特级教师吴正宪商不变教学实录

合集下载

让课堂评价促进学习发展——以特级教师吴正宪《商不变的规律》教学片断为例

让课堂评价促进学习发展——以特级教师吴正宪《商不变的规律》教学片断为例

———以特级教师吴正宪《商不变的规律》教学片断为例文|尹力课堂评价是教师对学生发言或小组活动进行及时性的激励与评定、为全班学生作出价值指引的过程。

课堂评价是教学的重要组成部分,有助于学生及时了解自己的学习情况,发现长处与不足,从而改进学习。

但一线教学中的课堂评价仍存在诸多不足。

下面以特级教师吴正宪《商不变的规律》教学片断为例,浅析课堂评价的策略,以期促进学生学习的发展。

一、捕捉评价契机,激励学习情感学生作为独立个体,在学习活动中会产生各种情感体验,如成功的喜悦、失败的沮丧等。

而伴随认知活动产生的这些非智力因素对学生学习活动的发展会起到促进或阻碍作用。

因而,兼具“心理调节者”身份的教师,在学习活动中也应关注学生情感的变化并作出适时的调整,评价便是调节学生情感的有效方法。

我们可以在学生个体、小组作出发言或完成阶段性学习任务后,有意识地捕捉其中值得肯定或需要鼓励的细节,及时作出评价。

片断一:师:下面请你们自己任意选择一组观察,可以在题目上做标记,让别人一眼就看出你思考的过程。

先独立思考,再小组交流。

生1:我认为被除数6和除数3都乘10,商就不变。

感悟名师125Copyright©博看网 . All Rights Reserved.小学教学计·数学2021/01、02生2:我把被除数60和除数30都乘10,商也不变。

生3:同学们对我们小组的发言有什么补充吗?生4:被除数6和除数3都乘100,商也不变啊。

生3:谢谢你的补充。

师:你们不但标得清晰,说得还特别清楚。

上述案例是吴老师对学生成绩的肯定。

其实,类似环节在我们的课堂教学中并不罕见,但很多教师觉得学生的发现简单,画图也比较粗糙,没有值得赞许的地方。

换位思考,学生能清楚简洁地画出想法、勇敢流畅地表达观点,确实是件了不起的事,理应表扬。

实际上,教师只需简短且针对性的点评就能激起学生的成就感,引发全体学生注意,促使大家以更饱满的精神状态投入到学习中,这是一种简单有效的组织教学的窍门。

六年级上数学教学实录-商不变的性质-人教版【小学学科网】

六年级上数学教学实录-商不变的性质-人教版【小学学科网】

商不变的性质教学过程一、导入新课1、创设情境。

同学们,今天我给大家讲一段我小的时候老师给我讲的一个小故事,好不好?(学生齐答:好!)猴山上,猴王带着一群小猴子生活,其中有一只名叫肥肥的小猴子,它既贪吃又自作聪明,猴王就利用分饼子的机会教育帮助了它。

猴王分别给每只猴子8块饼,要它们平均分2天吃完,许多小猴子拍起手来表示满意,唯独肥肥大叫着说:"8块饼太少了,不够吃。

"猴王说:"那好,我给你16块饼,平均分4天吃完。

"话音刚落,肥肥又叫又跳:"不够,不够。

"猴王又说:"那我给你32块饼,平均分8天吃完。

"肥肥还没等猴王说完又嚷到:"太少,太少,还不够吃。

"猴王最后说:"那我给你64块饼,平均分16天吃完,怎么样?"肥肥得意地说:"够了,够了。

"猴王和其它小猴子都笑了起来,而肥肥却莫名其妙。

2、启发提问,导入新课。

(1)同学们,为什么猴王和其它小猴子听完贪吃而又自作聪明的肥肥的话后,都笑了呢?(教师的提问把专心听故事的学生的注意力集中到这个问题上来,唤起学生探求新知的欲望。

)教师组织学生讨论,分析故事中的条件和问题,为学习新知识做准备。

“8块饼,平均分2天吃完。

”“16块饼,平均分4天吃完。

”“32块饼,平均分8天吃完。

”“64块饼,平均分16天吃完?”得出以上的条件后,要求学生根据条件,列出算式,并计算出小猴子平均每天能吃几块饼。

8÷2=4(块)16÷4=4(块)32÷8=4(块)64÷16=4(块)通过计算,学生发现猴王四次分饼,看起来分得的饼是越来越多,其实平均每天能吃到的饼,块数都是一样的。

(2)猴王是运用什么知识来帮助教育这个既贪吃又自作聪明的小猴子的呢?同学们想知道吗?(想)学了今天这节课的知识,你就知道了。

(3)在除法算式里,除号左边的8、16、32和64这些数我们称作什么?(被除数)"除号右边的2、4、8和16这些数我们称作什么?(除数)除得的结果我们又称作什么?(商)如果以第一个等式为标准,下面三个等式中的被除数、除数和商,什么变了,什么不变?(被除数、除数变了,商不变)被除数和除数是怎么变化,而商不变呢?今天我们就来学?quot;商不变的性质"。

