原因,较相同状态下振动值增加0.02mm位异常,立即汇报。振动值增加0.05mm时立即打闸停机。

.

汽轮机典型事故处理

汽 轮 机 典 型 事 故 处 理 杨伟辉刘欢王熙博 2015年7月3日

目录 汽轮机水冲击 (1) 汽轮机组异常振动 (3) 汽轮机超速 (5) 汽轮机大轴弯曲 (6) 机组真空下降 (8) 汽轮机油系统着火 (10)

汽轮机水冲击 1.现象 1)主蒸汽、再热蒸汽和抽汽温度急剧下降,过热度减小。 2)汽缸上、下缸温差明显增大。 3)主蒸汽或再热蒸汽管道振动,轴封或汽轮机内有水击声,或从进汽管法兰、轴封、汽缸结合面处冒出白色的湿蒸汽或溅出水滴。 4)轴向位移增大,推力轴承金属温度和回油温度急剧上升。 5)机组发生强烈振动。 2.原因 1)锅炉汽温调节失灵,主蒸汽温度、再热蒸汽温度急剧下降,蒸汽带水进入汽轮机。 2)加热器管子破裂,大量给水进入汽侧或加热器水位调节失灵,造成加热器满水,加热器保护拒动,或加热器抽汽逆止门不严,水从加热器导入汽轮机。 3)轴封蒸汽温度不够或调节门动作不正常,水带入汽轮机轴封腔室。 4)7号低加满水,直接进入汽轮机。 5)抽汽管道低位疏水点调节门动作不正常,造成抽汽管道积水进入汽轮机。 6)高旁减温水门不严或误开。 7)高中压缸疏水不畅。 8)除氧水位高Ⅲ值未及时解列,造成水倒入汽轮机。 3.处理

1)紧急破坏真空停机。同时查找分析进水原因,切断进水途径。如确认加热器管束破裂,立即切除该加热器。 2)汽机打开各部疏水门。 3)细听机内声音,正确记录惰走时间。 4)监视推力瓦温度、轴向位移及高、低压缸胀差变化。 5)转子静止后投入连续盘车,测量大轴弯曲,检查上下缸温差。 6)如停机惰走过程中,一切正常,可重新启动,但启动前要充分疏水。再次启动时汽缸上下缸温差<42℃,转子偏心度应<0.076mm,重新启动过程中,密切监视机组振动、声音、推力瓦温及轴向位移、胀差、上下缸温差等数值。重新启动过程中,发现机内有异音或振动增大应停止启动。 7)如水冲击时,推力瓦温明显升高,轴向位移超过极限值,惰走时间较正常明显缩短时,应停机检查。 8)汽轮机盘车过程中发现汽缸进水,应迅速查明原因并消除,保持盘车运行直到汽轮机上下缸温差恢复正常。同时加强汽轮机内部听音检查,加强大轴晃动度、盘车电流的监视。 9)汽轮机在升速过程中发现进水,应立即停机,进行盘车。

汽轮机运行常见事故及处理

汽轮机运行常见事故及处理 汽轮机2010-06-07 10:39:18 阅读305 评论0 字号:大中小订阅 2.2.1 汽轮机紧急事故停机 汽轮机破坏真空紧急停机:①、转速升高超过3300~3360r/min,或制造厂家规定的上限值,而危急保安器与电超速保护未动作;②汽轮机发生水冲击或汽温直线下降(10min内下降50℃);③、轴向位移达极限值或推力轴承温度超限而保护未动作;④、胀差增大超过极限值;⑤、油系统油压或主油箱油位下降,超过规定极限值;⑥、汽轮机轴承金属温度或轴承回油温度超过规定值,或轴承冒烟时;⑦、汽轮发电机组突然发生强烈振动或振动突然增大超过规定值;⑧、汽轮机油系统着火或汽轮机周围发生火灾,就地采取措施而不能扑灭以致严重危机设备安全;⑨、加热器、除氧器、等压力容器发生爆破;⑩、、汽轮机主轴承摩擦产生火花或冒烟;发电机冒烟、着火或氢气爆炸;励磁机冒烟、着火。 汽轮机不破坏真空紧急停机:①、凝汽器真空下降或低压缸排汽温度上升,超过规定极限值;②、主蒸汽或再热蒸汽参数超限;③、主蒸汽、再热蒸汽、抽汽、给水、凝结水、油系统管道及附件破裂无法维持运行;④、调节系统故障,无法维持运行。⑤、主蒸汽温度升高(通常允许主蒸汽温度比额定温度高5 ℃左右)超过规定温度及规定允许时间时。 机组运行中,对于机组轴瓦乌金温度及回油温度出现以下情况之一时,应立即打闸停机:①任一轴承回油温度超过75℃或突然连续升高至70℃时;②、主油瓦乌金温度超过85℃或厂家规定值时;③、回油温度急剧升高或轴承内冒烟时;④、润滑油泵启动后,油压低于运行规程允许值;⑤、盘式密封回油温度超过80℃或乌金温度超过95℃时;⑥、发现油管、法兰及其他接头处漏油、威胁安全运行而又不能在运行 中消除时。 汽轮机紧急故障停机的步骤:①、立即遥控或就地手打危急保安器;②、确证自动主汽门、调速汽门、抽汽止回阀关闭,负荷到零后,立即解列发电机;③、启动辅助油泵;④、破坏真空(开启辅抽空气门或关闭主抽总汽门),并记录转子惰走时间;⑤进行其他停机操作(同正常停机)。 2.2.2 凝结器真空下降的现象及处理 凝结器真空下降的主要特征:①、凝汽器真空表指示降低,排汽温度升高;②、在进汽量相同的情况下,汽轮机负荷降低;③凝结器端差明显增大;④、凝汽器水位升高;⑤、当采用射汽抽汽器时,还会看到抽汽器口冒汽量增大;⑥、循环水泵、凝结水泵、抽气设备、循环水冷却设备、轴封系统等工作出现异 常。 凝结器真空急剧下降的原因:①、循环水中断;②、低压轴封供汽中断;③、真空泵或抽气器故障; ④真空系统严重漏气;⑤、凝汽器满水。

