高等几何讲义 第二章射影平面____§1 扩大仿射平面
大学高等几何授课讲义
• 2、已知仿射变换
x/ 2x y 1
• 求点 P1(1, 0), P2 (1, 0)
y/
x
y
3
• 的像点,及直线 x y 2 0的像直线。
第一章、仿射坐标与仿射变换
复习仿射坐标 及代数表示式
• 正交变换
x'
y
•
所以:
x'
y'
a11x a21x
a12 y a13 a22 y a23
第一章、仿射坐标与仿射变换
例 已知三点 O(0,0), E(1,1), P(1, 1)求仿射变换T使顺次 变为 O1(2,3), E1(2,5), P1(3, 7).
• 练习:1、求使直线x 0, y 0, x 2y 1 0分别变
点集拓扑 代数拓扑 解析拓扑
分形几何
微分拓扑 微分流形 纤维丛
五、课程简介
• 周学时3,一个学期,学习第一章~第六章
• 主要参考书:
•梅向明、门淑惠等编《高等几何》,高等教育出版社出版, 2008年; • 朱德祥、朱维宗等编《高等几何》(第二版),高等教育出 版社出版,2010年; •罗崇善编《高等几何》,高等教育出版社出版,1999年6月; •朱德祥、李忠映、徐学钰等编《高等几何习题解答》。
x' y'
A
x y
a b
,
直线l1
:u
u1
u2
,l2
:vΒιβλιοθήκη v1v2l1
//
l2
u
v即
u1 u2
v1 v2
u1' u2'
A
u1 u2
[高等教育]射影平面
4、每一组平行平面有且仅有一条交线为无穷远直线;过同一 条无穷远直线的平面相互平行. 因而,对于通常平面:
平行
无穷远直线
两平面
交于惟一
不平行
有穷远直线
空间中任二平面必相交于唯一直线
§ 2.1 射影平面
三、射影平面
定义1.24 通常点和无穷远点统称拓广点; 添加无穷远点后的直线和无穷远直线统称为拓广直线(射影仿 射直线); 添加无穷远直线后的平面称为拓广平面(射影仿射平面).
§ 2.1 射影平面
(2) 拓广直线的拓扑模型
§ 2.1 射影平面
(3) 射影直线上点的分离关系
欧氏直线:一点区分直线为两个部分。 射影直线:一点不能区分直线为两个部分。 欧氏直线:两点确定直线上的一条线段。 射影直线:两点不能确定直线上的一条线段。
点偶A,B分离点偶C,D
点偶A,B不分离点偶C,D
平行
无穷远点
两直线 不平行 交于惟一 有穷远点
平面上任二直线总相交
5、空间中每一组平行直线交于惟一无穷远点. 6、任一直线与其平行平面交于惟一无穷远点.
§ 2.1 射影平面
理解约定1.1(3)
1、无穷远直线为无穷远点的轨迹. 无穷远直线上的点均为无穷 远点;平面上任何无穷远点均在无穷远直线上.
2、每一条通常直线与无穷远直线有且仅有一个交点为该直线 上的无穷远点.
§ 2.1 射影平面
一、中心射影
2、平面到平面的中心射影
定义1.23 : '
O投射中心(O ')
OP 投射线 P' π 上的点P 在π'上的像 P π' 上的点P'在π上的像
高等几何 总复习
a 2 (b c ) d 0,
一维射影变换的分类:
(ad bc 0)
( 2)
相异实根 相异实二重元 双曲型 0 0 (2)有两个相同实根 (1)有两个相同实二重元 称为 抛物型 0 共轭虚根 共轭虚二重元 椭圆型
18
第三章 一维射影几何学
a1 a2
b1 b2
0
( 2 2 ) 1
相应几何学 基本不变性质
射影几何 结合性
仿射几何 平行性
欧氏几何 合同性
基本不变量
基本不变图形
交比
---------
简比
无穷远直线
距离、角度
无穷远直线
29
复习题
1. 无三点共线的______对对应点决定唯一的二维射影变换 2. 当射影变换使无穷远直线不变、两个虚圆点也不变时,射影变换就是 A.正交变换 B.正相似变换 C.反相似变换 D. 运动变换 3.射影坐标系下,坐标三角形A1A2A3 ,单位点E,顶点A3坐标_______ A1A2方程_____, A1E的坐标_____. 判断题 1.二维射影变换有双曲型、抛物型、椭圆型 ( ) 2.简比是射影不变量 ( )
2.射影对应间的关系: 透视 射影
对合
重叠的一维几何形式 S 2 I ( S S 1 ), S I
3.一维射影几何研究的方法
代数方法:工具是交比:两个一维几何图形成射影对应 的充要条件是:对应四元素交比相等. 几何方法:工具是射影: 将射影分解为有限个透视之积(见§3.5).
目前已知的射影性质:
射影不变性: 结合性:某点在某直线上;某直线通过某点的事实保持不变 同素性:点 点;直线 直线
14
大学高等几何课件第二讲
定理1.7 给定平面内的两个三角形,至多利用三回透视仿射可 使一个三角形变为另一个三角形。
经过仿射变换可以相互转换的图形称为是仿射等价的。 所以任意两个三角形是仿射等价的。直线、四边形也是仿 射等价的。
平面仿射几何基本定理:设P1,
P 2
,
P 是平面内不共线的 3
中心投影:设 f : 是平面到平面 的一一点对应, 且满足对应点的连线通过一个定点,则称 f 是从平面 到 平面 的中心投影.
