结构力学13动力学2.ppt
合集下载
结构力学基础讲义PPT(共270页,图文)
alMM
B bM l
a l
b M
l
17
2. 多跨静定梁: 关键在于正确区分基本部分和附
属部分,熟练掌握截面法求控制截面 弯矩,熟练掌握区段叠加法作单跨梁 内力图。
多跨静定梁——由若干根梁用铰相连, 并用若干支座与基础相连而组成的静 定结构。
17:11
18
附属部分--依赖基本 部分的存在才维持几 何不变的部分。
17:11
24
3. 静定平面刚架 (1) 求反力。
切断C铰,考虑右边平衡,再分析左 边部分。求得反力如图所示:
C
17:11
25
3. 静定平面刚架
(2)作M图 (3)做Q、N图 (4) 校核
17:11M图
N图
Q图
26
§1-4 静定桁架
17:11
27
§1-4 静定桁架
* 桁架的定义:
——由若干个以铰(Pins)结点连接而成的 结构,外部荷载只作用在结点上。
对只有轴力的结构(桁架):
1组7:1合1 结构则应分别对待。
61
§1-5静定结构位移计算
3. 荷载作用下的位移计算
例:求△cy 1. 建立力状态,在C点加单位 EI
竖向力。
2. 建立各杆内力方程:
EI
3. 求位移:
17:11
62
§1-5静定结构位移计算
3. 荷载作用下的位移计算
积分注意事项:
⒈ 逐段、逐杆积分。 ⒉ 两状态中内力函数服从同一坐标系。 ⒊ 弯矩的符号法则两状态一致。
2. 三铰拱的数解法
* 内力计算: ⑴任一截面K(位置):KK截 截面 面形 形心 心处 坐拱 标X轴K切、线YK的倾角 K
结构力学(李廉锟第五版)(课堂PPT)
C
内部可 F
变性
结构力学 D
A
中南大学
找刚片
E
.
退出
返回
B 41 03:16
§2-5 机动分析示例
A
C
结构力学 E
DD E
如何才能不变? 可变吗? 有多余吗?
B
中南大学
.
退出
返回
42
03:16
§2-5 机动分析示例
结构力学
中南大学
加减二元体
.
退出
返回
43
03:16
§2-6 三刚片虚铰在无穷远处的讨论 (a) 一铰无穷远情况
几何可变体系: 瞬变 , 常变
• 例:(图2-17) 二刚片三链杆相联情况
• (a)三链杆交于一点;
• (b)三链杆完全平行(不等长);
• (c)三链杆完全平行(在刚片异侧) ;
• (d)三链杆完全平行(等长)
中南大学
.
退出
返回
32
03:15
§2-5 机动分析示例
结构力学
例2-1 对图示体系作几何组成分析。
6. 运用三刚片规则时,如何选择三个刚片是关键,刚 片选择的原则是使得三者之间彼此的连接方式是铰结。
7. 各杆件要么作为链杆,要么作为刚片,必须全部 使用,且不可重复使用。
中南大学
.
退出
返回
39
03:16
§2-5 机动分析示例
结构力学
中南大学
F
G
D
E
如何变静定? 唯一吗?
.
退出
返回
40
03:16
§2-5 机动分析示例
铰
中南大学
Ⅱ
.
内部可 F
变性
结构力学 D
A
中南大学
找刚片
E
.
退出
返回
B 41 03:16
§2-5 机动分析示例
A
C
结构力学 E
DD E
如何才能不变? 可变吗? 有多余吗?
B
中南大学
.
退出
返回
42
03:16
§2-5 机动分析示例
结构力学
中南大学
加减二元体
.
退出
返回
43
03:16
§2-6 三刚片虚铰在无穷远处的讨论 (a) 一铰无穷远情况
几何可变体系: 瞬变 , 常变
• 例:(图2-17) 二刚片三链杆相联情况
• (a)三链杆交于一点;
• (b)三链杆完全平行(不等长);
• (c)三链杆完全平行(在刚片异侧) ;
• (d)三链杆完全平行(等长)
中南大学
.
退出
返回
32
03:15
§2-5 机动分析示例
结构力学
例2-1 对图示体系作几何组成分析。
6. 运用三刚片规则时,如何选择三个刚片是关键,刚 片选择的原则是使得三者之间彼此的连接方式是铰结。
7. 各杆件要么作为链杆,要么作为刚片,必须全部 使用,且不可重复使用。
中南大学
.