燃气轮机航空叶片介绍

航空发动机叶片 众所周知,在航空发动机里叶片是透平机械的“心脏”,是透平机械中极为主要的零件。透平是一种旋转式的流体动力机械,它直接起着将蒸汽或燃气的热能转变为机械能的作用。叶片一般都处在高温,高压和腐蚀的介质下工作。动叶片还以很高的速度转动。在大型汽轮机中,叶片顶端的线速度已超过600 m/s,因此叶片还要承受很大的离心应力。叶片不仅数量多,而且形状复杂,加工要求严格;叶片的加工工作量很大,约占汽轮机、燃气轮机总加工量的四分之一到三分之一。叶片的加工质量直接影响到机组的运行效率和可靠行,而叶片的质量和寿命与叶片的加工方式有着密切的关系。所以,叶片的加工方式对透平机械的工作质量及生产经济性有很大的影响。这就是国内外透平机械行业为什么重视研究叶片加工的原因。随着科学技术的发展,叶片的加工手段也是日新月异,先进的加工技术正在广泛采用。 叶片的主要特点是:材料中含有昂贵的高温合金元素;加工性能较差;结构复杂;精度和表面质量要求高;品种和数量都很多。这就决定了叶片加工生产的发展方向是:组织专业化生产,采用少、无切削的先进的毛坯制造工艺,以提高产品质量,节约耐高温材料;采用自动化和半自动化的高效机床,组织流水生产的自动生产线,逐步采用数控和计算机技术加工。叶片的种类繁多,但各类叶片均主要由两个主要部分组成,即汽道部分和装配面部分组成。因此叶片的加工也分为装配面的加工和汽道部分的加工。装配面部分又叫叶根部分,它使叶片安全可靠地、准确合理地固定在叶轮上,以保证汽道部分的正常工作。因此装配部分的结构和精度需按汽道部分的作用、尺寸、精度要求以及所受应力的性质和大小而定。由于各类叶片汽道部分的作用、尺寸、形式和工作各不相同,所以装配部分的结构种类也很多。有时由于密封、调频、减振和受力的要求,叶片往往还带有叶冠(或称围带)和拉筋(或称减震凸台)。叶冠和拉筋也可归为装配面部分。汽道部分又叫型线部分,它形成工作气流的通道,完成叶片应起的作用,因此汽道部分加工质量的好坏直接影响到机组的效率。 下面说一下叶片的材料,由于透平叶片的工作条件和受力情况比较复杂,因此对叶片材料的要求也是多方面的,其中主要的要求概括如下:(1).具有足够的机械强度。即在工作温度范围内具有足够的,稳定的机械强度(屈服极限和强度极限),并且在工作温度范围内这些机械强度具有稳定的数值。在高温情况下(一般指450℃以上),具有足够的蠕变极限和持久强度极限。(2).具有高的韧性和塑性以及高温下抗热脆性(高温下稳定的冲击韧性),避免叶片在载荷作用下产生脆性断裂。(3).耐蚀性。抵抗高温下气体中有害物质的腐蚀以及湿蒸汽和空气中氧的腐蚀能力。(4).耐磨性。抵抗湿蒸汽中水滴和燃气中固体物质的磨蚀。(5).具有良好的冷、热加工性能。(6).具有良好的减振性。叶片是处在交变载荷下工作,除要求有较高的疲劳极限外,还要求有良好的减震性能,即高的对数衰减率。这样可以减小振动产生的交变应力,减小叶片疲劳断裂的可能性。 根据使用温度、使用温度和化学成份等,可以将叶片材料分为两类:(1).马氏体、马氏体-铁素体和铁素体钢。这类钢的使用温度最高不超过580℃,可以作为汽轮机叶片材料。(2).奥氏体钢、铁镍合金和镍基合金等。着类钢的使用温度最高不超过700~750℃,可以作为燃气轮机叶片材料。

汽机事故预想

1汽轮机超速 1.1主要危害 严重时导致叶轮、叶片及围带松动变形脱落、轴承损坏、动静摩擦甚至断轴。 1.2现象 1)机组突然甩负荷到零,转速超过3000rpm并继续上升,可能超过危急保安器动作转速。 2)DEH电超速、OPC超速、TSI电超速、机械超速保护动作、报警发出。 3)机组发出异常声音、振动变化。 1.3原因 1)DEH系统控制失常。 2)发电机甩负荷到零,汽轮机调速系统工作不正常。 3)进行超速保护试验时转速失控。 4)汽轮机脱扣后,主汽门、调速汽门、高压缸排汽逆止门及抽汽逆止门、供热快关阀等卡涩或关不到位。 5)汽轮机主汽门、调速汽门严密性不合格。 1.4处理 1)汽机转速超过3330rpm而保护未动作应立即手动紧急停机,并确认主机高、中压主汽门,高、中压调门,各抽汽逆止门、供热快关阀应迅速关闭。 2)破坏凝汽器真空,锅炉泄压。汽机跳闸后,检查主机主汽门、调门和抽汽逆止门应关闭严密。若未关严,应设法关严若发现转速继续升高,应采取果断隔离及泄压措施。 4)当超速保安系统各环节部套设备,未发现任何明显损坏现象,且停机过程中未发现机组异常情况时,则在超速跳闸保护系统调整合格(包括危急遮断器调整),且主汽门、调门、抽汽逆止门等关闭试验合格后,方可重新启动机组。并网前必须进行危急遮断器注油试验,并网后,还须进行危急遮断器升速动作试验,试验合格后,方允许重新并网带负荷。 5)重新启动过程中应对汽轮机振动、内部声音、轴承温度、轴向位移、推力轴承温度等进行重点检查与监视,发现异常应停止启动。 6)由于汽轮机主汽门、调速汽门严密性不合格引起超速,应经处理且严密性合格后才允许启动。 1.5防范措施 1)启动前认真检查高、中压主汽门、调速汽门开关动作灵活,调节系统存在调节部套卡涩、调整失灵或其他工作不正常时,严禁启动。 2)机组启动前的试验应按规定严格执行。 3)机组主辅设备的保护装置必须正常投入,汽轮机安全监控系统各参数显示正确,否则禁止启动,运行中严禁随意退出保护。 4)主汽门、调速汽门严密性试验不合格,严禁进行超速试验。 5)严格按规程要求进行调节保安系统的定期试验并做好完整的试验记录,运行中任一汽轮机超速保护故障不能消除时应停机消除。 6)应定期进行危急保安器充油试验、各停机保护的在线试验和主汽门、调速汽门及各抽汽逆止门的活动试验。 7)在机组正常启动或停机的过程中,汽轮机旁路系统的投入应严格执行规程要求。 8)停机过程中发现主汽门或调速汽门卡涩,应将负荷减至0MW,锅炉熄火,汽轮机打闸,发电机解列。 9)加强汽、水、油品质监督,品质符合规定。 10)转速监测控制系统工作应正常。

