2019西安八校联考数学(理)试题
陕西省西安地区陕师大附中等八校2019届高三3月联考数学(理)试卷附答案解析
2019年陕西师大附中、西安高中、高新一中、铁一中学、西工大附中等八校高考数学模拟试卷(理科)(3月份)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,6,9},B={3x|x∈A},C={x∈N|3x∈A},则B∩C=()A. {1,2,3}B. {1,6,9}C. {1,6}D. {3}【答案】D【解析】【分析】先分别求出集合A,B,C,由此能求出.【详解】集合2,3,6,,6,9,18,,2,,.故选:D.【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.如图是甲乙两位同学某次考试各科成绩(转化为了标准分,满分900分)的条形统计图,设甲乙两位同学成绩的平均值分别为,,标准差分别为,则()A. B.C. D.【答案】A【解析】【分析】甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为,,从而得到,.【详解】由条形统计图得到:在这次考试各科成绩转化为了标准分,满分900分中,甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为,,则,.故选:A.【点睛】本题考查命题真假的判断,考查条形图、平均值、标准差等基础知识,考查运算求解能力,是基础题.3.1748年,瑞士著名数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式e ix=cosx+isinx,这个公式在复变论中占有非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,e2i表示的复数所对应的点在复平面中位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】由已知可得,再由三角函数的象限符号得答案.【详解】由题意可得,,,,,则表示的复数所对应的点在复平面中位于第二象限.故选:B.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.4.设为所在平面内一点,若,则下列关系中正确的是()A. B.C. D.【答案】A【解析】∵∴−−=3(−−);∴=−−.故选:C.【此处有视频,请去附件查看】5.《张丘建筑经》卷上第22题为:“今有女善织,日益功疾,且从第二天起,每天比前一天多织相同量的布.若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织布的尺数为()A. 18B. 20C. 21D. 25【答案】C【解析】由题意设从第二天开始,每一天比前一天多织尺布,则,解得,所以,故选C.6.如果对定义在R上的奇函数y=f(x),对任意两个不相邻的实数x1,x2,所有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数y=f(x)为“H函数”,下列函数为H函数的是()A. f(x)=sinxB. f(x)=e xC. f(x)=x3﹣3xD. f(x)=x|x|【答案】D【解析】【分析】根据题意,不等式等价为,即满足条件的函数为单调递增函数,即可得“H函数”为奇函数且在R上为增函数,据此依次分析选项:综合可得答案.【详解】根据题意,对于所有的不相等实数,,则恒成立,则有恒成立,即函数是定义在R上的增函数,则“H函数”为奇函数且在R上为增函数,据此依次分析选项:对于A,,为正弦函数,为奇函数但不是增函数,不符合题意;对于B,,为指数函数,不是奇函数,不符合题意;对于C,,为奇函数,但在R上不是增函数,不符合题意;对于D,,为奇函数且在R上为增函数,符合题意;故选:D.【点睛】本题考查函数的奇偶性与单调性的判断,关键是分析“H函数”的含义,属于基础题.7.已知正三棱柱ABC﹣A1B1C1的三视图如图所示,一只蚂蚁从顶点A出发沿该正三棱柱的表面绕行两周到达顶点A1,则该蚂蚁走过的最短路径为()A. B. 25 C. D. 31【答案】B【解析】【分析】将三棱柱展开,得出最短距离是6个矩形对角线的连线,相当于绕三棱柱转2次的最短路径,由勾股定理求出对应的最小值.【详解】将正三棱柱沿侧棱展开,如图所示;在展开图中,最短距离是6个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得正三棱锥底面三角形的边长为,所以矩形的长等于,宽等于7,由勾股定理求得.故选:B.【点睛】本题考查了棱柱的结构特征与应用问题,也考查了几何体的展开与折叠,以及转化空间问题转化为平面问题,化曲为直的思想方法.8.将函数的图象向右平移个单位,在向上平移一个单位,得到g(x)的图象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],则x1﹣2x2的最大值为()A. B. C. D.【答案】A【解析】【分析】根据题意,不等式f()+f()>f()+f()等价为(﹣)[f()﹣f()]>0,即满足条件的函数为单调递增函数,即可得“H函数”为奇函数且在R上为增函数,据此依次分析选项:综合可得答案.【详解】将函数的图象向右平移个单位,再向上平移一个单位,得到g(x)=sin(2x﹣+)+1=﹣cos2x+1 的图象,故g(x)的最大值为2,最小值为0,若g()g()=4,则g()=g()=2,或g()=g()=﹣2(舍去).故有g()=g()=2,即cos2=cos2=﹣1,又,x2∈[﹣2π,2π],∴2,2∈[﹣4π,4π],要使﹣2取得最大值,则应有2=3π,2=﹣3π,故﹣2取得最大值为+3π=.故选:A.【点睛】本题考查函数的奇偶性与单调性的判断,关键是分析“H函数”的含义,属于基础题.9.已知圆C:x2+y2﹣2x﹣4y+3=0,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为()A. B. C. D.【答案】C【解析】试题分析:方法一:如图,连接AC,BC,设,连接PC与AB交于点D,,是等边三角形,∴D是AB的中点,,∴在圆C:中,圆C的半径为,,,∴在等边中,,,故选C.方法二:设,则,记,令,得,,故选C.考点:圆的性质、三角函数最值、利用导数求函数最值.【思路点睛】法一、先由为等腰三角形,得出D为中点,再由为等边三角形,得出,在中,将和用表示,从而求出的值,得到的表达式,用三角函数的有界性求最值;法二:设出边AD的长x,根据已知条件表示出,再利用导数求出函数的最值.10.抛物线x2= y在第一象限内图象上的一点(a i,2a i2)处的切线与x轴交点的横坐标记为a i+1,其中i∈N+,若a2=32,则a2+a4+a6等于()A. 64B. 42C. 32D. 21【答案】B【解析】试题分析:,∴,∴过点的切线方程为,令,得,可得,又,所以.考点:1.导数的几何性质;2.等比数列.11.已知双曲线的右焦点为F2,若C的左支上存在点M,使得直线bx﹣ay=0是线段MF2的垂直平分线,则C的离心率为()A. B. 2 C. D. 5【答案】C【解析】【分析】设P为直线与的交点,则OP为的中位线,求得到渐近线的距离为b,运用中位线定理和双曲线的定义,以及离心率的公式,计算可得所求值.【详解】,直线是线段的垂直平分线,可得到渐近线的距离为,且,,,可得,即为,即,可得.故选:C.【点睛】本题考查双曲线的定义、方程和性质,考查三角形的中位线定理,考查方程思想和运算能力,属于中档题.12.已知函数,则函数g(x)=xf(x)﹣1的零点的个数为()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】由g(x)=xf(x)﹣1=0得f(x),根据条件作出函数f(x)与h(x)的图象,研究两个函数的交点个数即可得到结论.【详解】由g(x)=xf(x)﹣1=0得xf(x)=1,当x=0时,方程xf(x)=1不成立,即x≠0,则等价为f(x)=,当2<x≤4时,0<x﹣2≤2,此时f(x)=f(x﹣2)=(1﹣|x﹣2﹣1|)=﹣|x﹣3|,当4<x≤6时,2<x﹣2≤4,此时f(x)=f(x﹣2)=[﹣|x﹣2﹣3|]=﹣|x﹣5|,作出f(x)的图象如图,则f(1)=1,f(3)=f(1)=,f(5)=f(3)=,设h(x)=,则h(1)=1,h(3)=,h(5)=>f(5),作出h(x)的图象,由图象知两个函数图象有3个交点,即函数g(x)的零点个数为3个,故选:B.【点睛】本题主要考查函数与方程的应用,利用条件转化为两个函数图象的交点个数问题,利用数形结合是解决本题的关键.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知F是抛物线C:y=2x2的焦点,点P(x,y)在抛物线C上,且x=1,则|PF|=_____.【答案】【解析】【分析】利用抛物线方程求出p,利用抛物线的性质列出方程求解即可.【详解】由,得,则;由得,由抛物线的性质可得,故答案为:.【点睛】本题考查抛物线的定义的应用,属于基础题.14.已知实数x,y满足约束条件,则z=|﹣5x+y|的取值范围为_____.【答案】[0,11]【解析】【分析】作出约束条件表示的可行域,判断目标函数经过的点,然后求解目标函数的范围即可.【详解】作出实数x,y满足约束条件的可行域,如图所示:作直线l0:﹣5x+y=0,再作一组平行于l0的直线l:﹣5x+y=z,当直线l经过点A时,z=﹣5x+y取得最大值,由,得点A的坐标为(﹣2,0),所以z max=﹣5×(﹣2)+0=10.直线经过B时,目标函数取得最小值,由,解得B(2,﹣1)函数的最小值为:﹣10﹣1=﹣11.z=|﹣5x+y|的取值范围为:[0,11].故答案为:[0,11].【点睛】本题考查线性规划的简单应用,考查转化思想以及数形结合的综合应用,考查计算能力.15.在的展开式中,常数项为_____.【答案】-40【解析】【分析】根据,按照二项式定理展开,可得在的展开式中的常数项.【详解】解:∵(x﹣2)=(x6+6x4+15x2+20+15•6•)(x﹣2),∴常数项是20•(﹣2)=﹣40,故答案为:﹣40.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.16.如图,已知圆柱和半径为的半球O,圆柱的下底面在半球O底面所在平面上,圆柱的上底面内接于球O,则该圆柱的体积的最大值为_____.【答案】2π【解析】【分析】设圆柱的底面圆半径为r,高为h,求出r与h的关系,再计算圆柱的体积V,从而求出体积V的最大值.【详解】解:设圆柱的底面圆半径为r,高为h;则h2+r2=R2=3;所以圆柱的体积为V=πr2h=π(3﹣h2)h=π(3h﹣h3);则V′(h)=π(3﹣3h2),令V′(h)=0,解得h=1;所以h∈(0,1)时,V′(h)>0,V(h)单调递增;h∈(1,)时,V′(h)<0,V(h)单调递减;所以h=1时,V(h)取得最大值为V(1)=2π.故答案为:2π.【点睛】本题考查了半球与内接圆柱的结构特征与应用问题,也考查了圆柱的体积计算问题,是中档题.三、解答题(本大题共5小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)(一)必考题:共60分.17.△ABC的内角A,B,C的对边分别为,且.(1)求角A的大小;(2)求△ABC的面积的最大值.【答案】(1);(2).【解析】【分析】直接利用三角函数关系式的恒等变变换和余弦定理和正弦定理的应用求出结果.利用的结论和余弦定理及基本不等式的应用求出结果.【详解】在的内角A,B,C的对边分别为,且.整理得:,利用正弦定理得:,即:,由于:,解得:.由于,所以:,整理得:,所以:.当且仅当时,的面积有最小值.【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,正弦定理和余弦定理及三角形面积公式,基本不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.18.如图1,等边△ABC中,AC=4,D是边AC上的点(不与A,C重合),过点D作DE∥BC交AB于点E,沿DE 将△ADE向上折起,使得平面ADE⊥平面BCDE,如图2所示.(1)若异面直线BE与AC垂直,确定图1中点D的位置;(2)证明:无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值,并求出这个定值.【答案】(1)见解析;(2)【解析】【分析】(1)取DE中点O,BC中点F,连结OA,OF,以O为原点,OE、OF、OA所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出图1中点D在靠近点A的三等分点处;(2)求出平面ADE的法向量和平面ABE的法向量,利用向量法能证明无论点D的位置如何,二面角D﹣AE ﹣B的余弦值都为定值.【详解】解:(1)在图2中,取DE中点O,BC中点F,连结OA,OF,以O为原点,OE、OF、OA所在直线分别为x,y,z轴,建立空间直角坐标系,设OA=x,则OF=2x,OE,∴B(2,2x,0),E(,0,0),A(0,0,x),C(﹣2,2x,0),(﹣2,2x,﹣x),(2,x﹣2,0),∵异面直线BE与AC垂直,∴8=0,解得x(舍)或x,∴,∴图1中点D在靠近点A的三等分点处.证明:(2)平面ADE的法向量(0,1,0),(,0,﹣x),(2,x﹣2,0),设平面ABE的法向量(a,b,c),则,取a=1,得(1,,),设二面角D﹣AE﹣B的平面角为θ,则cosθ,∴无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值.【点睛】本题考查空间中点的位置的确定,考查二面角的余弦值为定值的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算能力,考查数形结合思想,是中档题.19.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.由测量表得到如下频率分布直方图(1)补全上面的频率分布直方图(用阴影表示);(2)统计方法中,同一组数据常用该组区间的中间值作为代表,据此估计这种产品质量指标值服从正态分布Z(μ,σ2),其中μ近似为样本平均值,σ2近似为样本方差s2(组数据取中间值);①利用该正态分布,求从该厂生产的产品中任取一件,该产品为合格品的概率;②该企业每年生产这种产品10万件,生产一件合格品利润10元,生产一件不合格品亏损20元,则该企业的年利润是多少?参考数据:=5.1,若Z~N(μ,σ2),则P(μ﹣σ,μ+σ)=0.6826,P(μ﹣2σ,μ+2σ)=0.9544.【答案】(1)见解析;(2)①0.9544,②863200.【解析】【分析】(1)由频率分布图求出[95,105)的频率,由此能作出补全频率分布直方图;(2)求出质量指标值的样本平均数、质量指标值的样本方差;(3)运用离散型随机变量的期望和方差公式,即可求出;①由(2)知Z~N(100,104),从而求出P(79.6<Z<120.4),注意运用所给数据;②设这种产品每件利润为随机变量E(X),即可求得EX.【详解】(1)由频率分布直方图得:[95,105)的频率为:1﹣(0.006+0.026+0.022+0.008)×10=0.038,补全上面的频率分布直方图(用阴影表示):质量指标值的样本平均数为:=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为S2=(﹣20)2×0.06+(﹣10)2×0.26+0×0.38+102×0.22+202×0.08=104.(2)①由(1)知Z~N(100,104),从而P(79.6<Z<120.4)=P(100﹣2×10.2<Z<100+2×10.2)=0.9544;②由①知一件产品的质量指标值位于区间(79.6,120.4)的概率为0.9544,该企业的年利润是EX=100000[0.9544×10﹣(1﹣0.9544)×20]=863200.【点睛】本题考查频率分布直方图的作法,考查平均数、方差的求法,以及正态分布的特点及概率求解,考查运算能力,属于中档题.20.已知椭圆C过点,两个焦点.(1)求椭圆C的标准方程;(2)设直线l交椭圆C于A,B两点,且|AB|=6,求△AOB面积的最大值.【答案】(1);(2)9【解析】【分析】(1)由已知可设椭圆方程为(a>b>0),且c,再由椭圆定义求得a,结合隐含条件求得b,则椭圆方程可求;(2)当直线AB的斜率不存在时,设直线方程为x=m,由弦长求得m,可得三角形AOB的面积;当直线AB 的斜率存在时,设直线方程为y=kx+m,联立直线方程与椭圆方程,结合根与系数的关系及弦长可得m与k的关系,再由点到直线的距离公式求出原点O到AB的距离,代入三角形面积公式,化简后利用二次函数求最值,则答案可求.【详解】解:(1)由题意,设椭圆方程为(a>b>0),且c,2a12,则a=6,∴b2=a2﹣c2=12.∴椭圆C的标准方程为;(2)当直线AB的斜率不存在时,设直线方程为x=m,得|AB|,由|AB|6,解得m=±3,此时;当直线AB的斜率存在时,设直线方程为y=kx+m,联立,得(3k2+1)x2+6kmx+3m2﹣36=0.△=36k2m2﹣4(3k2+1)(3m2﹣36)=432k2﹣12m2+144.设A(,),B(,),则,.由|AB|6,整理得:,原点O到AB的距离d.∴.当时,△AOB面积有最大值为9.综上,△AOB面积的最大值为9.【点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.21.已知函数f(x)=e x﹣有两个极值点.(1)求实数a的取值范围;(2)若函数f(x)的两个极值点分别为x1,x2,求证:x1+x2>2.【答案】(1)(e,+∞);(2)见解析【解析】【分析】(1)f′(x)=e x﹣ax.函数f(x)=e x有两个极值点⇔f′(x)=e x﹣ax=0有两个实数根.x =0时不满足上述方程,方程化为:a,令g(x),(x≠0).利用导数已经其单调性即可得出.(2)由(1)可知:a>e时,函数f(x)有两个极值点分别为,x2,不妨设<,+>2⇔>2﹣>1⇔,由,因此即证明:.构造函数h(x),0<x<1,2﹣x>1.利用导数已经其单调性即可得出.【详解】(1)解:f′(x)=e x﹣ax.∵函数f(x)=e x有两个极值点.∴f′(x)=e x﹣ax=0有两个实数根.x=0时不满足上述方程,方程化为:a,令g(x),(x≠0).g′(x),可得:x<0时,g′(x)<0,函数g(x)单调递减;0<x<1时,g′(x)<0,函数g(x)单调递减;x >1时,g′(x)>0,函数g(x)单调递增.a>e时,方程f′(x)=e x﹣ax=0有两个实数根.∴实数a的取值范围是(e,+∞).(2)证明:由(1)可知:a>e时,函数f(x)有两个极值点分别为x1,x2,不妨设x1<x2.证明:+>2⇔>2﹣>1⇔,由,因此即证明:.构造函数h(x),0<x<1,2﹣x>1.h′(x)(x﹣1),令函数u(x),(0<x).u′(x).可得函数u(x)在(0,1)内单调递减,于是函数v(x)在(0,1)内单调递减.v(x)≥v(1)=0.∴x=1时,函数h(x)取得极小值即最小值,h(1)=0.∴h(x)>h(1)=0.∴.因此+>2成立.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t为参数,0≤α<π).(1)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(2)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.【答案】(1)曲线C:y2=4x,顶点为O(0,0),焦点为F(1,0)的抛物线;(2)8【解析】【分析】(1)利用即可得出直角坐标方程;(2)直线l的参数方程(t为参数,0≤α<π).可得l经过点(0,1);若直线l经过点(1,0),得到,得到直线l新的参数方程为(t为参数).代入抛物线方程可得t+2=0,设A、B对应的参数分别为t1,t2,利用|AB|即可得出.【详解】(1)曲线C的极坐标方程ρ=化为ρ2sin2θ=4ρcosθ,得到曲线C的直角坐标方程为y2=4x,故曲线C是顶点为O(0,0),焦点为F(1,0)的抛物线;(2)直线l的参数方程为(t为参数,0≤α<π).故l经过点(0,1);若直线l经过点(1,0),则,∴直线l的参数方程为(t为参数).代入y2=4x,得t+2=0设A、B对应的参数分别为t1,t2,则t1+t2=﹣6,t1t2=2.|AB|=|t1﹣t2|===8.【点睛】本题考查了极坐标方程和直角坐标方程的转换、直线的参数方程及其应用,考查了计算能力,属于中档题..23.已知函数f(x)=的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足时,求7a+4b的最小值.【答案】(Ⅰ) m≤4(Ⅱ)【解析】试题分析:(1)由函数定义域为R,可得|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x﹣3|,利用绝对值不等式的性质求出其最小值即可;(2)由(1)知n=4,变形7a+4b=,利用基本不等式的性质即可得出.试题解析:(Ⅰ)由题意可知:+-m≥0对任意实数恒成立.设函数g(x)=+,则m不大于函数g(x)的最小值.又+≥=4.即g(x)的最小值为4,所以m≤4(Ⅱ)由(Ⅰ)知n=4,∴7a+4b===≥=.当且仅当a+2b=3a+b,即b=2a=时,等号成立.所以7a+4b的最小值为.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.【此处有视频,请去附件查看】21。
2019届陕西省西安地区八校高三3月联考数学(理)试卷及解析
对于B, ,为指数函数,不是奇函数,不符合题意;
对于C, ,为奇函数,但在R上不是增函数,不符合题意;
对于D, ,为奇函数且在R上为增函数,符合题意;
故选:D.
7.已知正三棱柱ABC﹣A1B1C1的三视图如图所示,一只蚂蚁从顶点A出发沿该正三棱柱的表面绕行两周到达顶点A1,则该蚂蚁走过的最短路径为( )
【详解】
由条形统计图得到:
在这次考试各科成绩 转化为了标准分,满分900分 中,
甲比乙的各科成绩整体偏高,且相对稳定,
设甲乙两位同学成绩的平均值分别为 ,
标准差分别为 , ,
则 , .
故选:A.
3.1748年,瑞士著名数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式eix=cosx+isinx,这个公式在复变论中占有非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,e2i表示的复数所对应的点在复平面中位于( )
A.64B.42C.32D.21
【答案】B
【解析】试题分析: ,∴ ,∴过点 的切线方程为 ,令 ,得 ,可得 ,又 ,所以 .
11.已知双曲线 的右焦点为F2,若C的左支上存在点M,使得直线bx﹣ay=0是线段MF2的垂直平分线,则C的离心率为( )
∴ −− =3( −− );
∴ = −− .
故选:C.
5.《张丘建筑经》卷上第22题为:“今有女善织,日益功疾,且从第二天起,每天比前一天多织相同量的布.若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织布的尺数为()
A.18B.20C.21D.25
【答案】C
【解析】由题意设从第二天开始,每一天比前一天多织 尺布,则 ,解得 ,所以 ,故选C.
2019届陕西省西安地区高新一中、铁一中学、西工大附中等八校高三3月联考数学(理)试题(解析版)
解:∵ (x﹣2)=(x6+6x4+15x2+20+15• 6• )(x﹣2),
∴常数项是20•(﹣2)=﹣40,
故答案为:﹣40.
【点睛】
本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.
16.如图,已知圆柱和半径为 的半球O,圆柱的下底面在半球O底面所在平面上,圆柱的上底面内接于球O,则该圆柱的体积的最大值为_____.
【详解】
将正三棱柱 沿侧棱展开,如图所示;
在展开图中,最短距离是6个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.
由已知求得正三棱锥底面三角形的边长为 ,
所以矩形的长等于 ,宽等于7,
由勾股定理求得 .
故选:B.
【点睛】
本题考查了棱柱的结构特征与应用问题,也考查了几何体的展开与折叠,以及转化 空间问题转化为平面问题,化曲为直 的思想方法.
(1)求角A的大小;
(2)求△ABC的面积的最大值.
【答案】(1) ;(2) .
【解析】 直接利用三角函数关系式的恒等变变换和余弦定理和正弦定理的应用求出结果.
利用 的结论和余弦定理及基本不等式的应用求出结果.
【详解】
在 的内角A,B,C的对边分别为 ,且 .