小学数学吴正宪课堂实录

小学数学吴正宪课堂实录

小学数学吴正宪课堂实录近年来,随着教育改革的不断深入,小学数学教育也在不断地发展和完善。

而在这个过程中,有一位教育界的名人——吴正宪老师,他的教学理念和方法备受关注和推崇。

本文将以《小学数学吴正宪课堂实录》为题,介绍他的教学实践和思路。

一、吴正宪老师的教育理念吴正宪老师认为,教育的目的是培养学生的能力,而不仅仅是传授知识。

他认为,学生不是被教育,而是在教育中成长和发展。

因此,他注重培养学生的创造性思维和解决问题的能力,让他们在学习中体会到学科的美妙和乐趣。

二、吴正宪老师的教学方法1.以学生为中心吴正宪老师的教学方法是以学生为中心的。

他注重发掘学生的潜力,引导他们自主学习,让学生在学习过程中发挥主观能动性。

他的教学不是简单的灌输,而是让学生在实践中探究、发现、解决问题。

2.注重启发式教学吴正宪老师的教学方法也注重启发式教学。

他通过提出引人深思的问题,让学生思考问题,从而启发他们发现问题的本质和规律。

他注重培养学生的创造性思维和解决问题的能力,让学生在学习中感受到知识的美妙和乐趣。

3.注重情感教育吴正宪老师的教学方法还注重情感教育。

他注重培养学生的情感体验和品德修养,让学生在学习过程中感受到教师的关心和爱护。

他认为,只有在温馨、和谐的教育氛围中,学生才能真正地享受学习的过程。

三、吴正宪老师的教学实践1.培养学生的创造性思维吴正宪老师在教学中注重培养学生的创造性思维。

他通过提出引人深思的问题,让学生思考问题,从而启发他们发现问题的本质和规律。

例如,在教学数学的时候,他会提出一些有趣的问题,让学生通过探究和实践,发现数学的美妙和乐趣。

2.注重实践教学吴正宪老师的教学方法注重实践教学。

他会让学生在实践中探究、发现、解决问题,让学生在学习中体验到知识的美妙和乐趣。

例如,在教学数学的时候,他会让学生进行实验和探究,让学生在实践中体验到数学的美妙和乐趣。

3.注重情感教育吴正宪老师的教学方法还注重情感教育。

他注重培养学生的情感体验和品德修养,让学生在学习过程中感受到教师的关心和爱护。

基础教育课程教材发展中心深度学习教学改进项目——小学数学吴正宪案例展示课堂实录展示

基础教育课程教材发展中心深度学习教学改进项目——小学数学吴正宪案例展示课堂实录展示

案例展示:《加减乘除复习课》吴正宪教授好,感谢马老师的引领,马老师呢,从如何聚焦数学学科的本质,从深度学习的教学设计这个角度呢,对运算教学给我们做了一个很好的引领,虽然呢,仅仅半个小时的时间啊,但是马老师提出来的这一系列的问题,足够我们大家认真的好好的去琢磨,那么接下来呢,我们就放三个教学片状,我做一个简要的解释,第一,这三个案例是旧的,疫情期间呢,我们的孩子没有来上课,我们没有能在这段时间和孩子们一起来创造这个有关数与运算的更新的教学案例,第二呢,我想说为什么选择这三个案例呢。

也是马老师与团队一起协商,那么数、小数的意义,小数的除法运算,加减乘除的混合运算,他们之间有关系吗?如何打通他们之间的关系,抓住数学本质,促进学生的思维发展,那么就以我个人,我这是抛砖引玉啊,这个拿出来了,让大家这个批评指导啊,肯定案例当中呢,有很多的问题。

这个武维民看了这三个案例以后呢,他做了一点儿截取,因为时间的关系一共就给半个小时左右的时间,所以每课里边呢,就把最核心的那个点给列出来了,大家一边看一边思考,也可以边批判,然后呢,我们几位再和大家进行研讨。

那我们就走进这三节案例,看看这三个案例之间的关系。

《教学案例展示》。

卷首语:深度学习的重要特征之一是主题建构式的学习过程。

通过对核心知识与关键能力的确定,引导儿童在“单元学习主题”中建好“承重墙”,打通“隔断墙”,促进深度学习。

《小数的意义》这节课,思考:数的认识的核心要素和关键能力是什么?课堂伊始,吴老师就从调动儿童已有的学习经验入手,引导学生利用“人民币”和“米尺”解释对一位小数的认识。

在学生理解了一位小数是在以“1”为标准,通过细化单位而得到后,同学们的挑战开始了。

吴老师:好了,我们图的阴影部分可以用0.6来表示,现在变了,好好的看,看这,我又在这张纸片上涂了一点红色,现在还能用0.6来表示阴影部分吗?生:不能师:此时的你想说什么?最想说的是什么,那个男孩儿你要说什么?生:我没举手,师:没举手,不知道怎么表示了,不知道就告诉我,我也不知道怎么办了?你呢?生:我还没想好还没想好呢,师:不急你有想法啦生:0.61。

吴正宪教育教学故事案例(2篇)

吴正宪教育教学故事案例(2篇)

第1篇标题:用心浇灌,静待花开——吴正宪老师的教育教学故事一、案例背景吴正宪老师是一位有着丰富教学经验的中学语文教师。

她所在的班级里有一位名叫小明的学生,小明成绩优异,但性格内向,不善与人交流。

吴老师了解到这一情况后,决定从关心和帮助小明入手,帮助他走出自我封闭的状态,成为一个阳光、自信的人。

二、案例过程1. 发现问题吴老师发现小明在课堂上总是低头做笔记,很少与其他同学互动。

课后,小明也很少参加集体活动,这让吴老师感到担忧。

2. 深入了解为了更好地了解小明,吴老师开始主动与小明交流,关心他的生活,了解他的兴趣爱好。

在交流中,吴老师发现小明对文学有着浓厚的兴趣,但由于性格原因,他不敢表达自己的观点。

3. 制定计划为了帮助小明走出自我封闭的状态,吴老师制定了以下计划:(1)鼓励小明在课堂上积极发言,分享自己的观点;(2)组织班级活动,让小明在集体中展示自己的才华;(3)邀请小明参加学校文学社团,培养他的兴趣爱好。

4. 实施计划(1)课堂上,吴老师鼓励小明大胆发言,并给予他充分的肯定和鼓励。

渐渐地,小明开始主动参与课堂讨论,与同学们互动。

(2)课后,吴老师组织了一次班级联欢会,让小明负责策划和组织。

在这次活动中,小明充分发挥了自己的才能,赢得了同学们的赞誉。

(3)在文学社团,吴老师鼓励小明多参与活动,展示自己的作品。

在社团活动中,小明结识了许多志同道合的朋友,他的自信心逐渐增强。

5. 案例结果经过一段时间的努力,小明变得开朗、自信,与同学们的关系也越来越融洽。

在课堂上,他积极发言,与同学们共同探讨问题。

在课余时间,他积极参加各种活动,丰富了自己的课余生活。

三、案例反思1. 教师要关注学生的个性发展,尊重学生的兴趣爱好,为他们提供展示自己的平台。

2. 教师要善于发现学生的优点,给予他们充分的肯定和鼓励,激发他们的自信心。

3. 教师要注重培养学生的团队合作精神,让他们在集体中成长。

吴正宪老师的教育教学故事告诉我们,用心浇灌,静待花开。

特级教师吴正宪商不变教学实录

特级教师吴正宪商不变教学实录

特级教师吴正宪商不变教学实录第一篇:特级教师吴正宪商不变教学实录学生的思维碰撞搭台——商不变性质课堂实录吴正宪老师执教(一)故事设疑激发兴趣游戏导入1、听口令做动作(坐下、起立)。

2、听口令做相反动作(坐下—起立,起立—坐下)。

3、看手势做动作(手正面—起立,手背面—坐下)。

4、看符号做动作(1—起立,2—坐下)。

提问:这当中,什么变了,什么没有变?(板书:变不变)今天老师想和同学们一起来研究除法算式中的变与不变,有兴趣吗?1.师讲故事。

花果山风景秀丽,气候宜人,南里住着一群猴子。

有一天,猴王给小猴子分桃子。

猴王说:“给你6个桃子,平均分给你们3只小猴子吧。

”小猴子听了,我只能得到2个桃子。

连连摇头说:“太少了,太少了。

”猴王又说:“好吧,给你60个桃子,平均分给你们30只小猴,怎么样?”小猴子得寸进尺,挠挠头皮,试探地说:“大王,再多给点行不行啊?”猴王一拍桌子,显示出慷慨大度的样子:“那好吧,给你600个桃子,平均分给你们300只小猴,你总该满意了吧?”小猴子觉得占了大便宜,开心地笑了,猴王也笑了。

