2.1射影平面

合集下载

射影平面

射影平面
(2) 相互平行的直线上添加的无穷远点相同, 不平行的直线上 添加的无穷远点不同.
区别起见,称平面上原有的点为有穷远点(通常点),记作P
约定1.1 (3) 按约定(1), (2)添加无穷远点之后,平面上全体 无穷远点构成一条直线,称为无穷远直线(理想直线),记作l∞
区别起见,称平面上原有的直线为有穷远直线(通常直线),l
给平行线添加交点!
§ 1.2 拓广平面
一、中心射影 二、无穷远元素
目标: 改造空间,使得中心射影成为双射 途径: 给平行直线添加交点 要求: 不破坏下列两个基本关系
两条相异直线确定惟一一个点(交点)
} 点与直线的关联关系
两个相异点确定惟一一条直线(连线)
§ 1.2 拓广平面
二、无穷远元素
约定1.1 (1) 在每一条直线上添加惟一一个点,此点不是该直 线上原有的点. 称为无穷远点(理想点),记作P∞
总结:在平面上添加无穷远元素之后,没有破坏点与直线 的关联关系,同时使得中心射影成为一一对应.
§ 1.2 拓广平面
理解约定1.1(1), (2)
1、对应平面上每一方向,有惟一无穷远点. 平行的直线交于同 一无穷远点;交于同一无穷远点的直线相互平行.
2、每一条通常直线上有且仅有一个无穷远点. 3、平面上添加的无穷远点个数=过一个通常点的直线数. 4、不平行的直线上的无穷远点不同. 因而,对于通常直线:
定理1.16 在拓广平面上, 点与直线的关联关系成立: (1) 两个相异的拓广点确定惟一一条拓广直线; (2) 两条相异的拓广直线确定惟一一个拓广点.
四、拓广直线、拓广平面的基本性质及模型 1、拓广直线(射影仿射直线)
(1) 拓广直线的封闭性 欧氏直线:向两个方向无限伸展 拓广直线:向两方前进最终都到达同一个无穷远点

大学高等几何授课讲义

大学高等几何授课讲义
为 x y 0, x y 0, x 2y 1 0的仿射变换。
• 2、已知仿射变换
x/ 2x y 1
• 求点 P1(1, 0), P2 (1, 0)
y/
x
y
3
• 的像点,及直线 x y 2 0的像直线。
第一章、仿射坐标与仿射变换
复习仿射坐标 及代数表示式
• 正交变换
x'
y

所以:
x'
y'
a11x a21x
a12 y a13 a22 y a23
第一章、仿射坐标与仿射变换
例 已知三点 O(0,0), E(1,1), P(1, 1)求仿射变换T使顺次 变为 O1(2,3), E1(2,5), P1(3, 7).
• 练习:1、求使直线x 0, y 0, x 2y 1 0分别变
点集拓扑 代数拓扑 解析拓扑
分形几何
微分拓扑 微分流形 纤维丛
五、课程简介
• 周学时3,一个学期,学习第一章~第六章
• 主要参考书:
•梅向明、门淑惠等编《高等几何》,高等教育出版社出版, 2008年; • 朱德祥、朱维宗等编《高等几何》(第二版),高等教育出 版社出版,2010年; •罗崇善编《高等几何》,高等教育出版社出版,1999年6月; •朱德祥、李忠映、徐学钰等编《高等几何习题解答》。
x' y'
A
x y
a b
,
直线l1
:u
u1
u2
,l2
:vΒιβλιοθήκη v1v2l1
//
l2
u
v即
u1 u2
v1 v2
u1' u2'
A
u1 u2