汽轮机火灾事故现场处置方案(正式)

编订:__________________ 单位:__________________ 时间:__________________ 汽轮机火灾事故现场处置 方案(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-3276-78 汽轮机火灾事故现场处置方案(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1事故风险描述 1.1事故类型 汽轮机火灾事故。 1.2事故区域 4米平台汽轮机头下方的抽汽管道附近。 [注:根据本公司实际进行描述,地点和位置尽量精确,考虑事故位置对救援的影响] 1.3事故的危害严重程度及其影响范围 汽轮机油系统着火,火势凶猛若处理不及时,可能造成事故扩大,威胁到动力及控制电缆安全以及邻机的安全运行,严重时甚至会造成汽轮机油箱爆炸等重大事故。 1.4事故前可能出现的征兆

(1)油系统有发生漏油现象,附近伴有轻微烟气。 (2)汽轮机阀门、油系统等附近出现火焰,并伴有烟尘。 2 应急机构及职责[注:各公司根据实际,言简意赅明确职责] 2.1应急处置小组 (1)指挥员:当值值长 (2)运行应急组:集控运行值班人员 (3)警戒疏散组:义务消防员、检修人员、保卫人员 2.2 职责 (1)指挥员:是事故现场的总指挥,负责油系统火灾事发现场应急工作的组织、指挥、协调、救援、恢复等应急工作;负责向上级汇报、通报重大突发事件应急预案的实施进展情况,听取指示并贯彻执行。 (2)运行应急组:在值长指挥协调下,迅速解除对人身和设备的威胁,根据仪表指示和设备外部特征,正确地判断事故原因;根据火灾情况对设备采取相应

汽轮机叶片事故

(一)汽轮机叶片事故分析; 汽轮机叶片的损坏形式主要是疲劳断裂。由于叶片工作条件恶劣,受力情况复杂,断裂事故较常发生,且后果又较严重,所以对叶片断裂事故的分析研究一直受到特别重视。按照叶片断裂的性质,可以分为短期超载疲劳损坏、长期疲劳损坏、高温疲劳损坏、应力疲劳损坏、腐蚀疲劳损坏、接触疲劳损坏等六钟。" 1、 期超载疲劳损坏 这种损坏是指叶片受到外加较大应力或受到较大激振力,而振动次数低于107次就发生断裂的机械疲劳损坏。如叶片受到水击而承受较大的应力,或因转子不平引起振动及安装不良存在周期力等较大的低频激振力,当这些力引起叶片共振时,叶片会很快断裂。 叶片短期超载疲劳损坏的宏观特征为:断面粗糙,疲劳前沿线(即贝壳纹)不明显,断面上疲劳区面积小于最终静撕断区面积;经受水击而损坏的叶片的断面呈“人”字形纹络特征。 1 防止短期超载疲劳损坏的主要方法是:防止水击,作好消除低频共振的调频及在正常周波下运行。 2长期疲劳破坏 长期疲劳损坏是指叶片运行中承受低于疲劳强度极限而应力循环次数又远高于107次发生的一种机械疲劳损坏。 造成长期疲劳损坏的原因有:叶片或叶片组在高频激振力作用下引起的共振损坏;叶片表面缺陷处出现局部应力集中而发生的疲劳损坏;低频率运行、超负荷运行使某些级的叶片应力升高导致提早损坏等等。长期疲劳损坏在电厂叶片断裂事故中最为常见。 防止长期疲劳损坏的办法是:按规定避开高频激振力共振范围,提高叶片加工质量和改善运行条件。如防止低周波、超负荷运行,防止腐蚀和水击等。 3、高温疲劳破坏 高温疲劳损坏是指由蠕变和疲劳共同作用所形成的介于静应力产生的蠕变和动应力产生的疲劳之间的一种损坏形式。裂纹源部位呈蠕变现象,断裂性质为持久断裂和疲劳断裂的组合,而且往往伴随着材料组织的变化。 高温疲劳损坏裂纹基本上是穿晶的,断口宏观貌有贝壳花纹,断口微观貌有较厚的氧化皮。 高温疲劳损坏发生在高压缸前几级叶片、中间再热式汽轮机中压缸前几级叶片以及中压汽轮机的调速级叶片。 防止高温疲劳损坏的主要措施是:选用高温性能好的金属来制造处于高温下工作的叶片,防止叶片共振,防止叶片径向和轴向相摩擦等。 4、应力腐蚀损坏 产生应力腐蚀的主要原因是:首先,金属晶界偏析,析出碳化物,出现贫铬区,使晶界腐蚀;其次,应力作用;然后,高浓度盐的腐蚀。应力腐蚀主要发生在2Cr13钢制造的末级叶片上。其断口形貌呈颗粒状,微观形态是沿界裂纹,断面上有滑移台阶,并有细小腐蚀坑。 防止叶片应力腐蚀损坏的只要措施是:改善汽水品质、提高叶片材质、降低叶片动应力等。 5、腐蚀疲劳损坏 _ 腐蚀疲劳损坏是叶片在腐蚀介质中受交变应力作用而引起的疲劳损坏。如损坏是以机械疲劳为主,则裂纹发展迅速,裂纹为穿晶型;如损坏是以应力腐蚀为主,则裂纹发展较慢,裂纹主要是沿晶型。 防止腐蚀疲劳损坏的主要措施是:提高叶片材质耐腐蚀性;降低交变应力水平;改善汽水品质。

