射影面积法求二面角
射影面积法求二面角原理

射影面积法求二面角原理引言:在几何学中,二面角是指由两个平面所夹成的角度,它是空间几何中的基本概念之一。
求解二面角的方法有很多种,其中一种常用的方法是射影面积法。
本文将介绍射影面积法求解二面角的原理和应用。
一、二面角的定义和性质二面角是由两个平面所夹成的角度,可以用来描述两个平面的夹角大小。
二面角有以下性质:1. 二面角的大小范围是0°到180°之间;2. 二面角的大小与两个平面的夹角大小有关,但不仅仅取决于两个平面的夹角;3. 二面角的大小与两个平面的位置有关,即两个平面的相对位置不同,二面角的大小也会有所变化。
二、射影面积法的原理射影面积法是一种常用的求解二面角的方法,它基于以下原理:1. 任意两个平面所夹成的角度可以通过两个平面的射影面积来求解;2. 射影面积是指一个平面在另一个平面上的投影面积,可以用来表示两个平面之间的夹角大小;3. 射影面积可以通过投影公式和向量运算来计算。
三、射影面积法的应用射影面积法在几何学和物理学中有广泛的应用,其中包括以下几个方面:1. 几何学中的角度计算:通过射影面积法可以计算任意两个平面所夹的角度大小,从而求解几何问题;2. 物理学中的力学问题:在力学问题中,二面角可以表示两个力的夹角,通过射影面积法可以计算力的合成和分解;3. 工程学中的结构设计:在结构设计中,二面角可以表示两个构件的夹角,通过射影面积法可以计算结构的稳定性和强度。
四、射影面积法的计算步骤射影面积法的计算步骤如下:1. 确定两个平面的方程;2. 计算两个平面的交线;3. 确定投影方向和投影面积;4. 计算射影面积;5. 根据射影面积计算二面角大小。
五、射影面积法的优缺点射影面积法作为一种求解二面角的方法,具有以下优点:1. 原理简单易懂,计算步骤清晰明确;2. 适用范围广泛,可以应用于多个学科领域;3. 结果准确可靠,能够满足实际需求。
然而,射影面积法也存在一些缺点:1. 计算过程稍复杂,需要一定的数学基础和计算能力;2. 对于一些特殊情况,射影面积法可能无法提供准确的结果;3. 在实际应用中,射影面积法往往需要结合其他方法和技术进行综合分析。
求二面角的五种方法

五法求二面角从全国19份高考试卷中我们知道,立体几何题中命有求二面角大小的试题共有12份,并都为分值是12分的大题,足以说明这一知识点在高考中的位置,据有关专家分析,它仍然是2010年高考的重点,因此,我们每位考生必须注意,学会其解题方法,掌握其解题技巧,是十分重要的。
一、 定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。
本定义为解题提供了添辅助线的一种规律。
如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。
例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD,AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。
证(I )略解(II ):利用二面角的定义。
在等边三角形ABM 中过点B作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。
则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG FG366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)36arccos(-练习1(2008山东)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点. (Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角E —AF —C 的余弦值. 分析:第1题容易发现,可通过证AE ⊥AD 后推出AE ⊥平面APD ,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF 上找到可计算二面角的平面角的顶点S ,和两边SE 与SC ,进而计算二面角的余弦值。
求解二面角的六种常规方法

求解二面角的六种常规方法作者:李淑芸来源:《中学教学参考·理科版》2010年第03期求解二面角问题是高考的热点问题,在近几年的高考中几乎每一年、每一套高考题的立体几何问题都涉及到求二面角的大小问题.然而通过对学生考卷的分析,我们发现这一问题的得分率却并不理想.因此,本文总结了常见的六种求解二面角的方法,希望能给部分读者以帮助.1.定义法是指过二面角的棱上任一点在两个面内分别作垂直于棱的直线,则两直线所构成的角即为二面角的平面角,继而在平面中求出其平面角的一种方法.【例1】如图1,空间四边形ABCD中,AB=BC=CD=DA=a,对角线AC=a,BD=2a,求二面角A—BD—C的大小.图1解:取BD的中点为O,分别连接AO、CO,∵AB=AD,BC=CD.∴AO⊥BD,CO⊥BD.∴∠AOC为二面角A—BD—C的平面角.∵AB=AD=a,BD=2a,∴AO=22a.∵BC=CD=a,BD=2a,∴OC=22a.在△AOC中,OC=22a,OA=22a,AC=a,OA2+OC2=AC2,∴∠AOC=90°,即二面角A—BD—C为直二面角.2三垂线法是指利用三垂线定理,根据“与射影垂直,则也与斜线垂直”的思想构造出二面角的平面角,继而求出平面角的方法.【例2】如图2,二面角α-AB-β的棱AB上有一点C,线段CDα,CD=100,∠BCD=30°,点D 到平面β的距离为253,求二面角α-AB-β的度数.图2解:过D作DE⊥β于E,DF⊥AB于F,连接EF.∵DF⊥AB,EF是DF在β内的射影,∴AB⊥EF(三垂线定理).∴∠DFE为二面角为α-AB-β的平面角.在Rt△DEF中,DF=12CD=50,DE=253,∴sin∠DFE=DEDF=25350=32.∴∠DFE=60°.即二面角α-AB-β的度数为60°.3.垂面法是指用垂直于棱的平面去截二面角,则截面与二面角的两个面必有两条交线,这两条交线构成的角即为二面角的平面角,继而再求出其平面角的一种方法.【例3】如图3,已知SA⊥平面ABC,AB⊥BC,SA=AB,SB=BC,E是SC的中点,DE⊥SC交AC于D,求二面角E-BD-C的大小.图3解:∵BS=BC,SE=EC,∴SC⊥BE,又∵SC⊥DE,∴SC⊥面BDE.∴SC⊥BD.又∵BD⊥SA,∴BD⊥面SAC.∴∠EDC为二面角E-BD-C的平面角.设SA=a,则SB=BC=2a.∵BC⊥AB,SA⊥平面ABC.∴BC⊥SB.∴SC=2a,∠SCD=30°.∴∠EDC=60°,即二面角E-BD-C的大小为60°.4.面积射影法所谓面积射影法,就是根据三角形及其在某一个平面上的射影面积之间的关系,利用cosθ=S射S来计算二面角的一种方法(其中θ为二面角).【例4】在正方体ABCD-A1B1C1D1中,K∈BB1,M∈CC1,且BK=14BB1,CM=34CC1,求平面AKM与ABCD所成角的大小.图4解:连结AC,则由题意可知,△ABC是△AKM在平面AC上的射影.设平面AKM与ABCD所成角为θ,则cosθ=S射S=S△ABCS△AKM.令正方体的棱长为4,∴S△ABC=12AB•A C=12×4×4=8.在△AKM中,AK=12+42=17,AM=42+42+32=41,KM=42+22=20.由海伦公式可知S△AKM=221,∴cosθ=421,θ=arccos421.5.法向量法法向量法是通过求与二面角垂直的两个向量所成的角,继而利用这个角与二面角的平面角相等或互补的关系,求出二面角的一种方法.【例5】如图5,过正方形ABCD的顶点A作PA⊥平面ABCD,设PA=AB=ɑ,求平面PAB 和平面PCD所成的二面角的大小.图5解:以A为射点建立直角坐标系(如图5所示),则P(0,0,a),D(0,a,0),C(a,a,0).设平面PCD的法向量为n=(x,y,z),则n•PD=0,n•CD=0.即(x,y,z)•(0,a,-a)=0,(x,y,z)•(-a,0,0)=0.∴y=-z,x=0.即n=(0,1,-1).又AD成为平面PAB的法向量,而cos〈AD,n〉=(0,a,0)•(0,1,-1)a•2=22,∴AD与n所成的角为45°.因此平面PAB和平面PCD所成的角为45°.6.垂线法是指先利用待定系数法确定垂足,再利用公式求出二面角的大小.【例6】如图6,在四棱锥P—ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点,PE⊥EC,已知PD=2,CD=2,AE=12,求(1)异面直线PD与EC的距离;(2)二面角E-PC-D的大小.图6解:(1)略.(2)以D为原点,DA、DC、DP分别为x,y,z轴建立空间直角坐标系.作DG⊥PC,可设G(0,y,z).由DG•PC=0得(0,y,z)•(0,2,-2)=0,即z=2y.故可取DG=(0,1,2).作EF⊥PC于F,设F(0,m,n),则EF=(-32,m-12,n).由EF•PC=0,得(-32,m-12,n)•(0,2,-2)=0,即2m-1-2n=0.又由F在PC上得n=-22m+2,故m=1,n=22,EF=(-32,12,22).因EF⊥PC,DG⊥PC,故二面角E-PC-D的平面角θ的大小为向量EF与DG的夹角.故cosθ=DG•EF|DG|•|EF|=22,∴θ=π4.故二面角E-PC-D的大小为π4.(责任编辑金铃)。
利用传统方法解决二面角问题(五大题型)(解析版)