射影平面

射影平面

射影平面3.1 中心投影与无穷远元素 知识点解析 中心投影定义. 影消点、影消线的概念影消点没有中心投影;影消线也没有投影. 无穷远点、无穷远直线的概念.仿射直线、射影直线、仿射平面、射影平面的概念.平行的两个平面相交于无穷远直线上,任何一个平面与无穷远平面相交于一条无穷直线上,一条直线与平行平面相交于一个无穷远点.在仿射平面上,任何两条直线有并且只有一个交点.两条有穷远直线若不平行则交于有穷远点,若平行则交于无穷远点,一有穷远直线与无穷远直线交于无穷远点.解题指导(习题选解) 练习3-11. 证明:中心投影一般不保持共线三点的简比. 证明反证法.假设中心投影保持共线三点的简比,则在中心投影下,三角形的中位线仍为三角形的中位线,于是推出中心投影把平行线变成平行线,这与中心投影不保持直线的平行性矛盾.所以,中心投影一般不保持共线三点的简比.4.设21:ππσ→是平面1π与2π之间的中心投影.试讨论1π上两条平行直线的象在2π中是否平行,不平行有什么性质?同样,2π上的两条平行直线在1π中的原象是否为平行直线?解当投影线垂直于这对平行线时,其象在2π中是平行的;当投影线不垂直于这对平行线时,其象在2π中不平行.同理,当投影线垂直于这对平行线时,其原象在1π中是平行的;当投影线不垂直于这对平行线时,其象在1π中不平行.5.试证明:中心投影不保持直线上两个线段之比.证明同第1题.(略). 3.2图形的射影性质 知识点解析透视对应、中心透视的概念透视对应把l 上的影消点Q 投影到l '上无穷远点∞'P ,把l 上的无穷远点∞P 投影到l '上影消点Q '.中心投影把π上的影消线l 投影到π'上无穷远直线∞'l ,同时把π上的无穷远直线∞l 投影到π'上影消线l '.定义3.1图形在中心投影下不变的性质(不变的量),叫做图形的射影性质. 同素性和结合性都是射影不变性质;平行性质和单比不是射影不变性质,它们在中心投影下会改变. 如果中心射影把平面π上的直线l 投影成平面π'上的无穷远直线,如图1所示,那么平面π上两条相交直线a 与b ,若交点在影消线l 上,则它们 的象是π'上的两条平行线a '与b ';反过来,平面π'上两条平行线,它们的原象是π上的两条相交于l 的直线.利用中心投影把一直线投影成无穷远直线,可 以用来证明一些几何问题. 解题指导(习题选解) 练习3-21. 求证:一直线与和它平行的平面交于一个无穷远点证明如果一条直线平行一个平面,则这个平面内有无数条直线与它平行,因为两条直线交于无穷远点,所以,这条直线与这个平面交于无穷远点.2.证明:相交于影消线上的二直线,象为二平行直线.证明设二直线1l 和2l 交于P 点,P 点在影消线上,1l 和2l 经射影对应,对应直线为1l '和2l ',则P 点对应无穷远点. 由于射影对应保持结合性不变,所以P 的对应点是1l '和2l '的交点,即无穷远点,也就)(图1是1l '∥2l '. 3.设OX ,OY ,OZ 为三条定直线,A ,B 为二定点,其连线过O ,点R 为OZ 上的动点,且直线RA ,RB 分别交OX ,OY 于点P ,Q ,求证:PQ 通过AB 上一定点.分析这个题目是要证明PQ 的连线通过AB 上一定点,属于三线共点问题,只涉及点和直线的结合性,可以利用“射影到无穷远”.取OAB 所在直线为影消线,经过中心投影之后,∞∞∞B A O 为无穷远直线,如图所示,则2211R P P R ,1221R R Q Q 为平行四边形.于是有2121//R R P P2121//R R Q Q所以2121//Q Q P P即四边形2211P Q Q P 为平行四边形,11Q P ∥22Q P .则11Q P 通过∞M ,由中心射影保持结合性不变可知,PQ 通过AB 上一定点. 4.在一个平面内的影消线上取定两点A ,B ,C 为该平面内的任意一点,求证∠ACB 投影后是一个常量.分析如图所示,平面α上的 ∠ACB 经射影后,在β平面 上射影成∠B C A '''. 因为A ,B 为影消线上两点,OMY2R 1P 1R BAZ2Q 1Q 2P X )图题(第32R 1R ZY X2P 1P ∞B ∞A ∞M ∞O 2Q 1Q所以OA ∥β,且OA ∥A C '',OB ∥β,且OB ∥B C '',所以∠B C A '''=∠ACB . 而∠ACB 为定角.由于∠ACB 经投影后,不论C 取在平面上任何位置,其射影成的角∠B C A '''永远等于定角∠ACB ,所以为定值.注意:由于射影中心O 和影消线AB 所成平面一定平行于平面β,所以,利用有关立体几何的平面与平面平行的定理,就可以证明此题.3.3笛沙格定理 知识点解析三点形、三线形概念定理3.1(笛沙格定理) 如果两个三点形对应顶点的连线交于一点,则对应边的交点在一条线上.定理3.2 如果两个三点形对应边的交点在一条线上,则对应顶点的连线交于一点(共点).解题指导(习题选解) 练习3-31.三角形ABC 的顶点A ,B ,C 分别在共点的三直线α,β,γ上移动.证明:AB 和BC 分别通过定点P 与Q 时,CA 也通过PQ 上的一个定点.证明如图所示.设三角形C B A ''' 是满足条件的另一个三角形,在三角形ABC 和C B A '''中,由于对应点的连线l ,m ,n 共点O ,由笛沙格定理可知,对应边的交点P ,Q ,R 共线,即AC 与C A ''的交点R 必在直线PQ 上,于是R 为定点.2.若三角形ABC 的二顶点B 与C 分别在定直线α与β上移动,三边AB 、BC 、C A题图)(第1ABB 'P ClA 'C 'OQRn m分别通过共线的定点P ,Q ,R ,求证顶点A证明根据图形(见第2题图)可知,Λ),,,(21ΛB B B),,,(21ΛC C C ,则Λ),,,(21ΛB B B P ),,,(21ΛC C C R在这两个射影线束中,PR 是自对应元素,所以Λ),,,(21ΛB B B P ),,,(21ΛC C C R两透视对应的线束对应直线的交点Λ,,,21A A A 共线.3.设A ,B ,C ,D 为平面上的 四点,R CD AB =⨯(AB 与CD 的交点 为R ),P AD BC =⨯,Q BD AC =⨯. 试证:BC 与QR 的交点1A ,CA 与RP 的 交点1B ,AB 与PQ 的交点1C 在同一直线上.证明如图所示.在三角形ABC 和PQR 中,对应顶点的连线AP ,BQ ,CR 共点于S ,由笛沙格定理,对应边的交点1A ,1B ,1C 共线.3.4齐次坐标 知识点解析 一维齐次坐标),(21x x ,其中1x ,2x 满足x x x =21)0(2≠x 二维齐次坐标),,(321x x x ,其中1x ,2x ,3x 满足x x x =31,y x x=32)0(3≠x ,),(y x 是欧氏平面内的笛氏坐标.)0,,(21x x (1x ,2x 不同时为0)是一个无穷远点的齐次坐标.A题图)(第21题图)(第3),,(321x x x )0(3≠x 是一个有穷远点的齐次坐标.)0,0,0(不表示一个点的齐次坐标.)0,,1(k 为一组直线kx y =上的无穷远点的齐次坐标.直线方程欧氏坐标系下直线方程为)0(02221321≠+=++a a a y a x a其中),(y x 是直线上点的非齐次坐标.点),(y x 的齐次坐标为),,(321x x x ,其中1x ,2x ,3x 满足x x x =31,y x x=32. 直线的齐次方程为)0(022********≠+=++a a x a x a x a过原点的直线的齐次方程为)0(022212211≠+=+a a x a x a无穷远直线的齐次方程为03=x无穷远直线无非齐次方程. 齐次线坐标 直线的齐次方程为0332211=++x u x u x u321,,u u u 叫做直线的齐次线坐标,记为],,[321u u u .]0,0,1[是y 轴的齐次线坐标. ]0,1,0[是x 轴的齐次线坐标. ]1,0,0[是无穷远直线的齐次线坐标.定理3.3一点),,(321x x x X =在一直线],,[321u u u u =上的充分必要条件为0332211=++x u x u x u直线0332211=++x u x u x u 的非齐次坐标为31u u u =,32u uv =. 所有不通过原点的直线方程都可以写成01=++vy ux两点),,(321a a a A =,),,(321b b b B =的连线的方程为0321321321=b b b a a a x x x即0)()()(312213311312332=-+-+-x b a b a x b a b a x b a b a两点),,(321a a a A =,),,(321b b b B =的连线的坐标为),,(122131132332b a b a b a b a b a b a ---解题指导(习题选解) 练习3-41.试求出下面各点的齐次坐标. (1))0,0(,)0,1(,)1,0(,)35,2(. (2)以43为方向的无穷远点。

