九年级数学圆教学案
九年级下册《圆》教案
一、教学目标1. 知识与技能:(1)理解圆的定义、圆心、半径等基本概念;(2)掌握圆的周长、面积的计算公式及应用;(3)学会用圆规和直尺画圆。
2. 过程与方法:(1)通过观察、思考、讨论,培养学生的空间想象能力和抽象思维能力;(2)运用合作探究的学习方式,提高学生解决问题的能力;(3)培养学生运用数学知识解决实际问题的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生勇于探索、积极向上的精神风貌;(3)培养学生团队协作、相互帮助的良好品质。
二、教学内容1. 圆的定义及基本概念;2. 圆的周长、面积的计算公式及应用;3. 用圆规和直尺画圆的方法。
三、教学重点与难点1. 教学重点:(1)圆的定义及基本概念;(2)圆的周长、面积的计算公式及应用;(3)用圆规和直尺画圆的方法。
2. 教学难点:(1)圆的周长、面积公式的推导过程;(2)圆规和直尺画圆的技巧。
四、教学方法1. 采用问题驱动法,引导学生主动探究圆的相关知识;2. 利用多媒体辅助教学,直观展示圆的定义和画圆的过程;3. 采用合作学习法,让学生在小组内讨论、交流,共同解决问题;4. 实践操作法,让学生动手操作,加深对圆的认识和理解。
五、教学步骤1. 导入新课:(1)复习相关平面几何知识,如点、线、角等;(2)提问:我们生活中有哪些物体是圆形的?引发学生对圆的思考。
2. 自主学习:(1)学生自主阅读教材,了解圆的定义及基本概念;(2)学生通过观察、思考,总结圆的特点。
3. 课堂讲解:(1)讲解圆的定义及基本概念;(2)推导圆的周长、面积公式;(3)演示用圆规和直尺画圆的方法。
4. 课堂练习:(1)学生独立完成教材中的相关练习题;(2)学生互相讨论、交流,解决练习题中的问题。
5. 拓展与应用:(1)学生运用圆的知识解决实际问题;(2)学生进行小组讨论,分享解题心得。
6. 课堂小结:(1)教师总结本节课的主要内容;(2)学生分享学习收获。
九年级数学下册《圆的基本元素》教案、教学设计
3.圆的对称性质及其应用。
希望同学们通过今天的学习,能够对圆有更深入的理解,并在日常生活中发现数学的乐趣和价值。在今后的学习中,我们还将继续探讨圆的更多性质和应用,让数学为我们的生活带来更多精彩。
五、作业布置
为了巩固大家对《圆的基本元素》这一章节知识的掌握,特布置以下作业:
-解决与圆相关的综合几何问题,如圆与圆的位置关系、切线与弦的性质等。
(二)教学设想
1.教学方法:
-采用启发式教学,引导学生通过观察、实践、讨论等方式主动探索圆的性质。
-利用多媒体和实物教具,如圆规、模型等,帮助学生直观理解圆的概念和性质。
-设计具有层次性和挑战性的问题,激发学生的思维,培养学生的解题技巧。
a.证明圆的任意直径都是它的对称轴。
b.在一个圆中,所有的弦中哪一条最长?为什么?
c.两个半径相等的圆,它们的面积是否相等?为什么?
5.思考题:如果圆的半径扩大一倍,那么圆的周长和面积会发生怎样的变化?请给出理由。
请同学们认真完成作业,通过作业的练习,加深对圆的基本概念、性质和计算方法的理解。在完成作业的过程中,如遇到问题,可以与同学讨论,也可以向老师请教。期待大家在下次课堂上分享自己的学习成果!
九年级数学下册《圆的基本元素》教案、教学设计
一、教学目标
(一)知识与技能
1.理解圆的基本概念,掌握圆的各部分名称,如圆心、半径、直径、弧、弦、切线等。
2.学会使用圆规画圆,掌握圆的对称性质,能准确找出圆的对称轴。
3.掌握圆的周长和面积的计算公式,能够解决与圆相关的实际问题。
4.能够运用圆的性质解决几何问题,如圆的切线、弦的性质,以及圆与圆的位置关系等。
九上数学《圆的概念(教案)》
九上数学《圆的概念(教案)》一、教学目标:知识与技能:1. 理解圆的定义,掌握圆的基本性质;2. 学会使用圆规和量角器画圆;3. 了解圆与直线、圆与圆的位置关系。
过程与方法:1. 通过观察、操作、探究等活动,培养学生的动手能力和观察能力;2. 利用几何画板或实物模型,引导学生直观地理解圆的概念和性质;3. 学会用圆的方程表示圆,并运用圆的性质解决实际问题。
情感态度价值观:1. 激发学生对数学的兴趣和好奇心,培养学生的审美情感;2. 培养学生合作交流、归纳总结的能力;3. 渗透转化思想,培养学生的逻辑思维能力。
二、教学重点与难点:重点:1. 圆的定义及其基本性质;2. 圆的方程及其应用。
难点:1. 圆的位置关系的理解;2. 圆的方程的求解。
三、教学方法:情境教学法、问题驱动法、合作学习法、直观演示法。
四、教学准备:教师准备:教材、PPT、圆规、量角器、几何画板、实物模型等。
学生准备:笔记本、尺子、圆规、量角器等。
五、教学过程:1. 导入新课:利用生活中的实例,如车轮、地球等,引导学生思考圆的特征,引发对圆的兴趣。
2. 自主学习:让学生自学教材,了解圆的定义和基本性质,归纳圆的特征。
3. 课堂讲解:讲解圆的定义、圆心和半径的概念,引导学生掌握圆的基本性质;通过PPT或板书,展示圆的性质示意图,帮助学生直观理解。
4. 动手实践:让学生使用圆规和量角器画圆,观察和总结画圆的方法和技巧。
5. 合作交流:分组讨论圆与直线、圆与圆的位置关系,引导学生用圆的性质解释实际问题。
6. 课堂小结:总结本节课所学内容,强调圆的定义、性质和位置关系的重要性。
7. 课后作业:布置有关圆的练习题,巩固所学知识,提高运用能力。
六、教学反思:课后,教师应认真反思本节课的教学效果,从学生的掌握情况、课堂互动、教学方法等方面进行总结,发现问题并及时调整教学策略,以提高教学质量。
七、课堂评价:1. 学生课堂表现评价:观察学生在课堂上的参与程度、提问回答、合作交流等情况,评价学生的学习态度和效果。
九年级数学上册第24章圆教案(共23套新人教版)
九年级数学上册第24章圆教案(共23套新人教版)第二十四章圆1圆的有关性质1.1圆※教学目标※【知识与技能】探索圆的两种定义,理解并掌握弧、弦、优弧、劣弧、半圆等基本概念,能够从图形中识别.【过程与方法】体会圆的不同定义方法,感受圆和实际生活的联系.培养学生把实际问题转化为数学问题的能力.【情感态度】在解决问题过程中使学生体会数学知识在生活中的普遍性.【教学重点】圆的两种定义的探索,能够解释一些生活问题.【教学难点】圆的集合定义方法.※教学过程※一、情境导入观察下列图形,从中找出共同特点.学生观察图形,发现图中都有圆,然后回答问题,此时学生可以再举出一些生活中类似的图形.二、探索新知圆的定义观察下列画圆的过程,你能由此说出圆的形成过程吗?在学生归纳的基础上,引导学生对圆的一些基本概念作界定:在一个平面内,线段oA绕它固定的一个端点o旋转一周,另一个端点A所形成的图形叫做圆.其固定的端点o叫做圆心,线段oA叫做半径.以点o为圆心的圆,记作“⊙o”,读作“圆o”.同时从圆的定义中归纳:圆上各点到定点的距离都等于定长;到定点的距离等于定长的点都在同一个圆上.于是得到圆的第二定义:所有到定点o的距离等于定长r的点的集合.思考为什么车轮是圆的?把车轮做成圆形,车轮上各点到车轮中心的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与地面的距离保持不变,因此,当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学道理.圆的有关概念弦:连接圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A,B 为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.优弧:大于半圆的弧叫做优弧.劣弧:小于半圆的弧叫做劣弧.等圆:能够重合的两个圆叫做等圆.半径相等的两个圆是等圆,反过来,同圆或等圆的半径相等.等弧:在同圆或等圆中,能够相互重合的弧叫做等弧.三、巩固练习如何在操场上画一个半径是5的圆?说出你的理由.你见过树木的年轮吗?从树木的年轮,可以很清楚地看出树木生长的年龄,如果一棵20年树龄的红杉树的树干直径是23c,这棵红杉树的半径平均每年增加多少?如图,一根5长的绳子,一端拴在柱子上,另一端拴着一只羊,请画出羊的活动区域.答案:1.首先确定圆心,然后用5米长的绳子一端固定为圆心端,另一端系在一端尖木棒,木棒以5米长尖端划动一周,所形成的图形就是所画的圆.23÷2÷20=0.575,故这棵红衫树的半径每年增加0.575c.四、归纳小结师生共同回顾圆的两种定义,弦,弧,等圆等知识点.通过这节课的学习,你还有那些收获?