汽轮机叶片损坏事故及预防通用范本

内部编号:AN-QP-HT720 版本/ 修改状态:01 / 00 The Production Process Includes Determining The Object Of The Problem And The Scope Of Influence, Analyzing The Problem, Proposing Solutions And Suggestions, Cost Planning And Feasibility Analysis, Implementation, Follow-Up And Interactive Correction, Summary, Etc. 编辑:__________________ 审核:__________________ 单位:__________________ 汽轮机叶片损坏事故及预防通用范本

汽轮机叶片损坏事故及预防通用范本 使用指引:本解决方案文件可用于对工作想法的进一步提升,对工作的正常进行起指导性作用,产生流程包括确定问题对象和影响范围,分析问题提出解决问题的办法和建议,成本规划和可行性分析,执行,后期跟进和交互修正,总结等。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 中间再热式汽轮机,参数高、容量大、汽缸数目多,又有内外缸之分,因此汽缸和转子的膨胀关系比较复杂。汽轮机通流部分的磨损,一般发生在机组启、停和工况变化时,产生磨损的主要原因是:汽缸与转子不均匀加热和冷却;启动与运行方式不合理;保温质量不良及法兰螺栓加热装置使用不当等。动静部分在轴向和径向磨损的原因,往往很难绝对分开,但仍然有所区别。在轴向方面,沿通流方向各级的汽缸与转子的温差并非一致,因而热膨胀也不同。在启动、停机和变工况运行时,转子与汽缸膨胀差超过极限数值,使轴向间隙

汽轮机习题集

《汽轮机原理》习题 1. 已知:渐缩喷嘴进口蒸汽压力MPa p 4.80=,温度4900=t ℃,初速s m c 500=;喷嘴后蒸汽压力MPa p 8.51=,喷嘴速度系数97.0=φ。求 (1) 喷嘴前蒸汽滞止焓、滞止压力; (2) 喷嘴出口的实际速度; (3) 当喷嘴后蒸汽压力由MPa p 8.51=下降到临界压力时的临界速度。 2. 已知:某汽轮机级的进汽压力MPa p 96.10=,温度3500=t ℃;级后蒸汽压力MPa p 47.12=。速度比5 3.011==c u x ,级的平均反动度15.0=Ωm ,又知喷嘴和 动叶栅的速度系数分别为97.0=φ, 90.0=ψ,喷嘴和动叶的出口汽流角为o 181=α,o 612?=?ββ。 (1) 求解并作出该级的速度三角形; (2) 若余速利用系数00=μ,11=μ,流量h t D 960=,求级的轮周效率u η和轮 周功率u P ; (3) 定性绘制级的热力过程曲线。 3. 某机组冲动级级前蒸汽压力MPa p 96.10=,温度3500=t ℃;级后蒸汽压力MPa p 47.12=。该级速度比45.01=x ,喷嘴出口汽流角为o 131=α,动叶的进口汽流角与出口汽流角相等(?=21ββ),喷嘴和动叶栅的速度系数分别为95.0=φ,87.0=ψ;该级的平均反动度0=Ωm 。试求解:同题2(1)、(2)、(3)。 4. 国产某机组第三级设计工况下级前蒸汽压力MPa p 13.50=,温度 5.4670=t ℃;级后蒸汽压力MPa p 37.42=,进口汽流的初速动能kg kJ h c 214.10=Δ全部被利用。设 计中选定该级的平均直径mm d m 5.998=,级的平均反动度%94.7=Ωm ,喷嘴出口汽流角为74101′=o α,动叶的出口汽流角相等45172′=?o β。又知喷嘴和动叶栅的速度系数分别为97.0=φ,935.0=ψ,汽轮机的转速min 3000r n =,11=μ。试作出该级的速度三角形,求级的轮周效率u η,定性绘制级的热力过程曲线。

2020新版汽轮机叶片损坏事故及预防

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020新版汽轮机叶片损坏事故 及预防 Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

2020新版汽轮机叶片损坏事故及预防 中间再热式汽轮机,参数高、容量大、汽缸数目多,又有内外缸之分,因此汽缸和转子的膨胀关系比较复杂。汽轮机通流部分的磨损,一般发生在机组启、停和工况变化时,产生磨损的主要原因是:汽缸与转子不均匀加热和冷却;启动与运行方式不合理;保温质量不良及法兰螺栓加热装置使用不当等。动静部分在轴向和径向磨损的原因,往往很难绝对分开,但仍然有所区别。在轴向方面,沿通流方向各级的汽缸与转子的温差并非一致,因而热膨胀也不同。在启动、停机和变工况运行时,转子与汽缸膨胀差超过极限数值,使轴向间隙消失,便造成动静部分磨损,在消失的时候,便产生汽封与转子摩擦,同时又不可避免地使转子弯曲,从而产生恶性循环。另外,机组振动大和汽封套变形都会引起径向摩擦。通流部分磨损事故的征象和处理如下:转子与汽缸的相对胀差表指示超过极值或