[高等教育]射影平面

[高等教育]射影平面
3、每一平面上有且仅有一条无穷远直线.
4、每一组平行平面有且仅有一条交线为无穷远直线;过同一 条无穷远直线的平面相互平行. 因而,对于通常平面:
平行
无穷远直线
两平面
交于惟一
不平行
有穷远直线
空间中任二平面必相交于唯一直线
§ 2.1 射影平面
三、射影平面
定义1.24 通常点和无穷远点统称拓广点; 添加无穷远点后的直线和无穷远直线统称为拓广直线(射影仿 射直线); 添加无穷远直线后的平面称为拓广平面(射影仿射平面).
§ 2.1 射影平面
(2) 拓广直线的拓扑模型
§ 2.1 射影平面
(3) 射影直线上点的分离关系
欧氏直线:一点区分直线为两个部分。 射影直线:一点不能区分直线为两个部分。 欧氏直线:两点确定直线上的一条线段。 射影直线:两点不能确定直线上的一条线段。
点偶A,B分离点偶C,D
点偶A,B不分离点偶C,D
平行
无穷远点
两直线 不平行 交于惟一 有穷远点
平面上任二直线总相交
5、空间中每一组平行直线交于惟一无穷远点. 6、任一直线与其平行平面交于惟一无穷远点.
§ 2.1 射影平面
理解约定1.1(3)
1、无穷远直线为无穷远点的轨迹. 无穷远直线上的点均为无穷 远点;平面上任何无穷远点均在无穷远直线上.
2、每一条通常直线与无穷远直线有且仅有一个交点为该直线 上的无穷远点.
§ 2.1 射影平面
一、中心射影
2、平面到平面的中心射影
定义1.23 : '
O投射中心(O ')
OP 投射线 P' π 上的点P 在π'上的像 P π' 上的点P'在π上的像

仿射几何和射影几何总表

仿射几何和射影几何总表

以下是仿射几何和射影几何的总表:
仿射几何:
1. 基本概念:
-点、线、平面
-直线的平行与垂直
-点到直线的距离
-点与直线的位置关系
-角度的概念
2. 平移变换:
-平移的定义与性质
-平移的表示与组合
-平移的不变性
3. 旋转变换:
-旋转的定义与性质
-旋转的表示与组合
-旋转的不变性
4. 缩放变换:
-缩放的定义与性质
-缩放的表示与组合
-缩放的不变性
5. 仿射变换:
-仿射变换的定义与性质
-仿射变换的表示与组合
-仿射变换的不变性
射影几何:
1. 射影平面:
-射影平面的定义与性质
-射影平面上的点、线、圆的性质
2. 射影变换:
-射影变换的定义与性质
-射影变换的表示与组合
-射影变换的不变性
3. 射影直线:
-射影直线的定义与性质
-射影直线的交点、平行性质
4. 射影圆:
-射影圆的定义与性质
-射影圆的切线性质
5. 射影相似:
-射影相似的定义与性质
-射影相似的判定条件
-射影相似的不变性
请注意,以上列举的只是仿射几何和射影几何中的一些基本概念和变换,这两个领域还涉及更多深入的理论和应用。

第二章射影平面

第二章射影平面

第二章射影平面本章是在欧氏平面的基础上,通过引进无穷远元素的方法来建立射影平面。

然后又在欧氏平面上引进齐次坐标,并介绍了对偶原理。

§1 射影直线与射影平面1.1 中心射影与无穷远元素定义1.1 设两条直线a和a′在同一平面内,O是两直线外一点,A为直线a上任一点,A与O连线交直线a′于A′,如此得到的直线a与a′的对应叫做以O为射心的中心射影。