※布置作业※从教材习题24.1中选取.※教学反思※本节课是从学生感受生活中圆的应用开始,到通过学生动手画圆,培养学生动手、动脑的习惯,在操作过程中观察圆的特点,加深对所学知识的认识吗,并运用所学知识解决实际问题,体验应用知识的成就感,激发他们的学习兴趣.24.1.1 圆01教学目标.了解圆的基本概念,并能准确地表示出来..理解并掌握与圆有关的概念:弦、直径、圆弧、等圆、同心圆等.02预习反馈阅读教材P79~80内容,理解记忆与圆有关的概念,并完成下列问题..如图,在一个平面内,线段oA绕它固定的一个端点o 旋转一周,另一个端点A所形成的图形叫做圆.其固定的端点o叫做圆心,线段oA叫做半径.2.圆心为o、半径为r 的圆可以看成是所有到定点o的距离等于定长r的点的集合..连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径;圆上任意两点间的部分叫做圆弧;圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧..以点A为圆心,可以画无数个圆;以已知线段AB的长为半径,可以画无数个圆;以点A为圆心,AB的长为半径,可以画1个圆.【点拨】确定圆的两个要素:圆心和半径.圆心确定圆的位置,半径确定圆的大小..到定点o的距离为5的点的集合是以o为圆心,5为半径的圆.03新课讲授例1 矩形ABcD的对角线Ac,BD相交于点o.求证:A,B,c,D四个点在以点o为圆心的同一个圆上.【思路点拨】要求证几个点在同一个圆上,即需要证明这几个点到同一个点的距离相等.【解答】证明:∵四边形ABcD为矩形,∴oA=oc=12Ac,oB=oD=12BD,Ac=BD.∴oA=oc=oB=oD.∴A,B,c,D四个点在以点o为圆心,oA为半径的圆上.例2 △ABc中,∠c=90°.求证:A,B,c三点在同一个圆上.【解答】证明:如图,取AB的中点o,连接oc.∵在△ABc中,∠c=90°,∴△ABc是直角三角形.∴oc=oA=oB=12AB.∴A,B,c三点在同一个圆上.【跟踪训练1】在图中,画出⊙o的两条直径;依次连接这两条直径的端点,得一个四边形.判断这个四边形的形状,并说明理由.解:作图略.矩形.理由:因为该四边形的对角线互相平分且相等,所以该四边形为矩形.【思考】由刚才的问题思考:矩形的四个顶点一定共圆吗?例3 已知⊙o的半径为2,则它的弦长d的取值范围是0<d≤4.【点拨】直径是圆中最长的弦.例4 在⊙o中,若弦AB等于⊙o的半径,则△AoB的形状是等边三角形.【点拨】与半径相等的弦和两半径构造等边三角形是常用数学模型.【跟踪训练2】如图,点A,B,c,D都在⊙o上.在图中画出以这4点为端点的各条弦.这样的弦共有多少条?解:图略.6条.04巩固训练.如图,图中有1条直径,2条非直径的弦,圆中以A 为一个端点的优弧有4条,劣弧有4条.【点拨】这类数弧问题,为防多数或少数,通常按一定的顺序和方向来数..如图,⊙o中,点A,o,D以及点B,o,c分别在一条直线上,图中弦的条数为2..点P到⊙o上各点的最大距离为10c,最小距离为8c,则⊙o的半径是1或9c.【点拨】这里分点在圆外和点在圆内两种情况..如图,已知AB是⊙o的直径,点c在⊙o上,点D是Bc的中点.若Ac=10c,则oD的长为5__c.【点拨】圆心o是直径AB的中点..如图,cD为⊙o的直径,∠EoD=72°,AE交⊙o于B,且AB=oc,则∠A的度数为24°.【点拨】连接oB构造三角形,从而得出角的关系.05课堂小结.这节课你学了哪些知识?.学会了哪些解圆的有关问题的技巧?。
九年级数学上册《确定圆的条件》教案、教学设计
(1)已知圆心坐标为(3,-4),半径为5cm,求圆的方程。
(2)已知圆上三个点A(1,2)、B(3,-2)、C(-1,6),求圆的方程。
3.思考题:
(1)为什么确定圆需要三个条件?两个条件或四个条件可以吗?
(2)在实际生活中,你能举出圆的三个确定条件的应用实例吗?
4.小组合作任务:
4.小组合作任务要求组内成员积极参与,共同完成任务,并在课堂上进行分享。
(三)学生小组讨论,500字
1.教师将学生分成小组,每组讨论以下问题:
(1)如何通过三个点确定一个圆?
(2)如何通过两个点和一条直线确定一个圆?
(3)如何通过一个点和一条直线确定一个圆?
2.学生在小组内进行讨论,教师巡回指导,解答学生的疑问。
3.每个小组派代表分享讨论成果,教师点评并总结。
(四)课堂练习,500字
2.教学过程:
(1)导入:通过展示生活中的圆形物体,引导学生回顾圆的基本概念,为新课的学习做好铺垫。
(2)新知探究:引导学生通过观察、实践、思考,发现确定圆的条件,并学会推导圆的方程。
(3)例题讲解:精选典型例题,讲解解题思路,强调数形结合的方法,帮助学生掌握解题技巧。
(4)巩固练习:设计不同难度的练习题,让学生在练习中巩固所学知识,提高解题能力。
1.教师通过几何画板或实物展示,引导学生发现确定圆的三个条件:圆心、半径、直径。
2.教师详细讲解圆心、半径、直径的定义,以及它们之间的关系,如半径是直径的一半,圆心在圆上等。
3.教师引导学生通过画图、计算、推理等方法,推导出圆的标准方程和一般方程。
4.教师强调数形结合的思想,让学生明白方程与图形之间的联系。
(一)导入新课,500字
人教版数学九年级上册24.1.1《圆》教学设计
人教版数学九年级上册24.1.1《圆》教学设计一. 教材分析人教版数学九年级上册第24.1.1节《圆》是本册教材中的重要内容,主要介绍了圆的概念、特征以及圆的直径、半径等基本概念。
本节内容为学生提供了丰富的探究活动,让学生在探究圆的性质过程中,进一步理解圆的相关概念,提高空间想象能力和抽象思维能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对图形的认识和理解有一定的深度。
但圆作为一个特殊的几何图形,其性质和特点与其他图形有很大的不同,学生需要通过实例和探究活动,来理解和掌握圆的相关概念。
三. 教学目标1.知识与技能:使学生了解圆的概念,掌握圆的特征,理解圆的直径、半径等基本概念。
2.过程与方法:培养学生通过实例探究圆的性质,提高空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作能力和自主学习能力。
四. 教学重难点1.重点:圆的概念、特征,圆的直径、半径等基本概念。
2.难点:圆的性质的探究和理解。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实例和探究活动,理解和掌握圆的相关概念。
2.利用多媒体课件,直观展示圆的性质和特点,提高学生的空间想象能力。
3.分组讨论,培养学生的团队协作能力和自主学习能力。
六. 教学准备1.多媒体课件2.圆的相关实例和图片3.分组讨论的素材七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些生活中的圆形物体,如硬币、地球等,引导学生关注圆形的特征,激发学生对圆的学习兴趣。
2.呈现(10分钟)介绍圆的概念和特征,讲解圆的直径、半径等基本概念,让学生初步理解圆的相关知识。
3.操练(10分钟)学生分组讨论,每组选取一个圆形物体,观察和测量其直径、半径等,总结圆的性质。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)学生独立完成教材中的相关练习题,教师及时批改和反馈,巩固学生对圆的概念和性质的理解。
5.拓展(10分钟)引导学生思考:圆还有哪些其他的性质和特点?如何应用圆的性质解决实际问题?教师与学生互动,共同探讨。
九年级数学上册《圆的有关概念》教案、教学设计
(一)教学பைடு நூலகம்难点
1.重点:圆的基本概念、性质及计算方法,包括圆心、半径、直径、弧、弦、切线等;圆的周长、面积公式的应用。
2.难点:圆的性质的理解和应用,尤其是弦、切线等特殊线段的性质;解决实际问题时,圆的相关知识与其他数学知识的综合运用。
(二)教学设想
1.教学方法:
-采用情境教学法,以生活中的实际例子引入圆的概念,让学生感受圆的无处不在,激发学习兴趣;
3.圆的周长和面积:讲解圆的周长和面积公式,推导过程注重学生的参与,让学生理解公式的来源。
4.圆的应用:结合实际例子,展示圆的相关知识在生活中的应用,提高学生的学习兴趣。
(三)学生小组讨论
在这一环节,我会将学生分成若干小组,每组4-6人。针对以下问题进行讨论:
1.圆的性质有哪些?它们在实际生活中有何应用?