整理得: ,
利用正弦定理得: ,
即: ,
又 ,x2∈[﹣2π,2π],∴2 ,2 ∈[﹣4π,4π],要使 ﹣2 取得最大值,
则应有2 =3π,2 =﹣3π,
故 ﹣2 取得最大值为 +3π= .
故选:A.
【点睛】
本题考查函数的奇偶性与单调性的判断,关键是分析“H函数”的含义,属于基础题.
9.已知圆C:x2+y2﹣2x﹣4y+3=0,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为( )
陕西省西安地区陕师大附中高新一中铁一中学、西工大附中等八校2019届高三3月联考数学(理)试题(解析版)
2019年陕西师大附中、西安高中、高新一中、铁一中学、西工大附中等八校高考数学模拟试卷(理科)(3月份)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,6,9},B={3x|x∈A},C={x∈N|3x∈A},则B∩C=()A. {1,2,3}B. {1,6,9}C. {1,6}D. {3}【答案】D【解析】【分析】先分别求出集合A,B,C,由此能求出.【详解】集合2,3,6,,6,9,18,,2,,.故选:D.【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.如图是甲乙两位同学某次考试各科成绩(转化为了标准分,满分900分)的条形统计图,设甲乙两位同学成绩的平均值分别为,,标准差分别为,则()A. B.C. D.【答案】A【解析】【分析】甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为,,从而得到,.【详解】由条形统计图得到:在这次考试各科成绩转化为了标准分,满分900分中,甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为,,则,.故选:A.【点睛】本题考查命题真假的判断,考查条形图、平均值、标准差等基础知识,考查运算求解能力,是基础题.3.1748年,瑞士著名数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式e ix=cosx+isinx,这个公式在复变论中占有非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,e2i表示的复数所对应的点在复平面中位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】由已知可得,再由三角函数的象限符号得答案.【详解】由题意可得,,,,,则表示的复数所对应的点在复平面中位于第二象限.故选:B.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.4.设为所在平面内一点,若,则下列关系中正确的是()A. B.C. D.【答案】A【解析】∵∴−−=3(−−);∴=−−.故选:C.5.《张丘建筑经》卷上第22题为:“今有女善织,日益功疾,且从第二天起,每天比前一天多织相同量的布.若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织布的尺数为()A. 18B. 20C. 21D. 25【答案】C【解析】由题意设从第二天开始,每一天比前一天多织尺布,则,解得,所以,故选C.6.如果对定义在R上的奇函数y=f(x),对任意两个不相邻的实数x1,x2,所有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数y=f(x)为“H函数”,下列函数为H函数的是()A. f(x)=sinxB. f(x)=e xC. f(x)=x3﹣3xD. f(x)=x|x|【答案】D【解析】【分析】根据题意,不等式等价为,即满足条件的函数为单调递增函数,即可得“H函数”为奇函数且在R上为增函数,据此依次分析选项:综合可得答案.【详解】根据题意,对于所有的不相等实数,,则恒成立,则有恒成立,即函数是定义在R上的增函数,则“H函数”为奇函数且在R上为增函数,据此依次分析选项:对于A,,为正弦函数,为奇函数但不是增函数,不符合题意;对于B,,为指数函数,不是奇函数,不符合题意;对于C,,为奇函数,但在R上不是增函数,不符合题意;对于D,,为奇函数且在R上为增函数,符合题意;故选:D.【点睛】本题考查函数的奇偶性与单调性的判断,关键是分析“H函数”的含义,属于基础题.7.已知正三棱柱ABC﹣A1B1C1的三视图如图所示,一只蚂蚁从顶点A出发沿该正三棱柱的表面绕行两周到达顶点A1,则该蚂蚁走过的最短路径为()A. B. 25 C. D. 31【答案】B【解析】【分析】将三棱柱展开,得出最短距离是6个矩形对角线的连线,相当于绕三棱柱转2次的最短路径,由勾股定理求出对应的最小值.【详解】将正三棱柱沿侧棱展开,如图所示;在展开图中,最短距离是6个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得正三棱锥底面三角形的边长为,所以矩形的长等于,宽等于7,由勾股定理求得.故选:B.【点睛】本题考查了棱柱的结构特征与应用问题,也考查了几何体的展开与折叠,以及转化空间问题转化为平面问题,化曲为直的思想方法.8.将函数的图象向右平移个单位,在向上平移一个单位,得到g(x)的图象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],则x1﹣2x2的最大值为()A. B. C. D.【答案】A【解析】【分析】由题意利用函数的图象变换规律,得到的解析式,再利用余弦函数的图象的值域,求出,的值,可得的最大值.【详解】将函数的图象向右平移个单位,再向上平移一个单位,得到g(x)=sin(2x﹣+)+1=﹣cos2x+1 的图象,故g(x)的最大值为2,最小值为0,若g()g()=4,则g()=g()=2,或g()=g()=﹣2(舍去).故有g()=g()=2,即cos2=cos2=﹣1,又,x2∈[﹣2π,2π],∴2,2∈[﹣4π,4π],要使﹣2取得最大值,则应有2=3π,2=﹣3π,故﹣2取得最大值为+3π=.故选:A.【点睛】本题主要考查函数的图象变换规律,余弦函数的图象的值域,属于中档题.9.已知圆C:x2+y2﹣2x﹣4y+3=0,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为()A. B. C. D.【答案】C【解析】试题分析:方法一:如图,连接AC,BC,设,连接PC与AB交于点D,,是等边三角形,∴D是AB的中点,,∴在圆C:中,圆C的半径为,,,∴在等边中,,,故选C.方法二:设,则,记,令,得,,故选C.考点:圆的性质、三角函数最值、利用导数求函数最值.【思路点睛】法一、先由为等腰三角形,得出D为中点,再由为等边三角形,得出,在中,将和用表示,从而求出的值,得到的表达式,用三角函数的有界性求最值;法二:设出边AD的长x,根据已知条件表示出,再利用导数求出函数的最值.10.抛物线x2= y在第一象限内图象上的一点(a i,2a i2)处的切线与x轴交点的横坐标记为a i+1,其中i∈N+,若a2=32,则a2+a4+a6等于()A. 64B. 42C. 32D. 21【答案】B【解析】试题分析:,∴,∴过点的切线方程为,令,得,可得,又,所以.考点:1.导数的几何性质;2.等比数列.11.已知双曲线的右焦点为F2,若C的左支上存在点M,使得直线bx﹣ay=0是线段MF2的垂直平分线,则C的离心率为()A. B. 2 C. D. 5【答案】C【解析】【分析】设P为直线与的交点,则OP为的中位线,求得到渐近线的距离为b,运用中位线定理和双曲线的定义,以及离心率的公式,计算可得所求值.【详解】,直线是线段的垂直平分线,可得到渐近线的距离为,且,,,可得,即为,即,可得.故选:C.【点睛】本题考查双曲线的定义、方程和性质,考查三角形的中位线定理,考查方程思想和运算能力,属于中档题.12.已知函数,则函数g(x)=xf(x)﹣1的零点的个数为()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】由g(x)=xf(x)﹣1=0得f(x),根据条件作出函数f(x)与h(x)的图象,研究两个函数的交点个数即可得到结论.【详解】由g(x)=xf(x)﹣1=0得xf(x)=1,当x=0时,方程xf(x)=1不成立,即x≠0,则等价为f(x)=,当2<x≤4时,0<x﹣2≤2,此时f(x)=f(x﹣2)=(1﹣|x﹣2﹣1|)=﹣|x﹣3|,当4<x≤6时,2<x﹣2≤4,此时f(x)=f(x﹣2)=[﹣|x﹣2﹣3|]=﹣|x﹣5|,作出f(x)的图象如图,则f(1)=1,f(3)=f(1)=,f(5)=f(3)=,设h(x)=,则h(1)=1,h(3)=,h(5)=>f(5),作出h(x)的图象,由图象知两个函数图象有3个交点,即函数g(x)的零点个数为3个,故选:B.【点睛】本题主要考查函数与方程的应用,利用条件转化为两个函数图象的交点个数问题,利用数形结合是解决本题的关键.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知F是抛物线C:y=2x2的焦点,点P(x,y)在抛物线C上,且x=1,则|PF|=_____.【答案】【解析】【分析】利用抛物线方程求出p,利用抛物线的性质列出方程求解即可.【详解】由,得,则;由得,由抛物线的性质可得,故答案为:.【点睛】本题考查抛物线的定义的应用,属于基础题.14.已知实数x,y满足约束条件,则z=|﹣5x+y|的取值范围为_____.【答案】[0,11]【解析】【分析】作出约束条件表示的可行域,判断目标函数经过的点,然后求解目标函数的范围即可.【详解】作出实数x,y满足约束条件的可行域,如图所示:作直线l0:﹣5x+y=0,再作一组平行于l0的直线l:﹣5x+y=z,当直线l经过点A时,z=﹣5x+y取得最大值,由,得点A的坐标为(﹣2,0),所以z max=﹣5×(﹣2)+0=10.直线经过B时,目标函数取得最小值,由,解得B(2,﹣1)函数的最小值为:﹣10﹣1=﹣11.z=|﹣5x+y|的取值范围为:[0,11].故答案为:[0,11].【点睛】本题考查线性规划的简单应用,考查转化思想以及数形结合的综合应用,考查计算能力.15.在的展开式中,常数项为_____.【答案】-40【解析】【分析】根据,按照二项式定理展开,可得在的展开式中的常数项.【详解】解:∵(x﹣2)=(x6+6x4+15x2+20+15•6•)(x﹣2),∴常数项是20•(﹣2)=﹣40,故答案为:﹣40.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.16.如图,已知圆柱和半径为的半球O,圆柱的下底面在半球O底面所在平面上,圆柱的上底面内接于球O,则该圆柱的体积的最大值为_____.【答案】2π【解析】【分析】设圆柱的底面圆半径为r,高为h,求出r与h的关系,再计算圆柱的体积V,从而求出体积V的最大值.【详解】解:设圆柱的底面圆半径为r,高为h;则h2+r2=R2=3;所以圆柱的体积为V=πr2h=π(3﹣h2)h=π(3h﹣h3);则V′(h)=π(3﹣3h2),令V′(h)=0,解得h=1;所以h∈(0,1)时,V′(h)>0,V(h)单调递增;h∈(1,)时,V′(h)<0,V(h)单调递减;所以h=1时,V(h)取得最大值为V(1)=2π.故答案为:2π.【点睛】本题考查了半球与内接圆柱的结构特征与应用问题,也考查了圆柱的体积计算问题,是中档题.三、解答题(本大题共5小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)(一)必考题:共60分.17.△ABC的内角A,B,C的对边分别为,且.(1)求角A的大小;(2)求△ABC的面积的最大值.【答案】(1);(2).【解析】【分析】直接利用三角函数关系式的恒等变变换和余弦定理和正弦定理的应用求出结果.利用的结论和余弦定理及基本不等式的应用求出结果.【详解】在的内角A,B,C的对边分别为,且.整理得:,利用正弦定理得:,即:,由于:,解得:.由于,所以:,整理得:,所以:.当且仅当时,的面积有最小值.【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,正弦定理和余弦定理及三角形面积公式,基本不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.18.如图1,等边△ABC中,AC=4,D是边AC上的点(不与A,C重合),过点D作DE∥BC交AB于点E,沿DE 将△ADE向上折起,使得平面ADE⊥平面BCDE,如图2所示.(1)若异面直线BE与AC垂直,确定图1中点D的位置;(2)证明:无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值,并求出这个定值.【答案】(1)见解析;(2)【解析】【分析】(1)取DE中点O,BC中点F,连结OA,OF,以O为原点,OE、OF、OA所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出图1中点D在靠近点A的三等分点处;(2)求出平面ADE的法向量和平面ABE的法向量,利用向量法能证明无论点D的位置如何,二面角D﹣AE ﹣B的余弦值都为定值.【详解】解:(1)在图2中,取DE中点O,BC中点F,连结OA,OF,以O为原点,OE、OF、OA所在直线分别为x,y,z轴,建立空间直角坐标系,设OA=x,则OF=2x,OE,∴B(2,2x,0),E(,0,0),A(0,0,x),C(﹣2,2x,0),(﹣2,2x,﹣x),(2,x﹣2,0),∵异面直线BE与AC垂直,∴8=0,解得x(舍)或x,∴,∴图1中点D在靠近点A的三等分点处.证明:(2)平面ADE的法向量(0,1,0),(,0,﹣x),(2,x﹣2,0),设平面ABE的法向量(a,b,c),则,取a=1,得(1,,),设二面角D﹣AE﹣B的平面角为θ,则cosθ,∴无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值.【点睛】本题考查空间中点的位置的确定,考查二面角的余弦值为定值的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算能力,考查数形结合思想,是中档题.19.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.由测量表得到如下频率分布直方图(1)补全上面的频率分布直方图(用阴影表示);(2)统计方法中,同一组数据常用该组区间的中间值作为代表,据此估计这种产品质量指标值服从正态分布Z(μ,σ2),其中μ近似为样本平均值,σ2近似为样本方差s2(组数据取中间值);①利用该正态分布,求从该厂生产的产品中任取一件,该产品为合格品的概率;②该企业每年生产这种产品10万件,生产一件合格品利润10元,生产一件不合格品亏损20元,则该企业的年利润是多少?参考数据:=5.1,若Z~N(μ,σ2),则P(μ﹣σ,μ+σ)=0.6826,P(μ﹣2σ,μ+2σ)=0.9544.【答案】(1)见解析;(2)①0.9544,②863200.【解析】【分析】(1)由频率分布图求出[95,105)的频率,由此能作出补全频率分布直方图;(2)求出质量指标值的样本平均数、质量指标值的样本方差;①由(2)知Z~N(100,104),从而求出P(79.6<Z<120.4),注意运用所给数据;②设这种产品每件利润为随机变量E(X),即可求得EX.【详解】(1)由频率分布直方图得:[95,105)的频率为:1﹣(0.006+0.026+0.022+0.008)×10=0.038,补全上面的频率分布直方图(用阴影表示):质量指标值的样本平均数为:=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为S2=(﹣20)2×0.06+(﹣10)2×0.26+0×0.38+102×0.22+202×0.08=104.(2)①由(1)知Z~N(100,104),从而P(79.6<Z<120.4)=P(100﹣2×10.2<Z<100+2×10.2)=0.9544;②由①知一件产品的质量指标值位于区间(79.6,120.4)的概率为0.9544,该企业的年利润是EX=100000[0.9544×10﹣(1﹣0.9544)×20]=863200.【点睛】本题考查频率分布直方图的作法,考查平均数、方差的求法,以及正态分布的特点及概率求解,考查运算能力,属于中档题.20.已知椭圆C过点,两个焦点.(1)求椭圆C的标准方程;(2)设直线l交椭圆C于A,B两点,且|AB|=6,求△AOB面积的最大值.【答案】(1);(2)【解析】【分析】(1)由已知可设椭圆方程为(a>b>0),且c,再由椭圆定义求得a,结合隐含条件求得b,则椭圆方程可求;(2)当直线AB的斜率不存在时,设直线方程为x=m,由弦长求得m,可得三角形AOB的面积;当直线AB 的斜率存在时,设直线方程为y=kx+m,联立直线方程与椭圆方程,结合根与系数的关系及弦长可得m与k 的关系,再由点到直线的距离公式求出原点O到AB的距离,代入三角形面积公式,化简后利用二次函数求最值,则答案可求.【详解】解:(1)由题意,设椭圆方程为(a>b>0),且c,2a12,则a=6,∴b2=a2﹣c2=12.∴椭圆C的标准方程为;(2)当直线AB的斜率不存在时,设直线方程为x=m,得|AB|,由|AB|6,解得m=±3,此时;当直线AB的斜率存在时,设直线方程为y=kx+m,联立,得(3k2+1)x2+6kmx+3m2﹣36=0.△=36k2m2﹣4(3k2+1)(3m2﹣36)=432k2﹣12m2+144.设A(,),B(,),则,.由|AB|6,整理得:,原点O到AB的距离d.∴.当时,△AOB面积有最大值为9.综上,△AOB面积的最大值为.【点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.21.已知函数f(x)=e x﹣有两个极值点.(1)求实数a的取值范围;(2)若函数f(x)的两个极值点分别为x1,x2,求证:x1+x2>2.【答案】(1)(e,+∞);(2)见解析【解析】【分析】(1)f′(x)=e x﹣ax.函数f(x)=e x有两个极值点⇔f′(x)=e x﹣ax=0有两个实数根.x =0时不满足上述方程,方程化为:a,令g(x),(x≠0).利用导数已经其单调性即可得出.(2)由(1)可知:a>e时,函数f(x)有两个极值点分别为,x2,不妨设<,+>2⇔>2﹣>1⇔,由,因此即证明:.构造函数h(x),0<x<1,2﹣x>1.利用导数已经其单调性即可得出.【详解】(1)解:f′(x)=e x﹣ax.∵函数f(x)=e x有两个极值点.∴f′(x)=e x﹣ax=0有两个实数根.x=0时不满足上述方程,方程化为:a,令g(x),(x≠0).g′(x),可得:x<0时,g′(x)<0,函数g(x)单调递减;0<x<1时,g′(x)<0,函数g(x)单调递减;x >1时,g′(x)>0,函数g(x)单调递增.g(1)=e,得到函数草图如图所示.a>e时,方程f′(x)=e x﹣ax=0有两个实数根.∴实数a的取值范围是(e,+∞).(2)证明:由(1)可知:a>e时,函数f(x)有两个极值点分别为x1,x2,不妨设x1<x2.证明:+>2⇔>2﹣>1⇔,由,因此即证明:.构造函数h(x),0<x<1,2﹣x>1.h′(x)(x﹣1),令函数u(x),(0<x<2).u′(x).可得函数u(x)在(0,2)内单调递减,于是函数v(x)在(0,1)内单调递减.v(x)≥v(1)=0.∴h′(x)(x﹣1),h(x)在(0,1)内单调递减.∴h(x)>h(1)=0,∴.因此+>2成立.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t为参数,0≤α<π).(1)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(2)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.【答案】(1)曲线C:y2=4x,顶点为O(0,0),焦点为F(1,0)的抛物线;(2)8【解析】【分析】(1)利用即可得出直角坐标方程;(2)直线l的参数方程(t为参数,0≤α<π).可得l经过点(0,1);若直线l经过点(1,0),得到,得到直线l新的参数方程为(t为参数).代入抛物线方程可得t+2=0,设A、B对应的参数分别为t1,t2,利用|AB|即可得出.【详解】(1)曲线C的极坐标方程ρ=化为ρ2sin2θ=4ρcosθ,得到曲线C的直角坐标方程为y2=4x,故曲线C是顶点为O(0,0),焦点为F(1,0)的抛物线;(2)直线l的参数方程为(t为参数,0≤α<π).故l经过点(0,1);若直线l经过点(1,0),则,∴直线l的参数方程为(t为参数).代入y2=4x,得t+2=0设A、B对应的参数分别为t1,t2,则t1+t2=﹣6,t1t2=2.|AB|=|t1﹣t2|==8.【点睛】本题考查了极坐标方程和直角坐标方程的转换、直线的参数方程及其应用,考查了计算能力,属于中档题..23.已知函数f(x)=的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足时,求7a+4b的最小值.【答案】(Ⅰ) m≤4(Ⅱ)【解析】试题分析:(1)由函数定义域为R,可得|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x﹣3|,利用绝对值不等式的性质求出其最小值即可;(2)由(1)知n=4,变形7a+4b=,利用基本不等式的性质即可得出.试题解析:(Ⅰ)由题意可知:+-m≥0对任意实数恒成立.设函数g(x)=+,则m不大于函数g(x)的最小值.又+≥=4.即g(x)的最小值为4,所以m≤4(Ⅱ)由(Ⅰ)知n=4,∴7a+4b===≥=.当且仅当a+2b=3a+b,即b=2a=时,等号成立.所以7a+4b的最小值为.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。
陕西西安八校2019高三联考试题-数学(理)
陕西西安八校2019高三联考试题-数学(理)2018届高三年级联考数学〔理〕试题本试卷分第1卷〔选择题〕和第二卷〔非选择题〕两部分,共150分、考试时间120分钟。
本卷须知1、答题前,考生务必先将自己的姓名、准考证号填写在答题纸上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题纸上的指定位置上、2、选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案用0、5毫米的黑色中性〔签字〕笔或碳素笔书写,字体工整,笔迹清晰、3、请按照题号在各题的答题区域〔黑色线框〕内作答,超出答题区域书写的答案无效、4、保持纸面清洁,不折叠,不破损、5、假设做选考题时,考生应按照题目要求作答,并在答题纸上对应的题号后填写、第一卷〔选择题共50分〕【一】选择题:本大题共10小题,每题5分,共50俞、在每题给出的四个选项中,只有一项为哪一项符合题目要求的、是实数,那么实数m=1、假如复数2m i mi()(1)A、一2B、2C、-1D、l2、直角△ABC中,AB〔1,1〕,AC=〔2,k〕那么实数k的值为A、0B、-2或0C、-2D、23、条件p:关于x的不等式2x mx m R的解集为R;条件q:指数函数10()f〔x〕=〔m+3〕x为增函数、那么p是q的A、充要条件B、既不充分也不必要条件C、充分不必要条件D、必要不充分条件4、一个几何体的三视图如下图,那么该几何体的体积为A、23B、13C、2D、15、某学生不记得了自己的QQ号,但记得QQ号是由一个2,一个5,两个8组成的四位数,因此用这四个数随意排成一个四位数,输入电脑尝试,那么他找到自己的QQ号最多尝试次数为A 、18B 、24C 、6D 、12 6、假设函数21()log ()2a f x x ax 有最小值,那么实数a 的取值范围是A 、〔1,2〕B 、[2,+∞〕C 、〔0,1〕D 、〔0,1〕〔1,2〕7、在数列{n a }中,a 1=1,a 2=5,21(*)n n n a a a n N ,那么a 2007= A 、4B 、-1C 、1D 、5 8、如图,椭圆22221(0)xy a b a b 及两条直线2212:,:a a l x l x c c,其中22c a b ,且12,l l 分别交x 轴于C 、D 两点、从1l 上一点A 发出一条光线通过椭圆的左焦点F 被石轴反射后与2l 交于点B 、假设AF ⊥BF ,且∠ABD=75°,那么椭圆的离心率等于A 、622B 、312C 、624D 、319、如图,圆O:x 2+y 2=2内的正弦曲线y=sinx 与x 轴围成的区域记为M 〔图中阴影部分〕,随机向圆O 内投一个点P ,那么点P 落在区域肘内的概率是A 、22B 、32C 、24D 、3410、如右下图,正三角形PAD 所在平面与正方形ABCD 所在平面互相垂直,0为正方形AB-CD的中心,M 为正方形ABCD 内一点,且满足MP=MC ,那么点M 的轨迹为第二卷〔非选择题共100分〕【二】填空题:本大题共5小题,每题5分,共25分、将答案填写在题中的横线上、11、某程序框图如下图,该程序运行后输出的值是。