A′叫做A从O投射到a′上的对应点。

OA叫投射线,O叫投射中心,简称射心。

显然,A也叫A′从O投射到a上的对应点。

选取射心不同,就会得到不同的中心射影。

如果,a和a′相交于点C,则C是自对应点(二重点)。

在欧氏平面上,中心射影不是一一的。

如果a上点P使OP∥a′,则P没有对应点。

同样,在a′上也存在一点Q′,使OQ′∥a,则Q′的对应点也不存在。

点P和Q′叫影消点。

类似的,我们可以定义两平面间的中心射影。

而且,如果两平面有交线l,则交线l上的每一点都是自对应点(二重点),l叫自对应直线(二重直线)。

另外,在两平面间的中心射影下,不但存在影消点(该点与射心连线平行于另一平面),还存在影消线(影消点的轨迹)。

1为使中心射影成为一一对应,我们必须引进新的元素,从而将欧氏平面加以扩充。

于是,我们约定:约定1在平面内的一组平行直线上引进唯一一点叫无穷远点,此点在组中每一条直线上,记作:P∞。

平面上原有的点称为有穷远点。

由此可知,一组平行直线有且只有一个公共点,即无穷远点。

另外,一条直线a与同它平行的平面交于无穷远点。

这是因为过直线a作与已知平面相交的平面,则交线平行于直线a,即两条直线相交于无穷远点。

约定2平面内所有无穷远点的集合叫做无穷远直线,记作:l∞。

平面内原有的直线称为有穷远直线。

可以证明,一组平行平面相交于一条无穷远直线。

约定3空间里所有无穷远点的集合叫做无穷远平面,记作:π∞。

空间中原有平面叫有穷远平面。

定义1.2无穷远点,无穷远直线,无穷远平面统称为无穷远元素。

认识平面几何的射影变换与旋转变换教案

认识平面几何的射影变换与旋转变换教案

认识平面几何的射影变换与旋转变换教案平面几何是数学中的一个重要分支,它研究的是平面上的各种图形和它们之间的关系。

在平面几何中,射影变换和旋转变换是两个常见的变换方式。

本文将为大家介绍平面几何中的射影变换和旋转变换,并给出相应的教案。

一、射影变换1.1 什么是射影变换射影变换又称为投影变换,它是平面上的一种映射方式,将一个点或一组点映射到另一个点或一组点上。

射影变换可以通过线性变换和非线性变换实现。

其中线性变换包括平移、缩放、错切等,非线性变换包括对称、相似等。

1.2 射影变换的特点射影变换具有保持直线共线和保持比例关系的特点。

也就是说,经过射影变换后,原来共线的点仍然共线,并且线段的比例关系保持不变。

1.3 射影变换的应用射影变换在现实生活中有很多应用,如建筑投影、影像处理等。

在建筑投影中,射影变换可以实现将三维模型投影到二维平面上,以实现对建筑物的设计和展示。

在影像处理中,射影变换可以实现图像的裁剪、变换、扭曲等操作。

二、旋转变换2.1 什么是旋转变换旋转变换是平面上的一种变换方式,它通过旋转角度将一个图形绕某个旋转中心进行旋转。

旋转变换可以使图形保持原有形状和大小,只是位置和方向发生改变。

2.2 旋转变换的特点旋转变换具有保持形状和大小不变的特点,也就是说,在旋转过程中,图形的所有边长和角度保持不变。

2.3 旋转变换的应用旋转变换在日常生活中有很多应用,如地球自转、电风扇旋转等。

在地球自转中,地球绕自身的轴线进行旋转,形成昼夜交替。

在电风扇旋转中,电风扇的叶片绕中心旋转,产生风力。

三、射影变换与旋转变换教案3.1 教学目标通过本节课的学习,学生将了解射影变换和旋转变换的基本概念和特点,并能灵活应用于解决实际问题。

3.2 教学内容(1)射影变换的定义和特点;(2)射影变换的应用案例分析;(3)旋转变换的定义和特点;(4)旋转变换的应用案例分析。

3.3 教学过程(1)导入:通过引入平面几何中的平移变换,帮助学生理解射影变换和旋转变换的概念;(2)讲解:通过教师讲解射影变换和旋转变换的定义和特点,引导学生理解并记住相关知识;(3)案例分析:通过展示射影变换和旋转变换在实际生活中的应用案例,激发学生的学习兴趣,并培养学生分析和解决问题的能力;(4)练习:设计一系列练习题,让学生巩固所学知识,并提高应用能力;(5)总结:通过课堂小结,帮助学生对本节课的内容进行总结和归纳。

空间射影几何精选全文完整版

空间射影几何精选全文完整版

1仿射变换群
A X' Ha X 0T 仿射不变量:
1t X , A是三阶可逆矩阵,12个自由度.
(1)保持无穷远平面不变,即无穷远点变换为无穷
远点。
(2)保持直线与直线,直线与平面以及平面与平面
之间的平行性。
(3)保持物体的体积比,(同一平面)平行图形的面积
比,平行线段的长度比不变。
2.3变换群
称平面 (0,0,0,1)T为无穷远平面,记作
2.1三维射影空间
如果 ,则该平面上的有限点X ( X~,1)T 满足方程
nT X~ d 0, 其中n (1, 2 , 3 )T
d 4
| d | / n 是坐标原点到该平面的距离。
该平面的无穷远直线由下面方程给出:
nT
X~
T
X~ 0
1x 2y 3z 4w 0
其中 X (x, y, z, w)T 表示空间点的齐次坐标。
称四维向量 (1, 2 , 3, 4 )T 为该平面的齐次坐标。
平面的齐次坐标可相差常数因子,所以有三个自由度
平面的齐次坐标仅依赖三个比值 :1 : 2 : 3 : 4 写成更简洁的形式 T X 0
X
T 1
X
T 2
0
X
T 3
T 1
T 2
X
0
T 3
如果三面不共线 ,则系数矩阵的秩为 3
2.1三维射影空间
3空间平面点的参数化
空间平面上的点只有两个自由度,如果将空间平面上的点X作 为射影平面上的点,则X可以用三维向量来表示,三维向量称为 平面上X点的参数化表示。
给定平面上不共线三个点的齐次坐标X1, X 2, X 3,则平面上
0
ax by cz 0(a 1, b 2 , c 3 )

射影几何三大入门定理

射影几何三大入门定理

射影几何三大入门定理1. 定理一:射影平面的基本性质射影几何是研究投影关系的一门数学分支,它研究的对象是射影空间和射影平面。

在射影几何中,有三个重要的入门定理,这些定理对于理解和应用射影几何具有重要意义。

首先,我们来讨论第一个定理:射影平面的基本性质。

1.1 射影平面的定义在介绍定理之前,我们需要先了解什么是射影平面。

射影平面是指一个由点和直线构成的集合,满足以下条件:•任意两条直线有且只有一个交点;•任意两个不同的点确定一条直线。

1.2 定理一的表述定理一指出,在射影平面中,存在以下基本性质:•任意两个不同的直线交于唯一一点;•任意两个不同的点确定唯一一条直线。

1.3 定理一的证明第一个性质:任意两个不同的直线交于唯一一点假设在射影平面中存在两个不同的直线L1和L2,在L1上取两个不同的点A和B,在L2上取两个不同的点C和D。