退出
返回
39
03:16
§2-5 机动分析示例
结构力学
中南大学
F
G
D
E
如何变静定? 唯一吗?
.
退出
返回
40
03:16
§2-5 机动分析示例
铰
中南大学
Ⅱ
.
《结构力学第2章》课件
《结构力学第2章》PPT 课件
结构力学是研究物体在外力作用下产生的应力和应变的学科。在建筑设计和 工程中,弹性力学有着广泛应用,本课件将带您深入了解弹性力学的基本理 论和应用。
弹性力学的基本概念
线弹性力学和平面弹性力学
介绍弹性力学研究的两个主要领域,涵盖了结 构力学的基础知识。
应力和应变的概念
引入应力和应变的概念,介绍了它们在弹性力 学中的重要性和计算方法。
应变-应力关系
介绍了弹性体中应变和应力之间的基本方 程,揭示了它们之间的关联。
平面弹性力学的基本理论
平面应力和平面应变 的基本方程
解释了平面弹性力学中应力和 应变的基本方程,为进一步的 研究提供基础。
平面问题的求解方法
介绍了平面问题的求解方法, 如解析法和数值计算方法,为 工程实践提供指导。
平面问题的应用
总结了弹性力学的核心概念和研究领域,强调 了它在物体力学研究中的重要性。
弹性力学在建筑设计和工程中有着广 泛应用
强调了弹性力学在建筑设计和工程实践中的重 要性,以及其对结构稳定性和变形控制的影响。
探讨了平面弹性力学在工程中 的应用,如桥梁设计和建筑物 承重分析。
建筑物中的弹性力学问题
弹性力学在建筑设计中的应用
探索了弹性力学在建筑物设计中的重要性,如结构 稳定性和变形控制。
建筑物的弹性问题和偏心受力
分析了建筑物中的弹性问题,以及由偏心受力引起 的应力分布和变形。
结论
弹性力学是研究物体在外力作用下ቤተ መጻሕፍቲ ባይዱ 生的应力和应变的学科
弹性行为的特征
深入探讨物体在受力作用下的弹性变形,解释 了弹性体的特点和规律。
本构关系的定义和表示
讲解了本构关系的概念,以及在弹性力学中如 何表示不同物体的本构关系。
结构力学是研究物体在外力作用下产生的应力和应变的学科。在建筑设计和 工程中,弹性力学有着广泛应用,本课件将带您深入了解弹性力学的基本理 论和应用。
弹性力学的基本概念
线弹性力学和平面弹性力学
介绍弹性力学研究的两个主要领域,涵盖了结 构力学的基础知识。
应力和应变的概念
引入应力和应变的概念,介绍了它们在弹性力 学中的重要性和计算方法。
应变-应力关系
介绍了弹性体中应变和应力之间的基本方 程,揭示了它们之间的关联。
平面弹性力学的基本理论
平面应力和平面应变 的基本方程
解释了平面弹性力学中应力和 应变的基本方程,为进一步的 研究提供基础。
平面问题的求解方法
介绍了平面问题的求解方法, 如解析法和数值计算方法,为 工程实践提供指导。
平面问题的应用
总结了弹性力学的核心概念和研究领域,强调 了它在物体力学研究中的重要性。
弹性力学在建筑设计和工程中有着广 泛应用
强调了弹性力学在建筑设计和工程实践中的重 要性,以及其对结构稳定性和变形控制的影响。
探讨了平面弹性力学在工程中 的应用,如桥梁设计和建筑物 承重分析。
建筑物中的弹性力学问题
弹性力学在建筑设计中的应用
探索了弹性力学在建筑物设计中的重要性,如结构 稳定性和变形控制。
建筑物的弹性问题和偏心受力
分析了建筑物中的弹性问题,以及由偏心受力引起 的应力分布和变形。
结论
弹性力学是研究物体在外力作用下ቤተ መጻሕፍቲ ባይዱ 生的应力和应变的学科
弹性行为的特征
深入探讨物体在受力作用下的弹性变形,解释 了弹性体的特点和规律。
本构关系的定义和表示
讲解了本构关系的概念,以及在弹性力学中如 何表示不同物体的本构关系。
结构力学讲义PPT课件
载移作用下的动力反应
结构受到的地震力
、
速
度
、
加
速
度
及
动
26
§1-2 结构计算简图
一、支座和支座反力
支座定义:把结构与基础联结起来的装置。 1. 固定支座
B
A
实际形状
工程实例
27
简图:
FxA A MA
FyA
特点: 1) 结构在支座截面不产生线位移和转角; 2) 支座截面有反力矩以及x、y方向的反力。
有 用在结构上。如:楼面活荷载,雪荷载。
结
36
2
.