谁是聪明的一笑?为什么呢?(一个小小的故事,一个有趣的问题激发了同学们极大的热情,大家争先恐后地回答)生1:猴王的笑是聪明的一笑。

按照这3种分法,每只小猴得到的都是2个桃子。

师:你是怎么知道的?生2: 6÷3=260÷30=2600÷300=2 师:真聪明!(同时板书算式)2.观察这几个算式,你发现了什么?(这几个除法算式的商是2)3.大家观察得很仔细,你还能编出几道商事2的除法算式吗?生:12÷6=224÷12=230÷15=2 ……(选其中一道板书)4.师提问:怎么编题,商总是2,你有什么窍门吗?(二)合作学习教师指导(三)小组汇报各抒己见1.第一组发言:“拿60÷30=2来说吧,被除数60乘2,除数30也乘2,就得到120÷60,商没变也是2。

吴正宪在小学数学教学改革观摩交流会上的总结实录

吴正宪在小学数学教学改革观摩交流会上的总结实录

吴正宪在小学数学教学改革观摩交流会上的总结实录吴正宪在小学数学教学改革观摩交流会上的总结实录【注:中国教育学会小学数学教学专业委员会于2011年4月25日一29日在福建省厦门市举办了“全国第十届深化小学数学教学改革观摩交流会”。

本届大会,旨在交流小学数学课堂教学改革,落实素质教育,培养学生的创新意识和实践能力,提高教学质量,在课堂教学中落实课程改革新理念等方面的研究成果,进一步推动小学数学教学改革向纵深发展。

本届大会是全国小学数学教育界的又一次盛会。

吴正宪老师在厦门一中分会场会议上做了总结发言,通过网络学习,现整理下来与大家共享。

】一、关注激发学生的学习兴趣,关注学生学习需求。

从导入新课到整节课的进行甚至到了结尾的尾声铃声响而思未断。

很多的孩子还在思考,那么孩子兴趣的萌发,产生了学习需求,通过什么样的方式呢?我们纵观16节课,有些课上出了很好的情境,学习情境创设对小学生来讲很需要,过去偏重于实际生活中的情境,16节课中很多老师用数学问题的情境的创设,引发学生思考的欲望;还有的课很好的利用了生成,利用了资源,比如包括自然资源,包括学生资源,学生资源里包括优等生资源和当时课堂中出现的错误资源,还有课堂上临时发生的生成资源,资源定位比较好。

有的课发现老师真是在精心选材,精心设计,材料很有童趣,学生们兴趣盎然,还很有思考价值,不是为了乐趣而乐,这里面有浓浓的思考价值,让学生不得不去思考,还有的老师很好的挖掘了数学知识本身内在的数学魅力,使课堂教学凸显了数学知识的魅力,还有的老师在激发学生内在的学习需求上下了很大的功夫,关注学生的心理,特别是问题意识,通过不断的问题的发现,对问题让学生去思考,就形成了我们利用情境激发学生学习兴趣,让学生产生需求。

例如:杭州赵海峰老师执教的《小数的初步认识》,学生对小数已经有经验了,在有经验的基础上引进小数以后,到底应怎样学习小数,小数的读法写法孩子很快就过了,老师并没有在这儿费更多的笔墨。

吴正宪《商不变规律》

吴正宪《商不变规律》

【《商不变规律》片段及解读】课前交流:相互问好,要求孩子大声发言。

T:上课好还是玩儿好?课前准备,学生可以自己调整座位,以看清楚黑板为准。

(吴正宪老师一如既往的亲切,看似随意,体现关爱!)一、故事导入猴王分桃:有一天,猴王让一只小猴分桃子。

猴王说:“给你6个桃子,平均分给3只猴吧。

”小猴听了,连连摇头说:“太少了,太少了。

”猴王又说:“好吧,给你60个桃子,平均分给30只猴,怎么样?”小猴子得寸进尺,挠挠头皮,试探地说:“大王,再多给点行不行啊?”猴王一拍桌子,显示出慷慨大度的样子说:“那好吧,给你600个桃子,平均分给300只小猴,你总该满意了吧?”小猴子连忙说:“好了、好了”!猴王和小猴都哈哈大笑。

T:谁是智慧的一笑呢?板书一组算式。

二、探讨商不变规律1、师:“2”在这个算式里名称是什么?(商)商怎样?(商不变)师:谁在变?谁不变?(教师提问具体,针对性强)2、师:这节课我们要研究的是商的变化规律,一组算式行吗?对要多找几组,看看有没有共同特点和规律。

3、出示:坐标图(数轴依次是10、20、30、40元;横轴依次是2、4、6、8支)师:你发现什么?生1:2支10元,4支20元......生2:每支5元。

师:你真了不起,发现了背后的关系。

板书第二组算式4、请同学们选一组研究,观察被除数、除数你发现了什么?5、学生在教师的引导下发现商不变规律。

(这个过程学生都是在老师的引导下自己发现规律,即使没有说对老师也不忙于纠正,给了学生充分思考的时间,多数学生都能用自己的语言说出:你乘10,我乘10商不变;你除以4我除以4商不变等。

)6、深化印象,举例说明师:你举个这样的例子吧,也有这样的规律。

有感觉的自己举例,没感觉的教师亲自指导。

(课堂上的分层教学体现的淋漓尽致,学生在教师的指导下学会后,教师由衷地说:“你找到了感觉,会倾听,真好!”)学生汇报后,教师提问:还能再写吗?写的完吗?7、总结:看式子你发现什么情况下商不变?把你想到的写下来。

“商不变规律”教学实录

“商不变规律”教学实录

“商不变规律”教学实录教材简析“商不变规律”是小学数学中的重要基础知识,它是进行除法简便计算的依据,也是今后学习小数乘除法,分数、比的基本性质等知识的基础。

教材通过实例的分析、比较,使学生掌握商不变时被除数、除数的变化规律,从而抽象概括出“商不变的规律”。

本节课要使学生自主探索、理解和掌握“商不变的规律”,并能运用“商不变的规律”进行简便计算。

同时,培养学生的观察、概括以及发现规律探求新知的能力。

教学目标1、知识技能目标:探索、理解、掌握商不变规律,会灵活运用商不变规律解题。

2、过程与方法目标:在探索规律的过程中,经历观察、比较、猜想、验证、综合、归纳等思维活动,获得一些探索的经验,发展思维能力。

3、情感态度目标:感受辨证唯物主义的启蒙教育,体现团队精神,体验成功学习的快乐,继续激发学生学习数学的兴趣,培养对数学的亲近感。

教学重点理解、掌握商不变规律。

教学难点会灵活运用商不变规律解题。

教材准备电脑动画故事教学设想一、创设情境,激趣导入(讲故事)。

电脑播放动画故事“八戒吃西瓜”:在夏日的一天,唐僧师徒摘了许多西瓜,贪吃的八戒马上对唐僧说:“师傅,天这么热,你赶快给我些西瓜吃吃吧!”唐僧说:“要吃西瓜可以,你要先回答几道数学问题才行。