上下缸温差超过允许值,机组发生异常振动,这时即可确认为动静部分发生碰磨,应立即破坏真空紧急停机。停机后,如果胀差及汽缸各部温差达到正常值,方可重新启动。启动时要注意监视胀差和温度的变化,注意听音和监视机组的振动。如果停机过程转子惰走时间明显缩短,甚至盘车启动不起来,或得盘车装置运行时有明显的金属摩擦声,说明动静部分磨损严重,要揭缸检修。 1常见叶片事故发生时的征象、原因及预防措施 叶片断落的征象汽轮机在运行中发生叶片断落一般有下列现象:汽轮机内部或凝汽器内有突然的响声,此时在汽轮机平台底层常可清楚地听到。机组发生强烈振动或振动明显增大,这是由于叶片断落而引起转子平衡破坏或转与落叶片发生碰撞摩擦所致。但有时叶片的断落发生在转子的中间级,发生动静部分摩擦时,机组就不一定会发生强烈振动或振动明显增大,这在容量较大机组的高、中压转子上有时会遇到。当叶片损坏较多而且较严重时,由于通流部分尺寸改变,蒸汽流量、调速汽阀开度监视级压力等与功率的关系部将发生变化。若叶片落入凝汽器,则会交凝汽器的铜管打坏,

汽轮机常见事故及其处理方法

一、凝结器真空下降的现象及处理 (1) 1.1凝结器真空下降的主要特征 (1) 1.2凝结器真空急剧下降的原因 (1) 1.5凝结器真空缓慢下降的处理 (1) 1.3凝结器真空急剧下降的处理 (1) 1.4凝结器真空缓慢下降的原因 (1) 二、主蒸汽温度下降 (2) 2.1主蒸汽温度下降的影响 (2) 2.2主蒸汽温度下降的处理 (3) 三、汽轮机轴向位移增大 (3) 3.1影响汽轮机轴向位移增大的原因 (3) 3.2轴向位移大的处理 (4) 四、汽轮机大轴弯曲事故 (4) 4.1事故现象 (4) 4.2事故处理 (4) 4.3预防措施 (5) 五、厂用电源中断事故现象及处理 (5) 5.1厂用电源中断事故现象 (5) 5.2厂用电源中断事故处理 (5) 六、水冲击事故 (5) 6.1水冲击事故前的象征 (6) 6.2发生水冲击事故的处理 (6) 6.3水冲击事故后,重新开机的基本要点 (6)

6.4水冲击事故后,如有下列情况,应严禁机组的重新启动 (6) 七、凝结泵自动跳闸处理 (6) 八、汽轮机发生超速损坏事故 (7) 8.1汽轮机发生超速事故的原因 (7) 8.2汽轮机发生超速事故的处理 (7) 九、汽轮机油系统事故 (7) 9.1汽轮机油系统事故产生的原因 (8) 9.2汽轮机油系统事故的现象 (8) 9.3汽轮机油系统事故的处理 (8) 十、汽轮机轴瓦损坏事故 (8) 10.1轴瓦损坏的原因 (9) 十一、叶片断落事故 (9) 11.1事故象征 (9) 11.2事故处理 (10) 十二、汽轮机事故处理原则和一般分析方法 (10) 十三、在汽轮机组启动过程中,造成凝结器真空缓慢下降的原因 (10) 13.1汽轮机轴封压力不正常 (10) 13.2凝结器热水井水位升高 (11) 13.3凝结器循环水量不足 (11) 13.4轴封加热器满水或无水 (12) 十四、在汽轮机组正常运行中,造成凝结器真空缓慢下降的原因 (12) 14.1轴封加热器排汽管积水严重 (12) 14.2凝结器汽侧抽气管积水 (12) 14.3凝结水位升高 (13)

大型汽轮机叶片事故原因分析详细版

文件编号:GD/FS-5020 (解决方案范本系列) 大型汽轮机叶片事故原因 分析详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

大型汽轮机叶片事故原因分析详细 版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 在火电厂、核电厂机组运行过程中,汽轮机叶片工作在高温、高压、高转速或湿蒸汽区等恶劣环境中,经受着离心力、蒸汽力、蒸汽激振力、腐蚀和振动以及湿蒸汽区高速水滴冲蚀的共同作用,再加上难以避免的设计、制造、安装质量及运行工况、检修工艺不佳等因素的影响,常会出现损坏,轻则引起汽轮发电机组振动,重则造成飞车事故。因此,汽轮机叶片的安全可靠直接关系到汽轮机和整个电厂的安全、满发。 汽轮机叶片事故长期困扰电厂机组的安全经济运行。从国内统计数据看,叶片损坏事故占汽轮机事故

的30%。 叶片损坏的位置,从围带到叶根都有。据日本历年的统计资料,各部位出现损坏的百分率见表1。此外,汽轮机各级叶片的损坏机会是不均匀的,据美国对50台大型机组的统计,叶片事故几乎全发生在低压缸内,其中末级占20%,次末级占58%,而且集中区是高压第一级,即调节级。据日本的统计,也有20%的事故发生于此。因此,在汽轮机设计和运行时,均应注意这些部位。 叶片损坏的原因是多方面的,可以从不同角度加以分析。例如,从发生的机理区分,60%~80%的损坏原因是振动;从责任范围区分,可归纳为设计、制造、安装、运行和老化等。在实际工作中,如果能及时找出主要原因,掌握叶片事故前后的征兆,采取相应措施,就能避免事故的发生,提高机组的使用寿命