利用传统方法解决二面角问题【题型归纳目录】题型一:定义法题型二:三垂线法题型三:射影面积法题型四:垂面法题型五:补棱法【方法技巧与总结】二面角的求法法一:定义法在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角,如图在二面角α-l -β的棱上任取一点O ,以O 为垂足,分别在半平面α和β内作垂直于棱的射线OA 和OB ,则射线OA 和OB 所成的角称为二面角的平面角(当然两条垂线的垂足点可以不相同,那求二面角就相当于求两条异面直线的夹角即可).法二:三垂线法在面α或面β内找一合适的点A ,作AO ⊥β于O ,过A 作AB ⊥c 于B ,则BO 为斜线AB 在面β内的射影,∠ABO 为二面角α-c -β的平面角.如图1,具体步骤:①找点做面的垂线;即过点A ,作AO ⊥β于O ;②过点(与①中是同一个点)做交线的垂线;即过A 作AB ⊥c 于B ,连接BO ;③计算:∠ABO 为二面角α-c -β的平面角,在Rt △ABO 中解三角形.图1图2图3法三:射影面积法凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos θ=S 射S 斜=S △A 'B 'C 'S △ABC,如图2)求出二面角的大小;法四:补棱法当构成二面角的两个半平面没有明确交线时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题.当二平面没有明确的交线时,也可直接用法三的摄影面积法解题.法五:垂面法由二面角的平面角的定义可知两个面的公垂面与棱垂直,因此公垂面与两个面的交线所成的角,就是二面角的平面角.【典型例题】题型一:定义法1.(2024·高一·江西宜春·期末)如图(1),六边形ABCDEF 是由等腰梯形ADEF 和直角梯形ABCD 拼接而成,且∠BAD =∠ADC =90°,AB =AF =EF =ED =2,AD =CD =4,沿AD 进行翻折,得到的图形如图(2)所示,且∠AEC =90°.(1)求证:CD ⊥平面ADEF .(2)求二面角C -AE -D 的余弦值;【解析】(1)在等腰梯形ADEF 中,作EM ⊥AD 于M ,则DM =AD -EF 2=1,AM =3,EM =3,可得AE =3+9=23,连接AC ,则AC =42,因为∠AEC =90°,可得EC =25,由ED 2+DC 2=EC 2,可得CD ⊥ED ,且CD ⊥AD ,AD ∩ED =D ,AD ,ED ⊂平面ADEF ,所以CD ⊥平面ADEF .(2)由(1)可知CD ⊥平面ADEF ,且AE ⊂平面ADEF ,可得CD ⊥AE ,且CE ⊥AE ,CE ∩CD =C ,CE ,CD ⊂平面CDE ,可得AE ⊥平面CDE ,且DE ⊂平面CDE ,可得AE ⊥DE ,又AE ⊥CE ,可知∠CED 就是二面角C -AE -D 的平面角,在Rt △CDE ,可得cos ∠CDE =DE CE =225=55,所以二面角C -AE -D 的余弦值为55.2.(2024·高一·全国·随堂练习)如图,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,点C 在AB上,且∠CAB =30°,点D 为AC 的中点.(1)证明:AC ⊥平面POD(2)求二面角P -AC -O 的正弦值.【解析】(1)证明:连接PC ,则PC =PA ,因为点D 为AC 的中点,所以PD ⊥AC ,因为AB 为⊙O 的直径,所以∠ACB =90°,所以AC ⊥BC ,因为O 为AB 的中点,D 为AC 的中点,所以OD ‖BC ,OD =12BC ,所以OD ⊥AC ,因为PD ∩OD =D ,PD ,OD ⊂平面POD ,所以AC ⊥平面POD ,(2)由(1)知PD ⊥AC ,OD ⊥AC ,所以∠PDO 为二面角P -AC -O 的平面角,因为PO ⊥平面ABC ,OD ⊂平面ABC ,所以PO ⊥OD ,因为∠ACB =90°,∠CAB =30°,AB =2,所以BC =12AB =1,所以OD =12BC =12,所以在Rt △POD 中,sin ∠PDO =OP PD =22+14=223,所以二面角P -AC -O 的正弦值为2233.(2024·高一·河南商丘·阶段练习)如图,四边形ABCD 是正方形,PA ⊥平面ABCD ,且PA =AB =2 . 求:(1)求二面角B -PA -C 的大小.(2)求二面角A -PD -C 的大小.(3)求二面角B -PD -A 的大小的正弦值.【解析】(1)∵PA ⊥平面ABCD ,AB ,AC ⊂面ABCD ,∴PA ⊥AB ,PA ⊥AC ,∴∠BAC 为二面角B -PA -C 的平面角,又∵四边形ABCD 是正方形,∴∠BAC =45°,即二面角B -PA -C 的大小为45°;(2)作PD 的中点E ,PC 的中点F ,连接AE ,EF ,AF ,∵PA ⊥平面ABCD ,AD ⊂面ABCD ,∴PA ⊥AD ,∵PA =AB ,∴△PAD 为等腰直角三角形,∵E 为PD 的中点,∴AE ⊥PD ,又∵PA ⊥CD ,AD ⊥CD ,PA ,AD ⊂平面PAD ,且PA ∩AD =A ,∴CD ⊥平面PAD ,∴CD ⊥PD ,∵E ,F 分别为PD 和PC 的中点,∴EF ⊥PD ,∴∠AEF 为二面角A -PD -C 的平面角,∵EF ⎳CD ,∴EF ⊥平面PAD ,∴EF ⊥AE ,∴∠AEF =90°,即二面角A -PD -C 的大小为90°;(3)连接BE ,BD ,∵PB =AP 2+AB 2=22,BD =AB 2+AD 2=22,∴PB =BD ,∴BE ⊥PD ,∴∠AEB 二面角B -PD -A 的大小的平面角,又∵PA ⊥AB ,AB ⊥AD ,AP ,AD ⊂平面PAD ,且PA ∩AD =A ,∴AB ⊥平面PAD ,∴AB ⊥AE ,∵PD =2AP =22,∴ED =12PD =2,∴BE =BD 2-ED 2=6,∴sin ∠AEB =AB BE=63 ,即二面角B -PD -A 的大小的正弦值63.题型二:三垂线法1.(2024·高一·湖南长沙·阶段练习)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,直线PC ⊥平面ABC .(1)证明:平面PBC⊥平面PAC;(2)设AB=PC=2,AC=1,求二面角B-PA-C的余弦值.【解析】(1)证明:∵AB是圆O的直径,∴BC⊥AC,又∵PC⊥平面ABC,BC⊂平面ABC,∴PC⊥BC,∵PC∩AC=C,且PC,AC⊂平面PAC,∴BC⊥平面PAC,又BC⊂平面PBC,∴平面PBC⊥平面PAC.(2)过C作CM⊥PA于M,连结BM,∵BC⊥平面PAC,PA⊂平面PAC,∴PA⊥BC,∵BC∩CM=C,且BC,CM⊂平面BCM,∴PA⊥平面BCM,又BM⊂平面BCM,∴PA⊥BM,∴∠BMC为二面角B-PA-C的平面角,在Rt△BMC中,∵CM=25,BC=3,∴BM=45+3=195,则cos∠BMC=MCBM=25195=21919,∴二面角B-PA-C的余弦值为21919.2.(2024·高一·江苏南京·阶段练习)如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为菱形,且有AB=1,PA=2,∠ABC=60°,E为PC中点.(1)证明:AC⊥面BED;(2)求二面角E-AB-C的平面角的正弦值.【解析】(1)证明:设AC与BD交于点O,连接EO,因为E,O分别为PC,AC的中点,所以EO⎳PA,又因为PA⊥底面ABCD,且BD、AC⊂底面ABCD,所以PA⊥BD,PA⊥AC,又因为EO⎳PA,所以EO⊥BD,EO⊥AC,AC∩BD=O,所以EO⊥底面ABCD,又四边形ABCD为菱形,所以BD⊥AC,则EO⊥AC,BD⊥AC,且EO∩BD=O,EO,BD⊂平面BED,所以AC⊥平面BED;(2)过O作OF⊥AB于F,连接EF,由(1)知OE⊥底面ABCD,且FO、AB⊂底面ABCD,所以OE⊥AB,OE⊥FO,又EO∩FO=O,EO、FO⊂平面EOF,所以AB⊥平面EOF,又EF⊂平面EOF,所以AB⊥EF,即∠EFO为二面角E-AB-C的平面角,因为底面ABCD为菱形,AB=1,∠ABC=60°,所以△ABC是边长为1的等边三角形,则AO=12,FO=12sin60°=34,又PA=2,则EO=12PA=22,在直角三角形EOF中,EF=11 4,则cos∠EFO=FOEF=3311,所以sin∠EFO=22211,故所求二面角的正弦值为222 11.3.(2024·高二·江苏南京·阶段练习)如图,在四棱锥PABCD中,PA⊥平面ABCD,四边形ABCD为菱形,∠ADC=60°,PA=AD=4,E为AD的中点.(1)求证:平面PCE⊥平面PAD;(2)求二面角A-PD-C的平面角的正弦值.【解析】(1)由题意,因为四边形ABCD为菱形,所以DA=DC.连接AC.因为∠ADC=60°,所以△ADC为等边三角形,从而CA=CD.在△ADC中,E是AD的中点,所以CE⊥AD.因为PA⊥平面ABCD,CE⊂平面ABCD,所以CE⊥PA.∵PA∩AD=A,PA⊂面PAD,AD⊂平面PAD,CE⊄面PAD,∴EC⊥平面PAD.又CE⊂平面PCE,∴平面PCE⊥平面PAD(2)由题意及(1)得,在平面PAD中,过点E作EM⊥PD,垂足为M,连接CM.因为EC⊥平面PAD,PD⊂平面PAD,所以EC⊥PD.又EM∩CE=E, EM⊂平面EMC,CE⊂平面EMC,所以PD⊥平面EMC.又CM⊂平面EMC,所以PD⊥CM,从而∠EMC是二面角APDC的平面角.在Rt△EMD中,ED=2,∠ADP=45°,所以EM=MD= 2.