”八戒满口答应。

师:我们一起来看看唐僧给八戒提了什么数学问题:(出示复习题)1、你能写出一道除法算式,并标出各部分的名称吗?2、列式计算。

①把2扩大10倍是多少?②把36缩小4倍是多少?(分别读题后,指名回答。

)【以故事的形式复习旧知,既吸引了同学们的注意力,又为“商不变规律”的探索搭桥铺路。

】师:八戒也和同学们一样准确地回答了唐僧提出的数学问题。

于是,唐僧决定给八戒8个西瓜,要求他平均分成2天吃。

八戒却说:“这样每天才吃四个呀!太少了,太少了!”唐僧回答:“要不,我给你80个西瓜,你要平均分成20天吃。

”猪八戒还不满足说:“师傅,开开恩,能不能再多给点?”唐僧又说:“那好吧,我给你800个西瓜,你要平均分成200天吃。

吴正宪课堂实录

吴正宪课堂实录

吴正宪课堂实录吴正宪课堂实录吴正宪创造了孩子们喜欢的数学课堂,她的数学教学被称作“爱与美的旋律”。

小编为大家整理的吴正宪课堂实录,希望大家喜欢。

《解决问题》吴正宪师:谁能大点声音跟老师们说一句话。

生:老师们大家好师:这个同学真勇敢,刚才不好意思说一下师:谢谢你们的礼貌请坐师:在这个画面上你看到了什么?生:小猴,桃子,桃树师:就看到猴,树,还发现什么数学信息?生:第一只猴子采了4个桃子,第二只猴子采了7个桃子师:瞧,她除了看到猴,树之外还发现了数学信息。

我们把什么这只叫做猴哥哥,下面这只叫做猴弟弟。

吴老师把你们发现的信息用文字记录下来。

师:请问你看到这两个信息,能提出什么问题呢?生:他们一共摘了多少个桃子?师:多好啊,她提的问题,这个题目你会做吗?生:会。

4加7等于11个桃子。

师:今天我们用这样的方法你能理解吗?我们用一个圈圈表示弟弟的4个桃子,那哥哥7个桃子大一点还是小一点?生:大一点师:你们对数的感觉还真好,那一共有几个桃子,要怎么办?生:把两个圈圈合起来师:用手势帮助我们理解,真好。

我画一个打圈圈,这是我们过去学习的旧知识。

那么今天研究点新的问题。

猴哥哥跟弟弟开个玩笑:弟弟啊,弟弟,我不行告诉你,你猜一猜哥哥会怎么说?生:弟弟啊,我比你多采了3个。

师:真厉害,哥哥就是这样说的,我们也把它记录下来,这个时候应该怎么求呢?这个时候来个小智慧人,前看看后看看,你猜猜智慧人会喊什么呢?生:同学们你们要动脑筋生:你们要多动脑筋好好学习师:你们可真冠冕堂皇啊,这些都没问题,这个小智慧人喊得话可会让你眼前一亮,就告诉你先做什么,再做什么啊生:你要先算出哥哥的桃子啊师:你可要算哥哥的桃子,不然就麻烦了,第二个智慧人就会喊生:再把它们合起来师:小智慧人已经喊出来了,今天我们就尝试着通过画图的方法把它算出来请学生来黑板上画学生尝试画,教师指导巡视,发现学生不同的想法就请学生画在黑板上。

师:基本上画得都是一样的,有没有不一样的?师:大声地告诉我,结果得几?生:7师:有没有不同的意见?生:11请的7和11的小朋友上黑板辩论。

小学数学吴正宪经典案例

小学数学吴正宪经典案例

小学数学吴正宪[经典案例][经典案例一]《平均数》一课上,在吴老师让学生估算平均数这一教学环节中,一位女同学估算出2000张,只见吴老师来到那位女同学身边摸着她的头亲切地说:“请你去问问同学,听听其他同学是怎样估计得这么准确的。

”被采访的是一个小男孩:“你估计的2000张比最大的数还多,这是不可能的,平均数要比最大的数少,比最少的数要多。

”吴老师转过身来,摸着小女孩的头说:“听了这位同学的发言,你想说什么?”小女孩不好意思地说:“我估计的数跑到最高的数外边去了。

”一个“外”正表现出了孩子对平均数的认识和理解,体现了孩子对自己学习的反思。

吴老师心中的感动再次溢于言表:“我非常佩服第一次估计比较准的同学,你们思考问题有根有据。

但我更佩服身边的这位小姑娘,虽然第一次她估计到‘外边’去了(有意识地用了童的语言),但是她学会了和同学们交流,还能接纳别人的意见,能够修正自己的意见,这是很好的学习方法,我们都应该向她学习。

”吴老师紧紧地握住小姑娘的手,小姑娘笑得那样甜。

她善于激发每一位学生积极发言,对每一位发言学生都给予积极、肯定的评价,鼓励学生认真倾听,大胆发言;鼓励学生求异思维,勇于创新。

在她富有激励性语言的鼓舞下,学生思维活跃,个性得到张扬,兴趣盎然,积极主动地参与探讨、质疑、创造等教学活动,让学生在思考、交流、倾听、争论和发现中学习数学知识,充分发挥了学生的主体作用。

吴正宪老师的激情课堂教学的最大特色是善于巧妙地创设各种问题情境,最大限度地激发孩子的求知欲,做到以情促情。

[经典案例二]在《商不变性质》课上,一开始她就给大家讲述了“猴王分桃”的故事:花果山上风景秀丽,气候宜人。

一天,猴王给小猴们分桃子。

猴王说:“给你6个桃子,平均分给3只小猴吃。

”小猴听了连连摇头说:太少了,太少了!”猴王又说:“好!给你60个桃子,平均分给30个小猴,怎么样?”小猴子还得寸进尺,试探地说:“大王,再多给点行吗?”猴王一拍桌子,显得很慷慨大度地样子说:“那好吧!给你600个桃子,平均分给300只小猴,你总满意了吧”小猴子高兴地笑了,猴王也笑了。

听吴正宪老师《商不变的规律》有感

听吴正宪老师《商不变的规律》有感

听吴正宪老师《商不变的规律》有感(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--听吴正宪老师《商不变的规律》有感11月9日,我有幸和学校的几位老师一起参加了“小学数学创新力高效课堂教学观摩活动”。