汽轮机反事故措施示范文本

汽轮机反事故措施示范文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

汽轮机反事故措施示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 因汽轮机是在高温、高压、高转速下工作,并有各辅 助设备和辅助系统协调工作,往往由于某一环不慎而产生 事故,而影响调试工作顺利进行。造成事故的原因是多方 面的。如热状态下动静部件的间隙变化、启动和负荷变化 时的振动、轴向推力的变化。蒸汽参数变化、油系统工作 失常以及各种隐患等,如果发现和处理不及时,都可能引 起事故,所以在启动和试运期间,应采取有效措施,将事 故消除在萌芽期。 汽轮机几种常见典型事故及监视、分析和处理方法: 8.1 在运行中凝汽器真空下降: 真空下降,排汽温度增高,易使排汽缸变形,机组中 心偏移,使机组产生振动,以及凝汽器铜管产生松驰,变

形甚至断裂。 试运期间,应随时监视,如果发现排汽室温度升高,真空指示下降,抽气器冒汽量增加等现象,首先应降低负荷,查找原因。 真空下降的原因及处理: 8.1.1 循环水中断或供水不足:查找循环水系统,主要检查循环水泵和各电动阀门。 8.1.2 后轴封供汽中断:查找供汽压力是否产生变化,蒸汽带水使轴封供汽中断,轴封压力调整器失灵等。 8.1.3 抽气器水源中断,或真空管严重漏气。 8.1.4 凝汽器水位升高:查找凝结泵入口是否产生气化,可检查泵的电流是否下降。 8.1.5 检查真空系统管道与阀门是否严密。 以上原因,如不能在运行中及时处理,应停机处理,机组不得在低真空下长期运行。

汽轮机零件强度校核..

第五章汽轮机零件的强度校核 第一节汽轮机零件强度校核概述 为了确保电站汽轮机安全远行,应该使汽轮机零件在各种可能遇到的运行工况下都能可靠地工作。因此,需要对汽轮机零件进行强度校核,包括静强度校核和动强度校核两方面,这是本章要讨论的问题。 汽轮机的转动部分称为转子,静止部分称为静子。转子零件主要有叶片、叶轮、主轴及联轴器等,静子零件主要有汽缸、汽缸法兰、法兰螺栓和隔板等。由于备零件的工作条件和受力状况不同,采用的强度校核方法也各异。例如,转子中的叶片、叶轮和主轴除了受高速旋转的离心力和蒸汽作用力外,还会受到周期性激振力的作用,从而产生振动。当汽轮机在稳定工况下运行时,离心应力和蒸汽弯曲应力不随时间变化。稳定工况下不随时间变化的应力,统称为静应力,属于静强度范畴,周期性激振力引起的振动应力称为动应力,其大小和方向都随时间而变化,属于动强度范畴。直至目前为止、对汽轮机转子零件动应力的精确计算尚有一定困难,因此,本章对汽轮机零件的动强度分析,只限于零件自振频率和激振力频率计算及安全性校核。一般来说,对汽轮机转子零件,应从静强度和动强度两方面进行校核;对汽轮机静子零件,只需进行静强度校核,包括零件静应力和挠度计算。 静强度校核时,一般应以材料在各种工作温度下的屈服极限、蠕变极限和持久强度极限,分别除以相应的安全系数得到各自的许用应力,并取这三个许用应力中最小的一个许用应力作为强度校核依据。如果计算零件在最危险工况的工作应力小于或等于最小许用应力,则静强度是安全的。对动强度,常用安全倍率和共振避开率来校核。 需要指出,大型汽轮机某些零件的强度校核要求随工况变化而变化。在稳定工况下,某一零件只需进行静强度和动强度校核。但是在冷热态启动、变负荷或甩负荷等变工况下,沿零件径向和轴向会有较大的温度梯度,从而产生很大的热应力,且零件内任一点的热应力的大小和方向随运行方式而变化。如汽轮机冷态启动时,转子外表面有压缩热应力,中心孔表面有拉伸热应力;停机时,转子外