在Rt△CMD中,MD=2,CD=4,所以CM=CD2-MD2=14.在Rt△CME中,CE=23,sin∠EMC=CECM =2314=427,所以二面角APDC的平面角的正弦值为42 7.题型三:射影面积法1.如图,在四棱锥P-ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,PA=AB=a,求平面PBA与平面PDC所成二面角的大小.【解析】因为PA⊥平面ABCD,AD⊂平面ABCD,所以PA⊥AD,又AD⊥AB,且PA∩AB=A,PA,AB⊂平面PAB,所以AD⊥平面PAB,同理BC⊥平面PAB,所以ΔPCD在平面PBA上的射影为ΔPAB.设平面PBA与平面PCD所成二面角为θ,所以cosθ=SΔPABSΔPCD=12a212a⋅2a=22,所以θ=45°.故平面PBA与平面PCD所成二面角的大小为45°.2.(2024·新疆和田·高一校考期末)在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD是正三角形,平面PAD⊥底面ABCD.(1)证明:AB⊥平面PAD;(2)求面PAD与面PDB所成的二面角的正切值.【解析】(1)证明:∵底面ABCD是正方形,∴AB ⊥AD ,∵平面PAD ⊥底面ABCD ,平面PAD ∩底面ABCD =AD ,∴由面面垂直的性质定理得,AB ⊥平面PAD ;(2)(法一)由题意,△PBD 在面PAD 上的射影为△PAD .设AD =a ,则S △PAD =34a 2,△PBD 中,PD =a ,BD =2a ,PB =2a ,∴S △PBD =12×a ×2a 2-a 24=74a 2,∴面PAD 与面PDB 所成的二面角的余弦值为37,∴面PAD 与面PDB 所成的二面角的正切值为23=233.(法二)如图所示:取PD 中点E ,连接AE ,BE .设AD =a ,则BD =PB =2a ,所以AE ⊥PD ,BE ⊥PD ,所以∠AEB 是平面PAD 与平面PDB 所成的二面角的平面角,在Rt △AEB 中,AE =32a ,AB =a ,∠BAE =π2,所以tan ∠AEB =AB AE =a 32a =23=233.3.(2024·高一课时练习)直角三角形ABC 的斜边在平面α内,两条直角边分别与平面α成30°和45°角,则这个直角三角形所在的平面与平面α所成的锐二面角的余弦值为.【答案】64【解析】过点C 作CD ⊥平面α,垂足为D ,连接AD ,BD ,∵AD ,BD ,AB ⊂平面α,则CD ⊥AD ,CD ⊥BD ,CD ⊥AB ,设CD =h >0,不妨设AC ,BC 分别与平面α成30°和45°角,则BC =2h ,AC =2h ,AD =3h ,BD =h ,过C 作CE ⊥AB ,垂足为E ,连接ED ,∵CD ⊥AB ,CE ∩CD =C ,CE ,CD ⊂平面CDE ,则AB ⊥平面CDE ,且DE ⊂平面CDE ,∴DE ⊥AB ,即所求二面角的平面角为∠CED ,由△ABC 的面积可得S △ABC =12AB ⋅CE =12AC ⋅BC ,由△ABD 的面积可得S △ABD =12AB ⋅DE =12AD ⋅BD ,∵cos ∠CED =DE CE =S △ABD S △ABC =12AD ⋅BD 12AC ⋅BC =3h ⋅h 2h ⋅2h =64,故所求锐二面角的余弦值为64.故答案为:64.题型四:垂面法1.(2024·高一·云南玉溪·期末)如图,三棱锥P -ABC 的底面△ABC 是等腰直角三角形,其中AB =AC =PA =PB =2,平面PAB ⊥平面ABC ,点E ,N 分别是AB ,BC 的中点.(1)证明:EN ⊥平面PAB ;(2)求二面角C -PB -A 的余弦值.【解析】(1)证明:因为三棱锥P -ABC 的底面是等腰直角三角形,且AB =AC =2,所以AB ⊥AC ,又点E ,N 分别是AB ,BC 的中点,故EN ∥AC ,故EN ⊥AB ,又平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,EN ⊂平面ABC ,故EN ⊥平面PAB .(2)如图,取PB 的中点为F ,连接AF ,CF ,因为PA =PB =AB =2,所以AF ⊥PB ,AF =3.又平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,AB ⊥AC ,AC ⊂平面ABC ,故AC ⊥平面ABP ,PB ⊂平面ABP ,故AC ⊥PB ,AC ∩AF =A ,AC ,AF ⊂平面ACF ,故PB ⊥平面ACF ,CF ⊂平面ACF ,故PB ⊥CF ,则∠CFA 即为所求的角,于是tan ∠CFA =CA AF =23,cos ∠CFA =217,所以二面角C -PB -A 的余弦值为217.2.(2024·高一·安徽芜湖·期末)如图,在三棱台ABC -DEF 中,∠ACB =90°,BF ⊥AD ,BC =2,BE =EF =FC =1.(1)求证:平面BCFE ⊥平面ABC ;(2)若直线AE 与平面BCFE 所成角为π3,求平面DEC 和平面ABC 所成角的正切值.【解析】(1)取BC 中点为O ,连接FO ,∵BE =EF =FC =1,BC =2,所以BO =OC =FC =1,故∠BFO =∠OBF ,∠CFO =∠COF =∠FCO ,由三角形内角和可得∠BFO +∠CFO =90°,故BF ⊥FC ,又∵BF ⊥AD ,AD ,FC ⊂平面ADFC ,AD ,FC 为相交直线,∴BF ⊥平面ADFC ,AC ⊂平面ADFC ,∴BF ⊥AC又∵∠ACB =90°,即BC ⊥AC ,BF ∩BC =B ,BF ,BC ⊂平面BCFE ,∴AC ⊥平面BCFE ,AC 在平面ABC 内,∴平面BCFE ⊥平面ABC(2)由(1)知直线AE 与平面BCFE 所成角为∠AEC ,∴AC EC=3,由于AE =AF =BC 2-FC 2=3,∴AC =3设平面DEC 和平面ABC 的交线为l ,由于AB ⎳平面DEC ,AB ⊂平面ABC ,所以l ∥AB ,过点E 作EG ⊥BC 于G ,又(1)知平面BCFE ⊥平面ABC ,且两平面的交线为BC ,EG ⊂平面BCFE ,∴EG ⊥平面ABC ,l ∈平面ABC ,所以EG ⊥l ,且EG =EB 2-BC -EF 2 2=32,再过点G 作GK ⊥l 于K ,连接EK ,GK ∩EG =G ,GK ,EG ⊂平面EGK ,所以l ⊥平面EGK ,EK ⊂平面EGK ,故l ⊥EK ,∵∠EKG 即为所求角,BG =12,GC =32,GK =GC ⋅sin ∠BCK =32sin ∠BCK =32sin ∠B =32×313=9213∵tan ∠EKG =EG EK =32×2139=399题型五:补棱法1.(2024·山东淄博·高一统考期末)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为棱BB 1、BC 的中点.(1)证明:直线DN ⎳平面AMD 1;(2)设平面AMD 1与平面ABCD 的交线为l ,求点M 到直线l 的距离及二面角D 1-l -C 的余弦值.【解析】(1)证明:取CC 1的中点E ,连接DE 、NE 、ME ,在正方体ABCD -A 1B 1C 1D 1中,BB 1⎳CC 1且BB 1=CC 1,∵M 、E 分别为BB 1、CC 1的中点,则BM ⎳CE 且BM =CE ,故四边形BCEM 为平行四边形,则ME ⎳BC 且ME =BC ,又因为AD ⎳BC 且AD =BC ,则ME ⎳AD 且ME =AD ,故四边形ADEM 为平行四边形,则DE ⎳AM ,∵DE ⊄平面AMD 1,AM ⊂平面AMD 1,∴DE ⎳平面AMD 1,因为AB ⎳C 1D 1且AB =C 1D 1,故四边形ABC 1D 1为平行四边形,则BC 1⎳AD 1,∵N 、E 分别为BC 、CC 1的中点,则NE ⎳BC 1,则NE ⎳AD 1,∵NE ⊄平面AMD 1,AD 1⊂平面AMD 1,∴NE ⎳平面AMD 1,∵DE ∩NE =E ,DE 、NE ⊂平面DEN ,所以,平面DEN ⎳平面AMD 1,∵DN ⊂平面DEN ,∴DN ⎳平面AMD 1.(2)延长D 1M 、DB 交与点P ,连接AP ,则直线AP 即为直线l ,因为BB 1⎳DD 1且BB 1=DD 1,M 为BB 1的中点,则PM PD 1=PB PD =BM DD 1=12,故点B 为PD 的中点,M 为PD 1的中点,在△ABP 中,AB =2,BP =BD =22,∠ABP =135°,由余弦定理可得AP2=AB2+BP2-2AB⋅BP cos135°=20,则AP=25,cos∠BAP=AB2+AP2-BP22AB⋅AP =255,则sin∠BAP=1-cos2∠BAP=55,过点D在平面ABCD内作DF⊥直线AP,垂足为点F,连接D1F,sin∠DAF=sin90°-∠BAP=cos∠BAP=255,所以,DF=AD sin∠DAF=455,∵DD1⊥平面ABCD,l⊂平面ABCD,∴DD1⊥l,∵DF⊥l,DF∩DD1=D,DF、DD1⊂平面DD1F,∴l⊥平面DD1F,∵D1F⊂平面DD1F,∴D1F⊥l,故二面角D1-l-C的平面角为∠D1FD,且D1F=DD21+DF2=655,故点M到直线l的距离为355,cos∠D1FD=DFD1F =23,因此,二面角D1-l-C的平面角的余弦值为23.2.(2024·湖南常德·高一临澧县第一中学校考期末)《九章算术》是中国古代的一部数学专著,是《算经十书》中最重要的一部,成于公元一世纪左右.