两天的课听下来,收获匪浅。

名师自由名师道,每一位给我们上示范课及讲座的老师,都有各自的伟大魅力去吸引住学生,同时也深深的吸引了台下的我们。

其实,我最喜欢吴正宪老师的课。

网上有这么一句话:“课伊始,趣已生;课继续,情更深;课已完,意未尽。

”这正是对吴正宪老师教学“商不变的规律”一课的真实写照。

“猴子分桃”的故事,情趣高而寓意深,吴正宪老师巧妙地把一些枯燥而抽象的数学规律变为有趣而贴近儿童生活的故事情节,从而使他们始终在愉悦、和谐的课堂氛围中学习。

吴正宪老师课堂的另一个特色——充分信任学生,把学习的主动权交给学生。

教是为了学服务的,教师的主导作用是潜在的,而学生的主体作用是显性的。

吴正宪老师不断地为学生创设具有挑战性的问题情境。

在探究“商不变的规律”的奥妙时,她采用了小组合作学习,让学生自己去探索、发现和讨论,这里既有组内的合作,又有组间的竞争。

在让学生辨析“被除数与除数之间的变化是同时扩大同时缩小还是同增同减”时,又一次激起争辩的高潮。

争辩是思维最好的触媒。

随着波澜迭起的教学设计,全体学生自始至终主动地积极参与了学习过程,通过探索、交流、发现、辨析、整合,大家终于获得了共识。

诚然,课堂是生命交流的驿站,是思维碰撞的舞台。

在这节课中,知识的获得是学生思维碰撞的结果,是学生智慧的结晶。

吴正宪老师以她高超的教学艺术,紧紧地吸引了孩子们的心。

她以知促情,以情导知,与孩子思维共振,情感共鸣。

尤其值得一提的是经常引发学生之间的争论,这不仅能加深对概念、规律的理解,而且着力于学生社交思考、敢于争辨、善于表达能力的提高,同时也使学生学会倾听、接纳与评价,对于完善学生的人格,意义是深远的。

吴正宪小学数学优秀教学案例(5个)

吴正宪小学数学优秀教学案例(5个)

吴正宪小学数学优秀教学案例(5个)吴正宪小学数学优秀教学案例(5个)(吴正宪,全国知名数学特级教师,北京市教科院基础教育教研中心小学数学室主任)(一)平均数吴:你们喜欢什么球类运动?生1:我喜欢足球。

生2:篮球。

生3:乒乓球。

吴:由于受到场地的限制,我们只能在这里进行一次拍球比赛,你们看怎么样?生:好。

吴:那我们以这里为界,一分为二,这边算一队,那边算一队。

第一件事,先给自己的队起一个自己喜欢的名字,然后派一个代表把名字写在黑板上。

第二件事,咱们得商量商量,这么多小朋友参加比赛怎么个比法,你们得出点招儿。

听懂了吗?(学生七嘴八舌商量开了,一分钟后,一个同学在黑板上写了“胜利队”。

另一对也写了“吴正队”)吴 :吴正是什么意思?生:因为您的课讲得特别好,我们用您的名字,一定能赢。

吴:行行行。

队名产生了,那咱们怎么比呢?生:选出每个队最厉害的一位参加比赛。

吴:那你们选吧,再挑一个裁判,每队再请一个小朋友纪录。

预备,开始!20秒后,吴老师喊停,然后统计:“吴正队”:30,“胜利队”:29。

下面我宣布,本次比赛胜利者为“吴正队”。

“胜利队”服不服气?“胜利队”:不服气!吴:为什么?生:就一个人能代表我们吗?应该每队再选几个。

吴:我建议每队再选三个人,好吗?(每队三人继续比赛,老师把每个人的拍球数写在黑板上。

)吴:下面用最快的速度算出“胜利队”和“吴正队”的总数各是多少,报数。

生;118,124.吴:现在胜利者是“吴正队”,可以吗?生:不可以。

(这时,吴老师走到胜利队同学面前。

)吴:别急,虽然现在咱们落后,但吴老师决定加入“胜利队”,欢迎吗?胜利队:欢迎!吴:现在把吴老师拍的22个加进来,算一算一共多少个?生;140个。

吴;下面我宣布,今天的胜利者是“胜利队”。

生:不同意!吴:为什么?生;胜利队有5次拍球机会,我们只有4次,不公平。

吴;哦,在人数不等的情况下,我们还用总数这个统计量来比较,显然不公平,那么,在人数不等的情况下,我们能不能比出两个队总体的拍球水平呢?(学生开始思考,相互交流。

浙教版四年级下“商不变性质” 数学课堂实录听课感受和案例分析

浙教版四年级下“商不变性质” 数学课堂实录听课感受和案例分析

浙教版四年级下“商不变性质” 数学课堂实录听课感受和案例分析各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢“商不变性质”课堂实录、听课感受和案例分析执教:舟山教学研究中心钱金铎记录:椒江区东山中心校谢玮君一、导入1、视算(生在练习纸上写答案)12÷3=50÷10=100÷5=120÷30=60÷15=360÷90=2、对比练习口算A组:10÷2=B组:8÷4=c组200÷2=40÷4=16÷4=200÷10=180÷60=160÷4=200÷20=280÷40=320÷4=200÷40=生练习师:你发现了哪一组有什么规律,或有什么特点?生:B组被除数2,除数不变,商也变师板书,除数不变,被除数变,商也变师:乱变还是有规律变?生:有规律变的师:同桌说说是怎么变的?(同桌互说)生1:除数不变,被除数扩大几倍,商也扩大几倍。

(师板书)师:c组有什么规律变化?生:被除数不变,除数扩大几倍,商就缩小几倍师:同桌说说规律。

师:你觉得还有什么不变的?生:商不变的时候,师:比方说举个例子。

大屏幕出示:8÷4=216÷()=2160÷()=2320÷()=2二、新课教学师:商不变,除数被除数在变吗?是怎么变的?同桌交流后写出简单的规律。

生:被除数扩大几倍,除数扩大相同的倍数。

师:他说什么听明白了吗?结论是什么?全班说生:除数扩大几倍,被除数扩大相同的倍数,商不变师:哪句话最简洁?生:商不变时,被除数扩大缩小几倍,除数也扩大缩小几倍,商不变师:他还说了什么?生:他还说了缩小师:举个例子生:16÷8=28÷4=2师生一起…………师:我们练习时就有板书360÷9=4÷3↓↓÷3120÷3=4÷2↓↓÷260÷15=4÷5↓↓÷512÷3=4师:我们得出了结论。

“商不变的规律”教学实录及反思

“商不变的规律”教学实录及反思

“商不变的规律”教学实录及反思吴正宪;薛铮【摘要】一问题来自有趣的故事师:吴老师给你们带来了"猴王分桃子"的故事。

(边播放课件边讲述故事。

随着故事的展开,黑板上出现如下三个除法算式)6÷3=260÷30=2600÷300=2师:呵呵!笑声过后要有思考,猴王和小猴子,谁的笑才是聪明的一笑?为什么?生1:猴王的笑才是聪明的笑。