按 固定荷载——作用位置不变的荷载,如自重等。
荷 移动荷载——荷载作用在结构上的位置是移动
载 的,如吊车荷载、桥梁上的汽车和火车荷载。
作 用
3. 按荷载作用的性质可分为:
位 静荷载——荷载的大小、方向、位置不随 时间
置 变化或变化很缓慢的荷载。恒载都是静 荷载。
结构力学
Structural Mechanics
1
目录
结构力学(I)
第一章 绪论 第二章 平面体系的几何构造分 析 第三章 静定结构的受力分析 第五章 影响线 第六章 静定结构的位移计算 第 七章 力法 第八章 位移法 第九章 渐近法
3
目录
结构力学(II) 第十 章 矩阵位移法 第十三章 结构的动力计算 第十五章 结构的塑性分析与极限荷载
可 动荷载 ——荷载的大小、方向随时间迅
分
为 速变化,使结构产生显著振动,结构的质量
: 承受的加速度及惯性力不能忽略。化爆和核
爆炸的冲击波荷载、地震荷载等都是动力荷
载。
37
四、线性变形体系
结构动力学课件PPT
my cy ky FP (t)
§2-5 广义单自由度体系:刚体集合
➢刚体的集合(弹性变形局限于局部弹性 元件中)
➢分布弹性(弹性变形在整个结构或某些 元件上连续形成)
➢只要可假定只有单一形式的位移,使得 结构按照单自由度体系运动,就可以按 照单自由度体系进行分析。
E2-1
x
p( x,t
)
=p
)
3
B'
M I1
E'
D'
F' G'
A
D
E
B
F
G
C
fD1
fI1
fS1
f D2
f I2
f S2
a
2a
a aa a
Z(t )
f S1
k1(EE')
3 4
k1Z (t )
f D1
d c1( dt
DD')
1 4
c1Z (t )
fS2
k1(GG')
1 3
k2
Z
(t
)
fD2 c2Z (t)
f
I1
m1
1 2
Z(t)
3. 有限单元法
—— 将有限元法的思想用于解决结构的动力计算问题。
要点:
▪ 先把结构划分成适当(任意)数量的单元;
▪ 对每个单元施行广义坐标法,通常取单元的节点位移作 为广义坐标;
▪ 对每个广义坐标取相应的位移函数 (插值函数);
▪ 由此提供了一种有效的、标准 化的、用一系列离散坐标 表示无限自由度的结构体系。
建立体系运动方程的方法
▪ 直接平衡法,又称动静法,将动力学问题转化为任一时刻 的静力学问题:根据达朗贝尔原理,把惯性力作为附加的 虚拟力,并考虑阻尼力、弹性力和作用在结构上的外荷载, 使体系处于动力平衡条件,按照静力学中建立平衡方程的 思路,直接写出运动方程。
结构力学13动力学2
1 lh 2h lh2 = = EI 2 3 3EI
w=
1 m 11
=
3EI m lh2
例6、求图示结构的自振频率。 解:求 k k11 k
3 EI l3
3EI l3
k11 m k
EI
3EI k11 = k + 3 l
1
l
w=
k11 = m
+k
m
•对于静定结构一般计算柔度系数方便。 •如果让振动体系沿振动方向发生单位位移时,所有刚节点 都不能发生转动(如横梁刚度为∞刚架)计算刚度系数方便。 两端刚结的杆的侧移刚度为: 一端铰结的杆的侧移刚度为:
工程中常用此 方法测定阻尼
例、图示一单层建筑物的计算简图。屋盖系统和柱子的质量均集 中在横梁处共计为m ,加一水平力P=9.8kN,测得侧移A0=0.5cm, 然后突然卸载使结构发生水平自由振动。在测得周期T=1.5s 及一 个周期后的侧移A1=0.4cm。求结构的阻尼比ξ和阻尼系数c。
解: = 1 ln yk = 1 ln 0.5 = 0.0335 2 yk +1 2 0.4
1)ξ<1(低阻尼)情况
l = w iw r
w t
特征方程为:l2 + 2wl +w 2 = 0
l =w ( ± 2 1)
低阻尼体系的自振圆频率
其中 w r =w 1 2
y = e w t C1 cosw r t + C2 sinw r t
y =e