陕西省西安地区2019-2020高三上学期第一次八校联考理科数学试题(wd无答案)
陕西省西安地区2019-2020高三上学期第一次八校联考理科数学试题(wd无答案)一、单选题(★★) 1. 已知集合,,则A.B.C.D.(★★) 2. 已知复数在复平面上对应的点为,为虚数单位,则().A.B.C.D.(★★) 3. 函数的零点个数为()A.0B.1C.2D.3(★★★) 4. 若实数满足,则的最小值为()A.B.C.D.(★★★) 5. 从6男4女中任选2男2女担任、、、四种互不相同的工作,且每人担任其中的一项工作.若女甲不能担任工作,则不同的选派方案种数为().A.1800B.1890C.2160D.2210(★★★) 6. 已知的展开式中第项是,则函数是().A.定义域为的奇函数B.在上递减的奇函数C.定义域为的偶函数D.在上递增的偶函数(★★)7. 已知点到抛物线的准线的距离为5,则抛物线的焦点坐标为()A.B.C.D.(★★★) 8. 已知正三棱锥的底面边长为3,侧棱长为,且三棱锥的四个顶点都在同一球面上,则该球的表面积为()A.B.C.D.(★★★) 9. 若为实数,则“ ”是“ ”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(★★) 10. 函数的单调递增区间为().A.B.C.D.(★★★) 11. 已知双曲线的左焦点为、过且垂直于轴的直线被双曲线截得的弦长为(为双曲线的离心率),则双曲线的渐近线方程为A.B.C.D.(★★) 12. 陕西关中的秦腔表演朴实,粗犷,细腻,深刻,再有电子布景的独有特效,深得观众喜爱.戏曲相关部门特意进行了“喜爱看秦腔”调查,发现年龄段与爱看秦腔的人数比存在较好的线性相关关系,年龄在[40,44],[45,49],[50,54],[55,59]的爱看人数比分别是0.10,0.18,0.20,0.30,现用各年龄段的中间值代表年龄段,如42代表[40,44].由此求得爱看人数比关于年龄段的线性回归方程为.则年龄在[60,64]的10000人中,爱看秦腔的人数约为().A.4200B.3900C.3700D.3500二、填空题(★) 13. 已知平面向量,,且,则______.(★★) 14. 在与之间插入个数,使这个数成等差数列,则插入的个数的和等于__(★★★) 15. 甲乙两人进行乒乓球比赛,约定先连胜两局者赢得比赛,假设每局甲获胜的概率为,乙获胜的概率为,各局比赛相互独立,则恰好进行了4局结束比赛的概率为______.三、双空题(★★★★) 16. 金石文化,时中国悠久文化之一.“金”是指“铜”,“石”是指“石头”,“金石文化”是指在铜器或石头上刻有文字的器件.在一千多年前,有一种凸多面体工艺品,是金石文化的代表作,此工艺品的三视图是三个全等的正八边形(如图),若一个三视图(即一个正八边形)的面积是,则该工艺品共有___个面,表面积是_____四、解答题(★★★) 17. 已知的内角、、的对边分别为、、,且,,边上的中线的长为.(1)求角、的大小;(2)求的面积.(★★★) 18. 已知四棱锥中,底面四边形为平行四边形,为的中点,为上一点,且(如图).(Ⅰ)证明:平面;(Ⅱ)当平面平面,,时,求二面角的余弦值.(★★) 19. 已知数列的前项和为,设.(1)若,,且数列为等差数列,求数列的通项公式;(2)若对任意都成立,求当为偶函数时的表达式.(★★★) 20. 已知函数在区间上单调递减.(1)求的最大值;(2)若函数的图像在原点处的切线也与函数的图像相切,求的值. (★★★★★) 21. 已知,,顺次是椭圆:的右顶点、上顶点和下顶点,椭圆的离心率,且.(1)求椭圆的方程;(2)若斜率为的直线过点,直线与椭圆交于,两点,且以为直径的圆经过点,求证:直线过定点,并求出该定点的坐标.(★★★) 22. 在直角坐标系中,直线经过点,其倾斜角为,以原点为极点,以轴非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系,设曲线的参数方程为(为参数),曲线的极坐标方程为.(1)求曲线的普通方程和极坐标方程;(2)若直线与曲线有公共点,求的取值范围.(★★★) 23. 已知函数.(1)求不等式的解集;(2)若存在,使成立,求的取值范围.。
2019届理科数学联考(无答案)
西安地区陕师大附中、西安高级中学、西安高新一中、西安交大附中、西安市83中西安市85中、西安市一中、西安铁一中、西安中学、西工大附中八校联考(八校顺序以校名全称按汉语拼音方案字母表顺序列;再行增减校名时“八校联考”名称不变)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.注意事项:1. 答题前,考生务必先将自己的姓名、准考证号填写在答题纸上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题纸上的指定位置上.2. 选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.3. 请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4. 保持纸面清洁,不折叠,不破损.5. 若做选考题时,考生应按照题目要求作答,并在答题纸上对应的题号后填写.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合{}2|M x y x-==,{|P y y ==,那么M P I 等于( ) A. ()0,+∞ B. ()1,+∞C. [)1,+∞D. [)0,+∞ 2. 欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”.根据欧拉公式可知,2i e 表示的复数对应的点在复平面中位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列关于命题的说法错误的是( )A. 命题“若2320x x -+=,则2x =”的逆否命题为“若2x ≠,则2320x x -+≠”B. 已知函数()f x 在区间[],a b 上的图象是连续不断的,则命题“若()()0f a f b ⋅<,则()f x 在区间(),a b 内至少有一个零点”的逆命题为假命题C. 命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈均有210x x ++≥”D. “若0x 为()y f x =的极值点,则()0'0f x =”的逆命题为真命题4. 函数2ln x xy x =的图象大致是( )A. B. C. D.5. 已知在三棱锥P ABC -中,1PA PB BC ===,AB =,AB BC ⊥,平面PAB ⊥平面ABC ,若三棱锥的顶点在同一个球面上,则该球的表面积为( )A. B. 3 C. 2π D. 3π 6. 设函数()()0,1x f x a a a =>≠,()1y f x -=表示()y f x =的反函数,定义如框图表示的运算.若输入2x =-,输出14y =;当输出3y =-时,则输入x 为( )A. 18B. 6C. 16D. 8 7. 已知点()3,0A 、()0,3B 、()cos ,sin C αα.若1AC BC ⋅=-u u u r u u u r ,则sin 4πα⎛⎫+ ⎪⎝⎭的值为( )A. 23B.C.D. 128. 某空间几何体的三视图如图所示,则该几何体的体积为( )。
2019届陕西省西安地区陕师大附中、西安高级中学等八校高三4月联考数学(理)试题(含解析)
2019届陕西省西安地区陕师大附中、西安高级中学等八校高三4月联考数学(理)试题一、单选题1.已知集合,,那么等于()A.B.C.D.【答案】A【解析】对集合进行化简,再进行的运算。
【详解】故选A。
【点睛】在化简集合时要注意集合的研究对象,如的研究对象是而不是。
2.欧拉公式为虚数单位是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占用非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数在复平面中位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】由欧拉公式,可得=cos2+isin2,表示的复数在复平面中的象限.【详解】解:由欧拉公式,可得=cos2+isin2,此复数在复平面中对应的点为(cos2,sin2),易得cos2<0,sin2>0,可得此点位于第二象限,故选B.【点睛】本题主要考查复数几何意义的应用,灵活运用所给条件求解是解题的关键.3.下列关于命题的说法错误的是()A.命题“若,则”的逆否命题为“若,则”B.已知函数在区间上的图象是连续不断的,则命题“若,则在区间内至少有一个零点”的逆命题为假命题C.命题“,使得”的否定是:“,均有”D.“若为的极值点,则”的逆命题为真命题【答案】D【解析】利用原命题写出逆否命题、逆命题、否定,再判断其真假或命题写法的正确性。
【详解】根据逆否命题的定义可知,A正确;B项逆命题为:已知函数在区间上的图象是连续不断的,若在区间内至少有一个零点,则,为假命题,如在区间上有一个零点,但,即B正确;根据否定的定义可知,C正确;D项逆命题为:若,则为的极值点是假命题,如函数,虽然,但不是函数的极值点。
【点睛】判断一个命题为假命题,可举一个反例,即可证明其为假命题。
4.函数的图象大致是()A.B.C.D.【答案】D【解析】根据奇偶性可排除B,结合导数对函数在的单调性即可得出答案。
陕西省西安地区陕师大附中八校2019届高三数学3月联考试卷理(含解析)
2019年陕西师大附中、西安高中、高新一中、铁一中学、西工大附中等八校高考数学模拟试卷(理科)(3月份)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,6,9},B={3x|x∈A},C={x∈N|3x∈A},则B∩C=()A. {1,2,3}B. {1,6,9}C. {1,6}D. {3}【答案】D【解析】【分析】先分别求出集合A,B,C,由此能求出.【详解】集合2,3,6,,6,9,18,,2,,.故选:D.【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.如图是甲乙两位同学某次考试各科成绩(转化为了标准分,满分900分)的条形统计图,设甲乙两位同学成绩的平均值分别为,,标准差分别为,则()A. B.C. D.【答案】A【解析】【分析】甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为,,从而得到,.【详解】由条形统计图得到:在这次考试各科成绩转化为了标准分,满分900分中,甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为,,则,.故选:A.【点睛】本题考查命题真假的判断,考查条形图、平均值、标准差等基础知识,考查运算求解能力,是基础题.3.1748年,瑞士著名数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式e ix =cosx+isinx,这个公式在复变论中占有非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,e2i表示的复数所对应的点在复平面中位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】由已知可得,再由三角函数的象限符号得答案.【详解】由题意可得,,,,,则表示的复数所对应的点在复平面中位于第二象限.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.4.设为所在平面内一点,若,则下列关系中正确的是()A. B.C. D.【答案】A【解析】∵∴−−=3(−−);∴=−−.故选:C.【此处有视频,请去附件查看】5.《张丘建筑经》卷上第22题为:“今有女善织,日益功疾,且从第二天起,每天比前一天多织相同量的布.若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织布的尺数为()A. 18B. 20C. 21D. 25【答案】C【解析】由题意设从第二天开始,每一天比前一天多织尺布,则,解得,所以,故选C.6.如果对定义在R上的奇函数y=f(x),对任意两个不相邻的实数x1,x2,所有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数y=f(x)为“H函数”,下列函数为H函数的是()A. f(x)=sinxB. f(x)=e xC. f(x)=x3﹣3xD. f(x)=x|x|【答案】D【解析】根据题意,不等式等价为,即满足条件的函数为单调递增函数,即可得“H函数”为奇函数且在R上为增函数,据此依次分析选项:综合可得答案.【详解】根据题意,对于所有的不相等实数,,则恒成立,则有恒成立,即函数是定义在R上的增函数,则“H函数”为奇函数且在R上为增函数,据此依次分析选项:对于A,,为正弦函数,为奇函数但不是增函数,不符合题意;对于B,,为指数函数,不是奇函数,不符合题意;对于C,,为奇函数,但在R上不是增函数,不符合题意;对于D,,为奇函数且在R上为增函数,符合题意;故选:D.【点睛】本题考查函数的奇偶性与单调性的判断,关键是分析“H函数”的含义,属于基础题.7.已知正三棱柱ABC﹣A1B1C1的三视图如图所示,一只蚂蚁从顶点A出发沿该正三棱柱的表面绕行两周到达顶点A1,则该蚂蚁走过的最短路径为()A. B. 25 C. D. 31【解析】【分析】将三棱柱展开,得出最短距离是6个矩形对角线的连线,相当于绕三棱柱转2次的最短路径,由勾股定理求出对应的最小值.【详解】将正三棱柱沿侧棱展开,如图所示;在展开图中,最短距离是6个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得正三棱锥底面三角形的边长为,所以矩形的长等于,宽等于7,由勾股定理求得.故选:B.【点睛】本题考查了棱柱的结构特征与应用问题,也考查了几何体的展开与折叠,以及转化空间问题转化为平面问题,化曲为直的思想方法.8.将函数的图象向右平移个单位,在向上平移一个单位,得到g(x)的图象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],则x1﹣2x2的最大值为()A. B. C. D.【答案】A【解析】【分析】根据题意,不等式f()+f()>f()+f()等价为(﹣)[f()﹣f()]>0,即满足条件的函数为单调递增函数,即可得“H函数”为奇函数且在R上为增函数,据此依次分析选项:综合可得答案.【详解】将函数的图象向右平移个单位,再向上平移一个单位,得到g(x)=sin(2x﹣+)+1=﹣cos2x+1 的图象,故g(x)的最大值为2,最小值为0,若g()g()=4,则g()=g()=2,或g()=g()=﹣2(舍去).故有 g()=g()=2,即 cos2=cos2=﹣1,又,x2∈[﹣2π,2π],∴2,2∈[﹣4π,4π],要使﹣2取得最大值,则应有 2=3π,2=﹣3π,故﹣2取得最大值为+3π=.故选:A.【点睛】本题考查函数的奇偶性与单调性的判断,关键是分析“H函数”的含义,属于基础题.9.已知圆C:x2+y2﹣2x﹣4y+3=0,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为()A. B. C. D.【答案】C【解析】试题分析:方法一:如图,连接AC,BC,设,连接PC与AB交于点D,,是等边三角形,∴D是AB的中点,,∴在圆C:中,圆C的半径为,,,∴在等边中,,,故选C.方法二:设,则,记,令,得,,故选C.考点:圆的性质、三角函数最值、利用导数求函数最值.【思路点睛】法一、先由为等腰三角形,得出D为中点,再由为等边三角形,得出,在中,将和用表示,从而求出的值,得到的表达式,用三角函数的有界性求最值;法二:设出边AD的长x,根据已知条件表示出,再利用导数求出函数的最值.10.抛物线x2= y在第一象限内图象上的一点(a i,2a i2)处的切线与x轴交点的横坐标记为a i+1,其中i∈N+,若a2=32,则a2+a4+a6等于()A. 64B. 42C. 32D. 21【答案】B【解析】试题分析:,∴,∴过点的切线方程为,令,得,可得,又,所以.考点:1.导数的几何性质;2.等比数列.11.已知双曲线的右焦点为F2,若C的左支上存在点M,使得直线bx﹣ay=0是线段MF2的垂直平分线,则C的离心率为()A. B. 2 C. D. 5【答案】C【解析】【分析】设P为直线与的交点,则OP为的中位线,求得到渐近线的距离为b,运用中位线定理和双曲线的定义,以及离心率的公式,计算可得所求值.【详解】,直线是线段的垂直平分线,可得到渐近线的距离为,且,,,可得,即为,即,可得.故选:C.【点睛】本题考查双曲线的定义、方程和性质,考查三角形的中位线定理,考查方程思想和运算能力,属于中档题.12.已知函数,则函数g(x)=xf(x)﹣1的零点的个数为()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】由g(x)=xf(x)﹣1=0得f(x),根据条件作出函数f(x)与h(x)的图象,研究两个函数的交点个数即可得到结论.【详解】由g(x)=xf(x)﹣1=0得xf(x)=1,当x=0时,方程xf(x)=1不成立,即x≠0,则等价为f(x)=,当2<x≤4时,0<x﹣2≤2,此时f(x)=f(x﹣2)=(1﹣|x﹣2﹣1|)=﹣|x﹣3|,当4<x≤6时,2<x﹣2≤4,此时f(x)=f(x﹣2)= [﹣|x﹣2﹣3|]=﹣|x﹣5|,作出f(x)的图象如图,则f(1)=1,f(3)=f(1)=,f(5)=f(3)=,设h(x)=,则h(1)=1,h(3)=,h(5)=>f(5),作出h(x)的图象,由图象知两个函数图象有3个交点,即函数g(x)的零点个数为3个,故选:B.【点睛】本题主要考查函数与方程的应用,利用条件转化为两个函数图象的交点个数问题,利用数形结合是解决本题的关键.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知F是抛物线C:y=2x2的焦点,点P(x,y)在抛物线C上,且x=1,则|PF|=_____.【答案】【解析】【分析】利用抛物线方程求出p,利用抛物线的性质列出方程求解即可.【详解】由,得,则;由得,由抛物线的性质可得,故答案为:.【点睛】本题考查抛物线的定义的应用,属于基础题.14.已知实数x,y满足约束条件,则z=|﹣5x+y|的取值范围为_____.【答案】[0,11]【解析】【分析】作出约束条件表示的可行域,判断目标函数经过的点,然后求解目标函数的范围即可.【详解】作出实数x,y满足约束条件的可行域,如图所示:作直线l0:﹣5x+y=0,再作一组平行于l0的直线l:﹣5x+y=z,当直线l经过点A时,z=﹣5x+y取得最大值,由,得点A的坐标为(﹣2,0),所以z max=﹣5×(﹣2)+0=10.直线经过B时,目标函数取得最小值,由,解得B(2,﹣1)函数的最小值为:﹣10﹣1=﹣11.z=|﹣5x+y|的取值范围为:[0,11].故答案为:[0,11].【点睛】本题考查线性规划的简单应用,考查转化思想以及数形结合的综合应用,考查计算能力.15.在的展开式中,常数项为_____.【答案】-40【解析】【分析】根据,按照二项式定理展开,可得在的展开式中的常数项.【详解】解:∵(x﹣2)=(x6+6x4+15x2+20+15•6•)(x﹣2),∴常数项是 20•(﹣2)=﹣40,故答案为:﹣40.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.16.如图,已知圆柱和半径为的半球O,圆柱的下底面在半球O底面所在平面上,圆柱的上底面内接于球O,则该圆柱的体积的最大值为_____.【答案】2π【解析】【分析】设圆柱的底面圆半径为r,高为h,求出r与h的关系,再计算圆柱的体积V,从而求出体积V的最大值.【详解】解:设圆柱的底面圆半径为r,高为h;则h2+r2=R2=3;所以圆柱的体积为V=πr2h=π(3﹣h2)h=π(3h﹣h3);则V′(h)=π(3﹣3h2),令V′(h)=0,解得h=1;所以h∈(0,1)时,V′(h)>0,V(h)单调递增;h∈(1,)时,V′(h)<0,V(h)单调递减;所以h=1时,V(h)取得最大值为V(1)=2π.故答案为:2π.【点睛】本题考查了半球与内接圆柱的结构特征与应用问题,也考查了圆柱的体积计算问题,是中档题.三、解答题(本大题共5小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)(一)必考题:共60分.17.△ABC的内角A,B,C的对边分别为,且.(1)求角A的大小;(2)求△ABC的面积的最大值.【答案】(1);(2).【解析】【分析】直接利用三角函数关系式的恒等变变换和余弦定理和正弦定理的应用求出结果.利用的结论和余弦定理及基本不等式的应用求出结果.【详解】在的内角A,B,C的对边分别为,且.整理得:,利用正弦定理得:,即:,由于:,解得:.由于,所以:,整理得:,所以:.当且仅当时,的面积有最小值.【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,正弦定理和余弦定理及三角形面积公式,基本不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.18.如图1,等边△ABC中,AC=4,D是边AC上的点(不与A,C重合),过点D作DE∥BC 交AB于点E,沿DE将△ADE向上折起,使得平面ADE⊥平面BCDE,如图2所示.(1)若异面直线BE与AC垂直,确定图1中点D的位置;(2)证明:无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值,并求出这个定值.【答案】(1)见解析;(2)【解析】【分析】(1)取DE中点O,BC中点F,连结OA,OF,以O为原点,OE、OF、OA所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出图1中点D在靠近点A的三等分点处;(2)求出平面ADE的法向量和平面ABE的法向量,利用向量法能证明无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值.【详解】解:(1)在图2中,取DE中点O,BC中点F,连结OA,OF,以O为原点,OE、OF、OA所在直线分别为x,y,z轴,建立空间直角坐标系,设OA=x,则OF=2x,OE,∴B(2,2x,0),E(,0,0),A(0,0,x),C(﹣2,2x,0),(﹣2,2x,﹣x),(2,x﹣2,0),∵异面直线BE与AC垂直,∴8=0,解得x(舍)或x,∴,∴图1中点D在靠近点A的三等分点处.证明:(2)平面ADE的法向量(0,1,0),(,0,﹣x),(2,x﹣2,0),设平面ABE的法向量(a,b,c),则,取a=1,得(1,,),设二面角D﹣AE﹣B的平面角为θ,则cosθ,∴无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值.【点睛】本题考查空间中点的位置的确定,考查二面角的余弦值为定值的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算能力,考查数形结合思想,是中档题.19.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.由测量表得到如下频率分布直方图(1)补全上面的频率分布直方图(用阴影表示);(2)统计方法中,同一组数据常用该组区间的中间值作为代表,据此估计这种产品质量指标值服从正态分布Z(μ,σ2),其中μ近似为样本平均值,σ2近似为样本方差s2(组数据取中间值);①利用该正态分布,求从该厂生产的产品中任取一件,该产品为合格品的概率;②该企业每年生产这种产品10万件,生产一件合格品利润10元,生产一件不合格品亏损20元,则该企业的年利润是多少?参考数据:=5.1,若Z~N(μ,σ2),则P(μ﹣σ,μ+σ)=0.6826,P(μ﹣2σ,μ+2σ)=0.9544.【答案】(1)见解析;(2)①0.9544,②863200.【解析】【分析】(1)由频率分布图求出[95,105)的频率,由此能作出补全频率分布直方图;(2)求出质量指标值的样本平均数、质量指标值的样本方差;(3)运用离散型随机变量的期望和方差公式,即可求出;①由(2)知Z~N(100,104),从而求出P(79.6<Z<120.4),注意运用所给数据;②设这种产品每件利润为随机变量E(X),即可求得EX.【详解】(1)由频率分布直方图得:[95,105)的频率为:1﹣(0.006+0.026+0.022+0.008)×10=0.038,补全上面的频率分布直方图(用阴影表示):质量指标值的样本平均数为:=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为S2=(﹣20)2×0.06+(﹣10)2×0.26+0×0.38+102×0.22+202×0.08=104.