(完整word版)最短路径算法附应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最短路径算法及应用

乘汽车旅行的人总希望找出到目的地的尽可能的短的行程。如果有一张地图并在图上标出每对十字路口之间的距离,如何找出这一最短行程?

一种可能的方法就是枚举出所有路径,并计算出每条路径的长度,然后选择最短的一条。那么我们很容易看到,即使不考虑包含回路的路径,依然存在数以百万计的行车路线,而其中绝大多数是不值得考虑的。

在这一章中,我们将阐明如何有效地解决这类问题。在最短路径问题中,给出的是一有向加权图G=(V,E,W),其中V为顶点集,E为有向边集,W为边上的权集。最短路径问题研究的问题主要有:单源最短路径问题、与所有顶点对之间的最短路径问题。

一、单源最短路径问题

所谓单源最短路径问题是指:已知图G=(V,E),我们希望找出从某给定的源结点S∈V 到V中的每个结点的最短路径。

首先,我们可以发现有这样一个事实:如果P是G中从vs到vj的最短路,vi是P中的一个点,那么,从vs沿P到vi的路是从vs到vi的最短路。

(一)Dijkstra算法

对于图G,如果所有Wij≥0的情形下,目前公认的最好的方法是由Dijkstra于1959年提出来的。

例1 已知如下图所示的单行线交通网,每弧旁的数字表示通过这条单行线所需要的费用,现在某人要从v1出发,通过这个交通网到v8去,求使总费用最小的旅行路线。

Dijkstra方法的基本思想是从vs出发,逐步地向外探寻最短路。执行过程中,与每个

点对应,记录下一个数(称为这个点的标号),它或者表示从vs到该点的最短路的权(称为P 标号)、或者是从vs到该点的最短路的权的上界(称为T标号),方法的每一步是去修改T

标号,并且把某一个具T标号的改变为具P标号的点,从而使G中具P标号的顶点数多一个,这样至多经过n-1(n为图G的顶点数)步,就可以求出从vs到各点的最短路。

在叙述Dijkstra方法的具体步骤之前,以例1为例说明一下这个方法的基本思想。例1中,s=1。因为所有Wij≥0,故有d(v1, v1)=0。这时,v1是具P标号的点。现在考察从v1发出的三条弧,(v1, v2), (v1, v3)和(v1, v4)。如果某人从v1出发沿(v1, v2)到达v2,这时需要d(v1, v1)+w12=6单位的费用;如果他从v1出发沿(v1, v3)到达v3,这时需要d(v1, v1)+w13=3单位的费用;类似地,若沿(v1, v4)到达v4,这时需要d(v1, v1)+w14=1单位的费用。因为min{ d(v1, v1)+w12,d(v1, v1)+w13,d(v1, v1)+w14}= d(v1, v1)+w14=1,可以断言,他从v1到v4所需要的最小费用必定是1单位,即从v1到v4的最短路是(v1, v4),d(v1, v4)=1。这是因为从v1到v4的任一条路P,如果不是(v1, v4),则必是先从v1沿(v1, v2)到达v2,或者沿(v1, v3)到达v3。但如上所说,这时他已需要6单位或3单位的费用,不管他如何再从v2或从v3到达v4,所需要的总费用都不会比1小(因为所有wij≥0)。因而推知d(v1, v4)=1,这样就可以使v4变成具P标号的点。现在考察从v1及v4指向其余点的弧,由上已知,从v1出发,分别沿(v1, v2)、(v1, v3)到达v2, v3,需要的费用分别为6与3,而从v4出发沿(v4, v6)到达v6所需的费用是d(v1, v4)+w46=1+10=11单位。因min{ d(v1, v1)+w12,d(v1, v1)+w13,d(v1, v4)+w46}= d(v1, v1)+w13=3。基于同样的理由可以断言,从v1到v3的最短路是(v1, v3),d(v1, v3)=3。这样又可以使点v3变成具P 标号的点,如此重复这个过程,可以求出从v1到任一点的最短路。

在下述的Dijstra方法具体步骤中,用P,T分别表示某个点的P标号、T标号,si表示第i步时,具P标号点的集合。为了在求出从vs到各点的距离的同时,也求出从Vs到各点的最短路,给每个点v以一个λ值,算法终止时λ(v)=m,表示在Vs到v的最短路上,v的前一个点是Vm;如果λ(v)=∞,表示图G中不含从Vs到v的路;λ(Vs)=0。

Dijstra方法的具体步骤:

{初始化}

i=0

S0={Vs},P(Vs)=0 λ(Vs)=0

对每一个v<>Vs,令T(v)=+ ∞,λ(v)=+ ∞,

k=s

{开始}

①如果Si=V,算法终止,这时,每个v∈Si,d(Vs,v)=P(v);否则转入②

②考察每个使(Vk,vj)∈E且vj Si的点vj。

如果T(vj)>P(vk)+wkj,则把T(vj)修改为P(vk)+wkj,把λ(vj)修改为k。

③令

如果,则把的标号变为P标号,令

,k=ji,i=i+1,转①,否则终止,这时对每一个v∈Si,d(vs,v)=P(v),

而对每一个。

算法实现:

1、数据结构

*用邻接矩阵表示图G

*用一维数组D[I]存放从源点到I点的最短路径长度或其上界。(上面算法中的P 标号与T标号实际上存放着源点到某点的最短路径长度或其上界,因此我们可以统一用D 数组来表示)。

*用一维数组P,其中P[I]记录到I点的最短路径中前一个顶点的序号。

{$R+}

2、源程序

(二)Bellman-Ford算法

在单源最短路径问题的某些实例中,可能存在权为负的边。如果图G=(V,E)不包含从源s可达的负权回路,则对所有v∈V,最短路径的权定义d(s,v)依然正确,即使它是一个负值也是如此。但如果存在一从s可达的负回路,最短路径的权的定义就不能成立。S到该回路上的结点就不存在最短路径。当有向图中出现负权时,则Dijkstra算法失效。当不存在源s可达的负回路时,我们可用Bellman-Ford算法实现。

下面我们介绍有向图中,存在具有负权的弧时,求最短路的方法。

为了方便起见,不妨设从任一点vi到任一点vj都有一条弧(如果在Gk ,(vi,vj)不存在,则添加(vi,vj)且令wij=+∝)。

显然,从vs到vj的最短路总是从vs出发,沿着一条路到某个点vi,再沿(vi,vj)到vj的(这里vi可以是vs本身),由本章开始时介绍的一个结论可知,从vs到vi的这条路必定是从vs到vi的最短路,所以d(vs,vi)必满足如下方程:

相关文档
最新文档