它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志着中国古代数学形成了完整的体系.《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”,已知在三棱锥P-ABC中,PA⊥平面ABC.(1)从三棱锥P-ABC中选择合适的两条棱填空:⊥,则三棱锥P-ABC为“鳖臑”;(2)如图,已知AD⊥PB,垂足为D,AE⊥PC,垂足为E,∠ABC=90°.(i)证明:平面ADE⊥平面PAC;(ii)设平面ADE与平面ABC交线为l,若PA=23,AC=2,求二面角E-l-C的大小.【解析】(1)因为“鳖臑”是由四个直角三角形组成的四面体,又PA⊥平面ABC,所以PA⊥AB,PA⊥AC,PA⊥BC;即△PAB,△PAC为直角三角形;若BC⊥AB,由AB∩PA=A,AB,PA⊂平面PAB,可得:BC⊥平面PAB;所以BC⊥PB,即△ABC,△PBC为直角三角形;满足四个面都是直角三角形;同理,可得BC⊥AC或BC⊥PB或BC⊥PC,都能满足四个面都是直角三角形;故可填:BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC;(2)(i)证明:∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC,又BC⊥AB,PA∩AB=A,PA,AB⊂平面PAB,∴BC⊥平面PAB,又AD⊂平面PAB,∴BC⊥AD,又AD⊥PB,PB∩BC=B,PB,BC⊂平面PBC,∴AD⊥平面PBC,又PC⊂平面PBC,∴PC⊥AD,又AE⊥PC,AE∩AD=A,AD,AE⊂平面ADE,∴PC⊥平面ADE,又PC⊂平面PAC,∴平面ADE⊥平面PAC.(ii)由题意知,在平面PBC中,直线DE与直线BC相交.如图所示,设DE∩BC=F,连结AF,则AF即为l.∵PC⊥平面AED,l⊂平面AED,∴PC⊥l,∵PA⊥平面ABC,l⊂平面ABC,∴PA⊥l,又PA∩PC=P,PA,PC⊂平面PAC,∴l⊥平面PAC,又AE,AC⊂平面PAC,∴AE⊥l,AC⊥l.∴∠EAC即为二面角E-l-C的一个平面角.在△PAC中,PA⊥AC,PA=23,AC=2,∴PC=4,又AE⊥PC,∴AE=AP×ACPC =23×24=3,∴cos∠EAC=AEAC =32,∴∠EAC=30°,∴二面角E-l-C的大小为30°.3.(2024·黑龙江牡丹江·高一牡丹江一中校考期末)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F分别是PA,PC的中点.(1)记平面BEF 与平面ABC 的交线为l ,试判断直线l 与平面PAC 的位置关系,并加以证明;(2)设PC =2AB =4,求二面角E -l -C 大小的取值范围.【解析】(1)∵EF ⎳AC ,AC ⊂平面ABC ,EF ⊄平面ABC ,∴EF ⎳平面ABC ,又EF ⊂平面BEF ,平面BEF 与平面ABC 的交线为l ,所以EF ⎳l ,而l ⊄平面PAC ,EF ⊂平面PAC ,所以l ⎳平面PAC ;(2)设直线l 与圆O 的另一个交点为D ,连接DE ,FB ,如图:由(1)知,BD ⎳AC ,而AC ⊥BC ,所以BD ⊥BC ,所以PC ⊥平面ABC ,所以PC ⊥BD ,而PC ∩BC =C ,所以BD ⊥平面PBC ,又FB ⊂平面PBC ,所以BD ⊥BF ,所以∠FBC 就是二面角E -l -C 的平面角,因为PC =2AB =4,点F 是PC 的中点,所以FC =12PC =AB =2,故tan ∠FBC =FC BC =AB BC =1cos ∠ABC ,注意到0<∠ABC <π2,所以0<cos ∠ABC <1,所以tan ∠FBC >1,因为0<∠FBC <π2,所以∠FBC ∈π4,π2 ,所以二面角E -l -C 大小的取值范围为π4,π2.【过关测试】1.(2024·高一·广西玉林·阶段练习)如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,2AB =2BC =CC 1=2,D 是棱CC 1的中点,(1)求证:B1D⊥平面ABD;(2)求平面AB1D与侧面BB1C1C所成锐角的正切值.【解析】(1)证明:因为直三棱柱ABC-A1B1C1中,2BC=CC1=2,D是棱CC1的中点,所以BC=CD=C1D=B1C1=1,BB1=2,∠BCD=∠B1C1D=90°,所以BD2=BC2+CD2=2,B1D2=C1D2+B1C21=2,所以BD2+B1D2=4=BB21,所以BD⊥B1D,因为BB1⊥平面ABC,AB⊂平面ABC,所以BB1⊥AB,因为∠ABC=90°,所以AB⊥BC,因为BB1∩BC=B,BB1,BC⊂平面BB1C1C,所以AB⊥平面BB1C1C,所以B1D⊂平面BB1C1C,所以AB⊥B1D,因为AB∩BD=B,AB,BD⊂平面ABD,所以B1D⊥平面ABD;(2)因为B1D⊥平面ABD,AD⊂平面ABD,所以B1D⊥AD,因为BD⊥B1D,平面AB1D∩平面BB1C1C=B1D,所以∠ADB就是平面AB1D与侧面BB1C1C所成的平面角,因为AB⊥平面BB1C1C,BD⊂平面BB1C1C,所以AB⊥BD,在Rt△ADB中,AB=1,BD=2,则tan∠ADB=ABBD=12=22,所以平面AB1D与侧面BB1C1C所成锐角的正切值为2 2 .2.(2024·高一·河南商丘·阶段练习)如图,在棱长为3的正方体ABCD-A1B1C1D1中,E,F为棱AA1的两个三等分点.(1)求证:CE∥平面BDF;(2)求二面角C1-BD-F的余弦值.【解析】(1)如图,连接AC交BD于点O,连接OF.在△ACE中,O为AC的中点,F为AE的中点,所以OF∥CE,又平面BDF,OF⊂平面BDF,所以CE∥平面BDF.(2)连接C1O,C1F,A1C1.在正方体中,BD⊥AC,AA1⊥BD,AC∩AA1=A,AC,AA1⊂平面A1AC 所以BD⊥平面A1AC,而OF,OC1均在平面A1AC内,所以BD⊥OF,BD⊥OC1,所以∠FOC1是二面角C1-BD-F的平面角.因为正方体的棱长为3,所以AC=32,AO=322,AF=1,由勾股定理得FO=3222+12=222,C1O=322 2+32=362,C1F=(32)2+22=22.在△FOC1中,由余弦定理得cos∠FOC1=FO2+C1O2-C1F22FO⋅C1O=-3333,所以二面角C1-BD-F的余弦值为-33 33.3.(2024·高一·山东淄博·阶段练习)在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,AB=2,AC∩BD=O,PO⊥底面ABCD,PO=2,点E在棱PD上,且CE⊥PD.(1)证明:平面PBD⊥平面ACE;(2)证明:OE⊥PD(3)求二面角D-AC-E的余弦值【解析】(1)∵PO⊥平面ABCD,AC⊂平面ABCD,∴PO⊥AC,∵在菱形ABCD中,AC⊥BD,且BD∩PO=O,BD,PO⊂平面PBD,∴AC⊥平面PBD,∵AC⊂平面ACE,∴平面ACE⊥平面PBD,即平面PBD⊥平面ACE;(2)连接OE,则平面ACE∩平面PBD=OE,由(1)知AC ⊥平面PBD ,PD ⊂平面PBD ,则AC ⊥PD ,又∵CE ⊥PD ,CE ∩AC =C ,CE ,AC ⊂平面ACE ,∴PD ⊥平面ACE ,OE ⊂平面ACE ,∴PD ⊥OE ,即OE ⊥PD .(3)由于AC ⊥平面PBD ,OE ⊂平面PBD ,则AC ⊥OE ,又AC ⊥OD ,且平面EAC ∩平面DAC =AC ,OE ⊂平面EAC ,OD ⊂平面DAC ,故∠DOE 为二面角D -AC -E 的平面角;在菱形ABCD 中,AB =2,∠ABC =60°,则△ABC 是等边三角形,而O 为AC ,BD 的中点,则OD =OB =3,又OP =2,∴PD =22+3 2=7,故OE =OP ⋅OD PD =237=2217,∴cos ∠DOE =OE OD =22173=277,即二面角D -AC -E 的余弦值为277.4.(2024·高一·陕西西安·阶段练习)如图,在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,E ,F 分别为A 1B ,A 1C 的中点,D 为B 1C 1上的点,且A 1D ⊥B 1C .(1)求证:平面A 1FD ⊥平面BCC 1B 1;(2)若三棱柱所有棱长都为a ,求二面角A 1-B 1C -C 1的平面角的正切值.【解析】(1)在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,则三棱柱ABC -A 1B 1C 1为直三棱柱,∴BB 1⊥平面A 1B 1C 1,A 1D ⊂平面A 1B 1C 1,∴BB 1⊥A 1D ,∵A 1D ⊥B 1C ,B 1C ∩BB 1=B 1,B 1C ,BB 1⊂平面BCC 1B 1,∴A 1D ⊥平面BCC 1B 1,又A 1D ⊂平面A 1FD ,∴平面A 1FD ⊥平面BCC 1B 1;(2)因为三棱柱所有棱长都为a,则△A1B1C1为等边三角形,A1D⊥平面BCC1B1,B1C1⊂平面BCC1B1,所以A1D⊥B1C1,所以D为B1C1的中点,过点D作B1C垂线,垂足为H,连接A1H,∵A1D⊥B1C,DH⊥B1C,A1D∩DH=D,A1D,DH⊂平面A1DH,∴B1C⊥平面A1DH,又A1H⊂平面A1DH,所以B1C⊥A1H,则∠A1HD是二面角A1-B1C-C1的平面角,A1D⊥平面BCC1B1,DH⊂平面BCC1B1,所以A1D⊥DH,∴A1D=32a,DH=22B1D=24a,tan∠A1HD=A1DDH=6,故二面角A1-B1C-C1的平面角的正切值为6.5.