(2)①由(1)知Z~N(100,104),从而P(79.6<Z<120.4)=P(100﹣2×10.2<Z<100+2×10.2)=0.9544;②由①知一件产品的质量指标值位于区间(79.6,120.4)的概率为0.9544,该企业的年利润是EX=100000[0.9544×10﹣(1﹣0.9544)×20]=863200.【点睛】本题考查频率分布直方图的作法,考查平均数、方差的求法,以及正态分布的特点及概率求解,考查运算能力,属于中档题.20.已知椭圆C过点,两个焦点.(1)求椭圆C的标准方程;(2)设直线l交椭圆C于A,B两点,且|AB|=6,求△AOB面积的最大值.【答案】(1);(2)9【解析】【分析】(1)由已知可设椭圆方程为(a>b>0),且c,再由椭圆定义求得a,结合隐含条件求得b,则椭圆方程可求;(2)当直线AB的斜率不存在时,设直线方程为x=m,由弦长求得m,可得三角形AOB的面积;当直线AB的斜率存在时,设直线方程为y=kx+m,联立直线方程与椭圆方程,结合根与系数的关系及弦长可得m与k的关系,再由点到直线的距离公式求出原点O到AB的距离,代入三角形面积公式,化简后利用二次函数求最值,则答案可求.【详解】解:(1)由题意,设椭圆方程为(a>b>0),且c,2a12,则a=6,∴b2=a2﹣c2=12.∴椭圆C的标准方程为;(2)当直线AB的斜率不存在时,设直线方程为x=m,得|AB|,由|AB|6,解得m=±3,此时;当直线AB的斜率存在时,设直线方程为y=kx+m,联立,得(3k2+1)x2+6kmx+3m2﹣36=0.△=36k2m2﹣4(3k2+1)(3m2﹣36)=432k2﹣12m2+144.设A(,),B(,),则,.由|AB|6,整理得:,原点O到AB的距离d.∴.当时,△AOB面积有最大值为9.综上,△AOB面积的最大值为9.【点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.21.已知函数f(x)=e x﹣有两个极值点.(1)求实数a的取值范围;(2)若函数f(x)的两个极值点分别为x1,x2,求证:x1+x2>2.【答案】(1)(e,+∞);(2)见解析【解析】【分析】(1)f′(x)=e x﹣ax.函数f(x)=e x有两个极值点⇔f′(x)=e x﹣ax =0有两个实数根.x=0时不满足上述方程,方程化为:a,令g(x),(x≠0).利用导数已经其单调性即可得出.(2)由(1)可知:a>e时,函数f(x)有两个极值点分别为,x2,不妨设<,+>2⇔>2﹣>1⇔,由,因此即证明:.构造函数h(x),0<x<1,2﹣x>1.利用导数已经其单调性即可得出.【详解】(1)解:f′(x)=e x﹣ax.∵函数f(x)=e x有两个极值点.∴f′(x)=e x﹣ax=0有两个实数根.x=0时不满足上述方程,方程化为:a,令g(x),(x≠0).g′(x),可得:x<0时,g′(x)<0,函数g(x)单调递减;0<x<1时,g′(x)<0,函数g (x)单调递减;x>1时,g′(x)>0,函数g(x)单调递增.a>e时,方程f′(x)=e x﹣ax=0有两个实数根.∴实数a的取值范围是(e,+∞).(2)证明:由(1)可知:a>e时,函数f(x)有两个极值点分别为x1,x2,不妨设x1<x2.证明:+>2⇔>2﹣>1⇔,由,因此即证明:.构造函数h(x),0<x<1,2﹣x>1.h′(x)(x﹣1),令函数u(x),(0<x).u′(x).可得函数u(x)在(0,1)内单调递减,于是函数v(x)在(0,1)内单调递减.v(x)≥v(1)=0.∴x=1时,函数h(x)取得极小值即最小值,h(1)=0.∴h(x)>h(1)=0.∴.因此+>2成立.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t为参数,0≤α<π).(1)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(2)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.【答案】(1)曲线C:y2=4x,顶点为O(0,0),焦点为F(1,0)的抛物线;(2)8【解析】(1)利用即可得出直角坐标方程;(2)直线l的参数方程(t为参数,0≤α<π).可得l经过点(0,1);若直线l经过点(1,0),得到,得到直线l新的参数方程为(t为参数).代入抛物线方程可得t+2=0,设A、B对应的参数分别为t1,t2,利用|AB|即可得出.【详解】(1)曲线C的极坐标方程ρ=化为ρ2sin2θ=4ρcosθ,得到曲线C的直角坐标方程为y2=4x,故曲线C是顶点为O(0,0),焦点为F(1,0)的抛物线;(2)直线l的参数方程为( t为参数,0≤α<π).故l经过点(0,1);若直线l经过点(1,0),则,∴直线l的参数方程为(t为参数).代入y2=4x,得t+2=0设A、B对应的参数分别为t1,t2,则t1+t2=﹣6,t1t2=2.|AB|=|t1﹣t2|===8.【点睛】本题考查了极坐标方程和直角坐标方程的转换、直线的参数方程及其应用,考查了计算能力,属于中档题..23.已知函数f(x)=的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足时,求7a+4b的最小值.【答案】(Ⅰ) m≤4(Ⅱ)试题分析:(1)由函数定义域为R,可得|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x ﹣3|,利用绝对值不等式的性质求出其最小值即可;(2)由(1)知n=4,变形7a+4b=,利用基本不等式的性质即可得出.试题解析:(Ⅰ)由题意可知:+-m≥0对任意实数恒成立.设函数g(x)=+,则m不大于函数g(x)的最小值.又+≥=4.即g(x)的最小值为4,所以m≤4(Ⅱ)由(Ⅰ)知n=4,∴7a+4b===≥=.当且仅当a+2b=3a+b,即b=2a=时,等号成立.所以7a+4b的最小值为.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.【此处有视频,请去附件查看】。
陕西省西安地区等八校2019届高三3月联考数学(理)试题(解析版)
2019年陕西师大附中、西安高中、高新一中、铁一中学、西工大附中等八校高考数学模拟试卷(理科)(3月份)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,6,9},B={3x|x∈A},C={x∈N|3x∈A},则B∩C=()A. {1,2,3}B. {1,6,9}C. {1,6}D. {3}【答案】D【解析】【分析】先分别求出集合A,B,C,由此能求出.【详解】集合2,3,6,,6,9,18,,2,,.故选:D.【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.如图是甲乙两位同学某次考试各科成绩(转化为了标准分,满分900分)的条形统计图,设甲乙两位同学成绩的平均值分别为,,标准差分别为,则()A. B.C. D.【解析】【分析】甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为,,从而得到,.【详解】由条形统计图得到:在这次考试各科成绩转化为了标准分,满分900分中,甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为,,则,.故选:A.【点睛】本题考查命题真假的判断,考查条形图、平均值、标准差等基础知识,考查运算求解能力,是基础题.3.1748年,瑞士著名数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式e ix=cosx+isinx,这个公式在复变论中占有非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,e2i表示的复数所对应的点在复平面中位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】由已知可得,再由三角函数的象限符号得答案.【详解】由题意可得,,,,,则表示的复数所对应的点在复平面中位于第二象限.故选:B.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.4.设为所在平面内一点,若,则下列关系中正确的是()A. B.C. D.【解析】∵∴−−=3(−−);∴=−−.故选:C.5.《张丘建筑经》卷上第22题为:“今有女善织,日益功疾,且从第二天起,每天比前一天多织相同量的布.若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织布的尺数为()A. 18B. 20C. 21D. 25【答案】C【解析】由题意设从第二天开始,每一天比前一天多织尺布,则,解得,所以,故选C.6.如果对定义在R上的奇函数y=f(x),对任意两个不相邻的实数x1,x2,所有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数y=f(x)为“H函数”,下列函数为H函数的是()A. f(x)=sinxB. f(x)=e xC. f(x)=x3﹣3xD. f(x)=x|x|【答案】D【解析】【分析】根据题意,不等式等价为,即满足条件的函数为单调递增函数,即可得“H函数”为奇函数且在R上为增函数,据此依次分析选项:综合可得答案.【详解】根据题意,对于所有的不相等实数,,则恒成立,则有恒成立,即函数是定义在R上的增函数,则“H函数”为奇函数且在R上为增函数,据此依次分析选项:对于A,,为正弦函数,为奇函数但不是增函数,不符合题意;对于B,,为指数函数,不是奇函数,不符合题意;对于C,,为奇函数,但在R上不是增函数,不符合题意;对于D,,为奇函数且在R上为增函数,符合题意;【点睛】本题考查函数的奇偶性与单调性的判断,关键是分析“H函数”的含义,属于基础题.7.已知正三棱柱ABC﹣A1B1C1的三视图如图所示,一只蚂蚁从顶点A出发沿该正三棱柱的表面绕行两周到达顶点A1,则该蚂蚁走过的最短路径为()A. B. 25 C. D. 31【答案】B【解析】【分析】将三棱柱展开,得出最短距离是6个矩形对角线的连线,相当于绕三棱柱转2次的最短路径,由勾股定理求出对应的最小值.【详解】将正三棱柱沿侧棱展开,如图所示;在展开图中,最短距离是6个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得正三棱锥底面三角形的边长为,所以矩形的长等于,宽等于7,由勾股定理求得.故选:B.【点睛】本题考查了棱柱的结构特征与应用问题,也考查了几何体的展开与折叠,以及转化空间问题转化为平面问题,化曲为直的思想方法.8.将函数的图象向右平移个单位,在向上平移一个单位,得到g(x)的图象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],则x1﹣2x2的最大值为()A. B. C. D.【答案】A【解析】【分析】由题意利用函数的图象变换规律,得到的解析式,再利用余弦函数的图象的值域,求出,的值,可得的最大值.【详解】将函数的图象向右平移个单位,再向上平移一个单位,得到g(x)=sin(2x﹣+)+1=﹣cos2x+1 的图象,故g(x)的最大值为2,最小值为0,若g()g()=4,则g()=g()=2,或g()=g()=﹣2(舍去).故有g()=g()=2,即cos2=cos2=﹣1,又,x2∈[﹣2π,2π],∴2,2∈[﹣4π,4π],要使﹣2取得最大值,则应有2=3π,2=﹣3π,故﹣2取得最大值为+3π=.故选:A.【点睛】本题主要考查函数的图象变换规律,余弦函数的图象的值域,属于中档题.9.已知圆C:x2+y2﹣2x﹣4y+3=0,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为()A. B. C. D.【答案】C【解析】试题分析:方法一:如图,连接AC,BC,设,连接PC与AB交于点D,,是等边三角形,∴D是AB的中点,,∴在圆C:中,圆C的半径为,,,∴在等边中,,,故选C.方法二:设,则,记,令,得,,故选C.考点:圆的性质、三角函数最值、利用导数求函数最值.【思路点睛】法一、先由为等腰三角形,得出D为中点,再由为等边三角形,得出,在中,将和用表示,从而求出的值,得到的表达式,用三角函数的有界性求最值;法二:设出边AD的长x,根据已知条件表示出,再利用导数求出函数的最值.10.抛物线x2= y在第一象限内图象上的一点(a i,2a i2)处的切线与x轴交点的横坐标记为a i+1,其中i∈N+,若a2=32,则a2+a4+a6等于()A. 64B. 42C. 32D. 21【答案】B【解析】试题分析:,∴,∴过点的切线方程为,令,得,可得,又,所以.考点:1.导数的几何性质;2.等比数列.11.已知双曲线的右焦点为F2,若C的左支上存在点M,使得直线bx﹣ay=0是线段MF2的垂直平分线,则C的离心率为()A. B. 2 C. D. 5【答案】C【解析】【分析】设P为直线与的交点,则OP为的中位线,求得到渐近线的距离为b,运用中位线定理和双曲线的定义,以及离心率的公式,计算可得所求值.【详解】,直线是线段的垂直平分线,可得到渐近线的距离为,且,,,可得,即为,即,可得.故选:C.【点睛】本题考查双曲线的定义、方程和性质,考查三角形的中位线定理,考查方程思想和运算能力,属于中档题.12.已知函数,则函数g(x)=xf(x)﹣1的零点的个数为()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】由g(x)=xf(x)﹣1=0得f(x),根据条件作出函数f(x)与h(x)的图象,研究两个函数的交点个数即可得到结论.【详解】由g(x)=xf(x)﹣1=0得xf(x)=1,当x=0时,方程xf(x)=1不成立,即x≠0,则等价为f(x)=,当2<x≤4时,0<x﹣2≤2,此时f(x)=f(x﹣2)=(1﹣|x﹣2﹣1|)=﹣|x﹣3|,当4<x≤6时,2<x﹣2≤4,此时f(x)=f(x﹣2)=[﹣|x﹣2﹣3|]=﹣|x﹣5|,作出f(x)的图象如图,则f(1)=1,f(3)=f(1)=,f(5)=f(3)=,设h(x)=,则h(1)=1,h(3)=,h(5)=>f(5),作出h(x)的图象,由图象知两个函数图象有3个交点,即函数g(x)的零点个数为3个,故选:B.【点睛】本题主要考查函数与方程的应用,利用条件转化为两个函数图象的交点个数问题,利用数形结合是解决本题的关键.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知F是抛物线C:y=2x2的焦点,点P(x,y)在抛物线C上,且x=1,则|PF|=_____.【答案】【解析】【分析】利用抛物线方程求出p,利用抛物线的性质列出方程求解即可.【详解】由,得,则;由得,由抛物线的性质可得,故答案为:.【点睛】本题考查抛物线的定义的应用,属于基础题.14.已知实数x,y满足约束条件,则z=|﹣5x+y|的取值范围为_____.【答案】[0,11]【解析】【分析】作出约束条件表示的可行域,判断目标函数经过的点,然后求解目标函数的范围即可.【详解】作出实数x,y满足约束条件的可行域,如图所示:作直线l0:﹣5x+y=0,再作一组平行于l0的直线l:﹣5x+y=z,当直线l经过点A时,z=﹣5x+y取得最大值,由,得点A的坐标为(﹣2,0),所以z max=﹣5×(﹣2)+0=10.直线经过B时,目标函数取得最小值,由,解得B(2,﹣1)函数的最小值为:﹣10﹣1=﹣11.z=|﹣5x+y|的取值范围为:[0,11].故答案为:[0,11].【点睛】本题考查线性规划的简单应用,考查转化思想以及数形结合的综合应用,考查计算能力.15.在的展开式中,常数项为_____.【答案】-40【解析】【分析】根据,按照二项式定理展开,可得在的展开式中的常数项.【详解】解:∵(x﹣2)=(x6+6x4+15x2+20+15•6•)(x﹣2),∴常数项是20•(﹣2)=﹣40,故答案为:﹣40.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.16.如图,已知圆柱和半径为的半球O,圆柱的下底面在半球O底面所在平面上,圆柱的上底面内接于球O,则该圆柱的体积的最大值为_____.【答案】2π【解析】【分析】设圆柱的底面圆半径为r,高为h,求出r与h的关系,再计算圆柱的体积V,从而求出体积V的最大值.【详解】解:设圆柱的底面圆半径为r,高为h;则h2+r2=R2=3;所以圆柱的体积为V=πr2h=π(3﹣h2)h=π(3h﹣h3);则V′(h)=π(3﹣3h2),令V′(h)=0,解得h=1;所以h∈(0,1)时,V′(h)>0,V(h)单调递增;h∈(1,)时,V′(h)<0,V(h)单调递减;所以h=1时,V(h)取得最大值为V(1)=2π.故答案为:2π.【点睛】本题考查了半球与内接圆柱的结构特征与应用问题,也考查了圆柱的体积计算问题,是中档题.三、解答题(本大题共5小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)(一)必考题:共60分.17.△ABC的内角A,B,C的对边分别为,且.(1)求角A的大小;(2)求△ABC的面积的最大值.【答案】(1);(2).【解析】【分析】直接利用三角函数关系式的恒等变变换和余弦定理和正弦定理的应用求出结果.利用的结论和余弦定理及基本不等式的应用求出结果.【详解】在的内角A,B,C的对边分别为,且.整理得:,利用正弦定理得:,即:,由于:,解得:.由于,所以:,整理得:,所以:.当且仅当时,的面积有最小值.【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,正弦定理和余弦定理及三角形面积公式,基本不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.18.如图1,等边△ABC中,AC=4,D是边AC上的点(不与A,C重合),过点D作DE∥BC交AB于点E,沿DE 将△ADE向上折起,使得平面ADE⊥平面BCDE,如图2所示.(1)若异面直线BE与AC垂直,确定图1中点D的位置;(2)证明:无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值,并求出这个定值.【答案】(1)见解析;(2)【解析】【分析】(1)取DE中点O,BC中点F,连结OA,OF,以O为原点,OE、OF、OA所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出图1中点D在靠近点A的三等分点处;(2)求出平面ADE的法向量和平面ABE的法向量,利用向量法能证明无论点D的位置如何,二面角D﹣AE ﹣B的余弦值都为定值.【详解】解:(1)在图2中,取DE中点O,BC中点F,连结OA,OF,以O为原点,OE、OF、OA所在直线分别为x,y,z轴,建立空间直角坐标系,设OA=x,则OF=2x,OE,∴B(2,2x,0),E(,0,0),A(0,0,x),C(﹣2,2x,0),(﹣2,2x,﹣x),(2,x﹣2,0),∵异面直线BE与AC垂直,∴8=0,解得x(舍)或x,∴,∴图1中点D在靠近点A的三等分点处.证明:(2)平面ADE的法向量(0,1,0),(,0,﹣x),(2,x﹣2,0),设平面ABE的法向量(a,b,c),则,取a=1,得(1,,),设二面角D﹣AE﹣B的平面角为θ,则cosθ,∴无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值.【点睛】本题考查空间中点的位置的确定,考查二面角的余弦值为定值的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算能力,考查数形结合思想,是中档题.19.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.由测量表得到如下频率分布直方图(1)补全上面的频率分布直方图(用阴影表示);(2)统计方法中,同一组数据常用该组区间的中间值作为代表,据此估计这种产品质量指标值服从正态分布Z(μ,σ2),其中μ近似为样本平均值,σ2近似为样本方差s2(组数据取中间值);①利用该正态分布,求从该厂生产的产品中任取一件,该产品为合格品的概率;②该企业每年生产这种产品10万件,生产一件合格品利润10元,生产一件不合格品亏损20元,则该企业的年利润是多少?参考数据:=5.1,若Z~N(μ,σ2),则P(μ﹣σ,μ+σ)=0.6826,P(μ﹣2σ,μ+2σ)=0.9544.【答案】(1)见解析;(2)①0.9544,②863200.【解析】【分析】(1)由频率分布图求出[95,105)的频率,由此能作出补全频率分布直方图;(2)求出质量指标值的样本平均数、质量指标值的样本方差;①由(2)知Z~N(100,104),从而求出P(79.6<Z<120.4),注意运用所给数据;②设这种产品每件利润为随机变量E(X),即可求得EX.【详解】(1)由频率分布直方图得:[95,105)的频率为:1﹣(0.006+0.026+0.022+0.008)×10=0.038,补全上面的频率分布直方图(用阴影表示):质量指标值的样本平均数为:=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为S2=(﹣20)2×0.06+(﹣10)2×0.26+0×0.38+102×0.22+202×0.08=104.(2)①由(1)知Z~N(100,104),从而P(79.6<Z<120.4)=P(100﹣2×10.2<Z<100+2×10.2)=0.9544;②由①知一件产品的质量指标值位于区间(79.6,120.4)的概率为0.9544,该企业的年利润是EX=100000[0.9544×10﹣(1﹣0.9544)×20]=863200.【点睛】本题考查频率分布直方图的作法,考查平均数、方差的求法,以及正态分布的特点及概率求解,考查运算能力,属于中档题.20.已知椭圆C过点,两个焦点.(1)求椭圆C的标准方程;(2)设直线l交椭圆C于A,B两点,且|AB|=6,求△AOB面积的最大值.【答案】(1);(2)【解析】【分析】(1)由已知可设椭圆方程为(a>b>0),且c,再由椭圆定义求得a,结合隐含条件求得b,则椭圆方程可求;(2)当直线AB的斜率不存在时,设直线方程为x=m,由弦长求得m,可得三角形AOB的面积;当直线AB 的斜率存在时,设直线方程为y=kx+m,联立直线方程与椭圆方程,结合根与系数的关系及弦长可得m与k的关系,再由点到直线的距离公式求出原点O到AB的距离,代入三角形面积公式,化简后利用二次函数求最值,则答案可求.【详解】解:(1)由题意,设椭圆方程为(a>b>0),且c,2a12,则a=6,∴b2=a2﹣c2=12.∴椭圆C的标准方程为;(2)当直线AB的斜率不存在时,设直线方程为x=m,得|AB|,由|AB|6,解得m=±3,此时;当直线AB的斜率存在时,设直线方程为y=kx+m,联立,得(3k2+1)x2+6kmx+3m2﹣36=0.△=36k2m2﹣4(3k2+1)(3m2﹣36)=432k2﹣12m2+144.设A(,),B(,),则,.由|AB|6,整理得:,原点O到AB的距离d.∴.当时,△AOB面积有最大值为9.综上,△AOB面积的最大值为.【点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.21.已知函数f(x)=e x﹣有两个极值点.(1)求实数a的取值范围;(2)若函数f(x)的两个极值点分别为x1,x2,求证:x1+x2>2.【答案】(1)(e,+∞);(2)见解析【解析】【分析】(1)f′(x)=e x﹣ax.函数f(x)=e x有两个极值点⇔f′(x)=e x﹣ax=0有两个实数根.x =0时不满足上述方程,方程化为:a,令g(x),(x≠0).利用导数已经其单调性即可得出.(2)由(1)可知:a>e时,函数f(x)有两个极值点分别为,x2,不妨设<,+>2⇔>2﹣>1⇔,由,因此即证明:.构造函数h(x),0<x<1,2﹣x>1.利用导数已经其单调性即可得出.【详解】(1)解:f′(x)=e x﹣ax.∵函数f(x)=e x有两个极值点.∴f′(x)=e x﹣ax=0有两个实数根.x=0时不满足上述方程,方程化为:a,令g(x),(x≠0).g′(x),可得:x<0时,g′(x)<0,函数g(x)单调递减;0<x<1时,g′(x)<0,函数g(x)单调递减;x>1时,g′(x)>0,函数g(x)单调递增.g(1)=e,得到函数草图如图所示.a>e时,方程f′(x)=e x﹣ax=0有两个实数根.∴实数a的取值范围是(e,+∞).(2)证明:由(1)可知:a>e时,函数f(x)有两个极值点分别为x1,x2,不妨设x1<x2.证明:+>2⇔>2﹣>1⇔,由,因此即证明:.构造函数h(x),0<x<1,2﹣x>1.h′(x)(x﹣1),令函数u(x),(0<x<2).u′(x).可得函数u(x)在(0,2)内单调递减,于是函数v(x)在(0,1)内单调递减.v(x)≥v(1)=0.∴h′(x)(x﹣1),h(x)在(0,1)内单调递减.∴h(x)>h(1)=0,∴.因此+>2成立.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t为参数,0≤α<π).(1)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(2)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.【答案】(1)曲线C:y2=4x,顶点为O(0,0),焦点为F(1,0)的抛物线;(2)8【解析】【分析】(1)利用即可得出直角坐标方程;(2)直线l的参数方程(t为参数,0≤α<π).可得l经过点(0,1);若直线l经过点(1,0),得到,得到直线l新的参数方程为(t为参数).代入抛物线方程可得t+2=0,设A、B对应的参数分别为t1,t2,利用|AB|即可得出.【详解】(1)曲线C的极坐标方程ρ=化为ρ2sin2θ=4ρcosθ,得到曲线C的直角坐标方程为y2=4x,故曲线C是顶点为O(0,0),焦点为F(1,0)的抛物线;(2)直线l的参数方程为(t为参数,0≤α<π).故l经过点(0,1);若直线l经过点(1,0),则,∴直线l的参数方程为(t为参数).代入y2=4x,得t+2=0设A、B对应的参数分别为t1,t2,则t1+t2=﹣6,t1t2=2.|AB|=|t1﹣t2|==8.【点睛】本题考查了极坐标方程和直角坐标方程的转换、直线的参数方程及其应用,考查了计算能力,属于中档题..23.已知函数f(x)=的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足时,求7a+4b的最小值.【答案】(Ⅰ) m≤4(Ⅱ)【解析】试题分析:(1)由函数定义域为R,可得|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x﹣3|,利用绝对值不等式的性质求出其最小值即可;(2)由(1)知n=4,变形7a+4b=,利用基本不等式的性质即可得出.试题解析:(Ⅰ)由题意可知:+-m≥0对任意实数恒成立.设函数g(x)=+,则m不大于函数g(x)的最小值.又+≥=4.即g(x)的最小值为4,所以m≤4(Ⅱ)由(Ⅰ)知n=4,∴7a+4b===≥=.当且仅当a+2b=3a+b,即b=2a=时,等号成立.所以7a+4b的最小值为.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。