我们需要证明线段AB和CD的交点是唯一的。

根据射影平面的定义,任意两个不同的点确定唯一一条直线,所以线段AB确定了一条直线L3,线段CD也确定了一条直线L4。

由于L3和L4都与L1和L2相交,所以它们一定有一个公共交点P。

假设还存在另一个不同于P的交点Q,那么根据射影平面的定义,线段PQ也应该与直线L1相交。

但是根据前面的假设,A、B、C、D四个点在射影平面中是不共面的,所以直线PQ与直线L1没有交点。

这与假设矛盾,因此我们得出结论:任意两个不同的直线在射影平面中交于唯一一点。

第二个性质:任意两个不同的点确定唯一一条直线假设在射影平面中存在两个不同的点A和B,在A上取两条不同的直线L1和L2,在B上取两条不同的直线L3和L4。

我们需要证明直线AB和CD(其中C为L1与L3的交点,D为L2与L4的交点)是唯一相交的。

根据射影平面的定义,任意两条直线有且只有一个交点,所以线段AB与L1和L2分别有唯一的交点C和D。

假设还存在另一条直线EF与A、B两点相交,并且E和F分别是直线EF与L1和L2的交点。

§ 13 射影平面

§ 13 射影平面

(1). 点x在直线u上 x在u上. (1)'. 直线u过点x u过x.
(对 uj xj 0两边取共轭即得结论)
(2). 虚点x在实直线u上 x在 (2)'. 虚直线u过实点x u过x. u上.
(3). 实直线上的点或为实点或 为成对出现的共轭虚点.
(3)' . 过实点的直线或为实直线 或为成对出现的共轭虚直线.
u3 0.
(3) 无穷远直线上的点 (A, B,0)
Au1 Bu2 0.
(4)-(8) Thm. 1.5-Thm. 1.9
(1)' 直线 [A, B,C]
Ax1 Bx2 Cx3 0.
(2)' 无穷远直线 [0,0,1]
x3 0.
(3)' 过原点的直线 [A, B,0]
Ax1 Bx2 0.
§ 1.4 平面对偶原则
一、平面对偶原则 1、基本概念 2、对偶图形举例
3、作一图形的对偶图形 例 1 作下列图形的对偶图形(P.32,例1.12).
翻译
点 P,Q
2个 直线 p, q
2条
直线 l, a,b,c, d
5条 点 L, A, B,C, D
5个
关联关系 (1) P, Q在l上;
关联关系 (1) ' p, q过点L;
(2). 对偶运算 过一点作一直线
在一直线上取一点
(3). 对偶变换 互换对偶元素地位、作对偶运算
(4). 对偶图形 在射影平面上,设已知由点、直线及其关联关系
构成的图形Σ,若将Σ中各元素改为其对偶元素、各运算改为其对 偶运算(即对Σ作对偶变换),则得到另一个图形Σ'. 称Σ、 Σ'为一对 对偶图形.

2.1射影平面

2.1射影平面
一、中心射影
目标: 改造空间,使得中心射影成为一一对应 途径: 给平行直线添加交点 要求: 不破坏下列两个基本关系
} 两条相异直线确定惟一一个点(交点)
点与直线的关联关系
两个相异点确定惟一一条直线(连ຫໍສະໝຸດ )§ 1 射影直线和射影平面
二、无穷远元素
约定 (1) 在平面内对于任何一组平行线引入惟一一个点叫做 无穷远点,此点在组中每一之线上而不在此组之外的任何直线 上.无穷远点记以P∞,为区别起见,平面上原有的点称为非无穷 远点或普通点.
§ 1 射影直线和射影平面
一、中心射影
2、平面到平面的中心射影
定义1.2 : '
O投射中心(O ')
OP 投射线 P' π 上的点P 在π'上的像 P π' 上的点P'在π上的像
因此 , 1 : ' 是π'到π的中心射影
三条特殊的直线: x ' 自对应直线(不变直线) u ,U u,OU // ' , u为由影消点构成的影消线 v' ',V 'v',OV ' // , v'为由影消点构成的影消线 影消线的存在,导致两平面间的中心射影不是一个一一对应
在射影平面上,可 以证明:
I,II为同一区域 III,IV为同一区域
§ 1 射影直线和射影平面
1.3 图形的射影性质
定义1.7 经过中心射影(透视对应)后 图形的不变性(量)叫做图形的射影性质 (不变量).
例 证明
(1)相交于形消线的二直线必射影成平行 直线
(2)单比不是射影不变量
§ 1 射影直线和射影平面
§ 1 射影直线和射影平面
一、中心射影

第二章射影平面

第二章射影平面

第二章 射影平面§1 中心投影与无穷远元素1.研究对象:物体在灯光照射下的变化规律。

连OP ,设OP 与l '的交点为P ',则称P '为P (在中心O 下)的射影。

问题:中心投影不是数学意义下的对应。

问题产生原因:如图所示,0P 无象点(因此称为影消点),其原因是O 0P // l ',从而O 0P 与l '无交点,所以中心投影不是数学意义下的对应。

为了将中心投影纳入对应的范畴,我们必须对其进行改造。

原因分析:产生0P 无象的原因是“平行线无交点”的约定。

处理方法:取消“平行线无交点”的约定。

这必须打破常规,给平行线引入一个原先认为不存在的“不平常的点”。

如图,当2πθ→时,∞→||0P P ,以P (θ)的“极限点”作为平行直线的“交点”,记作∞P (称为无穷远点),其几何表示如图所示。

评注:上述无穷远点的引入过程是在深入研究以O 点为中心的线束中的直线与非线束中的直线的交点的基础上,来探索如何引入平行直线的交点比较合适这一问题的。

这充分地反映了继承传统与发扬广大的关系。

问题:平行直线的交点能引进几个?(参考图形,探索解答) (一个。

原因是两不同的直线只能有一个交点。

)o o无穷远点的引进是一个创新的过程,需要大胆的想象力。

而直线上的无穷远点只能引进一个则是原来的原则“两直线只有一个交点”的要求所至。

无穷远点根据研究需要而引入,又是原系统的规则的延伸,从而“无穷远点”又受到原系统的规则的“约束”,这充分体现了继承与发展的关系。

对照一维中心投影,请自行考虑二维中心投影的相应问题。

2. 无穷远元素规定一 在平面内对任何一组平行线引入唯一一点叫做无穷远点(记作∞P )与之对应,此点在组中每一直线上而不在组外的任何直线上。

规定二 平面内无穷远点的集合是一条直线,叫做无穷远直线,记作∞l 。

规定三 空间里所有无穷远点的集合是一个平面,叫做无穷远平面,记作∞π。

射影平面.

射影平面.