(2024·高一·广东云浮·阶段练习)如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为菱形,且有AB=1,PA=2,∠ABC=60°,E为PC中点.(1)证明:PA⎳平面BED;(2)求二面角E-AB-C的平面角的正弦值.【解析】(1)设AC与BD交于点O连接EO,因为E,O分别为PC,AC的中点,所以EO∥PA,又因为PA⊄平面BED,EO⊂平面BED,所以PA ⎳平面BED ;(2)过O 作OF ⊥AB 于F ,连接EF ,因为PA ⎳OE ,且PA ⊥平面ABCD所以OE ⊥平面ABCD ,AB ⊂平面ABCD ,所以OE ⊥AB ,又EO ∩FO =O ,EO ,OF ⊂平面EOF ,所以AB ⊥平面EOF ,又EF ⊂平面EOF ,所以AB ⊥EF ,即∠EFO 为二面角E -AB -C 的平面角,由EO =12PA =22,△ABC 是边长为1的等边三角形,即FO =12sin60°=34,在直角三角形EOF 中,EF =114,即cos ∠EFO =FO EF =3311,sin ∠EFO =1-cos 2∠EFO =22211.所以所求二面角的正弦值为22211.6.(2024·高一·山东枣庄·阶段练习)如图,E 是直角梯形ABCD 底边AB 的中点,AB =2DC =2BC ,将△ADE 沿DE 折起形成四棱锥A -BCDE .(1)求证:DE ⊥平面ABE ;(2)若二面角A -DE -B 为60°,求二面角A -DC -B 的余弦值.【解析】(1)在直角梯形ABCD 中,易知DC ⎳BE ,且DC =BE ,所以四边形BCDE 为平行四边形,又∠EBC =90°,AB =2DC =2BC ,E 是AB 的中点,所以四边形BCDE 是正方形,从而DE ⊥EB ,也即DE ⊥EA ,因此,在四棱锥A -BCDE 中,EB ∩EA =A ,EB ,EA ⊂平面ABE ,所以DE ⊥平面ABE ;(2)由(1)知,∠AEB 即二面角A -DE -B 的平面角,故∠AEB =60°,又AE =EB ,可得△AEB 为等边三角形;设BE 的中点为F ,CD 的中点为G ,连接AF ,FG ,AG ,从而AF ⊥BE ,FG ⎳DE ,于是AF ⊥CD ,FG ⊥CD ,AF ∩FG =F ,AF ,FG ⊂平面AFG ,从而CD ⊥平面AFG ,AG ⊂平面AFG ,因此CD ⊥AG ;所以∠AGF 即所求二面角A -DC -B 的平面角.由(1)中DE ⊥平面ABE ,且FG ⎳DE ,从而FG ⊥平面ABE ,AF ⊂平面ABE 所以FG ⊥AF ,设原直角梯形中,AB =2DC =2BC =2a ,则折叠后四棱锥中AF =32a ,FG =a ,从而AG =AF 2+FG 2=72a 于是在Rt △AFG 中,cos ∠AGF =FG AG=277;即二面角A -DC -B 的余弦值为277.7.(2024·高一·北京怀柔·期末)如图,正方体ABCD -A 1B 1C 1D 1的棱长为2.(1)证明:CD 1⎳平面A 1BD ;(2)证明:BD ⊥平面A 1AC ;(3)求二面角A 1-BD -A 的正弦值.【解析】(1)在正方体ABCD -A 1B 1C 1D 1,A 1D 1⎳BC 且A 1D 1=BC ,∴A 1BCD 1为平行四边形,∴A 1B ⎳CD 1,∵CD 1⊄平面A 1BD ,A 1B ⊂平面A 1BD ∴CD 1⎳平面A 1BD ;(2)∵正方体ABCD -A 1B 1C 1D 1,AA 1⊥底面ABCD ,BD ⊂底面ABCD ,∴AA 1⊥BD ,∵正方形ABCD 中,AC ⊥BD ,又∵AA 1⊂平面A 1AC ,AC ⊂平面A 1AC ,AA 1∩AC =A ,∴BD ⊥平面A 1AC ;(3)∵在正方形ABCD 中,设AC ∩BD =O ,连接A 1O ,∴AC ⊥BD ,AO ⊥BD ,∵△A 1BD 中,A 1B =A 1D =22,△A 1BD 为等腰三角形,∴A 1O ⊥BD ,∴∠A 1OA 即为二面角A 1-BD -A 的平面角,∵在Rt △A 1AO 中,AA 1=2,AO =2,∴A 1O =6,∴sin ∠A 1OA =A 1A A 1O=63,即二面角A 1-BD -A 的正弦值为63.8.(2024·高一·广西·期末)如图,四棱锥P -ABCD ,PA ⊥平面ABCD ,∠BAD =∠BCD =π2,AB =BC =2,PA =BD =4,过点C 作直线AB 的平行线交AD 于F ,G 为线段PD 上一点.(1)求证:平面PAD ⊥平面CFG ;(2)求平面PBC 与平面PDC 所成二面角的余弦值.【解析】(1)因为PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以PA ⊥AB ,因为∠BAD =π2,所以AB ⊥AD ,因为PA ∩AD =A ,PA 、AD ⊂平面PAD ,所以AB ⊥平面PAD ,因为CF ⎳AB ,所以CF ⊥平面PAD ,因为CF ⊂平面CFG ,所以平面CFG ⊥平面PAD ;(2)连结AC ,过点B 作BE ⊥PC 于点E ,连接DE ,如图,PA ⊥平面ABCD ,AD 、AC ⊂平面ABCD ,所以PA ⊥AD ,PA ⊥AC ,因为∠BAD =∠BCD =π2,AB =BC =2,PA =BD =4,由勾股定理得:AD=BD2-AB2=23,则∠ADB=30°,同理可得CD=23,∠CDB=30°,故∠ADC=60°,所以三角形ACD为等边三角形,AC=CD=23,同理可得:PB=PA2+AB2=25,PC=PA2+AC2=27,PD=PA2+AD2=27,在△BCP中,由余弦定理得:cos∠BCP=BC2+CP2-PB22BC⋅CP=4+28-2087=327,则CE=BC cos∠BCP=627,BE=BC2-CE2=197,在△CDP中,由余弦定理得:cos∠PCD=PC2+CD2-DP22PC⋅CD=12+28-2823×47=327,在△CDE中,DE2=CE2+CD2-2CE⋅CD cos∠PCD=3628+12-2×627×23×327=757,因为CE2+DE2=12=CD2,所以DE⊥PC,所以∠BED是平面PBC与平面PDC所成二面角的平面角,由余弦定理得:cos∠BED=BE2+DE2-BD22BE⋅DE=197+757-162×197×757=-35795.9.(2024·高一·辽宁葫芦岛·期末)如图,在多面体ABCDEF中,菱形ABCD的边长为2,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3.(1)在线段FC上确定一点H,使得平面BDH⎳平面AEF;(2)设G是线段EC的中点,在(1)的条件下,求二面角A-HG-B的大小.【解析】(1)H为线段FC的中点.证明如下:在菱形ABCD中,连接AC与BD交于点O,于是O为AC中点,在△AFC中,OH为中位线,所以OH⎳AF,因为OH⊂平面BDH,AF⊄平面BDH,所以AF⎳平面BDH,又因为四边形BDEF是矩形,BD⎳EF,因为BD ⊂平面BDH ,EF ⊄平面BDH ,所以EF ⎳平面BDH ,又AF ,EF ⊂平面AEF ,且AF ∩EF =E ,所以平面AEF ⎳平面BDH .(2)分别取EF ,HG ,OC 中点M ,N ,P ,连接MO ,MA ,MC ,NP ,NO ,NA ,于是,N 为线段MC 中点,易知,在矩形BDEF 中MO ⊥BD ,菱形ABCD 中AC ⊥BD ,且MO ∩AC =O ,MO ,AC ⊂平面AMC ,所以BD ⊥平面AMC .又GH 为△CEF 的中位线,故GH ⎳EF ,且BD ⎳EF ,所以GH ⎳BD .所以GH ⊥平面AMC .又AN ,ON ⊂平面AMC ,所以GH ⊥AN ,GH ⊥ON .所以∠ANO 为二面角A -HG -B 的平面角.由已知,平面BDEF ⊥平面ABCD ,平面BDEF ∩平面ABCD =BD ,MO ⊂平面BDEF ,且MO ⊥BD ,可得MO ⊥ABCD .又NP 为△CMO 的中位线,所以NP ⎳MO ,且NP =12MO =32,所以NP ⊥平面ABCD ,进而NP ⊥AP .在菱形ABCD 中,AO =3,PO =32,AP =AO +PO =332.在直角△NPA 中,tan ∠NAP =NP AP=33,所以∠NAP =π6.在直角△NPO 中,tan ∠NOP =NP OP=3,所以∠NOP =π3,所以,∠ANO =∠NOP -∠NAP =π6.即二面角A -HG -B 的大小为π6.10.(2024·高一·贵州毕节·期末)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,且AB =3,AD =2,侧面PAD 是等腰三角形,且PA =PD =2,侧面PAD ⊥底面ABCD .(1)求证:AP ⊥平面PCD ;(2)求侧面PBC 与底面ABCD 所成二面角的正弦值.【解析】(1)证明:在△APD 中,AD =2,PA =PD =2∴AD 2=AP 2+DP 2∴AP ⊥DP又∵侧面PAD ⊥底面ABCD ,侧面PAD ∩底面ABCD =AD ,AD ⊥CD ,CD ⊂平面ABCD ,∴CD ⊥平面APD ,又AP ⊂平面APD ,∴CD ⊥AP ,又CD ∩DP =D ,CD ,DP ⊂平面PCD ,∴AP ⊥平面PCD .