陕西省西安地区陕师大附中、西安高级中学等八校2019届高三3月联考数学(理)试题(解析版)
2019年陕西师大附中、西安高中、高新一中、铁一中学、西工大附中等八校高考数学模拟试卷(理科)(3月份)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,6,9},B={3x|x∈A},C={x∈N|3x∈A},则B∩C=()A. {1,2,3}B. {1,6,9}C. {1,6}D. {3}【答案】D【解析】【分析】先分别求出集合A,B,C,由此能求出.【详解】集合2,3,6,,6,9,18,,2,,.故选:D.【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.如图是甲乙两位同学某次考试各科成绩(转化为了标准分,满分900分)的条形统计图,设甲乙两位同学成绩的平均值分别为,,标准差分别为,则()A. B.C. D.【答案】A【解析】【分析】甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为,,从而得到,.【详解】由条形统计图得到:在这次考试各科成绩转化为了标准分,满分900分中,甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为,,则,.故选:A.【点睛】本题考查命题真假的判断,考查条形图、平均值、标准差等基础知识,考查运算求解能力,是基础题.3.1748年,瑞士著名数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式e ix=cosx+isinx,这个公式在复变论中占有非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,e2i表示的复数所对应的点在复平面中位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】由已知可得,再由三角函数的象限符号得答案.【详解】由题意可得,,,,,则表示的复数所对应的点在复平面中位于第二象限.故选:B.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.4.设为所在平面内一点,若,则下列关系中正确的是()A. B.C. D.【答案】A【解析】∵∴−−=3(−−);∴=−−.故选:C.5.《张丘建筑经》卷上第22题为:“今有女善织,日益功疾,且从第二天起,每天比前一天多织相同量的布.若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织布的尺数为()A. 18B. 20C. 21D. 25【答案】C【解析】由题意设从第二天开始,每一天比前一天多织尺布,则,解得,所以,故选C.6.如果对定义在R上的奇函数y=f(x),对任意两个不相邻的实数x1,x2,所有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数y=f(x)为“H函数”,下列函数为H函数的是()A. f(x)=sinxB. f(x)=e xC. f(x)=x3﹣3xD. f(x)=x|x|【答案】D【解析】【分析】根据题意,不等式等价为,即满足条件的函数为单调递增函数,即可得“H函数”为奇函数且在R上为增函数,据此依次分析选项:综合可得答案.【详解】根据题意,对于所有的不相等实数,,则恒成立,则有恒成立,即函数是定义在R上的增函数,则“H函数”为奇函数且在R上为增函数,据此依次分析选项:对于A,,为正弦函数,为奇函数但不是增函数,不符合题意;对于B,,为指数函数,不是奇函数,不符合题意;对于C,,为奇函数,但在R上不是增函数,不符合题意;对于D,,为奇函数且在R上为增函数,符合题意;故选:D.【点睛】本题考查函数的奇偶性与单调性的判断,关键是分析“H函数”的含义,属于基础题.7.已知正三棱柱ABC﹣A1B1C1的三视图如图所示,一只蚂蚁从顶点A出发沿该正三棱柱的表面绕行两周到达顶点A1,则该蚂蚁走过的最短路径为()A. B. 25 C. D. 31【答案】B【解析】【分析】将三棱柱展开,得出最短距离是6个矩形对角线的连线,相当于绕三棱柱转2次的最短路径,由勾股定理求出对应的最小值.【详解】将正三棱柱沿侧棱展开,如图所示;在展开图中,最短距离是6个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得正三棱锥底面三角形的边长为,所以矩形的长等于,宽等于7,由勾股定理求得.故选:B.【点睛】本题考查了棱柱的结构特征与应用问题,也考查了几何体的展开与折叠,以及转化空间问题转化为平面问题,化曲为直的思想方法.8.将函数的图象向右平移个单位,在向上平移一个单位,得到g(x)的图象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],则x1﹣2x2的最大值为()A. B. C. D.【答案】A【解析】【分析】由题意利用函数的图象变换规律,得到的解析式,再利用余弦函数的图象的值域,求出,的值,可得的最大值.【详解】将函数的图象向右平移个单位,再向上平移一个单位,得到g(x)=sin(2x﹣+)+1=﹣cos2x+1 的图象,故g(x)的最大值为2,最小值为0,若g()g()=4,则g()=g()=2,或g()=g()=﹣2(舍去).故有g()=g()=2,即cos2=cos2=﹣1,又,x2∈[﹣2π,2π],∴2,2∈[﹣4π,4π],要使﹣2取得最大值,则应有2=3π,2=﹣3π,故﹣2取得最大值为+3π=.故选:A.【点睛】本题主要考查函数的图象变换规律,余弦函数的图象的值域,属于中档题.9.已知圆C:x2+y2﹣2x﹣4y+3=0,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为()A. B. C. D.【答案】C【解析】试题分析:方法一:如图,连接AC,BC,设,连接PC与AB交于点D,,是等边三角形,∴D是AB的中点,,∴在圆C:中,圆C的半径为,,,∴在等边中,,,故选C.方法二:设,则,记,令,得,,故选C.考点:圆的性质、三角函数最值、利用导数求函数最值.【思路点睛】法一、先由为等腰三角形,得出D为中点,再由为等边三角形,得出,在中,将和用表示,从而求出的值,得到的表达式,用三角函数的有界性求最值;法二:设出边AD的长x,根据已知条件表示出,再利用导数求出函数的最值.10.抛物线x2= y在第一象限内图象上的一点(a i,2a i2)处的切线与x轴交点的横坐标记为a i+1,其中i∈N+,若a2=32,则a2+a4+a6等于()A. 64B. 42C. 32D. 21【答案】B【解析】试题分析:,∴,∴过点的切线方程为,令,得,可得,又,所以.考点:1.导数的几何性质;2.等比数列.11.已知双曲线的右焦点为F2,若C的左支上存在点M,使得直线bx﹣ay=0是线段MF2的垂直平分线,则C的离心率为()A. B. 2 C. D. 5【答案】C【解析】【分析】设P为直线与的交点,则OP为的中位线,求得到渐近线的距离为b,运用中位线定理和双曲线的定义,以及离心率的公式,计算可得所求值.【详解】,直线是线段的垂直平分线,可得到渐近线的距离为,且,,,可得,即为,即,可得.故选:C.【点睛】本题考查双曲线的定义、方程和性质,考查三角形的中位线定理,考查方程思想和运算能力,属于中档题.12.已知函数,则函数g(x)=xf(x)﹣1的零点的个数为()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】由g(x)=xf(x)﹣1=0得f(x),根据条件作出函数f(x)与h(x)的图象,研究两个函数的交点个数即可得到结论.【详解】由g(x)=xf(x)﹣1=0得xf(x)=1,当x=0时,方程xf(x)=1不成立,即x≠0,则等价为f(x)=,当2<x≤4时,0<x﹣2≤2,此时f(x)=f(x﹣2)=(1﹣|x﹣2﹣1|)=﹣|x﹣3|,当4<x≤6时,2<x﹣2≤4,此时f(x)=f(x﹣2)=[﹣|x﹣2﹣3|]=﹣|x﹣5|,作出f(x)的图象如图,则f(1)=1,f(3)=f(1)=,f(5)=f(3)=,设h(x)=,则h(1)=1,h(3)=,h(5)=>f(5),作出h(x)的图象,由图象知两个函数图象有3个交点,即函数g(x)的零点个数为3个,故选:B.【点睛】本题主要考查函数与方程的应用,利用条件转化为两个函数图象的交点个数问题,利用数形结合是解决本题的关键.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知F是抛物线C:y=2x2的焦点,点P(x,y)在抛物线C上,且x=1,则|PF|=_____.【答案】【解析】【分析】利用抛物线方程求出p,利用抛物线的性质列出方程求解即可.【详解】由,得,则;由得,由抛物线的性质可得,故答案为:.【点睛】本题考查抛物线的定义的应用,属于基础题.14.已知实数x,y满足约束条件,则z=|﹣5x+y|的取值范围为_____.【答案】[0,11]【解析】【分析】作出约束条件表示的可行域,判断目标函数经过的点,然后求解目标函数的范围即可.【详解】作出实数x,y满足约束条件的可行域,如图所示:作直线l0:﹣5x+y=0,再作一组平行于l0的直线l:﹣5x+y=z,当直线l经过点A时,z=﹣5x+y取得最大值,由,得点A的坐标为(﹣2,0),所以z max=﹣5×(﹣2)+0=10.直线经过B时,目标函数取得最小值,由,解得B(2,﹣1)函数的最小值为:﹣10﹣1=﹣11.z=|﹣5x+y|的取值范围为:[0,11].故答案为:[0,11].【点睛】本题考查线性规划的简单应用,考查转化思想以及数形结合的综合应用,考查计算能力.15.在的展开式中,常数项为_____.【答案】-40【解析】【分析】根据,按照二项式定理展开,可得在的展开式中的常数项.【详解】解:∵(x﹣2)=(x6+6x4+15x2+20+15•6•)(x﹣2),∴常数项是20•(﹣2)=﹣40,故答案为:﹣40.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.16.如图,已知圆柱和半径为的半球O,圆柱的下底面在半球O底面所在平面上,圆柱的上底面内接于球O,则该圆柱的体积的最大值为_____.【答案】2π【解析】【分析】设圆柱的底面圆半径为r,高为h,求出r与h的关系,再计算圆柱的体积V,从而求出体积V的最大值.【详解】解:设圆柱的底面圆半径为r,高为h;则h2+r2=R2=3;所以圆柱的体积为V=πr2h=π(3﹣h2)h=π(3h﹣h3);则V′(h)=π(3﹣3h2),令V′(h)=0,解得h=1;所以h∈(0,1)时,V′(h)>0,V(h)单调递增;h∈(1,)时,V′(h)<0,V(h)单调递减;所以h=1时,V(h)取得最大值为V(1)=2π.故答案为:2π.【点睛】本题考查了半球与内接圆柱的结构特征与应用问题,也考查了圆柱的体积计算问题,是中档题.三、解答题(本大题共5小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)(一)必考题:共60分.17.△ABC的内角A,B,C的对边分别为,且.(1)求角A的大小;(2)求△ABC的面积的最大值.【答案】(1);(2).【解析】【分析】直接利用三角函数关系式的恒等变变换和余弦定理和正弦定理的应用求出结果.利用的结论和余弦定理及基本不等式的应用求出结果.【详解】在的内角A,B,C的对边分别为,且.整理得:,利用正弦定理得:,即:,由于:,解得:.由于,所以:,整理得:,所以:.当且仅当时,的面积有最小值.【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,正弦定理和余弦定理及三角形面积公式,基本不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.18.如图1,等边△ABC中,AC=4,D是边AC上的点(不与A,C重合),过点D作DE∥BC交AB于点E,沿DE将△ADE向上折起,使得平面ADE⊥平面BCDE,如图2所示.(1)若异面直线BE与AC垂直,确定图1中点D的位置;(2)证明:无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值,并求出这个定值.【答案】(1)见解析;(2)【解析】【分析】(1)取DE中点O,BC中点F,连结OA,OF,以O为原点,OE、OF、OA所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出图1中点D在靠近点A的三等分点处;(2)求出平面ADE的法向量和平面ABE的法向量,利用向量法能证明无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值.【详解】解:(1)在图2中,取DE中点O,BC中点F,连结OA,OF,以O为原点,OE、OF、OA所在直线分别为x,y,z轴,建立空间直角坐标系,设OA=x,则OF=2x,OE,∴B(2,2x,0),E(,0,0),A(0,0,x),C(﹣2,2x,0),(﹣2,2x,﹣x),(2,x﹣2,0),∵异面直线BE与AC垂直,∴8=0,解得x(舍)或x,∴,∴图1中点D在靠近点A的三等分点处.证明:(2)平面ADE的法向量(0,1,0),(,0,﹣x),(2,x﹣2,0),设平面ABE的法向量(a,b,c),则,取a=1,得(1,,),设二面角D﹣AE﹣B的平面角为θ,则cosθ,∴无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值.【点睛】本题考查空间中点的位置的确定,考查二面角的余弦值为定值的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算能力,考查数形结合思想,是中档题.19.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.由测量表得到如下频率分布直方图(1)补全上面的频率分布直方图(用阴影表示);(2)统计方法中,同一组数据常用该组区间的中间值作为代表,据此估计这种产品质量指标值服从正态分布Z (μ,σ2),其中μ近似为样本平均值,σ2近似为样本方差s2(组数据取中间值);①利用该正态分布,求从该厂生产的产品中任取一件,该产品为合格品的概率;②该企业每年生产这种产品10万件,生产一件合格品利润10元,生产一件不合格品亏损20元,则该企业的年利润是多少?参考数据:=5.1,若Z~N(μ,σ2),则P(μ﹣σ,μ+σ)=0.6826,P(μ﹣2σ,μ+2σ)=0.9544.【答案】(1)见解析;(2)①0.9544,②863200.【解析】【分析】(1)由频率分布图求出[95,105)的频率,由此能作出补全频率分布直方图;(2)求出质量指标值的样本平均数、质量指标值的样本方差;①由(2)知Z~N(100,104),从而求出P(79.6<Z<120.4),注意运用所给数据;②设这种产品每件利润为随机变量E(X),即可求得EX.【详解】(1)由频率分布直方图得:[95,105)的频率为:1﹣(0.006+0.026+0.022+0.008)×10=0.038,补全上面的频率分布直方图(用阴影表示):质量指标值的样本平均数为:=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为S2=(﹣20)2×0.06+(﹣10)2×0.26+0×0.38+102×0.22+202×0.08=104.(2)①由(1)知Z~N(100,104),从而P(79.6<Z<120.4)=P(100﹣2×10.2<Z<100+2×10.2)=0.9544;②由①知一件产品的质量指标值位于区间(79.6,120.4)的概率为0.9544,该企业的年利润是EX=100000[0.9544×10﹣(1﹣0.9544)×20]=863200.【点睛】本题考查频率分布直方图的作法,考查平均数、方差的求法,以及正态分布的特点及概率求解,考查运算能力,属于中档题.20.已知椭圆C过点,两个焦点.(1)求椭圆C的标准方程;(2)设直线l交椭圆C于A,B两点,且|AB|=6,求△AOB面积的最大值.【答案】(1);(2)【解析】【分析】(1)由已知可设椭圆方程为(a>b>0),且c,再由椭圆定义求得a,结合隐含条件求得b,则椭圆方程可求;(2)当直线AB的斜率不存在时,设直线方程为x=m,由弦长求得m,可得三角形AOB的面积;当直线AB的斜率存在时,设直线方程为y=kx+m,联立直线方程与椭圆方程,结合根与系数的关系及弦长可得m与k的关系,再由点到直线的距离公式求出原点O到AB的距离,代入三角形面积公式,化简后利用二次函数求最值,则答案可求.【详解】解:(1)由题意,设椭圆方程为(a>b>0),且c,2a12,则a=6,∴b2=a2﹣c2=12.∴椭圆C的标准方程为;(2)当直线AB的斜率不存在时,设直线方程为x=m,得|AB|,由|AB|6,解得m=±3,此时;当直线AB的斜率存在时,设直线方程为y=kx+m,联立,得(3k2+1)x2+6kmx+3m2﹣36=0.△=36k2m2﹣4(3k2+1)(3m2﹣36)=432k2﹣12m2+144.设A(,),B(,),则,.由|AB|6,整理得:,原点O到AB的距离d.∴.当时,△AOB面积有最大值为9.综上,△AOB面积的最大值为.【点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.21.已知函数f(x)=e x﹣有两个极值点.(1)求实数a的取值范围;(2)若函数f(x)的两个极值点分别为x1,x2,求证:x1+x2>2.【答案】(1)(e,+∞);(2)见解析【解析】【分析】(1)f′(x)=e x﹣ax.函数f(x)=e x有两个极值点⇔f′(x)=e x﹣ax=0有两个实数根.x=0时不满足上述方程,方程化为:a,令g(x),(x≠0).利用导数已经其单调性即可得出.(2)由(1)可知:a>e时,函数f(x)有两个极值点分别为,x2,不妨设<,+>2⇔>2﹣>1⇔,由,因此即证明:.构造函数h(x),0<x<1,2﹣x>1.利用导数已经其单调性即可得出.【详解】(1)解:f′(x)=e x﹣ax.∵函数f(x)=e x有两个极值点.∴f′(x)=e x﹣ax=0有两个实数根.x=0时不满足上述方程,方程化为:a,令g(x),(x≠0).g′(x),可得:x<0时,g′(x)<0,函数g(x)单调递减;0<x<1时,g′(x)<0,函数g(x)单调递减;x>1时,g′(x)>0,函数g(x)单调递增.g(1)=e,得到函数草图如图所示.a>e时,方程f′(x)=e x﹣ax=0有两个实数根.∴实数a的取值范围是(e,+∞).(2)证明:由(1)可知:a>e时,函数f(x)有两个极值点分别为x1,x2,不妨设x1<x2.证明:+>2⇔>2﹣>1⇔,由,因此即证明:.构造函数h(x),0<x<1,2﹣x>1.h′(x)(x﹣1),令函数u(x),(0<x<2).u′(x).可得函数u(x)在(0,2)内单调递减,于是函数v(x)在(0,1)内单调递减.v (x)≥v(1)=0.∴h′(x)(x﹣1),h(x)在(0,1)内单调递减.∴h(x)>h(1)=0,∴.因此+>2成立.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t为参数,0≤α<π).(1)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(2)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.【答案】(1)曲线C:y2=4x,顶点为O(0,0),焦点为F(1,0)的抛物线;(2)8【解析】【分析】(1)利用即可得出直角坐标方程;(2)直线l的参数方程(t为参数,0≤α<π).可得l经过点(0,1);若直线l经过点(1,0),得到,得到直线l新的参数方程为(t为参数).代入抛物线方程可得t+2=0,设A、B对应的参数分别为t1,t2,利用|AB|即可得出.【详解】(1)曲线C的极坐标方程ρ=化为ρ2sin2θ=4ρcosθ,得到曲线C的直角坐标方程为y2=4x,故曲线C是顶点为O(0,0),焦点为F(1,0)的抛物线;(2)直线l的参数方程为(t为参数,0≤α<π).故l经过点(0,1);若直线l经过点(1,0),则,∴直线l的参数方程为(t为参数).代入y2=4x,得t+2=0设A、B对应的参数分别为t1,t2,则t1+t2=﹣6,t1t2=2.|AB|=|t1﹣t2|==8.【点睛】本题考查了极坐标方程和直角坐标方程的转换、直线的参数方程及其应用,考查了计算能力,属于中档题..23.已知函数f(x)=的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足时,求7a+4b的最小值.【答案】(Ⅰ) m≤4(Ⅱ)【解析】试题分析:(1)由函数定义域为R,可得|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x﹣3|,利用绝对值不等式的性质求出其最小值即可;(2)由(1)知n=4,变形7a+4b=,利用基本不等式的性质即可得出.试题解析:(Ⅰ)由题意可知:+-m≥0对任意实数恒成立.设函数g(x)=+,则m不大于函数g(x)的最小值.又+≥=4.即g(x)的最小值为4,所以m≤4(Ⅱ)由(Ⅰ)知n=4,∴7a+4b===≥=.当且仅当a+2b=3a+b,即b=2a=时,等号成立.所以7a+4b的最小值为.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。
陕西省西安地区陕师大附中、西安高级中学、西工大附中等八校2019届高三3月联考数学(理)试题(解析版)