射影平面图形的射影性质在引进无穷远元素之后,将直线上的影消点与另一直线上的无穷远点建立点的对应. 如上图3-1所示,通过中心投影,把l 上影消点q 投影到'l 上无穷远点∞P ,将l 上无穷远点∞P 投影到'l 上影消点'q .于是中心投影建立了直线之间的一一对应,称这个中心投影为透视对应.同理可以建立平面之间的透视对应.中心投影把π上影消线l 投影到'π上无穷远直线'∞l ,同时把π上无穷远直线∞l 投影到'π上影消线'l .于是中心投影建立了平面之间的一一对应,称为平面π与'π之间的中心透视.思考题:中心投影与平行投影之间的关系如何?事实上,平行投影是特殊的中心投影,投影中心为一无穷远点.定义3.1 图形在中心投影下不变的性质(不变的量),叫做图形的射影性质(射影不变量).比如同素性、结合性都是射影不变性质,另外平行性质与单比不是射影性质,他们在中心投影下改变.`图3-5如果中心射影把平面π上直线l 投影成平面π'上的无穷远直线,见图3-5,那么平面π上两条相交直线,若交点在影消线l 上,它们的象是π'上的两条平行线,反过来平面π'上两条平行线,它们的原象是π上两条相交于l 上的直线.利用中心射影把一直线投影成无穷远直线,可以证明一些几何问题.BAN 1NQ P l1Q 1PM 1M图3-6例1 如图3-6所示, 设B ,A 是直线l 外两点. 在直线l 上任取两点P 与Q ,AP 交BQ 于N ,BP 交AQ 于M .则MN 通过AB 上一定点.证明 设B ,A 与l 所在的平面为π,选取平面π',做到的中心射影,把B ,A 投到无穷远.设11Q ,P 是直线l 上的另外任意两点,11N ,M 是相应的交点.目的是证明MN 与11N M 相交与AB 上.设l 的象为l ',1111Q ,P ,N ,M ,Q ,P ,N ,M ''''''''是相应点的象.由于直线PM ,QN ,1111M P ,N Q 的公共交点B 投到无穷远,所以它们的象,M P ,N Q ''''1111M P ,N Q ''''是相互平行的直线.同样的道理1111N P ,M Q ,N P ,M Q ''''''''也是相互平行的直线.所以直线N M ''平行于直线11N M '',由中心射影的性质知道,原象MN 与11N M 是两条相交直线,交点在AB 上.证毕.练习3-21. 求证: 一直线与和它平行的平面交与一个无穷远点.2. 证明: 相交于影消线上的二直线,象为二平行直线.3. 设OZ ,OY ,OX 为三条定直线,B ,A 为二定点,其连线过O ,点R 为OZ 上的动点,且直线RB ,RA 分别交OY ,OX 与点Q ,P .求证:PQ 通过AB 上一定点.4. 在一平面内的影消线上取定两点B ,A .C 为该平面内的任何一点,求证:角度∠ACB 投影后是一个常量.5.证明:对任意四边形可选择中心射影,将其投影为平行四边形.。