(2)取AD 的中点为M ,连接PM ,∵PA =PD ,所以PM ⊥AD又∵侧面PAD ⊥底面ABCD ,侧面PAD ∩底面ABCD =AD ,PM ⊂面PAD ,∴PM ⊥平面ABCD又BC ⊂平面ABCD ,∴PM ⊥BC ,过点M 作MG ⊥BC ,垂足为G ,连接PG ,又PM ∩MG =M ,PM ,MG ⊂平面PMG ,∴BC ⊥平面PMG ,又MG ⊂平面PMG ,PG ⊂平面PMG ,∴BC ⊥MG ,BC ⊥PG ,∴∠PGM 为侧面PBC 与底面ABCD 所成二面角的平面角,在直角△PMG 中,PM =12AD =1,MG =3,∴PG =10,∴sin ∠PGM =PM PG =110=1010,即侧面PBC 与底面ABCD 所成二面角的正弦值为1010.11.(2024·高一·内蒙古包头·期末)如图,已知AB 是圆的直径,且AB =4,PA 垂直圆所在的平面,且PA =3,M 是弧AB 的中点.(1)求点A 到平面PBM 的距离;(2)求二面角A -BM -P 的正弦值.【解析】(1)设点A 到平面PBM 的距离为d ,由题意知BM ⊥AM ,因为PA ⊥平面MAB ,BM ⊂平面MAB ,所以BM ⊥PA ,又AM ∩PA =A ,AM ,PA ⊂平面PAM ,则BM ⊥平面PAM ,又PM ⊂平面PAM ,所以BM ⊥PM ,由V A -PBM =V P -ABM ,得13S △PBM ⋅d =13S △ABM ⋅PA ,12PM ⋅BM ⋅d =12AM ⋅BM ⋅3,即17d =62,故d =63417,所以点A 到平面PBM 的距离为63417;(2)由(1)得BM ⊥AM ,BM ⊥PM ,所以∠PMA 即为二面角A -BM -P 的平面角,因为AB =4,M 是弧AB 的中点,所以MA =MB =22,因为PA ⊥平面MAB ,AM ⊂平面MAB ,所以AM ⊥PA ,则PM =9+8=17,则sin ∠PMA =PA PM =317=31717,所以二面角A -BM -P 的正弦值为31717.12.(2024·高一·辽宁·期末)如图1,在等腰直角△ABC 中,∠C =π2,D ,E 分别是AC ,AB 的中点,F 为线段CD 上一点(不含端点),将△ADE 沿DE 翻折到△A 1DE 的位置,连接A 1C ,A 1B ,得到四棱锥A 1-BCDE ,如图2所示,且A 1F ⊥CD .(1)证明:A 1F ⊥平面BCDE ;(2)若直线A 1E 与平面BCDE 所成角的正切值为155,求二面角A 1-BD -C 的平面角的正切值.【解析】(1)证明:因为∠C =π2,且DE ∥BC ,所以DE ⊥AD ,所以DE ⊥A 1D ,DE ⊥DC ,又因为A 1D ∩CD =D ,且A 1D ,CD ⊂平面A 1DC ,所以DE ⊥平面A 1DC ,因为A 1F ⊂平面A 1DC ,所以DE ⊥A 1F ,又因为A 1F ⊥CD ,CD ∩DE =D 且CD ,DE ⊂平面BCDE ,所以A 1F ⊥平面BCDE .(2)如图所示,连接EF ,因为D ,E 分别是AC 与AB 的中点,可得A 1D =CD =DE ,又因为A 1F ⊥平面BCDE ,所以直线A 1E 与平面BCDE 所成的角为∠A 1EF ,由直线A 1E 与平面BCDE 所成角的正切值为155,即tan ∠A 1EF =155,设DF=x,则A1F=A1D2-DF2=A1D2-x2,EF=DE2+DF2=A1D2+x2,所以tan∠A1EF=A1FEF=A1D2-x2A1D2+x2=155,解得A1D=2x,即F为CD的中点,过F作FO⊥BD,垂足为O,因为A1F⊥平面BCDE,BD⊂平面BCDE,所以A1F⊥BD,又因为A1F∩OF=F,且A1F,OF⊂平面A1OF,所以BD⊥平面A1OF,因为A1O⊂平面A1OF,所以A1O⊥BD,所以二面角A1-BD-C的平面角为∠A1OF,由BC=4x,CD=2x,则BD=BC2+CD2=25x,所以OF=12⋅CD⋅BCBD=255x,因为A1F=A1D2-x2=3x,所以tan∠A1OF=A1FOF=152.13.(2024·高一·安徽宣城·期末)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点,△OCD是边长为2的等边三角形.(1)若AB=22,求直线AB和CD所成角的余弦值;(2)若点E在棱AD上,AE=13AD且三棱锥A-BCD的体积为4,求二面角E-BC-D平面角大小的正弦值.【解析】(1)分别取BC、AC的中点M、N,连接OM,ON,MN,因为О为BD中点,所以MO∥CD,MN∥AB且MO=12CD,MN=12AB,所以异面直线AB和CD所成角(或为邻补角)即为∠OMN,因为AB=AD,O为BD中点,所以AO⊥BD,因为△OCD是边长为2的等边三角形,所以BO=DO=2,MN=12AB=2,MO=12CD=1,又因为平面ABD⊥平面BCD,AO⊥BD,平面ABD∩平面BCD=BD,AO⊂平面ABD,所以AO⊥平面BCD,因为OC⊂平面BCD,所以AO⊥OC,由OC=OD,得△AOC≌△AOD,得AC=AD=AB=22.在直角三角形△AOC中,则ON=12AC=2,在△MON中,根据余弦定理得,cos∠OMN=MN2+MO2-ON22MN⋅MO =(2)2+1-(2)22×2×1=24或cos∠OMN=122=24所以直线AB和CD所成角的余弦值为2 4.(2)过点E作EN∥AO交BD于N.过点N作NM∥CD交BC于点M,连接ME,因为EN∥AO且AO⊥BD,所以EN⊥BD,因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,EN⊂平面ABD,所以EN⊥平面BCD,因为BC⊂平面BCD,所以EN⊥BC,在△BCD中,因为OB=OD=OC,所以BC⊥CD,因为NM∥CD,所以MN⊥BC,因为MN∩EN=N,MN,EN⊂平面MNE,所以BC⊥平面MNE,因为ME⊂平面MNE,所以BC⊥ME,所以∠EMN为所求的二面角E-BC-D的平面角,因为S△BCD=12BD⋅CD⋅sin∠BDC=12×4×2×32=23,因为V A-BCD=13S△BCD⋅OA=13×23⋅OA=4,所以OA=23,又因为AE=13AD,EN∥AO,所以ENAO=DEDA=23,得EN=23OA=433,因为NM ∥CD ,所以MN CD=BN DB =46=23,因为CD =2,所以MN =43.又EN =433,所以3MN =EN .所以tan ∠EMN =EN MN =3,所以sin ∠EMN cos ∠EMN =3,得sin ∠EMN3=cos ∠EMN ,因为sin 2∠EMN +cos 2∠EMN =1,sin ∠EMN >0,所以解得sin ∠EMN =32.所以二面角E -BC -D 平面角大小的正弦值为32.14.(2024·高一·福建福州·期末)如图,四棱锥P -ABCD 的侧面PAD 是边长为2的正三角形,底面ABCD 为正方形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点.(1)求证:DM ⊥PC ;(2)在线段PB 上是否存在一点Q 使得MQ ⎳平面PNC ,存在指出位置,不存在请说明理由.(3)求二面角B -PC -N 的正弦值.【解析】(1)∵△PAD 为正三角形,N 为AD 中点,∴PN ⊥AD ,又∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PN ⊂平面PAD ,∴PN ⊥平面ABCD ,DM ⊂平面ABCD ,∴PN ⊥DM ,在正方形ABCD 中,易知△DAM ≌△CDN ,∴∠ADM =∠DCN ,而∠ADM +∠MDC =90°,∴∠DCN +∠MDC =90°,∴DM ⊥CN ,∵PN ∩CN =N ,PN ,CN ⊂平面PNC ,∴DM ⊥平面PNC ,∵PC ⊂平面PNC ,∴DM ⊥PC .(2)存在,当BQ =14BP时MQ ⎳平面PNC ,取BE 的四等分点E (靠近B ),取BP 的四等分点Q (靠近B ),连接ME 、EQ 、MQ ,则QE ⎳PC ,QE ⊄平面PNC ,PC ⊂平面PNC ,所以QE ⎳平面PNC ,由BM DC=BE DN =12,所以△MBE ∽△CDN ,所以∠EMB =∠DCN ,又∠EMB +∠MEB =90°,∠DCN +∠NCB =90°,所以∠NCB =∠MEB ,所以ME ⎳NC ,ME ⊄平面PNC ,NC ⊂平面PNC ,所以ME ⎳平面PNC ,又ME ∩QE =E ,ME ,QE ⊂平面MEQ ,所以平面MEQ ⎳平面PNC ,MQ ⊂平面MEQ ,所以MQ ⎳平面PNC ,即当BQ =14BP时MQ ⎳平面PNC .(3)取DC 的中点F ,连接BF 交NC 于点G ,过点G 作GH ⊥PC 交PC 于点H ,连接BH ,则DF ⎳BM 且DF =BM ,所以四边形DFBM 为平行四边形,所以BF ⎳DM ,又DM ⊥平面PNC ,所以BF ⊥平面PNC ,PC ⊂平面PNC ,所以BF ⊥PC ,又GH ∩BF =G ,GH ,BF ⊂平面GHB ,所以PC ⊥平面GHB ,BH ⊂平面GHB ,所以PC ⊥BH ,所以∠BHG 为二面角B -PC -N 的平面角,因为△BCF ∽△CGF ,所以BC CG =CF FG =BF CF,又CG =BC ⋅CF BF =255,所以FG =55,BG =455,又△CGH ∽△CPN ,所以CG CP =GHPN ,又CN =22+12=5,PN =22-12=3,PC =5 2+3 2=22,即25522=GH 3,所以GH =3010,所以BH =30102+4552=142,所以sin ∠BHG =BG BH =455142=47035,故二面角B -PC -N 的正弦值为47035.。