2019年陕西师大附中、西安高中、高新一中、铁一中学、西工大附中等八校高考数学模拟试卷(理科)(3月份)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={1,2,3,6,9},B={3x|x∈A},C={x∈N|3x∈A},则B∩C=()A.{1,2,3}B.{1,6,9}C.{1,6}D.{3}2.(5分)右图是甲乙两位同学某次考试各科成绩(转化为了标准分,满分900分)的条形统计图,设甲乙两位同学成绩的平均值分别为,标准差分别为σ甲,σ乙,则()A.B.C.D.3.(5分)1748年,瑞士著名数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式e ix=cos x+i sin x,这个公式在复变论中占有非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,e2i表示的复数所对应的点在复平面中位于()A.第一象限B.第二象限C.第三象限D.第四象限4.(5分)设D为△ABC所在平面内一点,=3,则()A.=﹣+B.=﹣C.=+D.=+5.(5分)《张丘建筑经》卷上第22题为:“今有女善织,日益功疾,且从第二天起,每天比前一天多织相同量的布.若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织布的尺数为()A.18B.20C.21D.256.(5分)如果对定义在R上的奇函数y=f(x),对任意两个不相邻的实数x1,x2,所有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数y=f(x)为“H函数”,下列函数为H函数的是()A.f(x)=sin x B.f(x)=e x C.f(x)=x3﹣3x D.f(x)=x|x|7.(5分)已知正三棱柱ABC﹣A1B1C1的三视图如图所示,一只蚂蚁从顶点A出发沿该正三棱柱的表面绕行两周到达顶点A1,则该蚂蚁走过的最短路径为()A.B.25C.D.318.(5分)将函数的图象向右平移个单位,在向上平移一个单位,得到g(x)的图象.若g (x1)g(x2)=4,且x1,x2∈[﹣2π,2π],则x1﹣2x2的最大值为()A.B.C.D.9.(5分)已知圆C:x2+y2﹣2x﹣4y+3=0,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为()A.B.C.2D.210.(5分)抛物线x2=y在第一象限内图象上的一点(a i,2a i2)处的切线与x轴交点的横坐标记为a i+1,其中i∈N+,若a2=32,则a2+a4+a6等于()A.64B.42C.32D.2111.(5分)已知双曲线的右焦点为F2,若C的左支上存在点M,使得直线bx ﹣ay=0是线段MF2的垂直平分线,则C的离心率为()A.B.2C.D.512.(5分)已知函数,则函数g(x)=xf(x)﹣1的零点的个数为()A.2B.3C.4D.5二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.(5分)已知F是抛物线C:y=2x2的焦点,点P(x,y)在抛物线C上,且x=1,则|PF|=.14.(5分)已知实数x,y满足约束条件,则z=|﹣5x+y|的取值范围为.15.(5分)在的展开式中,常数项为.16.(5分)如图,已知圆柱和半径为的半球O,圆柱的下底面在半球O底面所在平面上,圆柱的上底面内接于球O,则该圆柱的体积的最大值为.三、解答题(本大题共5小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)(一)必考题:共60分.17.(12分)△ABC的内角A,B,C的对边分别为,且.(1)求角A的大小;(2)求△ABC的面积的最大值.18.(12分)如图1,等边△ABC中,AC=4,D是边AC上的点(不与A,C重合),过点D作DE∥BC交AB 于点E,沿DE将△ADE向上折起,使得平面ADE⊥平面BCDE,如图2所示.(1)若异面直线BE与AC垂直,确定图1中点D的位置;(2)证明:无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值,并求出这个定值.19.(12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.由测量表得到如下频率分布直方图(1)补全上面的频率分布直方图(用阴影表示);(2)统计方法中,同一组数据常用该组区间的中间值作为代表,据此估计这种产品质量指标值服从正态分布Z(μ,σ2),其中μ近似为样本平均值,σ2近似为样本方差s2(组数据取中间值);①利用该正态分布,求从该厂生产的产品中任取一件,该产品为合格品的概率;②该企业每年生产这种产品10万件,生产一件合格品利润10元,生产一件不合格品亏损20元,则该企业的年利润是多少?参考数据:=5.1,若Z~N(μ,σ2),则P(μ﹣σ,μ+σ)=0.6826,P(μ﹣2σ,μ+2σ)=0.9544.20.(12分)已知椭圆C过点,两个焦点.(1)求椭圆C的标准方程;(2)设直线l交椭圆C于A,B两点,且|AB|=6,求△AOB面积的最大值.21.(12分)已知函数f(x)=e x﹣有两个极值点.(1)求实数a的取值范围;(2)若函数f(x)的两个极值点分别为x1,x2,求证:x1+x2>2.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-:4:坐标系与参数方程]22.(10分)已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t为参数,0≤α<π).(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.[选修4-:5:不等式选讲]23.已知函数f(x)=的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足+=n时,求7a+4b的最小值.2019年陕西师大附中、西安高中、高新一中、铁一中学、西工大附中等八校高考数学模拟试卷(理科)(3月份)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={1,2,3,6,9},B={3x|x∈A},C={x∈N|3x∈A},则B∩C=()A.{1,2,3}B.{1,6,9}C.{1,6}D.{3}【分析】先分别求出集合A,B,C,由此能求出B∩C.【解答】解:∵集合A={1,2,3,6,9},B={3x|x∈A}={3,6,9,18,27},C={x∈N|3x∈A}={1,2,3},∴B∩C={3}.故选:D.【点评】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.(5分)右图是甲乙两位同学某次考试各科成绩(转化为了标准分,满分900分)的条形统计图,设甲乙两位同学成绩的平均值分别为,标准差分别为σ甲,σ乙,则()A.B.C.D.【分析】甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为σ甲,σ乙,从而得到>,σ甲<σ乙.【解答】解:由条形统计图得到:在这次考试各科成绩(转化为了标准分,满分900分)中, 甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为σ甲,σ乙,则>,σ甲<σ乙.故选:A .【点评】本题考查命题真假的判断,考查条形图、平均值、标准差等基础知识,考查运算求解能力,是基础题. 3.(5分)1748年,瑞士著名数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式e ix =cos x +i sin x ,这个公式在复变论中占有非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,e 2i 表示的复数所对应的点在复平面中位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】由已知可得e 2i =cos2+i sin2,再由三角函数的象限符号得答案. 【解答】解:由题意可得,e 2i =cos2+i sin2,∵<2<π,∴cos2<0,sin2>0,则e 2i 表示的复数所对应的点在复平面中位于第二象限. 故选:B .【点评】本题考查复数的代数表示法及其几何意义,是基础题.4.(5分)设D 为△ABC 所在平面内一点,=3,则( )A .=﹣+B .=﹣C .=+ D .=+【分析】根据向量减法的几何意义便有,,而根据向量的数乘运算便可求出向量,从而找出正确选项.【解答】解:;∴;∴.故选:A.【点评】考查向量减法的几何意义,以及向量的数乘运算.5.(5分)《张丘建筑经》卷上第22题为:“今有女善织,日益功疾,且从第二天起,每天比前一天多织相同量的布.若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织布的尺数为()A.18B.20C.21D.25【分析】设出等差数列的公差,由题意列式求得公差,再由等差数列的通项公式求解.【解答】解:设公差为d,由题意可得:前30项和S30=390=30×5+d,解得d=.∴最后一天织的布的尺数等于5+29d=5+29×=21.故选:C.【点评】本题考查了等差数列的前n项和公式,考查了推理能力与计算能力,属于基础题.6.(5分)如果对定义在R上的奇函数y=f(x),对任意两个不相邻的实数x1,x2,所有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数y=f(x)为“H函数”,下列函数为H函数的是()A.f(x)=sin x B.f(x)=e x C.f(x)=x3﹣3x D.f(x)=x|x|【分析】根据题意,不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)等价为(x1﹣x2)[f(x1)﹣f(x2)]>0,即满足条件的函数为单调递增函数,即可得“H函数”为奇函数且在R上为增函数,据此依次分析选项:综合可得答案.【解答】解:根据题意,对于所有的不相等实数x1,x2,则x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)恒成立,则有(x1﹣x2)[f(x1)﹣f(x2)]>0恒成立,即函数f(x)是定义在R上的增函数,则“H函数”为奇函数且在R上为增函数,据此依次分析选项:对于A,f(x)=sin x,为正弦函数,为奇函数但不是增函数,不符合题意;对于B,f(x)=e x,为指数函数,不是奇函数,不符合题意;对于C,f(x)=x3﹣3x,为奇函数,但在R上不是增函数,不符合题意;对于D,f(x)=x|x|=,为奇函数且在R上为增函数,符合题意;故选:D.【点评】本题考查函数的奇偶性与单调性的判断,关键是分析“H函数”的含义,属于基础题.7.(5分)已知正三棱柱ABC﹣A1B1C1的三视图如图所示,一只蚂蚁从顶点A出发沿该正三棱柱的表面绕行两周到达顶点A1,则该蚂蚁走过的最短路径为()A.B.25C.D.31【分析】将三棱柱展开,得出最短距离是6个矩形对角线的连线,相当于绕三棱柱转2次的最短路径,由勾股定理求出对应的最小值.【解答】解:将正三棱柱ABC﹣A1B1C1沿侧棱展开,如图所示;在展开图中,最短距离是6个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得正三棱锥底面三角形的边长为=4,所以矩形的长等于4×6=24,宽等于7,由勾股定理求得d==25.故选:B.【点评】本题考查了棱柱的结构特征与应用问题,也考查了几何体的展开与折叠,以及转化(空间问题转化为平面问题,化曲为直)的思想方法.8.(5分)将函数的图象向右平移个单位,在向上平移一个单位,得到g(x)的图象.若g (x1)g(x2)=4,且x1,x2∈[﹣2π,2π],则x1﹣2x2的最大值为()A.B.C.D.【分析】由题意利用函数y=A sin(ωx+φ)的图象变换规律,得到g(x)的解析式,再利用正弦函数的图象的值域,求出x1,x2的值,可得x1﹣2x2的最大值.【解答】解:将函数的图象向右平移个单位,再向上平移一个单位,得到g(x)=sin(2x﹣+)+1=﹣cos2x+1 的图象,故g(x)的最大值为2,最小值为0,若g(x1)g(x2)=4,则g(x1)=g(x2)=2,或g(x1)=g(x2)=﹣2(舍去).故有g(x1)=g(x2)=2,即cos2x1=cos2x2=﹣1,又x1,x2∈[﹣2π,2π],∴2x1,2x2∈[﹣4π,4π],要使x1﹣2x2取得最大值,则应有2x1=3π,2x2=﹣3π,故x1﹣2x2取得最大值为+3π=.故选:A.【点评】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,正弦函数的图象的值域,属于中档题.9.(5分)已知圆C:x2+y2﹣2x﹣4y+3=0,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为()A.B.C.2D.2【分析】化圆的一般方程为标准方程,从而得到圆心坐标和半径.等边△PAB的一边AB为圆C的一条弦,可得|PC|的最大值为直径,即可得出结论.【解答】解:由圆C:x2+y2﹣2x﹣4y+3=0,得:(x﹣1)2+(y﹣2)2=2,∴圆心坐标C(1,2),半径r=.∵等边△PAB的一边AB为圆C的一条弦,圆中最长弦即为直径,∴|AB|的最大值为直径2,又∵△PAB为等边三角形,∴|PC|的最大值为等边三角形的高,.故选:B.【点评】本题考查圆的方程,考查学生的计算能力,确定|PC|的最大值为直径是关键.10.(5分)抛物线x2=y在第一象限内图象上的一点(a i,2a i2)处的切线与x轴交点的横坐标记为a i+1,其中i∈N+,若a2=32,则a2+a4+a6等于()A.64B.42C.32D.21【分析】由y=2x2(x>0),求出x2=y在第一象限内图象上一点(a i,2a i2)处的切线方程是:y﹣2a i2=4a i(x﹣a i),再由切线与x轴交点的横坐标为a i+1,知a i+1=a i,所以{a2k}是首项为a2=32,公比q=的等比数列,由此能求出a2+a4+a6.【解答】解:∵y=2x2(x>0),∴y′=4x,∴x2=y在第一象限内图象上一点(a i,2a i2)处的切线方程是:y﹣2a i2=4a i(x﹣a i),整理,得4a i x﹣y﹣2a i2=0,∵切线与x轴交点的横坐标为a i+1,∴a i+1=a i,∴{a2k}是首项为a2=32,公比q=的等比数列,∴a2+a4+a6=32+8+2=42.故选:B.【点评】本题考查数列与函数的综合,综合性强,难度大,容易出错.解题时要认真审题,注意导数、切线方程和等比数列性质的灵活运用.11.(5分)已知双曲线的右焦点为F2,若C的左支上存在点M,使得直线bx ﹣ay=0是线段MF2的垂直平分线,则C的离心率为()A.B.2C.D.5【分析】求得F2到渐近线的距离为b,OP为△MF1F2的中位线,运用中位线定理和双曲线的定义,以及离心率的公式,计算可得所求值.【解答】解:F2(c,0),直线bx﹣ay=0是线段MF2的垂直平分线,可得F2到渐近线的距离为|F2P|==b,即有|OP|==a,OP为△MF1F2的中位线,可得|MF1|=2|OP|=2a,|MF2|=2b,可得|MF2|﹣|MF1|=2a,即为2b﹣2a=2a,即b=2a,可得e====.故选:C.【点评】本题考查双曲线的定义、方程和性质,考查三角形的中位线定理,考查方程思想和运算能力,属于中档题.12.(5分)已知函数,则函数g(x)=xf(x)﹣1的零点的个数为()A.2B.3C.4D.5【分析】由g(x)=xf(x)﹣1=0得f(x)=,根据条件作出函数f(x)与h(x)=的图象,研究两个函数的交点个数即可得到结论.【解答】解:由g(x)=xf(x)﹣1=0得xf(x)=1,当x=0时,方程xf(x)=1不成立,即x≠0,则等价为f(x)=,当2<x≤4时,0<x﹣2≤2,此时f(x)=f(x﹣2)=(1﹣|x﹣2﹣1|)=﹣|x﹣3|,当4<x≤6时,2<x﹣2≤4,此时f(x)=f(x﹣2)=[﹣|x﹣2﹣3|]=﹣|x﹣5|,作出f(x)的图象如图,则f(1)=1,f(3)=f(1)=,f(5)=f(3)==,设h(x)=,则h(1)=1,h(3)=,h(5)=>f(5),作出h(x)的图象,由图象知两个函数图象有4个交点,即函数g(x)的零点个数为4个,故选:C.【点评】本题主要考查函数与方程的应用,利用条件转化为两个函数图象的交点个数问题,利用数形结合是解决本题的关键.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.(5分)已知F是抛物线C:y=2x2的焦点,点P(x,y)在抛物线C上,且x=1,则|PF|=.【分析】利用抛物线方程求出p,利用抛物线的性质列出方程求解即可.【解答】解:由y=2x2,得x2=,则p=;由x=1得y=2,由抛物线的性质可得|PF|=2+=2+=,故答案为:.【点评】本题考查抛物线的定义的应用,属于基础题.14.(5分)已知实数x,y满足约束条件,则z=|﹣5x+y|的取值范围为[0,11].【分析】作出约束条件表示的可行域,判断目标函数经过的点,然后求解目标函数的范围即可.【解答】解:作出实数x,y满足约束条件的可行域如图所示:作直线l0:﹣5x+y=0,再作一组平行于l0的直线l:﹣5x+y=z,当直线l经过点A时,z=﹣5x+y取得最大值,由,得点A的坐标为(﹣2,0),所以z max=﹣5×(﹣2)+0=10.直线经过B时,目标函数取得最小值,由,解得B(2,﹣1)函数的最小值为:﹣10﹣1=﹣11.z=|﹣5x+y|的取值范围为:[0,11].故答案为:[0,11].【点评】本题考查线性规划的简单应用,考查转化思想以及数形结合的综合应用,考查计算能力.15.(5分)在的展开式中,常数项为﹣40.【分析】根据=,按照二项式定理展开,可得在的展开式中的常数项.【解答】解:∵=(x﹣2)=(x6+6x4+15x2+20+15•+6•+)(x﹣2),∴常数项是20•(﹣2)=﹣40,故答案为:﹣40.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.16.(5分)如图,已知圆柱和半径为的半球O,圆柱的下底面在半球O底面所在平面上,圆柱的上底面内接于球O,则该圆柱的体积的最大值为2π.【分析】设圆柱的底面圆半径为r,高为h,求出r与h的关系,再计算圆柱的体积V,从而求出体积V的最大值.【解答】解:设圆柱的底面圆半径为r,高为h;则h2+r2=R2=3;所以圆柱的体积为V=πr2h=π(3﹣h2)h=π(3h﹣h3);则V′(h)=π(3﹣3h2),令V′(h)=0,解得h=1;所以h∈(0,1)时,V′(h)>0,V(h)单调递增;h∈(1,)时,V′(h)<0,V(h)单调递减;所以h=1时,V(h)取得最大值为V(1)=2π.故答案为:2π.【点评】本题考查了半球与内接圆柱的结构特征与应用问题,也考查了圆柱的体积计算问题,是中档题.三、解答题(本大题共5小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)(一)必考题:共60分.17.(12分)△ABC的内角A,B,C的对边分别为,且.(1)求角A的大小;(2)求△ABC的面积的最大值.【分析】(1)直接利用三角函数关系式的恒等变变换和余弦定理和正弦定理的应用求出结果.(2)利用(1)的结论和余弦定理及基本不等式的应用求出结果.【解答】解:(1)在△ABC的内角A,B,C的对边分别为,且.整理得:(a+b)(sin A﹣sin B)=(c﹣b)sin C,利用正弦定理得:a2﹣b2=c2﹣bc,即:,由于:0<A<π,解得:A=.(2)由于,所以:a2=b2+c2﹣2bc cos A,整理得:12=b2+c2﹣bc≥2bc﹣bc=bc,所以:=3.【点评】本题考查的知识要点:三角函数关系式的恒等变变换,正弦定理和余弦定理及三角形面积公式,基本不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.18.(12分)如图1,等边△ABC中,AC=4,D是边AC上的点(不与A,C重合),过点D作DE∥BC交AB 于点E,沿DE将△ADE向上折起,使得平面ADE⊥平面BCDE,如图2所示.(1)若异面直线BE与AC垂直,确定图1中点D的位置;(2)证明:无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值,并求出这个定值.【分析】(1)取DE中点O,BC中点F,连结OA,OF,以O为原点,OE、OF、OA所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出图1中点D在靠近点A的三等分点处.(2)求出平面ADE的法向量和平面ABE的法向量,利用向量法能证明无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值.【解答】解:(1)在图2中,取DE中点O,BC中点F,连结OA,OF,以O为原点,OE、OF、OA所在直线分别为x,y,z轴,建立空间直角坐标系,设OA=x,则OF=2﹣x,OE=,∴B(2,2﹣x,0),E(,0,0),A(0,0,x),C(﹣2,2﹣x,0),=(﹣2,2﹣x,﹣x),=(﹣2,x﹣2,0),∵异面直线BE与AC垂直,∴=+8=0,解得x=(舍)或x==,∴=,∴图1中点D在靠近点A的三等分点处.证明:(2)平面ADE的法向量=(0,1,0),=(,0,﹣x),=(﹣2,x﹣2,0),设平面ABE的法向量=(a,b,c),则,取a=1,得=(1,,),设二面角D﹣AE﹣B的平面角为θ,则cosθ===,∴无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值.【点评】本题考查空间中点的位置的确定,考查二面角的余弦值为定值的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算能力,考查数形结合思想,是中档题.19.(12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.由测量表得到如下频率分布直方图(1)补全上面的频率分布直方图(用阴影表示);(2)统计方法中,同一组数据常用该组区间的中间值作为代表,据此估计这种产品质量指标值服从正态分布Z(μ,σ2),其中μ近似为样本平均值,σ2近似为样本方差s2(组数据取中间值);①利用该正态分布,求从该厂生产的产品中任取一件,该产品为合格品的概率;②该企业每年生产这种产品10万件,生产一件合格品利润10元,生产一件不合格品亏损20元,则该企业的年利润是多少?参考数据:=5.1,若Z~N(μ,σ2),则P(μ﹣σ,μ+σ)=0.6826,P(μ﹣2σ,μ+2σ)=0.9544.【分析】(1)由频率分布图求出[95,105)的频率,由此能作出补全频率分布直方图;(2)求出质量指标值的样本平均数、质量指标值的样本方差;(3)运用离散型随机变量的期望和方差公式,即可求出;①由(2)知Z~N(100,104),从而求出P(79.6<Z<120.4),注意运用所给数据;②设这种产品每件利润为随机变量E(X),即可求得EX.【解答】解:(1)由频率分布直方图得:[95,105)的频率为:1﹣(0.006+0.026+0.022+0.008)×10=0.038,补全上面的频率分布直方图(用阴影表示):质量指标值的样本平均数为:=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为S2=(﹣20)2×0.06+(﹣10)2×0.26+0×0.38+102×0.22+202×0.08=104.(3)①由(2)知Z~N(100,104),从而P(79.6<Z<120.4)=P(100﹣2×10.2<Z<100+2×10.2)=0.9544;②由①知一件产品的质量指标值位于区间(79.6,120.4)的概率为0.9544,该企业的年利润是EX=100000[0.9544×10﹣(1﹣0.9544)×20]=863200.【点评】本题考查频率分布直方图的作法,考查平均数、方差的求法,以及正态分布的特点及概率求解,考查运算能力,属于中档题.20.(12分)已知椭圆C过点,两个焦点.(1)求椭圆C的标准方程;(2)设直线l交椭圆C于A,B两点,且|AB|=6,求△AOB面积的最大值.【分析】(1)由已知可设椭圆方程为(a>b>0),且c=,再由椭圆定义求得a,结合隐含条件求得b,则椭圆方程可求;(2)当直线AB的斜率不存在时,设直线方程为x=m,由弦长求得m,可得三角形AOB的面积;当直线AB 的斜率存在时,设直线方程为y=kx+m,联立直线方程与椭圆方程,结合根与系数的关系及弦长可得m与k 的关系,再由点到直线的距离公式求出原点O到AB的距离,代入三角形面积公式,化简后利用二次函数求最值,则答案可求.【解答】解:(1)由题意,设椭圆方程为(a>b>0),且c=,2a==12,则a=6,∴b2=a2﹣c2=12.∴椭圆C的标准方程为;(2)当直线AB的斜率不存在时,设直线方程为x=m,得|AB|=,由|AB|==6,解得m=±3,此时;当直线AB的斜率存在时,设直线方程为y=kx+m,联立,得(3k2+1)x2+6kmx+3m2﹣36=0.△=36k2m2﹣4(3k2+1)(3m2﹣36)=432k2﹣12m2+144.设A(x1,y1),B(x2,y2),则,.由|AB|==6,整理得:,原点O到AB的距离d=.∴===.当时,△AOB面积有最大值为<9.综上,△AOB面积的最大值为9.【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是中档题.21.(12分)已知函数f(x)=e x﹣有两个极值点.(1)求实数a的取值范围;(2)若函数f(x)的两个极值点分别为x1,x2,求证:x1+x2>2.【分析】(1)f′(x)=e x﹣ax.函数f(x)=e x﹣有两个极值点⇔f′(x)=e x﹣ax=0有两个实数根.x=0时不满足上述方程,方程化为:a=,令g(x)=,(x≠0).利用导数已经其单调性即可得出.(2)由(1)可知:a>e时,函数f(x)有两个极值点分别为x1,x2,不妨设x1<x2.x1+x2>2⇔x2>2﹣x1>1⇔>,由=,因此即证明:>.构造函数h(x)=﹣,0<x<1,2﹣x>1.利用导数已经其单调性即可得出.【解答】(1)解:f′(x)=e x﹣ax.∵函数f(x)=e x﹣有两个极值点.∴f′(x)=e x﹣ax=0有两个实数根.x=0时不满足上述方程,方程化为:a=,令g(x)=,(x≠0).g′(x)=,可得:x<0时,g′(x)<0,函数g(x)单调递减;0<x<1时,g′(x)<0,函数g(x)单调递减;x>1时,g′(x)>0,函数g(x)单调递增.a>e时,方程f′(x)=e x﹣ax=0有两个实数根.∴实数a的取值范围是(e,+∞).(2)证明:由(1)可知:a>e时,函数f(x)有两个极值点分别为x1,x2,不妨设x1<x2.证明:x1+x2>2⇔x2>2﹣x1>1⇔>,由=,因此即证明:>.构造函数h(x)=﹣,0<x<1,2﹣x>1.h′(x)=﹣=(x﹣1),令函数u(x)=,(0<x).u′(x)=.可得函数u(x)在(0,1)内单调递减,于是函数v(x)=﹣在(0,1)内单调递减.v(x)≥v(1)=0.∴x=1时,函数h(x)取得极小值即最小值,h(1)=0.∴h(x)>h(1)=0.∴>.因此x1+x2>2成立.【点评】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-:4:坐标系与参数方程]22.(10分)已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t为参数,0≤α<π).(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.【分析】(1)利用即可得出直角坐标方程;(2)直线l的参数方程(t为参数,0≤α<π).可得l经过点(0,1);若直线l经过点(1,0),得到,得到直线l新的参数方程为(t为参数).代入抛物线方程可得t+2=0,设A、B对应的参数分别为t1,t2,利用|AB|=即可得出.【解答】解:(1)曲线C的极坐标方程ρ=化为ρ2sin2θ=4ρcosθ,得到曲线C的直角坐标方程为y2=4x,故曲线C是顶点为O(0,0),焦点为F(1,0)的抛物线;(2)直线l的参数方程为(t为参数,0≤α<π).故l经过点(0,1);若直线l经过点(1,0),则,∴直线l的参数方程为(t为参数).代入y2=4x,得t+2=0设A、B对应的参数分别为t1,t2,则t1+t2=﹣6,t1t2=2.|AB|=|t1﹣t2|===8.【点评】本题考查了极坐标方程和直角坐标方程的转换、直线的参数方程及其应用,考查了计算能力,属于中档题..[选修4-:5:不等式选讲]23.已知函数f(x)=的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足+=n时,求7a+4b的最小值.【分析】(1)由函数定义域为R,可得|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x﹣3|,利用绝对值不等式的性质求出其最小值即可;(2)由(1)知n=4,变形7a+4b=,利用基本不等式的性质即可得出.【解答】解:(1)∵函数定义域为R,∴|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x﹣3|,则m不大于函数g(x)的最小值,又|x+1|+|x﹣3|≥|(x+1)﹣(x﹣3)|=4,即g(x)的最小值为4,∴m≤4.(2)由(1)知n=4,∴7a+4b===,当且仅当a+2b=3a+b,即b=2a=时取等号.∴7a+4b的最小值为.【点评】本题考查了函数的定义域、绝对值不等式的性质、基本不等式的性质、“乘1法”,考查了推理能力与计算能力,属于中档题.。
陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考数学
2019年陕西师大附中、西安高中、高新一中、铁一中学、西工大附中等八校高考数学模拟试卷(理科)(3月份)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={1,2,3,6,9},B={3x|x∈A},C={x∈N|3x∈A},则B∩C=()A.{1,2,3}B.{1,6,9}C.{1,6}D.{3}2.(5分)右图是甲乙两位同学某次考试各科成绩(转化为了标准分,满分900分)的条形统计图,设甲乙两位同学成绩的平均值分别为,标准差分别为σ甲,σ乙,则()A.B.C.D.3.(5分)1748年,瑞士著名数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式e ix=cos x+i sin x,这个公式在复变论中占有非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,e2i表示的复数所对应的点在复平面中位于()A.第一象限B.第二象限C.第三象限D.第四象限4.(5分)设D为△ABC所在平面内一点,=3,则()A.=﹣+B.=﹣C.=+D.=+5.(5分)《张丘建筑经》卷上第22题为:“今有女善织,日益功疾,且从第二天起,每天比前一天多织相同量的布.若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织布的尺数为()A.18B.20C.21D.256.(5分)如果对定义在R上的奇函数y=f(x),对任意两个不相邻的实数x1,x2,所有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数y=f(x)为“H函数”,下列函数为H函数的是()A.f(x)=sin x B.f(x)=e x C.f(x)=x3﹣3x D.f(x)=x|x| 7.(5分)已知正三棱柱ABC﹣A1B1C1的三视图如图所示,一只蚂蚁从顶点A出发沿该正三棱柱的表面绕行两周到达顶点A1,则该蚂蚁走过的最短路径为()A.B.25C.D.318.(5分)将函数的图象向右平移个单位,在向上平移一个单位,得到g(x)的图象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],则x1﹣2x2的最大值为()A.B.C.D.9.(5分)已知圆C:x2+y2﹣2x﹣4y+3=0,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为()A.B.C.2D.2。
最新题库2019年陕西省西安市陕西师大附中、西安高中、高新一中等八校高考数学模拟试卷及参考答
-baiduwenku**百度文库baiduwenku**百度文库精品文库---baiduwenku**百度文库baiduwenku**百度文库2019年陕西省西安市陕西师大附中、西安高中、高新一中、铁一中学、西工大附中等八校高考数学模拟试卷(理科)(4月份)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若集合M ={y|y =x ﹣2},P ={y|y =},那么M ∩P =()A .(1,+∞)B .[1,+∞)C .(0,+∞)D .[0,+∞)2.(5分)欧拉公式e ix=cosx+isinx (i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占用非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,e 2i表示的复数在复平面中位于()A .第一象限B .第二象限C .第三象限D .第四象限3.(5分)下列关于命题的说法错误的是()A .命题“若x 2﹣3x+2=0,则x =2”的逆否命题为“若x ≠2,则x 2﹣3x+2≠0”B .已知函数f (x )在区间[a ,b]上的图象是连续不断的,则命题“若f (a )f (b )<0,则f (x )在区间(a ,b )内至少有一个零点”的逆命题为假命题C .命题“?x ∈R ,使得x 2+x+1<0”的否定是:“?x ∈R ,均有x 2+x+1≥0”D .“若x 0为y =f (x )的极值点,则f'(x 0)=0”的逆命题为真命题4.(5分)函数y =的图象大致是()A .B .C .D .5.(5分)已知在三棱锥P ﹣ABC 中,PA =PB =PC =1,AB =,AB ⊥BC ,平面PAB ⊥平面ABC,若三棱锥的顶点在同一球面上,则该球的表面积为()A.B.3πC.D.2π6.(5分)设函数y=f(x)=a x(a>0,a≠1),y=f﹣1(x)表示f(x)的反函数,定义如框图表示的运算,若输入x=﹣2,输出y=;当输出y=﹣3时,则输入x=()A.8B.C.6D.7.(5分)已知A(3,0),B(0,3),C(cosα,sinα),若,则的值为()A.B.C.D.8.(5分)某空间几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.9.(5分)已知(x+1)6(ax﹣1)2的展开式中,x3系数为56,则实数a的值为()A.6或5B.﹣1或4C.6或﹣1D.4或510.(5分)过抛物线y 2=4x焦点F的直线交抛物线于A,B两点,若=,则|AB|=()A.9B.72C.D.3611.(5分)已知函数f(x)=(x∈R),若等比数列{a n}满足a1a2019=1,则f(a1)+f(a2)+f(a3)+……+f(a2019)=()A.2019B.C.2D.12.(5分)若关于x的方程(lnx)2=x2+axlnx恰有3个不相等实根,则实数a的取值范围是()A.(﹣∞,)B.(﹣∞,)C.(,0)D.(,0)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)某校共有学生2000名,各年级男、女生人数如表.已知在全校学生中随机抽取1名,抽到二年级女生的可能性0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为.一年级二年级三年级女生373C2C1男生377370C214.(5分)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为.15.(5分)记S n为数列{a n}的前项和,若S n=2a n+1,则S10=.16.(5分)设函数f(x)=,若互不相等的实数x1,x2,x3满足f(x1)=f(x2)=f(x3),则x1+x2+x3的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,A=2B,sinB=,AB=23.(1)求sinA,sinC;(2)求?的值.18.西安市自2017年5月启动对“车不让人行为”处罚以来,斑马线前机动车抢行不文明行为得以根本改变,斑马线前礼让行人也成为了一张新的西安“名片”.但作为交通重要参与者的行人,闯红灯通行却频有发生,带来了较大的交通安全隐患及机动车通畅率降低,交警部门在某十字路口根据以往的检测数据,得到行人闯红灯的概率约为0.4,并从穿越该路口的行人中随机抽取了200人进行调查,对是否存在闯红灯情况得到2×2列联表如下:30岁以下30岁以上合计闯红灯60未闯红灯80合计200近期,为了整顿“行人闯红灯”这一不文明及项违法行为,交警部门在该十字路口试行了对闯红灯行人进行经济处罚,并从试行经济处罚后穿越该路口行人中随机抽取了200人进行调查,得到下表:处罚金额x(单位:元)5101520闯红灯的人数y5040200将统计数据所得频率代替概率,完成下列问题:(Ⅰ)将2×2列联表填写完整(不需写出填写过程),并根据表中数据分析,在未试行对闯红灯行人进行经济处罚前,是否有99.9%的把握认为闯红灯与年龄有关;(Ⅱ)当处罚金额为10元时,行人闯红灯的概率会比不进行处罚降低多少;(Ⅲ)结合调查结果,谈谈如何治理行人闯红灯现象.参考公式:K2=,其中n=a+b+c+d参考数据:20.250.150.100.050.0250.0100.0050.001P(K≥k0)k0 1.132 2.072 2.706 3.841 5.024 6.6357.87910.828 19.在如图所示的几何体中,四边形ABCD为平行四边形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EB=,且M是BD的中点.(1)求证:EM∥平面ADF;(2)求二面角A﹣FD﹣B的余弦值的大小.20.已知F1、F2分别是椭圆C:+y 2=1的左、右焦点.(1)若P是第一象限内该椭圆上的一点,?=﹣,求点P的坐标;(2)若直线l与圆O:x2+y2=相切,交椭圆C于A,B两点,是否存在这样的直线l,使得OA⊥OB?21.已知函数f(x)=lnx﹣ax 2+bx+1的图象在x=1处的切线l过点(,).(1)若函数g(x)=f(x)﹣(a﹣1)x(a>0),求g(x)最大值(用a表示);(2)若a=﹣4,f(x1)+f(x2)+x1+x2+3x1x2=2,证明:x1+x2≥.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1:(t为参数),C2:(θ为参数)(Ⅰ)将C1,C2的方程化为普通方程,并说明它们分别表示什么曲线;(Ⅱ)若C1上的点对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值.[选修4-5:不等式选讲]23.已知a,b均为实数,且|3a+4b|=10.(Ⅰ)求a2+b2的最小值;(Ⅱ)若|x+3|﹣|x﹣2|≤a2+b2对任意的a、b∈R恒成立,求实数x的取值范围.2019年陕西省西安市陕西师大附中、西安高中、高新一中、铁一中学、西工大附中等八校高考数学模拟试卷(理科)(4月份)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:∵={y|y >0},={y|y ≥0},∴M ∩P ={y|y >0}=(0,+∞),故选:C .【点评】本题考查函数的值域的求法,两个集合的交集的定义,化简这两个集合是解题的关键.2.【解答】解:e 2i=cos2+isin2,∵2∈,∴cos2∈(﹣1,0),sin2∈(0,1),∴e 2i表示的复数在复平面中位于第二象限.故选:B .【点评】本题考查了复数的欧拉公式、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.3.【解答】解:命题“若x 2﹣3x+2=0,则x =2”的逆否命题为“若x ≠2,则x 2﹣3x+2≠0”,故A 正确;已知函数f (x )在区间[a ,b]上的图象是连续不断的,命题“若f (a )f (b )<0,则f (x )在区间(a ,b )内至少有一个零点”的逆命题为假命题,比如f (x )=x 2在(﹣1,1)内有一个零点0,但f (﹣1)f (1)>0,故B 正确;命题“?x ∈R ,使得x 2+x+1<0”的否定是:“?x ∈R ,均有x 2+x+1≥0”,故C 正确;“若x 0为y =f (x )的极值点,则f'(x 0)=0”的逆命题为假命题,比如f (x )=x 3,有f ′(0)=0,但x =0不为f (x )的极值点,故D 错误.故选:D .【点评】本题考查命题的真假判断,主要是四种命题,以及相互关系和命题的否定,以及函数零点定理和函数的极值点的定义,考查推理能力,属于基础题.4.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D.【点评】本题考查了函数图象的识别,关键是掌握函数的奇偶性和函数的单调性,属于基础题.5.【解答】解:由题意,AC为截面圆的直径,AC==,设球心到平面ABC的距离为d,球的半径为R,∵P A=PB=1,AB=,∴PA⊥PB,∵平面PAB⊥平面ABC,∴P到平面ABC的距离为.由勾股定理可得R2=()2+d2=()2+(﹣d)2,∴d=0,R2=,∴球的表面积为4πR2=3π.故选:B.【点评】本题考查球的表面积,考查学生的计算能力,求出球的半径是关键.属于中档题.6.【解答】解:由图可知,该程序的作用是计算分段函y=的函数值.∵输入x=﹣2,输出y=,∴a﹣2=,a=2当输出y=﹣3时,只有:f﹣1(x)=﹣3?f(﹣3)=x?x=2﹣3=.故选:B.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)?②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.7.【解答】解:∵=(cosα﹣3,sinα),=(cosα,sinα﹣3)∴=(cosα﹣3)?cosα+sinα(sinα﹣3)=﹣1得cos2α+sin2α﹣3(cosα+sinα)=﹣1∴,故sin(α+)=(sinα+cosα)=×=故选:B.【点评】此题考查学生掌握平面向量的数量积的运算,灵活运用两角和的正弦函数公式、同角三角函数间的基本关系及特殊角的三角函数值化简求值,是一道中档题.8.【解答】解:由三视图得该几何体是从四棱锥P﹣ABCD中挖去一个半圆锥,四棱锥的底面是以2为边长的正方形、高是2,圆锥的底面半径是1、高是2,∴所求的体积V==,故选:B.【点评】本题考查三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.9.【解答】解:(x+1)6(ax ﹣1)2的展开式中x 3系数是C 63+C 62(﹣1)?a+C 61a 2=6a 2﹣15a+20∵x 3系数为56∴6a 2﹣15a+20=56解得a =6或﹣1故选:C .【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.10.【解答】解:如图,点B 在第一象限.过B 、A 分别向抛物线的准线作垂线,垂足分别为D 、E ,过B 作EA 的垂线,垂足为C ,则四边形BDEC 为矩形.由抛物线定义可知|BD |=|BF |,|AE|=|AF |,又∵=,∴|BD|=|CE|=2|AE|,即A 为CE 中点,∴|BA|=3|AC|,在Rt △BAC 中,|BC|=2|AC |,k AB =2,F (1,0),AB 的方程为:y =2(x ﹣1),代入抛物线方程可得:2x 2﹣5x+2=0,x 1+x 2=,则|AB|=x 1+x 2+2=+2=.故选:C .【点评】本题考查抛物线的简单性质,注意解题方法的积累,属于中档题.11.【解答】解:∵函数f (x )=(x ∈R ),∴f (x )+f ()=+==2,∵数列{a n }为等比数列,且a 1?a 2019=1.∴a 1a 2019=a 2a 2018=a 3a 2017=…=a 2019a 1=1,∴f (a 1)+f (a 2019)=f (a 2)+f (a 2019)=f (a 3)+f (a 2017)=…=f (a 2019)+f (a 1)=2,∴f (a 1)+f (a 2)+f (a 3)+……+f (a 2019)=2019.故选:A .【点评】本题考查函数值的求法,考查函数性质、等比数列的性质等基础知识,考查运算求解能力,是中档题.12.【解答】解:由题意知()2﹣﹣1=0,令t =,t 2﹣at ﹣1=0的两根一正一负,设f (x )=t =,则f ′(x )=,令f ′(x )>0得:0<x <e ,f ′(x )<0得:x >e ,即函数f (x )在(0,e )为增函数,在(e ,+∞)为减函数,故f (x )max =f (e )=,且x >e 时,f (x )>0,若关于x 的方程(lnx )2=x 2+axlnx 恰有3个不相等实根,只需令方程t 2﹣at ﹣1=0的正根满足:0,解得a ,故选:A .【点评】本题考查了二次方程区间根问题及利用导数研究函数的单调性,属中档题.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【解答】解:由题意,二年级女学生数为2000×0.19=380人,所以三年级的学生数为;2000﹣373﹣377﹣380﹣370=500人,所占比例为所以应在三年级抽取的学生人数为64×=16故答案为:16【点评】本题考查分层抽样知识,抓住各层抽取的比例一致是解决分层抽样问题的关键.14.【解答】解:画出不等式组,表示的可行域,由图可知,当直线y=﹣过A(0,)时,直线在y轴上的截距最小,z有最小值为.故答案为:.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.【解答】解:由于S n=2a n+1,①当n=1时,解得:a1=﹣1.当n≥2时,S n﹣1=2a n﹣1+1,②①﹣②得:a n=2a n﹣2a n﹣1,所以:(常数),故:数列{a n}是以﹣1为首项,2为公比的等比数列.所以:.所以:.故答案为:﹣1023【点评】本题考查的知识要点:数列的通项公式的求法及应用,数列的前n项和的应用,主要考察学生的运算能力和转换能力,属于基础题型.16.【解答】解:函数f(x)=的图象如下图所示:若存在互不相的实数x1,x2,x3满足f(x1)=f(x2)=f(x3)=k,则k∈(﹣3,4),不妨令x1<x2<x3,则x1∈(,0),x2+x3=6,故x1+x2+x3∈(,6),故答案为:(,6)【点评】本题考查的知识点是根的存在性及根的个数判断,画出函数的图象后,数形结合分析出x1∈(,0),x2+x3=6,是解答的关键.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【解答】解:(1)∵sinB=,B为锐角,∴cosB==,∵A=2B,∴sinA=sin2B=2sinBcosB=2××=,cosA=cos2B=cos2B﹣sin2B=﹣=,则sinC=sin(A+B)=sinAcosB+cosAsin B=×+×=;(2)由正弦定理==,AB=23,sinC=,sinB=,sinA=,∴AC==9,BC==12,又cosC=﹣cos(A+B)=﹣cosAcosB+sin AsinB=﹣×+×=﹣,∴?=CA×CB×cosC=9×12×(﹣)=﹣80.【点评】此题考查了正弦定理,平面向量的数量积运算,以及两角和与差的正弦、余弦函数公式,熟练掌握正弦定理是解本题的关键.18.【解答】解(Ⅰ)30岁以下30岁以上合计闯红灯206080未闯红灯8040120合计100100200∵k2==≈33.333>10.828∴有99.9%的把握说闯红灯与年龄有关,(Ⅱ)∵未进行处罚前,行人闯红灯的概率为0.4;进行处罚10元后,行人闯红灯的概率为=0.2,∴降低了0.2;(Ⅲ)①根据调查数据显示,行人闯红灯与年龄有明显关系,可以针对30岁以上人群开展“道路安全”宣传教育;②由于处罚可以明显降低行人闯红灯的概率,可以进行适当处罚来降低行人闯红灯的概率.【点评】本题考查了独立性检验,属中档题.19.【解答】(1)证明:法一、取AD的中点N,连接MN,NF,在DAB中,M是BD的中点,N是AD的中点,∴,又∵,∴MN∥EF且MN=EF.∴四边形MNFE为平行四边形,则EM∥FN,又∵FN?平面ADF,EM?平面ADF,故EM∥平面ADF.法二、∵EB⊥平面ABD,AB⊥BD,故以B为原点,建立如图所示的空间直角坐标系B﹣xyz.∵AB=2,EB=,∴B(0,0,0),D(3,0,0),A(0,0,2),E(0,0,),F(0,1,),M(,0,0),,,,设平面ADF的一个法向量是.由,令y=3,得.又∵,∴,又EM?平面ADF,故EM∥平面ADF.(2)解:由(1)可知平面ADF的一个法向量是.,,设平面BFD的一个法向量是,由,令z=1,得,∴cos<>==,又二面角A﹣FD﹣B为锐角,故二面角A﹣FD﹣B的余弦值大小为.【点评】本题考查直线与平面平行的判定,考查利用空间向量求解二面角的平面角,是中档题.20.【解答】解:(1)由椭圆方程为+y 2=1,可知:a=2,b=1,c=,∴F1(﹣,0),F2(,0),设P(x,y),(x,y>0),则?=?=x2+y2﹣3=﹣,又+y2=1,联立解得:,∴P.(2)设A(x1,y1),B(x2,y2).①若l的斜率不存在时,l:x=,代入椭圆方程得:y2=,容易得出=x1x2+y1y2=﹣=﹣≠0,此时OA⊥OB不成立.②若l的斜率存在时,设l:y=kx+m,则由已知可得=,即k2+1=4m2.由,可得:(4k2+1)x2+8kmx+4(m2﹣1)=0,则x1+x2=﹣,x1?x2=.要OA⊥OB,则=0,即x1?x2+(kx1+m)(kx2+m)=km(x1+x2)+(k2+1)x1?x2+m2=0,即5m2﹣4k2﹣4=0,又k2+1=4m2.∴k2+1=0,此方程无实解,此时OA⊥OB不成立.综上,不存在这样的直线l,使得OA⊥OB.【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、一元二次方程的根与系数的关系、向量数量积运算性质、向量垂直与数量积的关系,考查了分类讨论方法、推理能力与计算能力,属于难题.21.【解答】解:(1)函数f(x)=lnx﹣ax 2+bx+1的导数为:f′(x)=﹣ax+b,可得图象在x=1处的切线l的斜率为k=1﹣a+b,切点为(1,1+b﹣a),由切线经过点(,),可得1﹣a+b=,化简可得,b=0,则f(x)=lnx﹣ax2+1,g(x)=lnx﹣ax2+1﹣(a﹣1)x(x>0,a>0),g′(x)=﹣ax﹣(a﹣1)=﹣,当0<x<时,g′(x)>0,g(x)递增;当x>时,g′(x)<0,g(x)递减.可得g(x)max=g()=﹣lna﹣+1﹣1+=﹣lna;(2)证明:a=﹣4时,f(x)=lnx+2x2+1,f(x1)+f(x2)+x1+x2+3x1x2=2,可得lnx1+2x12+1+lnx2+2x22+1+x1+x2+3x1x2=2,化为2(x12+x22+2x1x2)+(x1+x2)=x1x2﹣ln(x1x2),即有2(x1+x2)2+(x1+x2)=x1x2﹣ln(x1x2),令t=x1x2,t>0,设h(t)=t﹣lnt,h′(t)=1﹣,当t>1时,h′(t)>0,h(t)递增;当0<t<1时,h′(t)<0,h(t)递减.即有h(t)在t=1取得最小值1,则2(x1+x2)2+(x1+x2)≥1,可得(x1+x2+1)(2x1+2x2﹣1)≥0,则2x1+2x2﹣1≥0,可得x1+x2≥.【点评】本题考查导数的运用:求切线的斜率和单调性、极值和最值,考查不等式的证明,注意运用转化和变形,以及构造函数的方法,考查运算能力,属于难题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.【解答】解:(Ⅰ)C1:(x+4)2+(y﹣3)2=1,C2:+y2=1C1为圆心是(﹣4,3),半径是1的圆C2为中心是坐标原点,焦点在x轴上,长半轴长是,短半轴长是1的椭圆(Ⅱ)当t=时,P(﹣4,4),Q(cosθ,sinθ),故M(﹣2+cosθ,2+)C3为直线x﹣y﹣5=0,M到C3的距离d==|sin(θ﹣)+9|,从而当sin(θ﹣)=﹣1时,d取得最小值4.【点评】(Ⅰ)椭圆的参数方程、圆的参数方程化为普通方程时,一般要利用同角三角函数的平方关系sin2α+cos2α=1消参得到普通方程(Ⅱ)曲线上的点,到直线上一点的距离的最小值的求法:在求点到直线最小距离时,先用参数形式写出点Q的直角坐标,代入点到直线的距离公式结合辅助角公式得到距离的最小值.[选修4-5:不等式选讲]23.【解答】解:(I)∵|3a+4b|=10,∴100=(3a+4b)2≤(32+42)(a2+b2)=25(a2+b2)∴a2+b2≥4,当且仅当即或时取等号即a2+b2的最小值4(II)由(I)知|x+3|﹣|x﹣2|≤a2+b2对任意的a、b∈R恒成立,∴|x+3|﹣|x﹣2|≤4,∴或或解可得,x<﹣3或﹣3∴实数x的取值范围(﹣∞,]【点评】本题主要考查了柯西不等式在最值求解中的应用,还考查了绝对值不等式的解法及恒成立问题与最值求解相互转化思想的应用.赠送—物理解题中的审题技巧审题过程,就是破解题意的过程,它是解题的第一步,而且是关键的一步,通过审题分析,能在头脑里形成生动而清晰的物理情景,找到解决问题的简捷办法,才能顺利地、准确地完成解题的全过程。