大家看,【期刊名称】《小学教学:数学版》【年(卷),期】2015(000)010【总页数】4页(P24-27)【关键词】教学实录;大家看;买东西;讨论交流;图里;摇摇头;解铃还需系铃人;就这样;静思;元表征【作者】吴正宪;薛铮【作者单位】[1]北京教育研究院;[2]北京市西城区黄城根小学【正文语种】中文【中图分类】G424.21师:吴老师给你们带来了“猴王分桃子”的故事。

(边播放课件边讲述故事。

随着故事的展开,黑板上出现如下三个除法算式)6÷3=260÷30=2600÷300=2师:呵呵!笑声过后要有思考,猴王和小猴子,谁的笑才是聪明的一笑?为什么?生1:猴王的笑才是聪明的笑。

大家看,桃子是越来越多了,但是小猴子的数量也越来越多了,分来分去每只小猴子得到的还是2个桃子。

生2:我看到算式里的商都是2,6除以3等于2,60除以30也等于2,600除以300还是等于2。

所以每只猴子分到的桃子都是2个。

猴王真聪明!(教室里响起了热烈的掌声)师:是啊,小猴子还以为猴王给的桃子越多,自己得到的就越多呢,可是不管怎么分,每只小猴子得到的都是2个桃子啊。

看来这故事里面也藏着数学道理,这算式中说不定会告诉我们重要的数学规律呢。

下面我们就一起来研究。

1.借助算式,聚焦研究话题。

师:(指着黑板上的三个“2”)2,2,2,全是2,“2”在这组算式中叫什么?(学生齐答“商”)师:这一组的商有什么特点?生:它们都一样。

师:对呀,你们发现了在这组算式中商始终没变。

《商不变规律》课堂实录+反思(终稿)秋爽 - 副本 (2)

《商不变规律》课堂实录+反思(终稿)秋爽 - 副本 (2)

《商不变的规律》课堂实录授课教师:北京教育科学研究院吴正宪实录整理:北京市西城区黄城根小学薛铮教学内容:人教版四年级上册第六单元P89例8《商不变的规律》教学目标:1.探索商不变的规律,尝试用数学语言进行描述,并进行简单运用。

2.经历“商不变规律”的发现、表达和应用的过程,初步获得探索规律的方法和经验,发展概括、推理能力。

3.感受探索、运用规律的乐趣。

课堂实录:一、从生活中来1.故事引入师:吴老师给你们带来了一个小故事,请你们仔细听。

(课件播放故事,教师讲述:花果山风景秀丽,气候宜人,那里住着一群猴子。

有一天,猴王给小猴子分桃子。

猴王说:“给你6个桃子,平均分给你们3只小猴子吧。

”小猴子听了,心想我只能得到2个桃子,就连连摇头说:“太少了,太少了。

”猴王又说:“好吧,给你60个桃子,平均分给你们30只小猴,怎么样?”小猴子得寸进尺,挠挠头皮,试探地说:“大王,再多给点行不行啊?”猴王一拍桌子,显示出慷慨大度的样子:“那好吧,给你600个桃子,平均分给你们300只小猴,你总该满意了吧?”小猴子觉得占了大便宜,开心地笑了,猴王也笑了。

)(随着故事的进展,教师分别板书三个除法算式:6÷ 3 =260÷30 =2600÷300=2师:呵呵!你们都笑出声来了。

笑过之后你得思考,猴王和小猴,谁的笑才是聪明的一笑?为什么?生1:猴王是聪明的。

因为猴王分的桃子是原来的10倍,而分给小猴子的只数也是原来的10倍,所以每次的商6除以3等于2,60除以30也等于2,600除以300还是等于2。

所以每只猴子分的数量是一样的,所以我认为猴王是聪明的。

师:你更聪明!(孩子们自发响起了热烈的掌声)师:小猴子们以为占了大便宜,其实每只猴子得到桃子的数都是2。

(教师分别指着黑板上的三个“2”)师:2,2,2,全是2,2在这组算式中叫做?(学生们齐答“商,商不变”。

)真好!你们发现了在这组算式中商不变。

吴正宪课堂实录

吴正宪课堂实录

吴正宪课堂实录教师:同学们,今天是五月二日,吴老师带你们去一次美丽的游乐园,好吗?看这里,游乐园里有很多游乐项目,这是什么?学生:弹射塔、激流勇进、滑翔索道、观缆车、波浪飞椅、勇敢者转盘。

教师:不知道大家有没有玩过这些项目,不管你们有没有玩过这些项目,今天吴老师带你们一起走进这美丽的游乐场,好吗?我有一个小小的请求,全体起立,一会儿,我们进入游乐场以后,不管你坐在那个项目上,你要把你的动作和表情把你坐在上面的感觉表现出来好吗?来呀,同学们,手,动起来。

观览车,缓缓地,好极了。

勇敢者转盘,快一点转,弹射塔,缓缓地蹲下来,滑翔索道,抓好前进。

激流勇进,做好准备,刷,再来一次。

好了,同学们快做好,开心一刻已经过去,笑声过去要有思考。

刚才我们到了游乐园完了这么多项目。

你能不能将你坐在上面的感觉给大家说一说。

教师:你能不能给这些游乐项目起个名字,是什么样的运动方式?学生:我做过滑翔索道,我感觉是有个东西将它碰过去有碰过来。

教师:是怎样碰过去,这样的运动方式,平平稳稳的向前走,你能给她起个名字吗?学生:前后推动。

发射回转。

教师:这是你的态度。

教师:我给他起名字,你们看看合适吗?像这样一种运动方式,平平的稳稳地向前走,我们能不能叫它平移。

可以吗?(板书:平移)。

这是我们今天接触的一个新的运动方式,叫什么?学生:平移。

教师:今天我们接触的所有东西是不是都是平移?还有没有其他运动方式?学生:往上往下的。

教师:还有没有不同的运动方式?学生:转圈。

教师:哪个是转圈的。

学生:波浪飞椅。

教师:你举高高的手,你想起什么名字学生:我想叫他旋转。

教师:你们喜欢什么?学生:旋转。

教师:那我们就把那样的运动方式叫做旋转(教师板书:旋转)教师:刚才这个小朋友说的转圈,我们在体会体会。

今天吴老师就和小朋友们一起来研究,什么是平移的运动方式,什么是旋转的运动方式。

我请6位小朋友上台,你们喜欢哪一种运动方式就把它摘下来,有个要求,第一你要学一下你坐在上面的运动情况,然后判断一下它属于哪一种运动方式,属于哪一种就把它贴在哪一种的下面。