2.圆的周长和面积公式是如何推导出来的?如何运用这些公式解决实际问题?
3.你还能想到哪些与圆相关的有趣现象或问题?
讨论过程中,我会巡回指导,关注每个小组的讨论情况,及时解答学生的问题,引导他们深入思考。
(四)课堂练习
课堂练习环节,我会设计以下几类题目:
1.基础题:针对圆的基本概念和性质,让学生巩固所学知识。
5.能够运用圆的相关知识,解决一些简单的几何问题,如求圆的切线、弦长等。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法:
1.采用直观演示法,通过展示圆的实际物体,让学生感知圆的特点,引导学生从生活中发现圆的美;
2.运用探究式教学法,引导学生主动探究圆的性质,培养学生的逻辑思维能力和几何直观;
-利用直观演示法,通过教具、多媒体课件等展示圆的性质,帮助学生形成直观的认识;
2024年人教版九年级数学上册教案及教学反思全册第24章 圆(教案) 点和圆的位置关系教案
24.2 点和圆、直线和圆的位置关系24.2.1 点和圆的位置关系一、教学目标【知识与技能】1.掌握点与圆的三种位置关系及数量间的关系.2.探求过点画圆的过程,掌握过不在同一直线上三点画圆的方法.3.了解运用“反证法”证明命题的思想方法.【过程与方法】通过生活中的实例探求点和圆的三种位置关系,并提炼出数量关系,从而渗透数形结合,分类讨论等数学思想.【情感态度与价值观】形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】(1)点与圆的三种位置关系.(2)过三点作圆.【教学难点】点与圆的三种位置关系及其数量关系反证法五、课前准备课件、图片、圆规、直尺等.六、教学过程(一)导入新课我国射击运动员在奥运会上获金牌,为我国赢得荣誉.如图是射击靶的示意图,它是由许多同心圆(圆心相同,半径不相同)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?(出示课件2)解决这个问题要研究点和圆的位置关系.(板书课题)(二)探索新知探究一点和圆的位置关系教师问:观察下图中点和圆的位置关系有哪几种?(出示课件4)学生交流,回答问题.教师点评:点与圆的位置关系有三种:点在圆内,点在圆上,点在圆外.教师问:设点到圆心的距离为d,圆的半径为r,量一量在点和圆三种不同位置关系时,d与r有怎样的数量关系?(出示课件5)学生答:教师问:反过来,由d与r的数量关系,怎样判定点与圆的位置关系呢?学生观察思考交流后,师生共同得到结论:(出示课件6)点与圆的三种位置关系及其数量间的关系:边结论.读作“等价于”.⑵要明确“d”表示的意义,是点P到圆心O的距离.出示课件7,8:例如图,已知矩形ABCD的边AB=3,AD=4.(1)以A为圆心,4为半径作⊙A,则点B、C、D与⊙A的位置关系如何?(2)若以A点为圆心作⊙A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,求⊙A的半径r的取值范围?(直接写出答案)学生独立思考后,师生共同解答.解:⑴AD=4=r,故D点在⊙A上;AB=3<r,故B点在⊙A内;AC=5>r,故C点在⊙A外.⑵3≤r≤5.巩固练习:(出示课件9)1.⊙O的半径为10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在_______;点B在_______;点C在_______.2.圆心为O的两个同心圆,半径分别为1和2,若,则点P在()A.大圆内B.小圆内C.小圆外D.大圆内,小圆外学生独立思考后口答:1.圆内;圆上;圆外 2.D探究二过不共线三点作圆教师问:如何过一个点A作一个圆?过点A可以作多少个圆?(出示课件10)学生动手探究,作图,交流,得出结论,教师点评并总结.以不与A点重合的任意一点为圆心,以这个点到A点的距离为半径画圆即可;可作无数个圆.教师问:如何过两点A、B作一个圆?过两点可以作多少个圆?(出示课件11)学生动手探究,作图,交流,得出结论,教师点评并总结.作线段AB的垂直平分线,以其上任意一点为圆心,以这点和点A或B的距离为半径画圆即可;可作无数个圆.教师问:过不在同一直线上的三点能不能确定一个圆?(出示课件12)学生思考后师生共同解答:经过A,B两点的圆的圆心在线段AB的垂直平分线上.经过B,C两点的圆的圆心在线段BC的垂直平分线上.经过A,B,C三点的圆的圆心应该在这两条垂直平分线的交点O的位置.教师归纳:不在同一直线上的三点确定一个圆.(出示课件13)出示课件14:例已知:不在同一直线上的三点A、B、C.求作:⊙O,使它经过点A、B、C.学生动手探究,作图,交流后,师生共同解答.作法:1.连接AB,作线段AB的垂直平分线MN;2.连接AC,作线段AC的垂直平分线EF,交MN于点O;3.以O为圆心,OB为半径作圆.所以⊙O就是所求作的圆.教师问:现在你知道怎样将一个如图所示的破损的圆盘复原了吗?(出示课件15)学生动手探究,交流,在教师指导下作图.作法:1.在圆弧上任取三点A、B、C;2.作线段AB、BC的垂直平分线,其交点O即为圆心;3.以点O为圆心,OC长为半径作圆.⊙O即为所求.巩固练习:(出示课件16)如图,CD所在的直线垂直平分线段AB,怎样用这样的工具找到圆形工件的圆心.学生独立思考后口答:∵A、B两点在圆上,所以圆心必与A、B两点的距离相等,又∵和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,∴圆心在CD所在的直线上,因此可以做任意两条直径,它们的交点为圆心.探究三三角形的外接圆及外心已知△ABC,用直尺与圆规作出过A、B、C三点的圆.(出示课件17)学生复述作法.教师对照图形进行归纳:(出示课件18)1.外接圆:经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆.⊙O叫做△ABC的外接圆,△ABC叫做⊙O的内接三角形.2.三角形的外心定义:外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.作图:三角形三边中垂线的交点.性质:到三角形三个顶点的距离相等.练一练:判断下列说法是否正确.(出示课件19)(1)任意的一个三角形一定有一个外接圆.( )(2)任意一个圆有且只有一个内接三角形.( )(3)经过三点一定可以确定一个圆. ( )(4)三角形的外心到三角形各顶点的距离相等.( )学生口答:⑴√⑵×⑶×⑷√画一画:分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.(出示课件20)学生动手探究,作图,交流后,教师总结.锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边的中点,钝角三角形的外心位于三角形外.出示课件21,22:例1 如图,将△AOB置于平面直角坐标系中,O为原点,∠ABO=60°,若△AOB的外接圆与y轴交于点D(0,3).(1)求∠DAO的度数;(2)求点A的坐标和△AOB外接圆的面积.学生独立思考后师生共同解答.解:(1)∵∠ADO=∠ABO=60°,∠DOA=90°,∴∠DAO=30°;⑵∵点D的坐标是(0,3),∴OD=3.在Rt△AOD中,∵∠DOA=90°,∴AD为直径.又∵∠DAO=30°,∴AD=2OD=6,OA=因此圆的半径为3.点A的坐标(0),∴△AOB外接圆的面积是9π.教师强调:解题妙招:图形中求三角形外接圆的面积时,关键是确定外接圆的直径(或半径)长度.巩固练习:(出示课件23)如图,已知直角坐标系中,A(0,4),B(4,4),C(6,2).(1)写出经过A,B,C三点的圆弧所在圆的圆心M的坐标.(2)判断点D(5,-2)和圆M的位置关系.学生独立解答.解:(1)在方格纸中,线段AB和BC的垂直平分线相交于点(2,0),所以圆心M的坐标为(2,0).(2)圆的半径AM==线段DM所以点D在圆M内.出示课件24:例2 如图,在△ABC中,O是它的外心,BC=24cm,O到BC的距离是5cm,求△ABC的外接圆的半径.学生独立思考后师生共同解答.解:连接OB ,过点O 作OD ⊥BC.则OD =5cm ,112cm 2BD BC ==在Rt △OBD 中,13cm OB ==,即△ABC 的外接圆的半径为13cm.