陕西省西安西工大附中等八校2019届高三3月联考数学(理)试题-de16fc6d3c2042b7b4102aab5796070b
………外…………○…………装学校:___________姓名………内…………○…………装绝密★启用前【校级联考】陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考数学(理)试题试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx 注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.已知集合A ={1,2,3,6,9},B ={3x|x∈A},C ={x∈N|3x∈A},则B∩C=( ) A .{1,2,3}B .{1,6,9}C .{1,6}D .{3}2.如图是甲乙两位同学某次考试各科成绩(转化为了标准分,满分900分)的条形统计图,设甲乙两位同学成绩的平均值分别为 甲 , 乙,标准差分别为 甲 乙,则( )A . 甲 乙 甲 乙B . 甲 乙 甲 乙……外…………○…………装……※※请※※不※※要※※……内…………○…………装……3.1748年,瑞士著名数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式e ix=cosx+isinx ,这个公式在复变论中占有非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,e 2i 表示的复数所对应的点在复平面中位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.设D 为ABC ∆所在平面内一点,若3BC CD =,则下列关系中正确的是( ) A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =- 5.《张丘建筑经》卷上第22题为:“今有女善织,日益功疾,且从第二天起,每天比前一天多织相同量的布.若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织布的尺数为( ) A .18B .20C .21D .256.如果对定义在R 上的奇函数y =f (x ),对任意两个不相邻的实数x 1,x 2,所有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则称函数y =f (x )为“H 函数”,下列函数为H 函数的是( ) A .f (x )=sinxB .f (x )=e xC .f (x )=x 3﹣3xD .f (x )=x|x|7.已知正三棱柱ABC ﹣A 1B 1C 1的三视图如图所示,一只蚂蚁从顶点A 出发沿该正三棱柱的表面绕行两周到达顶点A 1,则该蚂蚁走过的最短路径为( )A .B .25C .D .318.将函数的图象向右平移个单位,在向上平移一个单位,得到g (x )A.B.C.D.9.已知圆C:x2+y2﹣2x﹣4y+3=0,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为()A.B.C.D.10.抛物线x2= y在第一象限内图象上的一点(a i,2a i2)处的切线与x轴交点的横坐标记为a i+1,其中i∈N+,若a2=32,则a2+a4+a6等于()A.64B.42C.32D.2111.已知双曲线的右焦点为F2,若C的左支上存在点M,使得直线bx﹣ay=0是线段MF2的垂直平分线,则C的离心率为()A.B.2C.D.512.已知函数,则函数g(x)=xf(x)﹣1的零点的个数为()A.2B.3C.4D.5○…………订…※※订※※线※※内※※答○…………订…第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.已知F是抛物线C:y=2x2的焦点,点P(x,y)在抛物线C上,且x=1,则|PF|=_____.14.已知实数x,y满足约束条件,则z=|﹣5x+y|的取值范围为_____.15.在的展开式中,常数项为_____.16.如图,已知圆柱和半径为的半球O,圆柱的下底面在半球O底面所在平面上,圆柱的上底面内接于球O,则该圆柱的体积的最大值为_____.三、解答题17.△ABC的内角A,B,C的对边分别为,且.(1)求角A的大小;(2)求△ABC的面积的最大值.18.如图1,等边△ABC中,AC=4,D是边AC上的点(不与A,C重合),过点D作DE∥BC交AB于点E,沿DE将△ADE向上折起,使得平面ADE⊥平面BCDE,如图2所示.(1)若异面直线BE与AC垂直,确定图1中点D的位置;(2)证明:无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值,并求出这个定值.…外…………○…………装……………线…………○……学校:___________姓名:______…内…………○…………装……………线…………○……19.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.由测量表得到如下频率分布直方图(1)补全上面的频率分布直方图(用阴影表示);(2)统计方法中,同一组数据常用该组区间的中间值作为代表,据此估计这种产品质量指标值服从正态分布Z (μ,σ2),其中μ近似为样本平均值 ,σ2近似为样本方差s 2(组数据取中间值);①利用该正态分布,求从该厂生产的产品中任取一件,该产品为合格品的概率; ②该企业每年生产这种产品10万件,生产一件合格品利润10元,生产一件不合格品亏损20元,则该企业的年利润是多少?参考数据: =5.1,若Z ~N (μ,σ2),则P (μ﹣σ,μ+σ)=0.6826,P (μ﹣2σ,μ+2σ)=0.9544.20.已知椭圆C 过点 ,两个焦点 . (1)求椭圆C 的标准方程;(2)设直线l 交椭圆C 于A ,B 两点,且|AB|=6,求△AOB 面积的最大值. x(1)求实数a的取值范围;(2)若函数f(x)的两个极值点分别为x1,x2,求证:x1+x2>2.22.已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t 为参数,0≤α<π).(1)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(2)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.23.已知函数f(x)=的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足时,求7a+4b的最小值.参考答案1.D【解析】【分析】先分别求出集合A,B,C,由此能求出.【详解】集合2,3,6,,6,9,18,,2,,.故选:D.【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.A【解析】【分析】甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为甲乙,标准差分别为甲,乙,从而得到甲乙,甲乙.【详解】由条形统计图得到:在这次考试各科成绩转化为了标准分,满分900分中,甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为甲乙,标准差分别为甲,乙,则甲乙,甲乙.故选:A.【点睛】本题考查命题真假的判断,考查条形图、平均值、标准差等基础知识,考查运算求解能力,是基础题. 3.B 【解析】 【分析】由已知可得 ,再由三角函数的象限符号得答案. 【详解】由题意可得, ,, , ,则 表示的复数所对应的点在复平面中位于第二象限. 故选:B . 【点睛】本题考查复数的代数表示法及其几何意义,是基础题. 4.A【解析】∵3BC CD ∴AC −−AB =3(AD −−AC ); ∴AD =43AC −−13AB . 故选:C. 5.C 【解析】由题意设从第二天开始,每一天比前一天多织 尺布,则,解得,所以,故选C.6.D 【解析】 【分析】根据题意,不等式 等价为 ,即满足条件的函数为单调递增函数,即可得“H 函数”为奇函数且在R 上为增函数,据此依次分析选项:综合可得答案.【详解】根据题意,对于所有的不相等实数,,则恒成立,则有恒成立,即函数是定义在R上的增函数,则“H函数”为奇函数且在R上为增函数,据此依次分析选项:对于A,,为正弦函数,为奇函数但不是增函数,不符合题意;对于B,,为指数函数,不是奇函数,不符合题意;对于C,,为奇函数,但在R上不是增函数,不符合题意;对于D,,为奇函数且在R上为增函数,符合题意;故选:D.【点睛】本题考查函数的奇偶性与单调性的判断,关键是分析“H函数”的含义,属于基础题.7.B【解析】【分析】将三棱柱展开,得出最短距离是6个矩形对角线的连线,相当于绕三棱柱转2次的最短路径,由勾股定理求出对应的最小值.【详解】将正三棱柱沿侧棱展开,如图所示;在展开图中,最短距离是6个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得正三棱锥底面三角形的边长为,所以矩形的长等于,宽等于7,由勾股定理求得.故选:B.【点睛】本题考查了棱柱的结构特征与应用问题,也考查了几何体的展开与折叠,以及转化空间问题转化为平面问题,化曲为直的思想方法.8.A【解析】【分析】根据题意,不等式f()+f()>f()+f()等价为(﹣)[f()﹣f ()]>0,即满足条件的函数为单调递增函数,即可得“H函数”为奇函数且在R上为增函数,据此依次分析选项:综合可得答案.【详解】将函数的图象向右平移个单位,再向上平移一个单位,得到g(x)=sin(2x﹣+)+1=﹣cos2x+1 的图象,故g(x)的最大值为2,最小值为0,若g()g()=4,则g()=g()=2,或g()=g()=﹣2(舍去).故有g()=g()=2,即cos2=cos2=﹣1,又,x2[﹣2,2],∴2,2[﹣4,4],要使﹣2取得最大值,则应有2=3,2=﹣3,故﹣2取得最大值为+3=.故选:A.【点睛】本题考查函数的奇偶性与单调性的判断,关键是分析“H函数”的含义,属于基础题.9.C【解析】试题分析:方法一:如图,连接AC,BC,设,连接PC与AB交于点D,,是等边三角形,∴D是AB的中点,,∴在圆C:中,圆C的半径为,,,∴在等边中,,,故选C.方法二:设,,,则,得,,,故选C.考点:圆的性质、三角函数最值、利用导数求函数最值.【思路点睛】法一、先由为等腰三角形,得出D为中点,再由为等边三角形,得出,在中,将和用表示,从而求出的值,得到的表达式,用三角函数的有界性求最值;法二:设出边AD的长x,根据已知条件表示出,再利用导数求出函数的最值.10.B【解析】试题分析:,∴,∴过点的切线方程为,令,得,可得,又,所以.考点:1.导数的几何性质;2.等比数列.11.C【解析】【分析】设P为直线与的交点,则OP为的中位线,求得到渐近线的距离为b,运用中位线定理和双曲线的定义,以及离心率的公式,计算可得所求值.【详解】设为直线与的交点,则为的中位线,,直线是线段的垂直平分线,可得到渐近线的距离为,且,,,可得,即为,即,可得.故选:C.【点睛】本题考查双曲线的定义、方程和性质,考查三角形的中位线定理,考查方程思想和运算能力,属于中档题.12.B【解析】【分析】由g(x)=xf(x)﹣1=0得f(x),根据条件作出函数f(x)与h(x)的图象,研究两个函数的交点个数即可得到结论.【详解】由g(x)=xf(x)﹣1=0得xf(x)=1,当x=0时,方程xf(x)=1不成立,即x≠0,则等价为f(x)=,当2<x≤4时,0<x﹣2≤2,此时f(x)=f(x﹣2)=(1﹣|x﹣2﹣1|)=﹣|x﹣3|,当4<x≤6时,2<x﹣2≤4,此时f(x)=f(x﹣2)=[﹣|x﹣2﹣3|]=﹣|x﹣5|,作出f(x)的图象如图,则f(1)=1,f(3)=f(1)=,f(5)=f(3)=,设h(x)=,则h(1)=1,h(3)=,h(5)=>f(5),作出h(x)的图象,由图象知两个函数图象有3个交点,即函数g(x)的零点个数为3个,故选:B.【点睛】本题主要考查函数与方程的应用,利用条件转化为两个函数图象的交点个数问题,利用数形结合是解决本题的关键.13.【解析】【分析】利用抛物线方程求出p,利用抛物线的性质列出方程求解即可.【详解】由,得,则;由得,由抛物线的性质可得,故答案为:.【点睛】本题考查抛物线的定义的应用,属于基础题.14.[0,11]【解析】【分析】作出约束条件表示的可行域,判断目标函数经过的点,然后求解目标函数的范围即可.【详解】作出实数x,y满足约束条件的可行域,如图所示:作直线l0:﹣5x+y=0,再作一组平行于l0的直线l:﹣5x+y=z,当直线l经过点A时,z=﹣5x+y取得最大值,由,得点A的坐标为(﹣2,0),所以z max=﹣5×(﹣2)+0=10.直线经过B时,目标函数取得最小值,由,解得B(2,﹣1)函数的最小值为:﹣10﹣1=﹣11.z=|﹣5x+y|的取值范围为:[0,11].故答案为:[0,11].【点睛】本题考查线性规划的简单应用,考查转化思想以及数形结合的综合应用,考查计算能力.15.-40【解析】【分析】根据,按照二项式定理展开,可得在的展开式中的常数项.【详解】解:∵(x﹣2)=(x6+6x4+15x2+20+15•6•)(x ﹣2),∴常数项是20•(﹣2)=﹣40,故答案为:﹣40.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.16.2【解析】【分析】设圆柱的底面圆半径为r,高为h,求出r与h的关系,再计算圆柱的体积V,从而求出体积V的最大值.【详解】解:设圆柱的底面圆半径为r,高为h;则h2+r2=R2=3;所以圆柱的体积为V=r2h=(3﹣h2)h=(3h﹣h3);则V′(h)=(3﹣3h2),令V′(h)=0,解得h=1;所以h(0,1)时,V′(h)>0,V(h)单调递增;h(1,)时,V′(h)<0,V(h)单调递减;所以h=1时,V(h)取得最大值为V(1)=2.故答案为:2.【点睛】本题考查了半球与内接圆柱的结构特征与应用问题,也考查了圆柱的体积计算问题,是中档题.17.(1);(2).【解析】【分析】直接利用三角函数关系式的恒等变变换和余弦定理和正弦定理的应用求出结果.利用的结论和余弦定理及基本不等式的应用求出结果.【详解】在的内角A,B,C的对边分别为,且.整理得:,利用正弦定理得:,即:,由于:,解得:.由于,所以:,整理得:,所以:.当且仅当时,的面积有最小值.【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,正弦定理和余弦定理及三角形面积公式,基本不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.18.(1)见解析;(2)【解析】【分析】(1)取DE中点O,BC中点F,连结OA,OF,以O为原点,OE、OF、OA所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出图1中点D在靠近点A的三等分点处;(2)求出平面ADE的法向量和平面ABE的法向量,利用向量法能证明无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值.【详解】解:(1)在图2中,取DE中点O,BC中点F,连结OA,OF,以O为原点,OE、OF、OA所在直线分别为x,y,z轴,建立空间直角坐标系,设OA=x,则OF=2x,OE,∴B(2,2x,0),E(,0,0),A(0,0,x),C(﹣2,2x,0),(﹣2,2x,﹣x),(2,x﹣2,0),∵异面直线BE与AC垂直,∴8=0,解得x(舍)或x,∴,∴图1中点D在靠近点A的三等分点处.证明:(2)平面ADE的法向量(0,1,0),(,0,﹣x),(2,x﹣2,0),设平面ABE的法向量(a,b,c),则,取a=1,得(1,,),设二面角D﹣AE﹣B的平面角为θ,则cosθ ,∴无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值.【点睛】本题考查空间中点的位置的确定,考查二面角的余弦值为定值的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算能力,考查数形结合思想,是中档题.19.(1)见解析;(2)① . ,②863200.【解析】【分析】(1)由频率分布图求出[95,105)的频率,由此能作出补全频率分布直方图;(2)求出质量指标值的样本平均数、质量指标值的样本方差;(3)运用离散型随机变量的期望和方差公式,即可求出;①由(2)知Z~N(100,104),从而求出P(79.6<Z<120.4),注意运用所给数据;②设这种产品每件利润为随机变量E(X),即可求得EX.【详解】(1)由频率分布直方图得:[95,105)的频率为:1﹣(0.006+0.026+0.022+0.008)×10=0.038,补全上面的频率分布直方图(用阴影表示):质量指标值的样本平均数为:=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为S2=(﹣20)2×0.06+(﹣10)2×0.26+0×0.38+102×0.22+202×0.08=104.(2)①由(1)知Z~N(100,104),从而P(79.6<Z<120.4)=P(100﹣2×10.2<Z<100+2×10.2)=0.9544;②由①知一件产品的质量指标值位于区间(79.6,120.4)的概率为0.9544,该企业的年利润是EX=100000[0.9544×10﹣(1﹣0.9544)×20]=863200.【点睛】本题考查频率分布直方图的作法,考查平均数、方差的求法,以及正态分布的特点及概率求解,考查运算能力,属于中档题.20.(1);(2)9【解析】【分析】(1)由已知可设椭圆方程为(a>b>0),且c,再由椭圆定义求得a,结合隐含条件求得b,则椭圆方程可求;(2)当直线AB的斜率不存在时,设直线方程为x=m,由弦长求得m,可得三角形AOB的面积;当直线AB的斜率存在时,设直线方程为y=kx+m,联立直线方程与椭圆方程,结合根与系数的关系及弦长可得m与k的关系,再由点到直线的距离公式求出原点O到AB的距离,代入三角形面积公式,化简后利用二次函数求最值,则答案可求.【详解】解:(1)由题意,设椭圆方程为(a>b>0),且c,2a12,则a=6,∴b2=a2﹣c2=12.∴椭圆C的标准方程为;(2)当直线AB的斜率不存在时,设直线方程为x=m,得|AB|由|AB|6,解得m=±3,此时;当直线AB的斜率存在时,设直线方程为y=kx+m,联立,得(3k2+1)x2+6kmx+3m2﹣36=0.△=36k2m2﹣4(3k2+1)(3m2﹣36)=432k2﹣12m2+144.设A(,),B(,),则,.由|AB|6,整理得:,原点O到AB的距离d.∴.当时,△AOB面积有最大值为<9.综上,△AOB面积的最大值为9.【点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.21.(1)(e,+∞);(2)见解析【解析】【分析】(1)f′(x)=e x﹣ax.函数f(x)=e x有两个极值点⇔f′(x)=e x﹣ax=0有两个实数根.x=0时不满足上述方程,方程化为:a,令g(x),(x≠0).利用导数已经其单调性即可得出.(2)由(1)可知:a>e时,函数f(x)有两个极值点分别为,x2,不妨设<,+>2⇔ >2﹣>1⇔>,由,因此即证明:>.构造函数h(x),0<x<1,2﹣x>1.利用导数已经其单调性即可得出.【详解】(1)解:f′(x)=e x﹣ax.∵函数f(x)=e x有两个极值点.∴f′(x)=e x﹣ax=0有两个实数根.x=0时不满足上述方程,方程化为:a,令g(x),(x≠0).g′(x),可得:x<0时,g′(x)<0,函数g(x)单调递减;0<x<1时,g′(x)<0,函数g(x)单调递减;x>1时,g′(x)>0,函数g(x)单调递增.a>e时,方程f′(x)=e x﹣ax=0有两个实数根.∴实数a的取值范围是(e,+∞).(2)证明:由(1)可知:a>e时,函数f(x)有两个极值点分别为x1,x2,不妨设x1<x2.证明:+>2⇔ >2﹣>1⇔>,由,因此即证明:>.构造函数h(x),0<x<1,2﹣x>1.h′(x)(x﹣1),令函数u(x),(0<x).u′(x).可得函数u(x)在(0,1)内单调递减,于是函数v(x)在(0,1)内单调递减.v(x)≥v(1)=0.∴x=1时,函数h(x)取得极小值即最小值,h(1)=0.∴h(x)>h(1)=0.∴>.因此+>2成立.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于难题.22.(1)曲线C:y2=4x,顶点为O(0,0),焦点为F(1,0)的抛物线;(2)8【解析】【分析】(1)利用即可得出直角坐标方程;(2)直线l的参数方程(t为参数,0≤α<).可得l经过点(0,1);若直线l经过点(1,0),得到,得到直线l新的参数方程为(t为参数).代入抛物线方程可得t+2=0,设A、B对应的参数分别为t1,t2,利用|AB|即可得出.【详解】(1)曲线C的极坐标方程ρ=化为ρ2sin2θ=4ρcosθ,得到曲线C的直角坐标方程为y2=4x,故曲线C是顶点为O(0,0),焦点为F(1,0)的抛物线;(2)直线l的参数方程为(t为参数,0≤α<).故l经过点(0,1);若直线l经过点(1,0),则,∴直线l的参数方程为(t为参数).代入y2=4x,得t+2=0设A、B对应的参数分别为t1,t2,则t1+t2=﹣6,t1t2=2.|AB|=|t1﹣t2|===8.【点睛】本题考查了极坐标方程和直角坐标方程的转换、直线的参数方程及其应用,考查了计算能力,属于中档题..23.(Ⅰ) m≤4(Ⅱ)【解析】试题分析:(1)由函数定义域为R,可得|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x ﹣3|,利用绝对值不等式的性质求出其最小值即可;(2)由(1)知n=4,变形7a+4b=,利用基本不等式的性质即可得出.试题解析:(Ⅰ)由题意可知:+-m≥0对任意实数恒成立.设函数g(x)=+,则m不大于函数g(x)的最小值.又+≥=4.即g(x)的最小值为4,所以m≤4(Ⅱ)由(Ⅰ)知n=4,∴7a+4b===≥=.当且仅当a+2b=3a+b,即b=2a=时,等号成立.所以7a+4b的最小值为.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。