y0 cosw r t +
结构约束越强,其刚度越大,刚度越大,其自振动频率也越大。
h
例5、求图示结构的自振圆频率。 解法1:求 k θ=1/h 1 EI 3EI k A m MBA=kh = MBC = 3 = l lh
结构力学力法PPT_图文
q EI 1次超静定
一个无铰封闭圈有三个多余联系
q
q
q
q
第8章
2、去掉多余联系的方法
(1)去掉支座的一根支杆或切断一根链杆相当于去掉一个联系。 (2)去掉一个铰支座或一个简单铰相当于去掉两个联系。 (3)去掉一个固定支座或将刚性联结切断相当于去掉三个联系。 (4)将固定支座改为铰支座或将刚性联结改为铰联结相当于 去掉一个联系。
1、解题思路
q
2
1
l
原结构
q
x1 基本结构
位移条件: 1P+ 11=0 因为 11= 11X1 ( 右下图) 所以 11X1 +1P =0 X1= -1P/ 11
q 1P
11 x1
11 x1=1
第8章
2、解题步骤
(1)选取力法基本结构; (2)列力法基本方程; (3)绘单位弯矩图、荷载弯矩图; (4)求力法方程各系数,解力法方程; (5)绘内力图。
X1
X2
基本结构(1)
第8章
对应不同的基本结构有不同的力法方程:
A
B
C
D
C1
C2
l A X1
l
l
原结构
B
C
D
C1
C2
X2
解:力法方程:
基本结构(2)
第8章
对应不同的基本结构有不同的力法方程:
A
B
C
D
C1
C2
l
l
原结构
A
B
C
l D
C1
X1
X2
解:力法方程:
基本结构(3)
第8章
四、如何求
A
以基本结构(2)为例:
一个无铰封闭圈有三个多余联系
q
q
q
q
第8章
2、去掉多余联系的方法
(1)去掉支座的一根支杆或切断一根链杆相当于去掉一个联系。 (2)去掉一个铰支座或一个简单铰相当于去掉两个联系。 (3)去掉一个固定支座或将刚性联结切断相当于去掉三个联系。 (4)将固定支座改为铰支座或将刚性联结改为铰联结相当于 去掉一个联系。
1、解题思路
q
2
1
l
原结构
q
x1 基本结构
位移条件: 1P+ 11=0 因为 11= 11X1 ( 右下图) 所以 11X1 +1P =0 X1= -1P/ 11
q 1P
11 x1
11 x1=1
第8章
2、解题步骤
(1)选取力法基本结构; (2)列力法基本方程; (3)绘单位弯矩图、荷载弯矩图; (4)求力法方程各系数,解力法方程; (5)绘内力图。
X1
X2
基本结构(1)
第8章
对应不同的基本结构有不同的力法方程:
A
B
C
D
C1
C2
l A X1
l
l
原结构
B
C
D
C1
C2
X2
解:力法方程:
基本结构(2)
第8章
对应不同的基本结构有不同的力法方程:
A
B
C
D
C1
C2
l
l
原结构
A
B
C
l D
C1
X1
X2
解:力法方程:
基本结构(3)
第8章
四、如何求
A
以基本结构(2)为例:
《结构力学》结构动力学(2)
为最大的动力位移与静力位移之比,称为位移动力系数。
简谐荷载作用下, 与 之间关系曲线分析。
1、无阻尼条件
(1) 0 时, 5.0
1, ymax ( t ) yst。
4.0
(2)0 1 0 时,
随着 增加 增大,
3.0
0
FP ( t ) FP sint。 y( t ) yst sint。
(3)当ξ=1时的阻尼称为临界阻尼;相应的 值称为
临界阻尼系数,用cr 表示,则
cr 2mk 2m ,
k 2mk 2m cr
阻尼比 即为阻尼系数 与临界阻尼系数 cr 之比。
§14-4 单自由度结构在简谐荷载作用下的强迫振动
当干扰力 F(t) 直接作用在质点上,质点的受力将如图14-10所示,
且 y( t )与FP ( t ) 同步。
2.0
(3) 1 时, 1.0
, ymax ( t ) , 共振。
(4)1 时,
1.0 2 2.0
3.0