吴正宪老师评课文本实录

吴正宪老师评课文本实录

吴正宪老师评课文本实录吴正宪:这两节课上完了,幸福在哪里?(杜答)幸福在学生里。

(吴说)就在我们的课堂里。

我一直在问自己:为什么对课堂情有独钟?你说我们再研究,去写、去定课标、审查课标,那些博士、专家研究数学最终要落在哪?就定在课堂。

我总说“是骡子是马课堂里溜溜”。

培养教师的专业成长一定离不开课堂这块的沃土。

我非常感动,看到哈尔滨市小学数学教师良好的职业状态、教育理念、和专业技术。

不管是杜老师还是安老师的课都是啃了一个硬骨头----计算,不容易讲,除法乘法的笔试,多抽象!两位老师拿到这两节课一定有很多想法。

每人给一分钟,最想说什么?搞个突然袭击。

杜:我认为计算教学要在重算理的基础上明确算法,通过数形结合、集合直观等方式,让学生学习不那么枯燥,变得更有乐趣。

安:课前我也做了小测,大家都会算和列,但孩子们都明白算理吗?这是我的思考,沟通加法与乘法的练习,明确我们为什么要这样算?吴正宪老师继续:这两节计算课大家有什么问题吗?没有计算课:法则、算理----尤其是第一节计算课、第一次讲除数是两位数的笔算竖式,第一次讲乘法的竖式,最重要的是什么?两位老师用他们的理念和对计算教学的价值判断很好的诠释了他们的思考。

计算有这么几个事:第一怎么算?就是法则。

第二得明白为什么这样算?就是算理。

我这样算的道理是什么?然后让他们交融在一起,互相给力。

而不是“我要让你这样做,我就像你这样做”。

我们提倡的是要明明白白的算。

因此对算理的理解有助于学生对整个小学数学学习本质的理解,算理的分量就不能太弱。

尤其是第一节课。

培养他的计算能力技能是一个漫长、长久的过程。

这一节课干不了这么多的事----0除外你没讲,除法你没讲,严谨吗?今天我带来一些思考,可能是颠覆性的、错误的。

我希望大家能形成一个基本模式。

一、怎么算,为什么这样算?途径路径,就是我怎么教啊?我怎么领学生走这条路啊?怎么交给学生这样算?二、学生走到哪了?我的目标到哪了?这就是评价。

商不变的性质教学设计一等奖

商不变的性质教学设计一等奖

商不变的性质教学设计一等奖《商不变的性质教学设计一等奖》这是优秀的教学设计一等奖文章,希望可以对您的学习工作中带来帮助!第1篇教学设计一、教材分析:“商不变的规律”是小学数学中的重要基础知识,它是进行除法简便运算的依据,也是今后学习小数乘除法、分数、比的基本性质等知识的基础。

教材通过实例的分析、比较,使学生掌握商不变时被除数、除数的变化规律,从而抽象概括出商不变的规律。

本小节内容要使学生理解和掌握商不变的规律,并能运用商不变的规律进行简便计算。

同时,培养学生的观察、概括以及发现探求新知的能力。

二、学生分析本节课内容“商不变的规律”是在学生已较好地掌握了多位数除法的计算方法的基础上学习的,因而对于学生来说,要学好这部分知识,发现和探索出商不变的规律,难度不是很大,但利用商不变的规律解决生活中的实际问题有一定的难度。

我引导学生从身边最熟悉的事例入手,探索怎样利用商不变的规律用类推的数学方法来解决问题。

教学内容:北师大版四年级上册第74页至75页。

教学目标:1、理解和掌握商不变的规律,并能运用这一规律口算有关除法;培养学生观察、概括以及提出问题、分析问题、解决问题的能力。

2、学生在参与观察、比较、猜想、概括、验证等学习活动过程中,体验成功。

教学重点:使学生理解并归纳出商不变的规律。

教学难点:使学生会初步运用商不变的规律进行一些简便计算教学课时:1课时教学过程:一、激趣引课今天老师给你们带来了一张明星照,想不想看看是谁?(点击课件)哇!王老师!大家看想我吗?如果拍照时,老师的眼睛变小了,嘴巴不变,嘴巴还变大了,那么拍出的照片还像我吗?不过,这张照片太小了,我想拍一张大一点的请同学们帮老师选择一家价格便宜的照相馆:A照相馆:“30元可以照6张!”B照相馆:“60元可以照12张!”C照相馆:“90元可以照18张!”D照相馆:“10元可以照2张!”照相馆:“15元可以照3张!”二、探索规律1、让学生自主看信息列出四个算式,指名板演四个算式。

商不变的规律 课堂实录

商不变的规律 课堂实录

商不变的规律教学内容:商不变的规律教材分析:教材首先安排了一个开放性的准备练习,并按次序排列起来,让学生通过观察、比较,发现规律。

教材的知识结构分为三个层次呈现:(1)计算出示的一组除法算式,并且细心观察找出算式的规律;(2)把观察出的规律用自己的语言表达出来;(3)运用商不变的规律,尝试进行简便计算。

学情分析:学生已经掌握了乘法交换律、结合律、分配律,以及两位数乘、除多位数的计算法则,为本节课的学习提供了知识和数学思考的基础。

本课内容是让学生在探索与发现的过程中学习并巩固商不变的规律。

不仅让学生清晰、准确地理解商不变的规律,也为今后运用多种定律进行简便运算打下基础。

同时,商不变的规律在实际应用中较广泛,利于学生运用所学知识技能来解决一些实际问题。

教学目标:1.经历探索与发现商不变规律的过程,理解商不变的规律,发展提出问题和解决问题的能力。

2.结合具体的问题,能运用商不变的规律,寻找合理简捷的运算途径,感受算法的多样化,例会规律的价值,提高运算能力。

3.在探索规律的过程中,逐步培养独立思考、合作交流、反思质疑的良好学习习惯。

教学重点:理解掌握商不变的规律。

教学难点:归纳商不变的规律的过程,运用商不变的规律进行简便计算。

教学过程:一.探索新知,初步感受商不变的规律1.口算,初步感受商不变的规律8÷2=480÷20=4800÷200=?生:等于4师:你怎么计算的?生:因为8个百除以2个百就等于4师:孩子们观察这三个算式,被除数与除数都变化了吗?生:变了师:那商呢?生:没变师:咦,为什么被除数与除数都在发生变化,商却没变呢?师:请孩子们以第一个算式为标准,小组讨论,讨论好了,静息告诉老师。

(交流汇报)根据生回答,师板书:8÷2=4(8×10)÷(2×10)=4(8×100)÷(2×100)=42.探寻商为什么满足这个规律就不变师:刚才孩子们找到了算式之间的规律,那为什么被除数与除数同时扩大相同的倍数,商就不变了呢?(如果孩子说不出来,老师给予引导)师:8÷2=4里,被除数8代表8个?,2代表2个?,那么8÷2=4也可以说成是8个一÷2个一=4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生的思维碰撞搭台
——商不变性质课堂实录
吴正宪老师执教(一)故事设疑激发兴趣
游戏导入
1、听口令做动作(坐下、起立)。