巩固练习:(出示课件25)在Rt △ABC 中,∠C=90°,AC=6 cm,BC=8cm,则它的外心与顶点C 的距离为( )A.5cmB.6cmC.7cmD.8cm学生思考后口答:A探究四 反证法教师问:经过同一条直线上的三个点能作出一个圆吗?(出示课件26)学生动手探究,作图,交流后,师生共同解答.如图,假设过同一条直线l 上三点A 、B 、C 可以作一个圆,设这个圆的圆心为P.那么点P 既在线段AB 的垂直平分线l 1上,又在线段BC 的垂直平分线l 2上,即点P 为l 1与l 2的交点.而l 1⊥l ,l 2⊥l 这与我们以前学过的“过一点有且只有一条直线与已知直线垂直”相矛盾.所以过同一条直线上的三点不能作圆.教师归纳:(出示课件27)1.反证法的定义先假设命题的结论不成立,然后由此经过推理得出矛盾(常与公理、定理、定义或已知条件相矛盾),由矛盾判定假设不正确,从而得到原命题成立,这种方法叫做反证法.2.反证法的一般步骤⑴假设命题的结论不成立(提出与结论相反的假设);⑵从这个假设出发,经过推理,得出矛盾;⑶由矛盾判定假设不正确,从而肯定命题的结论正确.出示课件28:例求证:在一个三角形中,至少有一个内角小于或等于60°.师生共同解答.已知:△ABC.求证:△ABC中至少有一个内角小于或等于60°.证明:假设△ABC中没有一个内角小于或等于60°,则∠A>60°,∠B>60°,∠C>60°.因此∠A+∠B+∠C>180°.这与三角形的内角和为180度矛盾.假设不成立.因此△ABC中至少有一个内角小于或等于60°.巩固练习:(出示课件29)利用反证法证明“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一锐角都大于45°学生口答:D(三)课堂练习(出示课件30-36)1.已知△ABC的三边a,b,c,满足a+b2+|c﹣,则△ABC的外接圆半径=______.2.如图,⊙O是△ABC的外接圆,∠A=45°,BC=4,则⊙O的直径为______.3.如图,请找出图中圆的圆心,并写出你找圆心的方法?4.正方形ABCD的边长为2cm,以A为圆心2cm为半径作⊙A,则点B在⊙A______;点C在⊙A______;点D在⊙A______.5.⊙O的半径r为5cm,O为原点,点P的坐标为(3,4),则点P与⊙O的位置关系为()A.在⊙O内B.在⊙O上C.在⊙O外D.在⊙O上或⊙O外6.已知:在Rt△ABC中,∠C=90°,AC=6,BC=8,则它的外接圆半径=______.7.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C的度数是________.8.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M9.画出由所有到已知点的距离大于或等于2cm并且小于或等于3cm的点组成的图形.10.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘要确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.参考答案:1.2582.3.解:如图所示.4.上;外;上5.B6.57.70°8.B9.解:如图所示.10.解:(1)在圆形瓷盘的边缘选A、B、C三点;(2)连接AB、BC;(3)分别作出AB、BC的垂直平分线;(4)两垂直平分线的交点就是瓷盘的圆心.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材95页练习2.2.配套练习册内容八、板书设计:九、教学反思:本节课通过学生操作,总结出了点与圆的三种位置关系,其中渗透着分类讨论的思想,经过探讨过一点、两点、三点作圆,得出了不在同一直线上三点确定一个圆,从而自然引出三角形外接圆、外心及圆内接三角形的定义,此外还学习了用反证法证明命题的方法和步骤.这些定理都是从学生实践中得出的,培养了学生动手的能力.。
人教版九年级上册数学教案:第24章《圆的复习》优秀教学案例
(四)反思与评价
1.自我反思:引导学生对自己的学习过程进行反思,总结学习方法和学习经验,提高学生的我管理能力。
2.同伴评价:组织学生互相评价,给予同伴肯定和鼓励,培养学生的评价能力和良好的人际关系。
3.探究情境:组织学生进行小组讨论,探讨圆的性质和公式,引导学生主动参与学习,培养学生的发现问题、分析和解决问题的能力。
(二)问题导向
1.设计问题链:围绕圆的知识,设计一系列由浅入深的问题,引导学生层层递进地思考,如“圆是什么形状?”“圆有哪些性质?”“圆的周长和面积如何计算?”等。
2.问题导向教学:在教学过程中,以问题为导向,引导学生自主学习、合作交流,使学生在解决问题的过程中,掌握圆的相关知识。
三、教学策略
(一)情景创设
1.生活情境:以日常生活中常见的圆形物品为例,如硬币、圆桌、车轮等,创设情境,引导学生关注圆的形状和特征,激发学生的学习兴趣。
2.问题情境:设计一些与圆相关的问题,如“圆形草坪的面积是多少?”“自行车轮子的周长是多少?”等,让学生在解决问题的过程中,自然地引入圆的相关知识。
2.问题导向的教学策略:本案例中,教师以问题为导向,设计了一系列由浅入深的问题,引导学生层层递进地思考。这种问题导向的教学策略,不仅有助于激发学生的思维,培养学生的批判性思维和问题解决能力,还能够帮助学生建立起知识之间的联系,形成系统化的知识结构。
3.小组合作的学习方式:通过组织学生进行小组讨论和合作交流,本案例充分调动了学生的学习主动性,培养了学生的合作能力和团队意识。在小组合作的过程中,学生不仅能够互相学习、互相帮助,还能够提高自己的表达能力和沟通技巧,培养良好的人际关系。
人教版九年级数学上册第二十四章圆数学活动优秀教学案例
(二)过程与方法
1.学生能够通过观察、实验、探究.学生能够在教师的引导下,运用合作交流的方式,共同探讨圆的相关问题,培养他们的团队合作精神。
3.学生能够利用多媒体技术,如计算机软件、网络资源等,辅助学习圆的相关知识,提高他们的信息素养。
3.教师设计评价表格,记录学生在课堂学习中的表现,如参与程度、合作态度、问题解决能力等,为学生提供全面的评价。
4.教师组织学生进行互评,让学生学会欣赏他人,培养他们的团队精神和良好的学习氛围。
四、教学内容与过程
(一)导入新课
1.教师通过展示生活中与圆相关的实例,如自行车轮胎、圆桌等,引导学生关注圆的形状,激发学生的学习兴趣。
针对九年级学生的认知特点,我制定了以下教学目标:一是使学生掌握圆的基本概念和性质,理解圆的周长、面积的计算方法;二是培养学生运用圆的相关知识解决实际问题的能力;三是通过数学活动,培养学生的团队合作意识,提高学生的动手操作能力和创新能力。
在教学过程中,我充分运用多媒体教学手段,结合生动有趣的实例,引导学生主动探究圆的性质,并通过一系列数学活动,让学生在实践中掌握圆的相关知识。同时,我还注重因材施教,针对不同学生的学习需求,给予个性化的指导,使他们在数学学习中找到自信,充分体验到数学的乐趣。
(五)作业小结
1.教师布置与圆相关的作业,让学生巩固所学知识,提高他们的应用能力。
2.学生认真完成作业,及时巩固所学知识,不断提高自己的数学水平。
3.教师批改作业,及时了解学生的学习情况,针对存在的问题,给予个别辅导,提高他们的学习效果。
五、案例亮点
1.生活情境导入:通过展示生活中与圆相关的实例,如自行车轮胎、圆桌等,引导学生关注圆的形状,激发学生的学习兴趣。这种教学方式使学生能够更容易理解和接受新知识,提高了他们的学习积极性。
人教版九年级数学上册第二十四章圆小结优秀教学案例
5.引导学生正确面对困难和挫折,培养其坚持不懈、勇于挑战的精神。
作为一名特级教师,我深知教学目标的重要性,它是整个教学过程的出发点和归宿。在教学过程中,我将紧紧围绕上述教学目标,采用多种教学方法和手段,引导学生积极参与,主动探究,从而达到提高学生数学素养、培养其综合能力的目的。同时,关注每个学生的个体差异,充分调动他们的学习积极性,使他们在数学学习中感受到快乐,体验到成功。
3.小组合作:本案例合理划分学习小组,组织学生进行小组讨论和合作探究。这样的教学设计,既培养了学生的团队协作能力,又提高了学生的沟通能力。