射影平面知识点总结

射影平面知识点总结

射影平面知识点总结射影平面是射影几何的基本概念,它是在射影空间的基础上引入的一种几何结构。

射影平面是一种具有射影性质的空间,它拥有特殊的性质和结构,因此在几何学和代数学中有着重要的应用。

本文将对射影平面的基本知识点进行介绍和总结,包括射影平面的定义、性质、构造方法以及相关定理和定律等内容。

一、射影平面的定义射影平面是指一个由点、直线和射线组成的空间结构,它是由二维实射影空间定义的。

在射影平面中,任意两条不共线的直线都有且只有一个交点,这是射影平面的基本性质之一。

另外,射影平面满足幂零定理,即任意两条相交的直线在其交点处的切线都是无穷远的。

在代数几何中,射影平面可以通过将欧几里德平面上的点扩充为射线上的点,从而得到一个射影平面。

这样的扩充是通过引入无穷远点的方式来实现的,因此射影平面上的点包括有限远的点和无穷远的点。

二、射影平面的性质1. 射影平面是紧致的。

这意味着射影平面上的任意闭曲线都可以用有限个闭曲线来覆盖。

2. 射影平面是连通的。

任意两点之间都存在一条直线。

3. 射影平面是欧几里德平面的紧致化,因此它具有相同的拓扑性质。

4. 射影平面上的直线都是闭曲线。

这意味着任意两条直线的交点都是封闭的。

5. 射影平面是一种紧致性空间,可以用带权和的方式来描述其拓扑结构。

三、射影平面的构造射影平面可以通过多种方式进行构造,其中最常见的方法包括射影坐标系的引入、齐次坐标系的应用以及仿射几何的推广等。

以下是射影平面的几种常见构造方法:1. 射影坐标系的引入。

通过引入射影坐标系,可以将欧几里德平面上的点扩充为射线上的点,从而得到一个射影平面。

2. 齐次坐标系的应用。

齐次坐标系是射影几何中常用的坐标系,它可以用于描述射影空间中的点、直线和射线等基本几何元素。

3. 仿射几何的推广。

通过将仿射几何的概念推广到射影几何中,可以得到一个射影平面的构造方法。

四、射影平面的相关定理和定律1. 帕斯卡定理。

帕斯卡定理是射影几何中的重要定理,它描述了射影平面上的六点共线的条件。

第二章数字化建模

第二章数字化建模

第二章数字化建模R P 第二章数字化建模(x,y)(x’,y’) (x,y,z)(x’,y’,z’)2.1.1 射影平面和齐次坐标P2.1.1 射影平面和齐次坐标(1,1.5,1)62.1.1 射影平面和齐次坐标RP(x ,y )(x’,y’)lmx yx’y’-θx yy’x’by yx⎥⎦⎢⎣⎥⎦⎢⎣⎥⎦⎢⎣1 0 01 0 01 0 0⎥⎦⎢⎣⎥⎦⎢⎣⎥⎦⎢⎣10010010015⎦⎣⎡0cos θ 数字化制造技术(陈善勇)后点的坐标为(x’,a b c lx,y,z)(x’,y’,z’)(x,y,z){M} ,y’,z’)TT-1TQg∈WCMC191⎥⎥⎥⎥⎥⎦⎤22c b +vc /cos =αvb /=ABB’XYZav −==ββsin ,cos ✓XYZ ABB’ACE7410-CAM(CUHK):?平移、旋转的逆变换矩阵(x,y,z) (x’,y’,0)23⎩三点透视≠q ≠r 数字化制造技术(陈善勇)正平行投影(三视图):投影方向垂直于投影平面25三视图正等轴测图数字化制造技术(陈善勇)(xp ,yp,z)数字化制造技术(陈善勇)=0.5,1斜等测斜二测水平线/铅垂线投影后仍为水平线/平行于投影面的直线段长度不变;垂直于投影面的直线长度变为原来的数字化制造技术(陈善勇)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤?10000000001000011/rSP 0透视投影变换是透视变换与正投影变换的复合⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡10010*********r二点透视:投影面与二个坐标轴相交:旋转与一点透视复合⎢⎢⎣数字化制造技术(陈善勇)直线;点在直线上变换后仍然在直线上。

光学自由曲面自由曲面后视镜zS(u0,v 0 )S u (u,v), Sv(u,v)N y两个向量的张量积数字化制造技术(陈善勇)∑∑==i j 0[][]v 0数字化制造技术(陈善勇)()∑=niu u a C21P1Pu=u=0P 1P P 3u=1u=0P 0P 1P 2P 3u=u=0P 0P 1P 2P 3u=u=0P 1P 2P50三次Bézier 曲线]2P u u =2/5u =2/5数字化制造技术(陈善勇)。

射影知识点总结高中

射影知识点总结高中

射影知识点总结高中引言射影是一门应用数学中的重要分支,它包括平面几何、立体几何、解析几何和向量几何等内容,是数学学科中不可或缺的部分。

在高中阶段,学生需要学习射影的基本概念、定理和方法,掌握相关的基本技能和解题能力。

本文将对射影知识点进行总结,帮助学生更好地理解和掌握这一重要知识点。

一、射影的基本概念1.1 射影的起源射影起源于古代希腊,最早被提出并应用于建筑和绘画中。

随着数学的发展,射影得到了深入研究和发展,成为了一门独立的数学分支。

1.2 射影的定义射影是指一种特殊的空间变换,它将三维空间中的几何图形投影到一个二维平面上,从而得到一个新的平面图形。

在射影过程中,原空间中的物体被投影到新平面上的位置和形状都会发生变化。

1.3 射影的分类根据射影的性质和特点,射影可以分为平行射影、透视射影和中心射影等多种类型。

不同类型的射影在实际应用中有着不同的特点和作用。

1.4 射影的应用射影在数学、物理、工程、艺术等领域都有着广泛的应用。

在建筑设计、计算机图形学、摄影等领域都离不开射影的应用。

掌握射影知识对于理解和应用这些领域都是至关重要的。

二、射影的基本定理2.1 射影定理射影定理是射影理论中的重要基本定理,它描述了在射影变换中图形的性质和变化规律。

射影定理的研究对于理解和分析射影过程具有重要意义。

2.2 射影原理射影原理是射影理论中的另一个基本定理,它描述了在不同射影类型中图形的性质和变化规律。

掌握射影原理对于分析和比较不同类型射影过程有着重要意义。

2.3 射影定理的应用射影定理在建筑设计、摄影以及其他领域都有着广泛的应用。

理解和应用射影定理能够帮助人们更好地处理和分析射影过程,提高工作效率和质量。

三、射影的基本方法3.1 射影的基本步骤射影过程中的基本步骤包括确定射影原点、确定射影平面、确定射影方向、确定射影参数等。

了解和掌握这些基本步骤对于进行射影变换具有重要意义。

3.2 射影的基本技巧在进行射影过程中需要掌握一些基本技巧,如射影平面的选择、射影参数的确定、射影方向的调整等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§ 1 射影直线和射影平面
定义1.5 如果把仿射直线上的非无穷远点与 无穷远点同等看待而不加区分那么这条直线就 叫做射影直线

墨比乌斯带
定义1.6 在仿射平面上,如果对于普通元素和 无穷远元素不加区分,即可得到射影平面
§ 1 射影直线和射影平面
五、射影直线、射影平面的基本性质
1、射影直线
欧氏直线:一点区分直线为两个部分。
§ 1 射影直线和射影平面
1.4 德萨格(Desargues)定理 应用举例
例2 证明:三角行的三中线点共.
§ 1 射影直线和射影平面
1.4 德萨格(Desargues)定理
今 天 作 业
P28 : 5
O投射中心(O l l ')
OP 投射线 P' l 上的点P在l'上的像 P l' 上的点P'在l上的像 因此 ,φ–1: l' → l是 l' 到 l 的中心射影 三个特殊的点: X=l×l' 自对应点(不变点) OU与l'不相交, U为l上的影消点 OV'与l不相交, V'为l'上的影消点 影消点的存在,导致两直线间的中心射影不是一个一一对应
§ 1 射影直线和射影平面
1.4 德萨格定理
德萨格(Desargues)定理
如果两个三点形对应顶点的连线交于 一点,则对边的交点在一直线上.
A
X
C
Y
C
B
A
B Z
O
A