射影面积法求二面角原理

射影面积法求二面角原理引言:射影面积法是一种常用于计算几何体二面角的方法,它基于射影面积的概念,通过计算几何体在某一平面上的投影面积来确定二面角的大小。
本文将介绍射影面积法求二面角的原理和应用。
一、射影面积法的基本原理射影面积法是基于几何体在不同平面上的投影面积与几何体二面角之间的关系来进行计算的。
具体而言,我们可以通过在几何体上选择一个合适的平面,将几何体投影到该平面上,然后计算投影面积,最后利用投影面积与二面角之间的关系,求解二面角的大小。
二、射影面积法的步骤1. 选择适当的平面:根据几何体的特点和问题的要求,选择一个合适的平面进行投影。
通常情况下,选择与几何体的某一面垂直的平面可以简化计算过程。
2. 进行投影:将几何体投影到所选择的平面上,得到投影面积。
投影的方法可以根据几何体的形状和问题的要求灵活选择,常用的投影方法包括平行投影和中心投影等。
3. 计算投影面积:根据投影所得到的平面图形的形状和大小,使用几何学方法计算投影面积。
根据平面图形的形状,可以使用不同的计算公式,如矩形的投影面积为底边长度乘以高度,三角形的投影面积为底边长度乘以高度的一半等。
4. 计算二面角:根据投影面积与二面角之间的关系,利用所得到的投影面积计算二面角的大小。
具体的计算方法可以根据几何体的特点和问题的要求选择,常用的计算方法包括使用正弦定理、余弦定理等。
三、射影面积法的应用举例1. 求解四面体的二面角:对于一个四面体,可以选择一个面作为投影面,将四面体投影到该面上。
然后计算投影面积,并利用所得到的投影面积求解四面体的二面角。
2. 求解棱柱的二面角:对于一个棱柱,可以选择柱面作为投影面,将棱柱投影到柱面上。
然后计算投影面积,并利用所得到的投影面积求解棱柱的二面角。
3. 求解球体的二面角:对于一个球体,可以选择一个切面作为投影面,将球体投影到该切面上。
然后计算投影面积,并利用所得到的投影面积求解球体的二面角。
四、射影面积法的优缺点射影面积法作为一种计算几何体二面角的常用方法,具有一定的优点和缺点。
二面角的四种求法-2021-2022学年高一数学(人教A版2019必修第二册)(解析版)

立体几何专题:二面角的四种求法一、二面角1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。
3、二面角的大小范围:[0°,180°] 二、求二面角大小的步骤是: (1)作:找出这个平面角;(2)证:证明这个角是二面角的平面角;(3)求:将作出的角放在三角形中,解这个三角形,计算出平面角的大小. 三、确定二面角的平面角的方法:1、定义法(棱上一点双垂线法):提供了添辅助线的一种规律(1)方法:在二面角的棱上找一个特殊点,在两个半平面内分别过该点作垂直于棱的射线.(2)具体演示:如图所示,以二面角的棱a 上的任意一点O 为端点, 在两个面内分别作垂直于a 的两条射线OA ,OB ,则∠AOB 为此二面角的平面角2、三垂线法(面上一点双垂线法)----最常用(1)方法:自二面角的一个面上一点向另外一个面作垂线,再由垂足向棱作垂线得到棱上的点(即斜足),斜足和面上一点的连线与斜足和垂足的连线所夹的角,即为二面角的平面角(2)具体演示:在平面α内选一点A 向另一个平面β作垂线AB ,垂足为B ,再αβaOAB过点B 向棱a 作垂线BO ,垂足为O ,连接AO ,则∠AOB 就是二面角的平面角。
3、垂面法(空间一点垂面法)(1)方法:过空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角。
(2)具体演示:过二面角内一点A 作AB ⊥α于B ,作AC ⊥β于C , 面ABC 交棱a 于点O ,则∠BOC 就是二面角的平面角。
4、射影面积法求二面角coss S射影(1)方法:已知平面β内一个多边形的面积为S ,它在平面α内的射影图形的面积为S射影,平面α和平面β所成的二面角的大小为θ,则COSθ=S射影S.这个方法对于无棱二面角的求解很简便。
立体几何二面角5种常见解法

立体几何二面角大小的求法二面角的类型和求法可用框图展现如下:一、定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小.例、在四棱锥P-ABCD 中,ABCD 是正方形,PA⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。
jA BCDPHPOBA二、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的大小。
例、(2003北京春)如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值.ABCDA 1B 1C 1D 1EO例、ΔABC 中,∠A=90°,AB=4,AC=3,平面ABC 外一点P 在平面ABC 内的射影是AB 中点M ,二面角P —AC—B 的大小为45°。
求(1)二面角P —BC —A 的大小;(2)二面角C —PB —A 的大小例、(2006年陕西试题)如图4,平面α⊥平面β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1=2,求:二面角A 1-AB -B 1的大小.B 1AαA 1 LE F三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;例、空间的点P 到二面角βα--l 的面α、β及棱l 的距离分别为4、3、3392,求二面角βα--l 的大小.四、射影法:(面积法)利用面积射影公式S 射=S 原cos θ,其中θ为平面角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD 中,ABCD 为正方形,PA⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PβαlCBA例、如图,设M为正方体ABCD-A1B1C1D1的棱CC1的中点,求平面BMD1与底面ABCD所成的二面角的大小。
射影面积法求二面角原理

射影面积法求二面角原理概述:射影面积法是计算二面角的常用方法之一,它基于物体在不同角度下的射影面积的变化来求解二面角。
二面角是指由两个平面所夹的角,它在几何学和计算几何学中有着广泛的应用。
本文将详细介绍射影面积法求解二面角的原理及其应用。
一、射影面积法原理射影面积法通过计算物体在不同角度下的射影面积来求解二面角。
具体步骤如下:1.选择观察点:确定观察点的位置,通常选择观察点位于物体所在平面外部,且与物体的一条边垂直相交。
2.确定观察面:从观察点出发,选择一个平面作为观察面,该平面与物体的一条边垂直相交,并且与观察点所在平面垂直。
3.计算射影面积:在观察面上,以物体的一条边为边界,通过观察点将物体投影到观察面上,计算投影的面积。
4.改变观察角度:保持观察点不变,改变观察面与物体的夹角,重复步骤3,计算不同角度下的射影面积。
5.计算二面角:根据不同角度下的射影面积,利用数学方法求解二面角的大小。
二、射影面积法的应用射影面积法可以应用于多个领域,包括几何学、物理学、计算机图形学等。
以下是该方法的一些具体应用:1.计算物体的空间角:射影面积法可以用于计算物体在空间中所占的角度,例如计算两个平面所夹的角度、计算一个立体角等。
2.三维建模:在计算机图形学中,射影面积法可以用于三维建模和渲染,通过计算物体在不同角度下的射影面积,可以生成真实感的三维模型。
3.物体识别:射影面积法可以应用于物体识别和目标跟踪,通过计算物体在不同角度下的射影面积,可以对物体进行形状和姿态的判断。
4.光线追踪:在光线追踪算法中,射影面积法可以用于计算光线与物体的相交情况,从而实现真实感的光影效果。
总结:射影面积法是一种常用的求解二面角的方法,通过计算物体在不同角度下的射影面积,可以准确地求解二面角的大小。
该方法在几何学、物理学和计算机图形学等领域有着广泛的应用,可以用于计算物体的空间角、三维建模、物体识别和光线追踪等方面。
射影面积法的原理简单易懂,但在具体应用中需要注意选择合适的观察点和观察面,以及正确计算射影面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
射影面积法(cos S S 射影原
q =
)
凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos 斜
射S S =
θ)求出二面角的大小。
例1、 如图,在底面是一直角梯形的四棱锥S-ABCD 中, AD ∥BC,∠ABC=90°,SA ⊥平面ABC ,SA=AB=BC=1,
AD=2
1 .求面SCD 与面SAB 所成的角的大小。
解法1:可用射影面积法来求, 这里只要求出S △SCD 与S △SAB 即可, 故所求的二面角θ应满足cos θ=
=
1
112
12322
⨯⨯⨯⨯=
6。
例2.(2008北京理)如图,在三棱锥P ABC -中,
2AC BC ==,90ACB ∠=o ,
AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥;
(Ⅱ)求二面角B AP C --的大小;
A C
B
P
图1
S
D
C
B
A
解:(Ⅰ)证略
(Ⅱ)AC BC =Q ,AP BP =,APC BPC ∴△≌△. 又PC AC ⊥,PC BC ∴⊥.