4.反思与评价:本案例注重引导学生对自己的学习过程进行反思,进行自我评价。同时,教师也给予学生恰当的反馈。这样的教学策略,有助于培养学生的评价能力,激发其学习动力。
4.结合评价结果,调整教学策略,以提高教学效果,促进学生的全面发展。
作为一名特级教师,我深知教学策略在教学过程中的重要性。在教学过程中,我将根据学生的实际情况,灵活运用各种教学策略,创设生动、有趣的学习情境,引导问题导向,组织小组合作,进行反思与评价,从而激发学生的学习兴趣,培养其数学素养,提高其综合能力。同时,关注每个学生的个体差异,充分调动他们的学习积极性,使他们在数学学习中感受到快乐,体验到成功。
3.组织小组讨论,鼓励学生发表自己的观点,培养其沟通能力。
4.小组合作学习过程中,注重培养学生的团队意识,提高其解决问题的能力。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,总结经验,提高自身学习能力。
2.组织学生进行自我评价,培养其评价能力,激发其学习动力。
3.教师对学生的学习过程和结果进行评价,关注其个体差异,给予恰当的反馈。
北师大版九年级数学下册:3.1《圆》教案
北师大版九年级数学下册:3.1《圆》教案一. 教材分析北师大版九年级数学下册3.1《圆》是学生在学习了直线、射线、线段的基础上,进一步对圆的概念、性质和圆与其他几何图形的关系进行探讨。
本节课的内容包括圆的定义、圆的半径和直径、圆的周长和面积等,这些都是基础知识,对于学生来说比较抽象,需要通过实例和操作来理解和掌握。
二. 学情分析九年级的学生已经具备了一定的几何基础,对直线、射线、线段等概念有一定的了解。
但是,圆的概念比较抽象,学生可能难以理解。
因此,在教学过程中,需要通过实例和操作来帮助学生理解和掌握圆的概念。
同时,学生对于实际操作和图形观察比较感兴趣,可以利用这一点来提高学生的学习兴趣。
三. 教学目标1.知识与技能:理解圆的定义,掌握圆的半径和直径的性质,会计算圆的周长和面积。
2.过程与方法:通过实例和操作,培养学生的观察能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
四. 教学重难点1.圆的定义和性质。
2.圆的周长和面积的计算。
五. 教学方法采用问题驱动法、实例教学法、合作学习法等,通过引导学生观察、思考、讨论,激发学生的学习兴趣,培养学生的观察能力、思维能力和创新能力。
六. 教学准备1.准备相关的实例和图片,用于引导学生观察和理解圆的概念。
2.准备圆的模型或图片,用于讲解圆的性质。
3.准备圆的周长和面积的计算公式,用于讲解和练习。
七. 教学过程1.导入(5分钟)通过展示生活中的圆形物体,如硬币、车轮等,引导学生观察和思考:什么是圆?圆有哪些特点?2.呈现(10分钟)讲解圆的定义和性质,引导学生理解圆的概念。
展示圆的半径和直径的性质,让学生通过观察和操作,理解半径和直径的关系。
3.操练(10分钟)让学生分组合作,用圆规和直尺画圆,测量圆的半径和直径,计算圆的周长和面积。
通过实际操作,让学生加深对圆的概念的理解。
4.巩固(10分钟)出示一些有关圆的练习题,让学生独立完成,检查学生对圆的概念和计算方法的掌握情况。
圆的数学教案5篇
圆的数学教案5篇(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作报告、工作计划、心得体会、合同方案、演讲稿、作文大全、教案、述职报告、调查报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work reports, work plans, reflections, contract proposals, speeches, essay summaries, lesson plans, job reports, investigation reports, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!圆的数学教案5篇一份成功的教案需要教师不断反思和总结教学经验,编写详细的教案可以帮助我们准备教学资源和教具,提高教学的实效性和趣味性,下面是本店铺为您分享的圆的数学教案5篇,感谢您的参阅。
人教版九上数学圆教案优秀6篇
人教版九上数学圆教案优秀6篇依据实际教学内容和进度编写教案,有助于提高课堂教学的有效性,教案的详细撰写是提高教学效果的关键,教师应投入更多精力,以下是本店铺精心为您推荐的人教版九上数学圆教案优秀6篇,供大家参考。
人教版九上数学圆教案篇1教学目标1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径和直径的关系2、进一步理解轴对称图形的特征,体会圆的对称性。
3、在折纸找圆心验证圆是轴对称图形等活动,发展空间观念。
教材分析重点理解同一个圆的半径都相等,同一个圆里半径和直径的关系,并体会圆的对称性。
难点在折纸的过程中体会圆的特征教具教学圆规电化教具课件一、创设情境:亮亮借助光盘画了一个圆,剪出了一个圆纸片,这个圆的圆心在哪里呢?他很快找出来了。
你有办法找出来吗?二、探索活动:1、引导学生开展折纸活动,找到圆心。
(1)自己动手找到圆心。
(2)汇报交流找圆心的过程,并说出这样做的想法。
2、通过折纸你发现了什么?理解圆的对称性。
(1)欣赏美丽的轴对称图形。
(2)再折纸,体会圆的轴对称性,画出圆的对称轴。
(3)圆有无数条对称轴。
对称轴是直径所在的直线。
3、通过折纸你还发现了什么?理解同一个圆里直径和半径的关系。
(1)边折纸边观察思考同一个圆里的半径有什么特点?(2)边折纸边观察思考,同一圆里的直径与半径有什么关系?(3)引导学生用字母表示一个圆的直径与半径的关系。
三、课堂练习。
1、让学生独立完成试一试做完后交流汇报。
2、完成练一练进一步巩固圆的半径与直径的关系。
3、完成填一填让学生独立观察思考并试着填一填,有困难的向老师或同桌请教。
汇报交流,说答题根据。
4、完成书后第3题。
四、课堂小结。
引导学生小结本节内容。
学生利用经验很容易找到圆心,如果让学生说一说为什么对折再对折就可以找到圆心学生很难说清楚。
教学中通过折纸观察思考,找到答案。
交流汇报,从中进一步理解圆的轴对称,一个圆的半径都相等。
欣赏美丽的对称图形引导学生对以学过的轴对称图形进行整理,进一步理解轴对称图形的特征,在对比中发现这些轴对称图形的不同特点,从而突出圆具有很好的轴对称性。
九年级下册《圆》教案
九年级下册《圆》教案一、教学目标:1. 让学生理解圆的定义,掌握圆的基本性质和公式。
2. 培养学生运用圆的知识解决实际问题的能力。
3. 提高学生对几何图形的审美能力,培养学生的空间想象能力。
二、教学内容:1. 圆的定义及基本性质2. 圆的直径、半径、弧、弦的概念及性质3. 圆的周长、面积的计算公式4. 圆与直线、圆与圆的位置关系5. 圆的实际应用问题三、教学重点与难点:1. 重点:圆的定义、性质、公式及实际应用。
2. 难点:圆与直线、圆与圆的位置关系的理解和运用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究圆的知识。
2. 运用多媒体辅助教学,直观展示圆的性质和应用。
3. 注重实践操作,培养学生动手能力。
4. 采用小组合作学习,培养学生的团队协作能力。
五、教学过程:1. 导入:通过生活中的实例,引导学生认识圆,激发学习兴趣。
2. 新课导入:讲解圆的定义、基本性质及公式。
3. 课堂实践:学生自主探究圆的直径、半径、弧、弦的性质。
4. 课堂讨论:分析圆与直线、圆与圆的位置关系。
5. 应用拓展:解决实际问题,运用圆的知识。
7. 作业布置:布置相关练习题,巩固所学知识。
六、教学评价:1. 通过课堂表现、作业完成情况和练习题成绩,评价学生对圆的基本概念和性质的掌握程度。
2. 结合小组讨论和实际问题解决,评估学生在团队合作和实际应用方面的能力。
3. 利用课后反思表,收集学生对教学过程和内容的反馈,以改进后续教学。
七、教学资源:1. 教学PPT:包含圆的基本概念、性质、公式及应用实例。
2. 几何画板或圆规、直尺等教具:用于直观展示圆的性质和操作。
3. 练习题集:包含不同难度的题目,用于巩固所学知识。
4. 实际问题案例:涉及圆的实际应用,如圆形物体的面积计算等。