汽轮机动叶片

动叶片 一、速度级叶片 中小型汽轮机的调节级一般都采用双列速度级。双列速度级的热焓降大。新蒸汽经过这一级后压力和温度都要下降较多,所以中小型汽轮机的调节级采用双列速度级后,可以得到以下好处: (1)在蒸汽参数,汽轮机功率相同的条件下,可使汽轮机级数减少,结构简化,而机组效率相差并不大。 (2)由于双列速度级后的蒸汽压力、温度都下降很多,所以使调节级后的高压、高温段缩短,在汽缸和转子上都能节约一定数量的贵重金属材料,降低汽轮机的造价。 (3)由于蒸汽经过双列速度级后压力下降很多,所以高压轴封结构可以简化,且漏汽损失可以减少。尤其对小型汽轮机这是很重要的。 二、动叶和静叶间的关系 1、动叶片和静叶片的高度配合 动叶片应比静叶片稍高些,这是为了让蒸汽由静叶喷出后尽可能全部进入动叶中工作。若部分汽流不能进入动叶片,则会增加碰撞和漏汽损失。一般汽轮机中,动叶片比静叶片高2~6mm,但是,动叶片不能过高,因为动叶片过高,蒸汽在动叶片顶部和根部会出现涡流,并增大了静叶喷射蒸汽时的抽吸作用,即把静叶和动叶间隙中的散乱蒸汽吸入动叶中,消耗了工作蒸汽的动能,造成所谓的副流损失,如叶片过高,蒸汽在动叶片中,消耗了工作蒸汽的动能,造成所谓的副流损失。 2、叶和动叶之间的轴向间隙 动、静叶间必须保持适当的间隙,否则叶片无法转动。但是,这个轴向间隙的存在,会造成以下问题: (1)汽流在动、静叶的间隙中发生散乱现象,从而造成漏汽损失; (2)汽流抽吸此间隙中的散乱蒸汽而消耗动能,造成副流损失; (3)汽流在间隙中喷射方向的少许改变,引起蒸汽在叶片进口边的碰撞损失。 为了减少蒸汽在叶片中的涡流损失、撞击损失及尽可能更多地利用余速动能,总希望尽量使动、静叶间的间隙减小。但是这个减小也是有条件的,它必须保证高速转动的动叶和静叶不发生摩擦、碰撞。一般汽轮机动叶和下一级静叶间的间隙必须大于推力轴承乌金的厚度一定数值,以防止推力力轴承乌金熔化后,转子向后移动时使动、静叶碰撞而发生严重事故。 3、动、静叶片轴向间隙的调整 汽轮机动、静叶片间的轴向间隙过大是造成汽轮机经济性下降和出力不足的原因,这时应对其间隙进行调整。调整的办法有整机调整和单级部分调整两种。 整机调整的方法是通过改变推力轴承内推力瓦片后的垫片厚度来改变转子在汽缸中的轴向位置,从而改变所有动、静叶片之间的间隙。例如要减少所有级静叶片和动叶片的轴向间隙,则可以采用加厚工作瓦片后垫片的厚度,同时减小非工作瓦片后垫片的厚度来实现。 对于单级部分调整,若需调整的是第一级调节级,则可改变喷嘴下的垫片厚度;若需调整的是中间某级,则可改变隔板在汽缸中的位置,具体方法是改变隔板上轴向隔板钉的长度。 如果动叶片与静止部分的径向间隙过大,则可以在动叶片对应的静止部分加装汽封片,以减少漏汽。 三、叶片的受力分析 动叶片工作时受到的作用力主要有两种:一是由叶片本身和围带、拉筋旋转时所产生的离心力;二是汽流通过动叶片时对动叶片作用的汽流力以及汽轮机启动、停机过程中,叶片上各部分温度差引起的热应力。

发电责任公司汽轮机轴系损坏事故

发电有限责任公司汽轮机轴系损坏事故 事故经过】 8月19日0时20分,运行五值接班,机组负荷为155MW运行;零时30分,值长令加负荷到165MW/ 1时整,值长令加负荷到170MWV主蒸汽压力为12. 6Mpa主 蒸汽温度535C,蒸汽流量536. 9吨/ 时。 47分30 秒,“高、中压主汽门关闭”、“抽汽逆止门关闭“光字牌报警,监盘司机喊“机跳了”。47分32 秒,交流、直流润滑油泵联动良好。47 分37 秒,发电机出口开关5532 跳闸,有功负荷到“ 0” 6KV厂用电备用电源联动成功。 值长来电话向单元长询问情况,单元长告:“ 01 号机、发电机跳闸”。值长当即告:“立即查明保护动作情况,对设备详细检查;有问题向我汇报“。单元长令:“汽机、电气人员检查保护及设备情况。”司机助手到保护盘检查本特利保护,回来后向单元长汇报: 没有发现异常。”汽机班长检查完设备汇报单元长说:“设备检 查没问题。”电气班长确认后汇报:“发电机跳,6KV厂用正常联动 备用电源,电气保护无动作,只有' 热工保护动作' 光字牌来信号。” 单元长向值长汇报:“检查保护和设备都没发现问题。”值长告: 如无异常,可以恢复。”随即单元长告汽机班长:“汽机挂闸,保持机3000 转/分。”汽机班长到就地机头处操作,手摇同步器由30mmi至到“ 0''位,同时令司机助手去检查设备情况,助手回来后汇报:“机组检查正常,主轴在转动

中。”这时班长操作同步器增加行程时发现高、中压主汽门未开,告助手去复归“热工保护动作自保持复归按钮”,当检查就地压力表立盘时发现调速油压很低,对从控制室返回来的助手说:“把调速油泵转起来。” 调速油压恢复后,汽机班长到机头再次挂闸,逐步增加同步器行程,高、中压主汽门开启,行程达8mm寸回到主控制室,准备用电调升速,设定目标转速 3000r/min,升速率为300r/min/min,按进行键,此时转速实际值未能跟踪目标值,同时“高、中压主汽门关闭” 信号光字牌亮,汽机班长根据经验分析认为电调不正常,向单元长汇报,并请示切液调运行,单元长同意。

汽轮机事故应急处理预案

汽轮机事故应急处理预案 为快速、正确的处理各种事故,提高事故处置应急能力,防止发生设备重大损坏事故及人身伤害事故,降低事故损失,特制定事故应急处理预案。 一、事故应急处理领导小组 组长:副组长:成员: 二、事故处理原则 1、发生事故时,现场值班人员应沉着冷静,正确判断,准确而迅速的处理。 2、尽快消除事故根源,隔绝故障点,防止事故蔓延。 3、在确保人身安全和设备不受损害的前提下,尽可能恢复设备正常运行,不使事故扩大。 4、发挥正常运行设备的最大的出力,尽量减少事故对用户的影响。 5、运行当值值班长是事故处理的直接指挥者,应快速正确的判断事故发生的原因,统一指挥各专业人员准确进行操作,防止发生混乱而扩大事故。 6、在处理事故的同时,现场负责人应按事故的汇报程序逐级向领导汇报,各级人员应快速赶到事故现场,直接参与或监督事故处理,力争用最短的时间消除事故,减少损失。 7、发生重大事故或处置严重威胁设备及人身安全的隐患时,厂主要负责人应直接指挥处理,调度一切资源,尽快消除,避免扩大事故。