随着 增加 减小,且 y( t )与 FP ( t ) 反向。
(5) 时, 0, 在静平衡位置附近作微小
振动 。
y0
cos 't
y0
ky0
'
sin
't
y bekt sin( 't ')
其中
b
y02
(ห้องสมุดไป่ตู้
y0
ky0
'
)2
tan ' ' y0
/ 为有阻尼自振频率。
y0 ky0
令 k ,称为阻尼比。
' 2 k2 1 ( k )2 1 2
通常当ξ<0.1时,则 ' 和 的差别很小。
大学结构力学课件
大学结构力学课件
目 录
• 结构力学概述 • 静力学基础 • 动力学基础 • 弹性力学基础 • 塑性力学基础 • 结构分析方法与技能
CHAPTER 01
结构力学概述
结构力学定义与重要性
结构力学定义
结构力学是研究结构在各种荷载作用 下的响应和行为的学科。它主要研究 结构的内力、变形、稳定性以及振动 等方面。
静力分析方法
通过平衡条件求解结构内力,适用于静荷载作用下的结构分析。
动力分析方法
考虑结构动力学特性,适用于动力荷载作用下的结构分析。
弹性分析方法
考虑材料弹塑性性质,适用于复杂结构分析。
结构分析技能与策略
简化模型技能
根据实际情况对结构进行公道简化,降低计 算难度。
有限元法策略
利用有限元法进行结构离散化,提高计算精 度和效率。
圆筒受内压分析
02
通过圆筒受内压分析实例,介绍弹性力学在压力容器设计中的
应用。
弹性地基上梁的分析
03
通过弹性地基上梁的分析实例,介绍弹性力学在土木工程中的
应用。
CHAPTER 05
塑性力学基础
塑性力学基本概念
塑性力学定义
塑性力学是研究材料在到达屈服极限后,产生 不可逆的塑性变形时力学行为的学科。
现代结构力学
20世纪以来,随着计算机技术和数值分析方法的发展,现代结构力学得到了迅速发展 。它不仅广泛应用于传统工程领域,还扩大到了生物、医学、材料等其他领域。
结构力学基本原理
荷载与反力
平衡方程
变形与内力
稳定性
弹性与塑性
荷载是施加在结构上的 外力,反力是结构内部 产生的抵抗荷载的力。
根据牛顿第三定律,结 构在荷载作用下的平衡 方程为∑F=0,其中∑F为 所有荷载向量之和。
目 录
• 结构力学概述 • 静力学基础 • 动力学基础 • 弹性力学基础 • 塑性力学基础 • 结构分析方法与技能
CHAPTER 01
结构力学概述
结构力学定义与重要性
结构力学定义
结构力学是研究结构在各种荷载作用 下的响应和行为的学科。它主要研究 结构的内力、变形、稳定性以及振动 等方面。
静力分析方法
通过平衡条件求解结构内力,适用于静荷载作用下的结构分析。
动力分析方法
考虑结构动力学特性,适用于动力荷载作用下的结构分析。
弹性分析方法
考虑材料弹塑性性质,适用于复杂结构分析。
结构分析技能与策略
简化模型技能
根据实际情况对结构进行公道简化,降低计 算难度。
有限元法策略
利用有限元法进行结构离散化,提高计算精 度和效率。
圆筒受内压分析
02
通过圆筒受内压分析实例,介绍弹性力学在压力容器设计中的
应用。
弹性地基上梁的分析
03
通过弹性地基上梁的分析实例,介绍弹性力学在土木工程中的
应用。
CHAPTER 05
塑性力学基础
塑性力学基本概念
塑性力学定义
塑性力学是研究材料在到达屈服极限后,产生 不可逆的塑性变形时力学行为的学科。
现代结构力学
20世纪以来,随着计算机技术和数值分析方法的发展,现代结构力学得到了迅速发展 。它不仅广泛应用于传统工程领域,还扩大到了生物、医学、材料等其他领域。
结构力学基本原理
荷载与反力
平衡方程
变形与内力
稳定性
弹性与塑性
荷载是施加在结构上的 外力,反力是结构内部 产生的抵抗荷载的力。
根据牛顿第三定律,结 构在荷载作用下的平衡 方程为∑F=0,其中∑F为 所有荷载向量之和。
结构力学ppt课件交通大学 (13)
部分相对于AC 部分来说为附属部分。
A
Cห้องสมุดไป่ตู้
E
A
A
C E