八、教学进度安排:1. 第一课时:圆的定义及基本性质。
2. 第二课时:圆的直径、半径、弧、弦的性质。
3. 第三课时:圆的周长和面积计算。
4. 第四课时:圆与直线、圆与圆的位置关系。
最新九年级数学圆的教案5篇
最新九年级数学圆的教案5篇进一步知道圆及有关概念,了解弧、弦、圆心角的关系,探索并了解点与圆的位置关系,是每个老师的责任,今天作者在这里整理了一些九年级数学圆的教案5篇最新范文,我们一起来看看吧!九年级数学圆的教案1定理推论: (1)圆弧或等弧所对的圆周角相等;相等的`圆周角所对的弧也相等。
(2)半圆(或直径)所对的圆周角是直角; 的圆周角所对的弦是直径。
(3)如果三角形一边上中线等于这边的一半,那么这个三角形是直角三角形。
(4)圆周角的度数等于它所对的弧的度数的一半。
说明:①圆周角定理给出了圆弧所对的圆周角与圆心角之间关系,从而可把圆周角、弧、弦、弦心距联系起来。
②推论1是证明两角相等,两线段相等,两弧相等的根据。
③推论2指出一条常用的辅助线,连直径上圆周角构成直角。
九年级数学圆的教案21、教材分析(1)知识结构(2)重点、难点分析重点:①点和圆的三种位置关系,圆的有关概念,由于它们是研究圆的基础;②五种常见的点的轨迹,一是对几何图形的深入知道,二为今后立体几何、解析几何的学习作重要的准备.难点:①圆的集合定义,学生不容易知道为何必须满足两个条件,内容本身属于难点;②点的轨迹,由于学生形象思维较强,抽象思维弱,而这部分知识比较抽象和难懂.2、教法建议本节内容需要4课时第一课时:圆的定义和点和圆的位置关系(1)让学生自己画圆,自己给圆下定义,进行交换,归纳、概括,调动学生积极主动的参与教学活动;对于高层次的学生可以直接通过点的集合来研究,给圆下定义(参看教案圆(一));(2)点和圆的位置关系,让学生自己视察、分类、探究,在“数形”的进程中,学习新知识.第二课时:圆的有关概念(1)对(A)层学生放开自学,对(B)层学生在老师引导下自学,要提高学生的学习能力,特别是概念较多而没有很多发挥的内容,老师没必要去讲;(2)课堂活动要抓住:由“数”想“形”,由“形”思“数”,的主线.第三、四课时:点的轨迹条件较好的学校可以利用电脑动画来加深和帮助学生对点的轨迹的知道,一样学校可让学生动手画图,使学生在动手、动脑、视察、摸索、知道的进程中,逐渐从形象思维较强向抽象思维过度.但我的观点是不管怎样组织教学,都要遵守学生是学习的主体这一原则.第一课时:圆(一)教学目标:1、知道圆的描写性定义,了解用集合的观点对圆的定义;2、知道点和圆的位置关系和肯定圆的条件;3、培养学生通过动手实践发觉问题的能力;4、渗透“视察→分析→归纳→概括”的数学思想方法.教学重点:点和圆的关系教学难点:以点的集合定义圆所具有的两个条件教学方法:自主探讨式教学进程设计(总框架):一、创设情境,展开学习活动1、让学生画圆、描写、交换,得出圆的第一定义:定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.记作⊙O,读作“圆O”.2、让学生视察、摸索、交换,并在老师的指导下,得出圆的第二定义.从旧知识中发觉新问题视察:共性:这些点到O点的距离相等想一想:在平面内还有到O点的距离相等的点吗?它们构成什么图形?(1) 圆上各点到定点(圆心O)的距离都等于定长(半径的长r);(2) 到定点距离等于定长的点都在圆上.定义2:圆是到定点距离等于定长的点的集合.3、点和圆的位置关系问题三:点和圆的位置关系怎样?(学生自主完成得出结论)如果圆的半径为r,点到圆心的距离为d,则:点在圆上d=r;点在圆内d点在圆外d r.“数”“形”二、例题分析,变式练习练习:已知⊙O的半径为5cm,A为线段OP的中点,当OP=6cm时,点A 在⊙O________;当OP=10cm时,点A在⊙O________;当OP=18cm时,点A在⊙O___________.例1 求证:矩形的四个顶点在以对角线的交点为圆心的同一个圆上.已知(略)求证(略)分析:四边形ABCD是矩形A=OC,OB=OD;AC=BDOA=OC=OB=OD要证A、B、C、D 4个点在以O为圆心的圆上证明:∵四边形ABCD是矩形∴ OA=OC,OB=OD;AC=BD∴ OA=OC=OB=OD∴ A、B、C、D 4个点在以O为圆心,OA为半径的圆上.符号“”的运用(要求学生了解)证明:四边形ABCD是矩形OA=OC=OB=ODA、B、C、D 4个点在以O为圆心,OA为半径的圆上.小结:要证几个点在同一个圆上,可以证明这几个点与一个定点的距离相等.问题拓展研究:我们所研究过的基本图形中(平行四边形,菱形,,正方形,等腰梯形)哪些图形的顶点在同一个圆上.(让学生探讨)练习1 求证:菱形各边的中点在同一个圆上.(目的:培养学生的分析问题的能力和逻辑思维能力.A层自主完成)练习2 设AB=3cm,画图说明具有下列性质的点的集合是怎样的图形.(1)和点A的距离等于2cm的点的集合;(2)和点B的距离等于2cm的点的集合;(3)和点A,B的距离都等于2cm的点的集合;(4)和点A,B的距离都小于2cm的点的集合;(A层自主完成)三、课堂小结问:这节课学习的主要内容是什么?在学习时应注意哪些问题?在学生回答的基础上,强调:(1)主要学习了圆的两种不同的定义方法与圆的三种位置关系;(2)在用点的集合定义圆时,必须注意应具有两个条件,二者缺一不可;(3)重视对数学能力的培养四、作业 82页2、3、4.九年级数学圆的教案3教学目标1、使学生知道弦、弧、弓形、同心圆、等圆、等孤的概念;初步会运用这些概念判定真假命题。
人教版九年级上册数学教案:第24章《圆的复习》教学设计
在导入新课之后,我将系统地讲授圆的性质和计算方法。首先,我会带领学生复习圆的基本概念,如圆心、半径、直径、弧、弦、切线等,并通过图示和实例来加深他们的理解。接着,我会详细讲解圆的周长和面积公式,并通过一些具体的计算题让学生动手实践,巩固计算方法。
随后,我会重点讲解圆的性质,如圆的对称性、半径相等、圆周角定理等,并通过几何画板或实物模型进行演示,让学生直观地感受这些性质。同时,我会结合实际例题,引导学生如何运用这些性质来解决问题。
4.培养学生勇于探索、善于思考的良好品质,增强他们面对困难和挑战的信心。
本章节教学设计以“圆的复习”为主题,旨在帮助学生巩固圆的基本概念、性质和计算方法,提高他们解决几何问题的能力。在教学过程中,注重知识与技能的传授,过程与方法的应用,以及情感态度与价值观的培养,使学生在轻松愉快的氛围中掌握数学知识,提高综合素质。
人教版九年级上册数学教案:第24章《圆的复习》教学设计
一、教学目标
(一)知识与技能
1.让学生掌握圆的基本概念,如圆心、半径、直径、弧、弦、切线等,并能够准确运用这些概念解决实际问题。
2.培养学生熟练运用圆的周长、面积公式进行计算,并能将其应用于解决生活中的问题。
3.让学生掌握圆的性质,如圆的对称性、半径相等、圆周角定理等,并能运用这些性质解决几何问题。
4.培养学生运用圆的相关知识,如圆的切线、割线、相交弦等,解决复杂的几何问题。
(二)过程与方法
1.通过复习导入,引导学生回顾圆的基本概念和性质,巩固所学知识。
2.采用问题驱动法,设计具有思考性的例题和练习,激发学生的思维,培养他们分析问题和解决问题的能力。