2、听口令做相反动作(坐下—起立,起立—坐下)。

3、看手势做动作(手正面—起立,手背面—坐下)。

4、看符号做动作(1—起立,2—坐下)。

提问:这当中,什么变了,什么没有变?(板书:变不变)
今天老师想和同学们一起来研究除法算式中的变与不变,有兴趣吗?
1.师讲故事。

花果山风景秀丽,气候宜人,南里住着一群猴子。

有一天,猴王给小猴子分桃子。

猴王说:“给你6个桃子,平均分给你们3只小猴子吧。

”小猴子听了,我只能得到2个桃子。

连连摇头说:“太少了,太少了。

”猴王又说:“好吧,给你60个桃子,平均分给你们30只小猴,怎么样?”小猴子得寸进尺,挠挠头皮,试探地说:“大王,再多给点行不行啊?”猴王一拍桌子,显示出慷慨大度的样子:“那好吧,给你600个桃子,平均分给你们300只小猴,你总该满意了吧?”小猴子觉得占了大便宜,开心地笑了,猴王也笑了。

谁是聪明的一笑?为什么呢?(一个小小的故事,一个有趣的问题激发了同学们极大的热情,大家争先恐后地回答)
生1:猴王的笑是聪明的一笑。

按照这3种分法,每只小猴得到的都是2个桃子。

师:你是怎么知道的?
生2: 6÷3=2 60÷30=2 600÷300=2
师:真聪明!(同时板书算式)
2.观察这几个算式,你发现了什么?(这几个除法算式的商是2)
3.大家观察得很仔细,你还能编出几道商事2的除法算式吗?
生:12÷6=2 24÷12=2 30÷15=2 ……(选其中一道板书)
4.师提问:怎么编题,商总是2,你有什么窍门吗?
(二)合作学习教师指导
(三)小组汇报各抒己见
1.第一组发言:“拿60÷30=2来说吧,被除数60乘2,除数30也乘2,就得到120÷60,商没变也是2。

被除数60除以3,除数30也除以3,就得到了20÷10,商和原来比也没变,还是2。


第二组发言:“还是拿60÷30=2来说,被除数和除数都乘5,就得到了300÷150=2,被除数和除数都除以6,就得到10÷5=2。

被除数和除数变了而商不变》”大家纷纷表示同意。

2.教师在板条上写出算式:
60÷30=2
(60×2)÷(30×2)=2
(60÷3)÷(30÷3)=2
(60×5)÷(30×5)=2
(60÷6)÷(30÷6)=2
……
3.师:同学们观察得很好,都是找到一道标准题,拿其他的题目与标准题相比,看到了被除数和除数发生了这样的变化,而商不变,看来大家都同意这个观点,我把大家说的算式表示出来,是这样的吗?(生:对,学生看着这些算式,不住的点头)
4.师:对这些算式的排列,同学们有什么意见吗?
5.一女生站起来说:“我想给您提个意见,这些算式放在一起,太乱了,如果把这些算式重新排一下,看起来就更清楚了。


6.小女孩在老师的帮助下,将刚才写的板条重新整理分为两栏:
左边是:(60×2)÷(30×2)=2
(60×5)÷(30×5)=2
……
右边是:(60÷3)÷(30÷3)=2
(60÷6)÷(30÷6)=2
……
7.师:同学们,这个意见提得好不好?好在哪里?
“左边的算式都是被除数和除数乘一个数,商没变,右边的算式都是被除数和除数除以一个数,商没变。

她把这些算式分成了两类,更清楚了。


“既然大家都说这个意见好,我们就接受这个意见,谢谢你,小姑娘,你观察问题很有顺序。


8.谁能把这些算式用比较简练的语言表达出来?
生1:小男孩说:“我通过研究发现,这几个算式里,被除数变大,除数跟着变大,商不变;被除数变小,除数也变小,商也不变。


9.吴老师根据他的回答在黑板上写出:“被除数变大(小),除数变大(小),商不变。

” 自言自语道:真的是这样的吗?
10.引导学生进一步探究、讨论,使学生明确:变大可以是同时加上一个数,变小可以是同时减去同一个数,但是这样的情况,商都会变。

一位勇敢地女孩说:“加一个数,原数也变大,减一个数,原数就变小,可是商变了。

应该说如果被除数乘几,除数也乘几,商不变,或者说被除数除以几,除数也除以几,商也不变,这么说更准确。


11.教师鼓励性的小结:
对小女孩说:“小姑娘,你真棒!我欣赏你流利的表达,更佩服你的勇气。

你敢于挑战对方提出不同的意见,很了不起。


对低着头的小男孩,拍拍他的肩膀亲切的说:“小伙子,你也勇敢,正是有了你的发言,才给我们带来了一次深刻的思考,一次有意义的讨论,使我们大家对这个问题了解得更深刻了,谢谢你。


12.接着教师进一步引导:“乘几用数学语言可以说成扩大几倍,除以几可以说成缩小几倍。

谁能把刚才的发现这个规律再完整地叙述一遍。


13.有了刚才的交流,同学们更踊跃了,一位一直没有发言的同学在吴老师的邀请下,站起来大声说:“在除法里,被除数扩大几倍,除数也扩大几倍,商不变;被除数缩小几倍,除数也缩小几倍,商不变。

14.师:你们真了不起,通过观察、思考和讨论,发现了这样一条很重要的规律,这就是商
不变规律。

(板书课题)
(四)举例验证质疑提高
1.师:这个性质对所有的除法算式都适用吗?你们有没有对其他算式进行试验过呢?2.学生用不同的算式开始验证:
生1质疑12÷6=2,8÷4=2,这两道题之间也符合这个规律吗?
(五)反馈练习深化认识
1.抢答:根据3120÷260=2,很快说出下面各题的商。

312÷26=
31200÷2600=
1560÷130=
6240÷520=
312000…00÷26000…00=
(1000个0)
2.判断下面的算式,哪一个与12÷3相等。

(12×2)÷(3×4)
(12+9)÷(3+9)
(12÷6)÷(3×6)
(12+12)÷(3+3)
(12×3)÷(3×3)
3.揭示生活中商不变性质的应用。

启发学生发现:买3件衬衫120元,买6件同样的衬衫240元,买9件同样的衬衫360元,也可以用商不变的性质。

衬衫的件数扩大几倍,总价钱也扩大几倍,而衬衫的单价不变,即商不变;等等。

4.找朋友。

一位同学手里拿着卡片32÷8=4走向讲台高呼:“我的朋友,请过来!”,其他同学拿着事先发的卡片完成游戏。

附:板书设计
商不变的性质
60÷30=2
同同
扩缩
(60×2)÷(30×2)=2 (60÷3)÷(30÷3)=2
(60×5)÷(30×5)=2 (60÷6)÷(30÷6)=2
(60×10)÷(30×10)=2 (60÷5)÷(30÷15)=2
…… ……
扩大
在除法里,被除数和除数同时或相同的倍数商不变。

缩小。

相关文档
最新文档