X
C
B Z Y
C
B
A

o
L
A
l
L
A
X
C
C
B
Y
C
B
A
B Z
O

§ 1 射影直线和射影平面
1.4 德萨格(Desargues)定理
第二章 射影平面
本章地位 本章内容 附带一个重要定理 学习平面射影几何的基础 定义射影平面,引入齐次 坐标,学习对偶原则 Desargues透视定理 认真思考,牢固掌握基本 概念,排除传统习惯干扰
学习注意
§ 1 射影直线和射影平面
一、中心射影
1、平面上两直线间的中心射影 定义1.1
: l l'
§ 1 射影直线和射影平面
理解约定 (1), (2)
1、对应平面上每一方向,有惟一无穷远点. 平行的直线交于同 一无穷远点;交于同一无穷远点的直线相互平行. 2、每一条通常直线上有且仅有一个无穷远点. 3、不平行的直线上的无穷远点不同. 因而,对于通常直线: 平 行 无穷远点 两直线 不平行 交于惟一 有穷远点 平面上任二直线总相交
一、中心射影
目标:
途径:
改造空间,使得中心射影成为一一对应
给平行直线添加交点
要求:
不破坏下列两个基本关系
两条相异直线确定惟一一个点(交点) 两个相异点确定惟一一条直线(连线)
}
点与直线的关联关系
§ 1 射影直线和射影平面
二、无穷远元素
约定 (1) 在平面内对于任何一组平行线引入惟一一个点叫做 无穷远点,此点在组中每一之线上而不在此组之外的任何直线 上.无穷远点记以P∞,为区别起见,平面上原有的点称为非无穷 远点或普通点.
约定 (2)一平面内一切无穷远点的集合组成一条直线叫做 无穷远直线,记作l∞,区别起见,称平面上原有的直线为有穷 远直线(通常直线) 约定 (3) 空间里一切无穷远点的集合组成一个平面叫做无穷 远平面,记作π∞,为区别起见,空间里原有平面称为非无穷远平 面或普通平面. 总结:在平面上添加无穷远元素之后,没有破坏点与直线 的关联关系,同时使得中心射影成为一一对应.
德萨格定理的逆定理: 如果两个三点形对应边的交点在一直线上,则 对应顶点的连线交于一点. 定义1.11
如果两个三点形对应边的交点共线,则 这条直线叫做透视轴.如果两个三点形对应 顶点的连线共点,则这个点叫做透视中心.
§ 1 射影直线和射影平面
1.4 德萨格(Desargues)定理
应用举例
例1 在欧氏平面上, 设ΔABC的高线分别为 AD, BE, CF. 而 BC×EF=X, CA×FD=Y, AB×DE=Z. 求证:X, Y, Z三点共线.
点列与线束
定义1.8 点列(同 一直线上点的集合)
定义1.9 线束(平面上过 同一点的直线的集合)
记为:
l(A,B,C,…) 底
元素
记为: O(a,b,c,…) 中心 元素
§ 1 射影直线和射影平面
今 天 作 业
P28 : 2, 3
§ 1 射影直线和射影平面
1.4 德萨格(Desargues)定理
在射影平面上,可 以证明:
I,II为同一区域
III,IV为同一区域
§ 1 射影直线和射影平面
1.3 图形的射影性质
定义1.7 经过中心射影(透视对应)后 图形的不变性(量)叫做图形的射影性 质(不变量).
例 证明 (1)相交于形消线的二直线必射影成平行 直线
(2)单比不是射影不变量
§ 1 射影直线和射影平面
空间中任二平面必相交于惟一直线
§ 1 射影直线和射影平面
定义1.2 无穷远点,无穷远直线,无穷远平面 统称为无穷远元素. 例1 证明一组平行平面相交于一条无穷 远直线.
l
§ 1 射影直线和射影平面
三、仿射直线;仿射平面
定义1.3 在欧氏直线上添加了一个无穷远点以后,便得到一条新 直线, 我们将它叫做仿射直线. 定义1.4 在欧氏平面上添加一条无穷远直线即得到仿射平面.
射影直线:一点不能区分直线为两个部分。
欧氏直线:两点确定直线上的一条线段。 射影直线:两点不能确定直线上的一点偶A,B不分离点偶C,D
§ 1 射影直线和射影平面
五、射影直线、射影平面的基本性质 2、射影平面
(1) 射影平面的封闭性(从两个方面理解) (i) 任一直线划分欧氏平面为两个不同的区域 任一直线不能划分射影平面为两个不同的区域 (ii) 两条相交直线划分欧氏平面为四个不同的区域 两条相交直线划分射影平面为两个不同的区域
一对重要的基本图形---定义1.10 三点形(平面内不共线三 三线形(平面内不共点三直 点与每两点连线构成的图形) 线及其两两交点构成的图形)
顶点:A, B, C
边:BC, CA, AB 记号:三点形ABC
边:a, b, c
顶点:b×c, c×a, a×b 记号:三线形abc
显然,射影基本形、三点形和三线形都在中心射影下不变
§ 1 射影直线和射影平面
一、中心射影
2、平面到平面的中心射影 定义1.2
: '
O投射中心(O ')
OP 投射线 P' π 上的点P 在π'上的像 P π' 上的点P'在π上的像
: ' 是π'到π的中心射影 因此 , 三条特殊的直线: x ' 自对应直线(不变直线) u , U u, OU // ' , u为由影消点构成的影消线 v' ' , V ' v' , OV ' // , v'为由影消点构成的影消线 影消线的存在,导致两平面间的中心射影不是一个一一对应
四、仿射直线、仿射平面的模型
1、仿射直线
(1)仿射直线的封闭性
P
欧氏直线:向两个方向无限伸展 仿射直线:向两方前进最终都到达同一个无穷远点
§ 1 射影直线和射影平面
四、仿射直线、仿射平面的模型
2、仿射平面
(1)仿射平面的封闭性(从两个方面理解) (2)仿射平面的拓扑模型
§ 1 射影直线和射影平面
1
§ 1 射影直线和射影平面
一、中心射影
定义1.1
定义1.2
: l l'
2、平面到平面的中心射影
: '

均不是一一对应
中心射影不是一一对应的原因:存在影消点、影消线 存在影消点、影消线的原因:平行的直线没有交点 如何使得中心射影成为一个一一对应?
给平行线添加交点!
§ 1 射影直线和射影平面
4、空间中每一组平行直线交于惟一无穷远点. 5、任一直线与其平行平面交于惟一无穷远点.
§ 1 射影直线和射影平面
理解约定 (1), (2) 1、无穷远直线为无穷远点的轨迹. 无穷远直线上的点均为无穷 远点;平面上任何无穷远点均在无穷远直线上. 2、每一条通常直线与无穷远直线有且仅有一个交点为该直线 上的无穷远点. 3、每一平面上有且仅有一条无穷远直线. 4、每一组平行平面有且仅有一条交线为无穷远直线(见例1); 过同一条无穷远直线的平面相互平行. 因而,对于通常平面: 平 行 无穷远直线 两平面 交于惟一 不平行 有穷远直线
相关文档
最新文档