3.引导学生运用数形结合的思想,通过画图、计算、推理等过程,掌握圆的相关知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆第一课时教学容1.圆的有关概念.2.垂径定理:平分弦(不是直径)的直径垂直于弦,•并且平分弦所对的两条弧及其它们的应用.教学目标了解圆的有关概念,理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.从感受圆在生活量存在到圆形及圆的形成过程,讲授圆的有关概念.利用操作几何的方法,理解圆是轴对称图形,过圆心的直线都是它的对称轴.通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.重难点、关键1.重点:垂径定理及其运用.2.难点与关键:探索并证明垂径定理及利用垂径定理解决一些实际问题.教学过程一、复习引入(学生活动)请同学口答下面两个问题(提问一、两个同学)1.举出生活中的圆三、四个.2.你能讲出形成圆的方法有多少种?老师点评(口答):(1)如车轮、杯口、时针等.(2)圆规:固定一个定点,固定一个长度,绕定点拉紧运动就形成一个圆.二、探索新知从以上圆的形成过程,我们可以得出:在一个平面,线段OA绕它固定的一个端点O旋转一周,•另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.学生四人一组讨论下面的两个问题:问题1:图上各点到定点(圆心O)的距离有什么规律?问题2:到定点的距离等于定长的点又有什么特点?老师提问几名学生并点评总结.(1)图上各点到定点(圆心O)的距离都等于定长(半径r);(2)到定点的距离等于定长的点都在同一个圆上.因此,我们可以得到圆的新定义:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形.同时,我们又把①连接圆上任意两点的线段叫做弦,如图线段AC,AB;②经过圆心的弦叫做直径,如图24-1线段AB;③圆上任意两点间的部分叫做圆弧,简称弧,“以A、C为端点的弧记作AC”,读作“圆弧AC”或“弧AC”.大于半圆的弧(如图所示ABC叫做优弧,•小于半圆的弧(如图所示)AC或BC叫做劣弧.④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆. (学生活动)请同学们回答下面两个问题.1.圆是轴对称图形吗?如果是,它的对称轴是什么?•你能找到多少条对称轴? 2.你是用什么方法解决上述问题的?与同伴进行交流.(老师点评)1.圆是轴对称图形,它的对称轴是直径,•我能找到无数多条直径. 3.我是利用沿着圆的任意一条直径折叠的方法解决圆的对称轴问题的. 因此,我们可以得到:(学生活动)请同学按下面要求完成下题:如图,AB 是⊙O 的一条弦,作直径CD ,使CD ⊥AB ,垂足为M .(1)如图是轴对称图形吗?如果是,其对称轴是什么? (2)你能发现图中有哪些等量关系?说一说你理由. (老师点评)(1)是轴对称图形,其对称轴是CD .(2)AM=BM ,AC BC =,AD BD =,即直径CD 平分弦AB ,并且平分AB 及ADB . 这样,我们就得到下面的定理:下面我们用逻辑思维给它证明一下:已知:直径CD 、弦AB 且CD ⊥AB 垂足为M 求证:AM=BM ,AC BC =,AD BD =.分析:要证AM=BM ,只要证AM 、BM 构成的两个三角形全等.因此,只要连结OA 、•OB 或AC 、BC 即可.证明:如图,连结OA 、OB ,则OA=OB 在Rt △OAM 和Rt △OBM 中BOA OBOM OM=⎧⎨=⎩ ∴Rt △OAM ≌Rt △OBM ∴AM=BM∴点A 和点B 关于CD 对称 ∵⊙O 关于直径CD 对称∴当圆沿着直线CD 对折时,点A 与点B 重合,AC 与BC 重合,AD 与BD 重合. ∴AC BC =,AD BD = 进一步,我们还可以得到结论:(本题的证明作为课后练习)例1.如图,一条公路的转弯处是一段圆弦(即图中CD ,点O 是CD 的圆心,•其中CD=600m ,E 为CD 上一点,且OE ⊥CD ,垂足为F ,EF=90m ,求这段弯路的半径. 分析:例1是垂径定理的应用,解题过程中使用了列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握. 解:如图,连接OC设弯路的半径为R ,则OF=(R-90)m∵OE ⊥CD∴CF=12CD=12×600=300(m )根据勾股定理,得:OC 2=CF 2+OF 2 即R 2=3002+(R-90)2 解得R=545∴这段弯路的半径为545m . 三、巩固练习教材P86 练习 P88 练习. 四、应用拓展例2.有一石拱桥的桥拱是圆弧形,如图24-5所示,正常水位下水面宽AB=•60m ,水面到拱顶距离CD=18m ,当洪水泛滥时,水面宽MN=32m 时是否需要采取紧急措施?请说明理由.分析:要求当洪水到来时,水面宽MN=32m•是否需要采取紧急措施,•只要求出DE 的长,因此只要求半径R ,然后运用几何代数解求R . 解:不需要采取紧急措施设OA=R ,在Rt △AOC 中,AC=30,CD=18 R 2=302+(R-18)2 R 2=900+R 2-36R+324 解得R=34(m )连接OM ,设DE=x ,在Rt △MOE 中,ME=16342=162+(34-x )2162+342-68x+x 2=342 x 2-68x+256=0解得x1=4,x2=64(不合设)∴DE=4∴不需采取紧急措施.五、归纳小结(学生归纳,老师点评)本节课应掌握:1.圆的有关概念;2.圆是轴对称图形,任何一条直径所在直线都是它的对称轴.3.垂径定理及其推论以及它们的应用.六、布置作业1.教材P94 复习巩固1、2、3.2.车轮为什么是圆的呢?3.垂径定理推论的证明.4.选用课时作业设计.圆(第2课时)教学容1.圆心角的概念.2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,•相等的圆心角所对的弧相等,所对的弦也相等.3.定理的推论:在同圆或等圆中,如果两条弧相等,•那么它们所对的圆心角相等,所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.教学目标了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.重难点、关键1.重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用.2.难点与关键:探索定理和推导及其应用.教学过程一、复习引入(学生活动)请同学们完成下题.已知△OAB,如图所示,作出绕O点旋转30°、45°、60°的图形.ABO老师点评:绕O点旋转,O点就是固定点,旋转30°,就是旋转角∠BOB′=30°.二、探索新知如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(学生活动)请同学们按下列要求作图并回答问题:如图所示的⊙O 中,分别作相等的圆心角∠AOB•和∠A•′OB•′将圆心角∠AOB 绕圆心O 旋转到∠A ′OB ′的位置,你能发现哪些等量关系?为什么?B 'AB =''A B ,AB=A ′B ′理由:∵半径OA 与O ′A ′重合,且∠AOB=∠A ′OB ′ ∴半径OB 与OB ′重合∵点A 与点A ′重合,点B 与点B ′重合 ∴AB 与''A B 重合,弦AB 与弦A ′B ′重合 ∴AB =''A B ,AB=A ′B ′因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等. 在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?•请同学们现在动手作一作.(学生活动)老师点评:如图1,在⊙O 和⊙O ′中,•分别作相等的圆心角∠AOB 和∠A ′O ′B ′得到如图2,滚动一个圆,使O 与O ′重合,固定圆心,将其中的一个圆旋转一个角度,使得OA 与O ′A ′重合.'A A '(1) (2) 你能发现哪些等量关系?说一说你的理由? 我能发现:AB =''A B ,AB=A /B /.现在它的证明方法就转化为前面的说明了,•这就是又回到了我们的数学思想上去呢──化归思想,化未知为已知,因此,我们可以得到下面的定理:同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,•所对的弧也相等.(学生活动)请同学们现在给予说明一下.请三位同学到黑板板书,老师点评.例1.如图,在⊙O中,AB、CD是两条弦,OE⊥AB,OF⊥CD,垂足分别为EF.(1)如果∠AOB=∠COD,那么OE与OF的大小有什么关系?为什么?(2)如果OE=OF,那么AB与CD的大小有什么关系?AB与CD的大小有什么关系?•为什么?∠AOB与∠COD呢?D分析:(1)要说明OE=OF,只要在直角三角形AOE和直角三角形COF中说明AE=CF,即说明AB=CD,因此,只要运用前面所讲的定理即可.