8、事故处理结束后,应按有关规定,及时组织召开分析会,调查事故发生原因,吸取事故教训,并举一反三,制定防范措施,严肃追究责任人,及时按程序上报有关部门。 三、电气事故应急处置措施 1、发电机非同期并列:并列合闸瞬间产生强烈的冲击电流,系统电压显著降低。静子电流剧烈摆动,发电机发生强烈震动,并发出强烈音变。 (1)将发电机解列停机。 (2)拉出手车开关对静子线圈及发电机开关等进行详细检查。 (3)经检查未发现不正常现象时,可重新启动并列。 (4)如非同期并列合闸后,发电机已迅速拉入同期,并经检查未发现有明显损坏象征异常,可允许暂时运行,安排适当的机会停机检 查处理。 2、发电机自动跳闸: (1)检查灭磁开关是否断开,如没有断开应手动掉闸。 (2)检查何种保护动作,并根据保护动作情况和事故象征对有关设备进行检查。 (3)如是人员误动引起应立即将发电机并入运行。 (4)如发电机由于内部故障而掉闸时,应对动作保护装置进行检查,验证动作是否正常。

汽轮机调节级动叶片断裂事故分析及处理

收稿日期:2006201209  作者简介:孙为民(19662),男,河南郑州人,副教授,现从事汽轮机设备的教学和科研。 汽轮机调节级动叶片断裂事故分析及处理 孙为民1 ,李留轩 2 (1郑州电力高等专科学校,郑州450004;2洛阳华润热电有限公司,洛阳471900) 摘要:针对50MW 汽轮机调节级动叶片断裂的事故原因进行了分析和研究,并根据当前机组情况选用了合理的处 理方案。 关键词:汽轮机;叶片断裂;处理方案分类号:TK267 文献标识码:B 文章编号:100125884(2006)0620458202 Processing and Fault Analysis ofMoving B lades Cripp ing of Steam Turbine Governing Stage S UN W ei 2m in 1 ,L IL iu 2xuan 2 (1Zhengzhou Electric Power College,Zhengzhou 450004,China; 2Luoyang China Res ourcus Ther moelectric Company L i m ited,Luoyang 471900,China ) Abstract:The fault reas ons of moving blades cri pp ing of steam turbine governing stage were analyzed and studied,and based on the unit state,the paper choosed reas onable sche mee of treat m ent .Key words:steam turb i n e;bl ades cr i pp i n g;schem ee of trea t m en t 0 前 言 某发电厂有两台50MW 汽轮发电机组,机组型号为C50-8.83/1.3。1号机2004年1月投入运行,2号机2004年4月投入运行。2004年6月4日,2号机组振动突然加大,12日开缸检查,发现第1级动叶片(调节级)3处共6片从根部断裂,转子返制造厂修理。 根据当时机组运行及叶片事故情况,制造厂家会同运行厂家对事故叶片进行了整级更换。更换时根据断叶片事故分析对叶片成组焊接剖口结构进行了改进,并增加了叶根侧部剖口焊。 2004年8月5日,2号机组振动再次出现异常,再次停机开缸检查,发现第1级动叶片(调节级)又有3处共6片从根部断裂,同时有部分叶片出现裂纹。断口形式和部位与第一次断口发生了较大变化,但断纹基本相似。另外,第2、3、4级动叶型面部分有不同程度的损伤,末级叶片有3片顶部不同程度地向外突出变形。 1 原因分析 1.1 设计分析 该机组调节级所用叶型为3.4061,叶根为TG22,该叶片从上世纪60年代开始在我国50MW 高温高压汽轮机调节级上广泛采用,是一种成熟结构。制造厂在50MW 抽汽式汽轮机上从上世纪90年代初期开始使用,并根据机组运行工况进行了适当调整,使用情况一直良好。1.2 结构强度分析 该机组调节级动叶片材料为1Cr11MoV,节圆直径1100 mm,叶片数156个,汽道高度35mm,叶片宽度35mm,叶根采用TG22型T 型叶根,叶片顶部自带围带,2片叶片成组,采用上、下V 型剖口焊接,围带焊接前厚8mm,剖口深6.5mm,叶片安装好后,围带加工至中间9mm 宽,厚6.1mm,两侧厚4.3mm 。 该叶片作为调频叶片考核,其A 0型计算静频为4514Hz,所配喷嘴当量数为79.4,激振频率为3950Hz,频率避开率为14.3%,在型线底部的汽流弯应力为4.5M Pa (二阀开),其余应力均远低于标准考核值。1.3 叶片断裂原因初步分析 第一次采用2片成组,在围带处焊接和在叶片底部开坡口焊接,叶片的振动强度基本符合有关的技术标准和行业规范要求,但叶片的切向振动频率和轴向振动与激振力频率的避开率不大,考虑到调节级叶片变工况运行条件和叶片装配在叶轮上的实际松紧状况,当振动下传时,叶片组的切向振动模态和轴向振动模态与喷嘴激振力频率发生共振或接近共振,导致叶片中的动应力过大,造成疲劳破坏。 第二次采用2片成组,增加叶根匹配面焊接,避免第一阶切向振动模态的共振,轴向振动频率与激振力频率的避开率也有所改善,但轴向振动频率与激振力频率的避开率仍不是很大。焊接的热影响区造成叶片材料抗疲劳的能力降低和焊接原因引起的初始裂纹,加速了叶片的疲劳损坏。因此从振动应力的来源来看第一次和第二次的断裂有不同之处。 通过对TG22型叶片根部断裂金相检验分析,结论如下:(1)叶根的断裂属于脆性断裂,裂纹扩展速度快,宏观断口上无明显塑性变形。 (2)裂纹源位于两叶根靠拢部位的焊区δ铁素体带处, 第48卷第6期 汽 轮 机 技 术Vol .48No .62006年12月 T URB I N E TECHNOLOGY Dec .2006

相关文档
最新文档