(b)
主讲教师:张玲玲
E C
多跨静定梁—基本知识
2. 分析多跨静定梁的一般步骤
显然作用在附属部分上的荷载
不仅使附属部分产生内力,而且
还会使基本部分也产生内力。作 E 用在基本部分上的荷载只会使基
A
C
本部分产生内力。
结构内力
直接作用
(外b)荷载
(c)
多跨静定梁计算简图:
多跨静定梁—基本知识
主讲教师:张玲玲
计算简图 支撑关系
主讲教师:张玲玲
多跨静定梁—基本知识
多跨静定梁—基本知识
从几何组成特点看,多跨联系梁的组成可以区分为: 基本部分和附属部分。 基本部分:不依赖于其它部分,独立地与大地组成一个几何不
变部分,如图所示梁AC 部分。 附属部分:需要依靠基本部分才能保证它的几何不变性,如CE
主讲教师:张玲玲
结构力学
主讲教师:张玲玲 讲师
结构力学
第03章 静定结构的受力分析
多跨静定梁—基本知识
主讲教师:某某某
多跨静定梁—基本知识
1. 多跨静定梁的几何组成特性 多跨静定梁:由若干根梁用铰联接后跨越几个相连跨度 的静定结构。 多跨静定梁的应用: 主要应用于木结构的房屋檩条、桥梁结构、渡槽结构等。
主讲教师:张玲玲
附属部分内力 反作用(部分) 基本部分
+ 基本部分内力
主讲教师:张玲玲
多跨静定梁—基本知识
A
B
A
B
P
CD
E
F
P
CD
E
F
支撑关系
A
Cห้องสมุดไป่ตู้
E
A
A
C E
(b)
主讲教师:张玲玲
E C
多跨静定梁—基本知识
2. 分析多跨静定梁的一般步骤
显然作用在附属部分上的荷载
不仅使附属部分产生内力,而且
还会使基本部分也产生内力。作 E 用在基本部分上的荷载只会使基
A
C
本部分产生内力。
结构内力
直接作用
(外b)荷载
(c)
多跨静定梁计算简图:
多跨静定梁—基本知识
主讲教师:张玲玲
计算简图 支撑关系
主讲教师:张玲玲
多跨静定梁—基本知识
多跨静定梁—基本知识
从几何组成特点看,多跨联系梁的组成可以区分为: 基本部分和附属部分。 基本部分:不依赖于其它部分,独立地与大地组成一个几何不
变部分,如图所示梁AC 部分。 附属部分:需要依靠基本部分才能保证它的几何不变性,如CE
主讲教师:张玲玲
结构力学
主讲教师:张玲玲 讲师
结构力学
第03章 静定结构的受力分析
多跨静定梁—基本知识
主讲教师:某某某
多跨静定梁—基本知识
1. 多跨静定梁的几何组成特性 多跨静定梁:由若干根梁用铰联接后跨越几个相连跨度 的静定结构。 多跨静定梁的应用: 主要应用于木结构的房屋檩条、桥梁结构、渡槽结构等。
主讲教师:张玲玲
附属部分内力 反作用(部分) 基本部分
+ 基本部分内力
主讲教师:张玲玲
多跨静定梁—基本知识
A
B
A
B
P
CD
E
F
P
CD
E
F
支撑关系
结构力学 动力计算例题PPT课件
Psin
m
l
l
第10页/共49页
例题4 (1)体系的自振频率
单位力作用下的
求
例题
M图
1 2
l
l
•
2 3
l
l3
EI
3EI
自振频率
k m
1
m
3EI ml 3
第11页/共49页
P=1 l
l
M图
例题
例题4
(2)简谐荷载的频率
6
(3)动力系数
1
1
2 2
1
1 1 6
2
36 35
(4)位移振幅
15m 2
k
1 0.2936
k, m
2 0.6673
k, m
3 0.9319
k m
第27页/共49页
例题8
(2)求主振型
例题
K2 M Y 0
第一主振型
K12 M
YY1211 Y31
k 15
17.414
5
0
5 6.707
3
0 3 1.707
YY1211 Y31
k (1) jj
0
0 0
k (2) ij
k (3) ij
ql2 0 0 0 27l 0 5 27l 0 19 0 0 0T
1000EI
2
3
②
q ①
l ③
y M,
1
4
x
l
第17页/共49页
例题
例题6
(1)由结构位移向量得出单元①的位移
1 ql2 0