(2)∵OE=OF,∴在Rt△AOE和Rt△COF中,又有AO=CO是半径,∴Rt△AOE≌Rt•△COF,∴AE=CF,∴AB=CD,又可运用上面的定理得到AB=CD解:(1)如果∠AOB=∠COD,那么OE=OF理由是:∵∠AOB=∠COD∴AB=CD∵OE⊥AB,OF⊥CD∴AE=12AB,CF=12CD∴AE=CF又∵OA=OC∴Rt△OAE≌Rt△OCF∴OE=OF(2)如果OE=OF,那么AB=CD,AB=CD,∠AOB=∠COD 理由是:∵OA=OC,OE=OF∴Rt△OAE≌Rt△OCF∴AE=CF又∵OE⊥AB,OF⊥CD∴AE=12AB,CF=12CD∴AB=2AE,CD=2CF∴AB=CD∴AB=CD,∠AOB=∠COD三、巩固练习教材P89 练习1 教材P90 练习2.四、应用拓展例2.如图3和图4,MN是⊙O的直径,弦AB、CD•相交于MN•上的一点P,•∠APM=∠CPM.(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.(2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.PN(3) (4)分析:(1)要说明AB=CD,只要证明AB、CD所对的圆心角相等,•只要说明它们的一半相等.上述结论仍然成立,它的证明思路与上面的题目是一模一样的.解:(1)AB=CD理由:过O作OE、OF分别垂直于AB、CD,垂足分别为E、F∵∠APM=∠CPM∴∠1=∠2OE=OF连结OD、OB且OB=OD∴Rt△OFD≌Rt△OEB∴DF=BE根据垂径定理可得:AB=CD(2)作OE⊥AB,OF⊥CD,垂足为E、F∵∠APM=∠CPN且OP=OP,∠PEO=∠PFO=90°∴Rt△OPE≌Rt△OPF∴OE=OF连接OA、OB、OC、OD易证Rt△OBE≌Rt△ODF,Rt△OAE≌Rt△OCF∴∠1+∠2=∠3+∠4∴AB=CD五、归纳总结(学生归纳,老师点评)本节课应掌握:1.圆心角概念.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对应的其余各组量都部分相等,及其它们的应用.六、布置作业1.教材P94-95 复习巩固4、5、6、7、8.2.选用课时作业设计.圆(第3课时)教学容1.圆周角的概念.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弦所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用.教学目标1.了解圆周角的概念.2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都等于这条弧所对的圆心角的一半.3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90•°的圆周角所对的弦是直径.4.熟练掌握圆周角的定理及其推理的灵活运用.设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题.重难点、关键1.重点:圆周角的定理、圆周角的定理的推导及运用它们解题.2.难点:运用数学分类思想证明圆周角的定理.3.关键:探究圆周角的定理的存在.教学过程一、复习引入(学生活动)请同学们口答下面两个问题.1.什么叫圆心角?2.圆心角、弦、弧之间有什么在联系呢?老师点评:(1)我们把顶点在圆心的角叫圆心角.(2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等.刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题.二、探索新知问题:如图所示的⊙O ,我们在射门游戏中,设E 、F 是球门,•设球员们只能在EF 所在的⊙O 其它位置射门,如图所示的A 、B 、C 点.通过观察,我们可以发现像∠EAF 、∠EBF 、∠ECF 这样的角,它们的顶点在圆上,•并且两边都与圆相交的角叫做圆周角. 现在通过圆周角的概念和度量的方法回答下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化? 3.同弧上的圆周角与圆心角有什么关系?(学生分组讨论)提问二、三位同学代表发言. 老师点评:1.一个弧上所对的圆周角的个数有无数多个.2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的. 3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,•并且它的度数恰好等于这条弧所对的圆心角的度数的一半.”(1)设圆周角∠ABC 的一边BC 是⊙O 的直径,如图所示 ∵∠AOC 是△ABO 的外角 ∴∠AOC=∠ABO+∠BAO ∵OA=OB∴∠ABO=∠BAO∴∠AOC=∠ABO ∴∠ABC=12∠AOC (2)如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的两侧,那么∠ABC=12∠AOC 吗?请同学们独立完成这道题的说明过程. 老师点评:连结BO 交⊙O 于D 同理∠AOD 是△ABO 的外角,∠COD 是△BOC 的外角,•那么就有∠AOD=2∠ABO ,∠DOC=2∠CBO ,因此∠AOC=2∠ABC .(3)如图,圆周角∠ABC 的两边AB 、AC 在一条直径OD 的同侧,那么∠ABC=12∠AOC 吗?请同学们独立完成证明.老师点评:连结OA 、OC ,连结BO 并延长交⊙O 于D ,那么∠AOD=2∠ABD ,∠COD=2∠CBO ,而∠ABC=∠ABD-∠CBO=12∠AOD-12∠COD=12∠AOC现在,我如果在画一个任意的圆周角∠AB ′C ,•同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的. 从(1)、(2)、(3),我们可以总结归纳出圆周角定理:在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 进一步,我们还可以得到下面的推导:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 下面,我们通过这个定理和推论来解一些题目.C. . .. . ... .专业 . .C 例1.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到C ,使AC=AB ,BD 与CD 的大小有什么关系?为什么?分析:BD=CD ,因为AB=AC ,所以这个△ABC 是等腰,要证明D 是BC 的中点,•只要连结AD 证明AD 是高或是∠BAC 的平分线即可.解:BD=CD 理由是:如图24-30,连接AD∵AB 是⊙O 的直径 ∴∠ADB=90°即AD ⊥BC又∵AC=AB ∴BD=CD 三、巩固练习1.教材P92 思考题.2.教材P93 练习.四、应用拓展例2.如图,已知△ABC 接于⊙O ,∠A 、∠B 、∠C 的对边分别设为a ,b ,c ,⊙O 半径为R ,求证:sin a A =sin b B =sin c C=2R . 分析:要证明sin a A =sin b B =sin c C =2R ,只要证明sin a A =2R ,sin b B =2R ,sin c C=2R ,即sinA=2a R ,sinB=2b R ,sinC=2c R ,因此,十分明显要在直角三角形中进行. 证明:连接CO 并延长交⊙O 于D ,连接DB∵CD 是直径∴∠DBC=90°又∵∠A=∠D 在Rt △DBC 中,sinD=BC DC ,即2R=sin a A同理可证:sin b B =2R ,sin c C=2R ∴sin a A =sin b B =sin c C =2R 五、归纳小结(学生归纳,老师点评)本节课应掌握:1.圆周角的概念;2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,•都相等这条弧所对的圆心角的一半;3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4.应用圆周角的定理及其推导解决一些具体问题.六、布置作业1.教材P95 综合运用9、10、11 拓广探索12、13.2.选用课时作业设计.。