又90ACB ∠=o
,即AC BC ⊥,且AC PC C =I ,
BC ∴⊥平面PAC .
取AP 中点E .连结BE CE ,. AB BP =Q ,BE AP ∴⊥.
EC Q 是BE 在平面PAC 内的射影, CE AP ∴⊥.
∴△ACE 是△ABE 在平面ACP 内的射影, 于是可求得:
2222=+===CB AC AP BP AB ,622=-=AE AB BE ,
2==EC AE 则1222
121=•=•=
=∆CE AE S S ACE 射, 3622
1
21=•=•=
=∆EB AE S S ABE 原 设二面角B AP C --的大小为ϑ,则3
3
3
1cos =
=
=
原
射S S ϑ ∴二面角B AP C --的大小为3
3arccos =ϑ
练习1: 如图5,E 为正方体ABCD -A 1B 1C 1D 1的 棱CC 1的中点,求平面AB 1E 和底面A 1B 1C 1D 1所成 锐角的余弦值.
(答案:所求二面角的余弦值为cos θ=
3
2).
A
B
E P A 1
D 1
B 1
1
E
D
B
C
A
图5
2. 如图一,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,
2AP AB ==,22BC =,E F ,分别是AD PC ,的中点.
(1)证明:PC ⊥平面BEF ;(2)求平面BEF 与平面BAP 夹角的大小. 题(1)解略;题(2)中平面BEF 与平面BAP 夹角即为平面BEF 与平面BAP 所成的锐二面角.
方法一:垂面法
在图中找到或作出一个与二面角的两个半平面均垂直的平面,此平面截得的图形便是二面角的平面角.
如图一:PA ⊥Q 平面ABCD ,BC ⊂平面ABCD ,PA BC ∴⊥. 又,BC AB AB PA A ⊥=Q I ,BC ∴⊥平面BAP .
又BC ⊂Q 平面PBC ,∴平面PBC ⊥平面BAP . 由题(1),PC ⊥平面BEF ,PC ⊂平面BEF ,∴平面PBC ⊥平面BEF . 所以PBF ∠是所求二面角的平面角.
222221122,22
PB PA AB PF PC AB BC PA =+==
=++Q , 2sin ,.24
PF PBF PBF PB π
∴∠=
=∠= 即平面BEF 与平面BAP 夹角为
4
π
. 方法二:平移平面法
如果两平行平面同时与第三个平面相交,那么这两个平行平面与第三个平面所成的二面角相等或互补.利用此结论可以平移某一平面到合适的位置以便作出二面角的平面角.
如图二:取BC 的中点G ,连接,FG EG .
,E F Q 分别是,AD PC 的中点,,EG AB FG PB ∴P P .
又,FG EG G AB PB B ==Q I I ,
∴平面EFG P 平面BAP .
∴二面角B EF G --的大小就是平面BEF 与平面BAP 夹角的大小.
可以证明BFG ∠为二面角B EF G --的平面角,并求出其大小为4
π. 方法三:射影法
利用公式'cos S S
θ=,其中S 表示二面角的一个半平面内某个多边形的面积,'
S 表示
此多边形在另一个半平面射影的面积,θ表示原图形与射影图形所成的二面角.
如图三:取PB 的中点H ,连接,FH AH ,
Q F 为PC 中点, ,FH BC AE BC ∴P P .
由解法一知,BC ⊥平面BAP ,
FH ∴⊥平面BAP ,AE ⊥平面BAP ,
∴点F 、E 在平面BAP 内的射影分别为H 、A . BEF ∴∆在平面BAP 上的射影为BAH ∆. 可以证明BEF ∆和BAH ∆均为直角三角形.
1
,,2
HF BC AE BC HF BC BC ==
Q P P , ∴四边形HFEA 为平行四边形,EF AE ∴=.
记平面BEF 与平面BAP 夹角为θ,则2
cos BAH BEF S S θ∆∆==
, 所以4
πθ=
,即平面BEF 与平面BAP 夹角为
4
π.
3.已知ABC ∆是正三角形,⊥PA 平面ABC 且PA=AB=a,求二面角A-PC-B 的大小。
[思维]二面角的大小是由二面角的平面角 来度量的,本题可利用三垂线定理(逆)来作
E
P
C
B
A
F
平面角,还可以用射影面积公式或异面直线上两点 间距离公式求二面角的平面角。
解1:(三垂线定理法)
取AC 的中点E ,连接BE ,过E 做EF ⊥PC,连接BF Θ⊥PA 平面ABC ,PA ⊂平面PAC
∴平面
PAC ⊥平面ABC, 平面PAC I 平面ABC=AC
∴BE ⊥平面
PAC
由三垂线定理知BF ⊥PC
∴BFE ∠为二面角
A-PC-B 的平面角
设PA=1,E 为AC 的中点,BE=
23,EF=4
2
∴tan BFE ∠=
6=EF
BE
∴BFE ∠=argtan 6
解2:(三垂线定理法)
取BC 的中点E ,连接AE ,PE 过A 做AF ⊥PE, FM ⊥PC,连接
FM
ΘAB=AC,PB=PC ∴
AE ⊥BC,PE ⊥BC
∴ BC ⊥平面PAE,BC ⊂平面PBC
∴
平面PAE ⊥平面PBC, 平面PAE I 平面PBC=PE
由三垂线定理知AM ⊥PC
∴FMA ∠为二面角
A-PC-B 的平面角
P
C A
E
F M
图1
图2
设PA=1,AM=
22,AF=7
21
.=PE AE AP
∴sin FMA ∠=
7
42=AM AF ∴FMA ∠=argsin
7
42
解3:(投影法)
过B 作BE ⊥AC 于E,连结PE Θ⊥PA 平面ABC ,PA ⊂平面PAC
∴平面
PAC ⊥平面ABC, 平面PAC I 平面ABC=AC
∴BE ⊥平面
PAC
∴PEC ∆是PBC ∆在平面
PAC 上的射影
设PA=1,则PB=PC=2,AB=1
4
1
=
∆PEC S ,47=
∆PBC S
由射影面积公式得,7
7
cos
arg ,77=∴==
∆∆θθPBC PEC S S COS , 4.在单位正方体1111A B C D ABCD -中, 求二面角1A A C B --的度数。
P
C
B
A
E
图3
一、三垂线法
利用三垂线定理或逆定理构造出二面 角的平面角,进而求解。
解法一. 作1,AO AC ⊥取1A B 的中点M , 连结.OM AM .
1AM A B ⊥
AM BC ⊥ 1A
B B
C B =I 由三垂线逆定理知
1
OM AC ⊥
AOM ∴∠为所求二面角1A A C B --的平面角 在1Rt A AC V 中 111
3AA AC AO AC AC =
⋅=
AM sinAOM AO ∴=
= 60AOM ∴∠=o
二.射影法
利用斜面面积和射影面积的关系:S S cos θ=⋅射影斜面 (θ为斜面与射影所成二面角的平面角)直接求解。
解法二、取AC 的中点G ,连结BG
1
1BG AC
BG AA AC AA A
⊥⊥=I
∴ 1A BC V 在平面1A AC 上的射影为1A GC V
12
Rt A BC S =
V
1244
AGC Rt A AG S S ==
-=V V 由 11A GC Rt A BC S S cos θ=⋅V V 1
2
cos θ∴= 从而二面角1A A C B --的大小为60o。