1000EI
0
0
0
27l
5T
q
m
l
l
第10页/共49页
例题4 (1)体系的自振频率
单位力作用下的
求
例题
M图
1 2
l
l
•
2 3
l
l3
EI
3EI
自振频率
k m
1
m
3EI ml 3
第11页/共49页
P=1 l
l
M图
例题
例题4
(2)简谐荷载的频率
6
(3)动力系数
1
1
2 2
1
1 1 6
2
36 35
(4)位移振幅
15m 2
k
1 0.2936
k, m
2 0.6673
k, m
3 0.9319
k m
第27页/共49页
例题8
(2)求主振型
例题
K2 M Y 0
第一主振型
K12 M
YY1211 Y31
k 15
17.414
5
0
5 6.707
3
0 3 1.707
YY1211 Y31
k (1) jj
0
0 0
k (2) ij
k (3) ij
ql2 0 0 0 27l 0 5 27l 0 19 0 0 0T
1000EI
2
3
②
q ①
l ③
y M,
1
4
x
l
第17页/共49页
例题
例题6
(1)由结构位移向量得出单元①的位移
1 ql2 0
1000EI
0
0
0
27l
5T
q
结构力学课件—结构动力学
中南大学
退出
返回
17:04
§14-1 概述
二、动力荷载的分类
1. 周期荷载
结构力学
周期荷载—— 随时间周期地变化的荷载。其中最简单、最重要的是 简谐荷载(按弦或余弦函数规律变化)。 F
r
m
F (t) F t
θ t
o
简谐荷载
l/ 2
l/ 2
非简谐性周期荷载
F (t)
例:打桩时落锤撞击所产生的荷载。
o
退出
返回
17:04
§14-3 单自由度结构的自由振动
结构力学
(2)柔度法。即列位移方程。当质点m振动时,把惯性力看作静力荷载作用在体 系的质量上,则在其作用下结构在质点处的位移y应当为:
y F111 my11
即
my k11 y 0
同刚度法所得方程
此二阶线性常系数齐次微分方程的通解为:
振动微分方程的建立方法:
(1)刚度法。即列动力平衡方程。设质点m在振动的任一时刻位移为y,取质点 m为隔离体,不考虑质点运动时受到的阻力,则作用于质点m上 的力有: (a) 弹簧恢复力
Fc k11 y
(b) 惯性力
该力有将质点拉回静力平衡位置的趋势,负号表示其方 向恒与位移y的方向相反,即永远指向静力平衡位置。
产生自由振动的原因:结构在振动初始时刻受到干扰。 初始干扰的形式: (1)结构具有初始位移 m (2)结构具有初始速度 Δ st 静平衡位置 (3)上述二者同时存在
yd
结构力学
自由振动:结构在振动进程中不受外部干扰力作用的振动形式。
k11
m
FS (t )
yd
W
FI ( t )
1. 不考虑阻尼时的自由振动
结构力学教学PPT
结构力学教学大纲
目
CONTENCT
录
• 结构力学概述 • 结构力学基础知识 • 结构分析方法 • 结构稳定性与优化设计 • 结构动力学与振动控制 • 结构力学在工程中的应用
01
结构力学概述
结构力学定义
结构力学是研究结构在各种力和力矩作用下的响应和行为的科学 。它主要关注结构的内力和变形,以及这些因素对结构性能的影 响。
有限差分法的基本思想是将偏微分方程离散化为差分方程 ,即将连续的空间离散化为有限个离散点。然后,通过求 解这些差分方程来近似得到偏微分方程的解。
总结词
有限差分法的优点在于它可以处理复杂的边界条件和几何 形状,并且可以模拟非线性行为。
详细描述
有限差分法的优点在于它可以处理复杂的边界条件和几何 形状,并且可以模拟非线性行为,如材料非线性和几何非 线性。此外,有限差分法还具有较高的计算效率和精度。
维护与加固
对已建成的桥梁,结构力 学可以评估其结构性能, 提出维护和加固方案,延 长桥梁的使用寿命。
建筑工程中的应用
结构设计
建筑工程中的结构设计需 要运用结构力学的原理和 方法,确保建筑物的安全 性和稳定性。
抗震设计
结构力学在建筑抗震设计 中具有重要地位,通过合 理设计建筑结构,提高建 筑的抗震性能。
总结词
有限差分法的缺点是需要对每个离散点进行单独的建模和 求解,并且需要较高的编程和数值计算能力。
详细描述
有限差分法的缺点是需要对每个离散点进行单独的建模和 求解,这需要大量的计算资源和时间。此外,有限差分法 需要较高的编程和数值计算能力,因为需要对每个离散点 进行编程和数值计算。
边界元法
总结词
边界元法是一种只对边界进行离散化的方法,通过求解边 界上的离散点来近似得到整个结构的力学行为。
目
CONTENCT
录
• 结构力学概述 • 结构力学基础知识 • 结构分析方法 • 结构稳定性与优化设计 • 结构动力学与振动控制 • 结构力学在工程中的应用
01
结构力学概述
结构力学定义
结构力学是研究结构在各种力和力矩作用下的响应和行为的科学 。它主要关注结构的内力和变形,以及这些因素对结构性能的影 响。
有限差分法的基本思想是将偏微分方程离散化为差分方程 ,即将连续的空间离散化为有限个离散点。然后,通过求 解这些差分方程来近似得到偏微分方程的解。
总结词
有限差分法的优点在于它可以处理复杂的边界条件和几何 形状,并且可以模拟非线性行为。
详细描述
有限差分法的优点在于它可以处理复杂的边界条件和几何 形状,并且可以模拟非线性行为,如材料非线性和几何非 线性。此外,有限差分法还具有较高的计算效率和精度。
维护与加固
对已建成的桥梁,结构力 学可以评估其结构性能, 提出维护和加固方案,延 长桥梁的使用寿命。
建筑工程中的应用
结构设计
建筑工程中的结构设计需 要运用结构力学的原理和 方法,确保建筑物的安全 性和稳定性。
抗震设计
结构力学在建筑抗震设计 中具有重要地位,通过合 理设计建筑结构,提高建 筑的抗震性能。
总结词
有限差分法的缺点是需要对每个离散点进行单独的建模和 求解,并且需要较高的编程和数值计算能力。
详细描述
有限差分法的缺点是需要对每个离散点进行单独的建模和 求解,这需要大量的计算资源和时间。此外,有限差分法 需要较高的编程和数值计算能力,因为需要对每个离散点 进行编程和数值计算。
边界元法
总结词
边界元法是一种只对边界进行离散化的方法,通过求解边 界上的离散点来近似得到整个结构的力学行为。
结构力学学习课件2
F MB
FP
F MBC F MB
A B
M
+
F CB
C
F MC ′
D
A
C MAB
MBA
B µ
MBC
F B
µ
A B
M ′
+
C MCB
C
F F MC + MC ′
D
M
C BC
+ …
µ MCB
C
D
µ MCD
C MDC
例:
用力矩分配法计算图示刚架,作弯矩图。 用力矩分配法计算图示刚架,作弯矩图。 80kN 30kN/m B i=2 3m 3m i=1 10m C i=1 3m 5m 160kN D
D iAD
M
A θA iAB iAB B
MAB =
SAB ⋅M ∑S
A
C
SAC MAC = ⋅M ∑S
A
µ MAj = µAj ⋅ M
MAB=SAB θA =4iAB θA MAC=SAC θA = iAC θA MAD=SAD θA =3iAD θA
( 8-5 ) -
SAD MAD = ⋅M ∑S
CBA = MBA /MAB
µ MAj = µAj ⋅ M
C MBA = CBA ⋅ MAB
远端弯矩/近端弯矩 远端弯矩 近端弯矩
称为分配弯矩。 称为分配弯矩。 称为传递弯矩。 称为传递弯矩。
(8-10) )
二、基本运算(单结点的力矩分配) 基本运算(单结点的力矩分配)
B MBA MAB A MAC θA C
综上所述,多结点力矩分配即为:每次只放松一个结点, 综上所述,多结点力矩分配即为:每次只放松一个结点,相当于单结 点分配传递。最后将各步骤所得的杆端弯矩(增量)叠加。 点分配传递。最后将各步骤所得的杆端弯矩(增量)叠加。