问题:中心投影是不是数学意义下的一一对应? 分析:当照射光线OP0与l平行时, P0在l上的投影不存在,而引 起P0的投影不存在的原因是平行没有交点这一约定. 解决办法: 取消平行线没有交点的限制,在直线上引进"新点".
(1) 空间中任何一组平行直线有且仅有一个公共的点 无穷远点.
(2) 一直线与它的平行平面交于一个无穷远点. (3) 一组平行平面相交于一条无穷远直线.
仿射直线与射影直线 仿射直线(平面):引入了无穷远点的欧氏直线(平面)称为
仿射直线(平面). 射影直线(平面): 将仿射直线(平面)上的无穷远点与通常的
无穷远元素 规定1: 在平面内对任何一组平行线引进唯一一点叫做无穷远 点(记作P )与之对应,此点在组中的每一直线上,而不在组外的 任何直线上. 规定2: 平面内无穷远点的集合是一条无穷远直线,记作l. 规 定 3 : 空间中所有无穷远点的集合是一个平面,叫做无穷远平
面, 记做 .
在这些规定下, 可以证明 :
a
2经过伸缩变换
y
b a
(a y,
0, b
2.1射影平面
§ 1 射影直线和射影平面
定义1.5 如果把仿射直线上的非无穷远点与 无穷远点同等看待而不加区分那么这条直线就 叫做射影直线
圆
墨比乌斯带
定义1.6 在仿射平面上,如果对于普通元素和 无穷远元素不加区分,即可得到射影平面
§ 1 射影直线和射影平面
五、射影直线、射影平面的基本性质
1、射影直线
欧氏直线:一点区分直线为两个部分。
§ 1 射影直线和射影平面
1.4 德萨格(Desargues)定理 应用举例
例2 证明:三角行的三中线点共.
§ 1 射影直线和射影平面
1.4 德萨格(Desargues)定理
今 天 作 业
P28 : 5
O投射中心(O l l ')
OP 投射线 P' l 上的点P在l'上的像 P l' 上的点P'在l上的像 因此 ,φ–1: l' → l是 l' 到 l 的中心射影 三个特殊的点: X=l×l' 自对应点(不变点) OU与l'不相交, U为l上的影消点 OV'与l不相交, V'为l'上的影消点 影消点的存在,导致两直线间的中心射影不是一个一一对应
§ 1 射影直线和射影平面
1.4 德萨格定理
德萨格(Desargues)定理
如果两个三点形对应顶点的连线交于 一点,则对边的交点在一直线上.
A
X
C
Y
C
B
A
B Z
O
A
X
C
B Z Y
C
B
A
o
L
A
l
L
A
X
C
高等几何仿射坐标与仿射变换
a 11
原象点: A,B,C,D…… 直线a上的点
映象点:A, B,C, D…… 直线上 a 的点 平行射影的方向:直线 l
记透视仿射对应T: T A A,T B B ………
透视仿射对应与方向有关,方向变了,则得到另外的透视仿射
对应
D
a
C
l
A
B
O A B C D
a
点 O 为自对应点( 同一平面上两相交直线的公共点 ) 12
CB
10
二.两直线间透视仿射对应、仿射对应与仿射变换
1..两直线间的透视仿射对应
≠ ≠
点若A直,B线,C,aD,…a… a,,l过点A,B,且C,Dl…作a直线, ll的平行a线交, a于
A, B,C, D……,则可得直线 a 到直线 a的一个映射。
称为透视仿射对应,记为 T D
a
l AB C
A B C D
1.透视仿射对应: 如图
点A,B,C共线a,则 A, B,C 共线 a
T A A T B B T C C g
C a l
B A
T a a
A B
两相交平面的交线为自对应点的集合即对应轴 C
a
15
第一章、仿射坐标与仿射变换 如图
16
2仿射对应:平面到平面的仿射对应是有限次透视仿射对应的 积组成的,是透视仿射对应链。
2.两直线间的仿射对应
T Tn T 1 n2
T2T1
仿射对应是透视仿射对应链或平行射影链
T1,T2, Tn2 ,Tn1 表示透视仿射链,T表示仿射对应 (如图)
A1
B1
C1
A2
B2
C2
l2
A3 B3
C3
第二章射影平面
第二章 射影平面§1 中心投影与无穷远元素1.研究对象:物体在灯光照射下的变化规律。
连OP ,设OP 与l '的交点为P ',则称P '为P (在中心O 下)的射影。
问题:中心投影不是数学意义下的对应。
问题产生原因:如图所示,0P 无象点(因此称为影消点),其原因是O 0P // l ',从而O 0P 与l '无交点,所以中心投影不是数学意义下的对应。
为了将中心投影纳入对应的范畴,我们必须对其进行改造。
原因分析:产生0P 无象的原因是“平行线无交点”的约定。
处理方法:取消“平行线无交点”的约定。
这必须打破常规,给平行线引入一个原先认为不存在的“不平常的点”。
如图,当2πθ→时,∞→||0P P ,以P (θ)的“极限点”作为平行直线的“交点”,记作∞P (称为无穷远点),其几何表示如图所示。
评注:上述无穷远点的引入过程是在深入研究以O 点为中心的线束中的直线与非线束中的直线的交点的基础上,来探索如何引入平行直线的交点比较合适这一问题的。
这充分地反映了继承传统与发扬广大的关系。
问题:平行直线的交点能引进几个?(参考图形,探索解答) (一个。
原因是两不同的直线只能有一个交点。
)o o无穷远点的引进是一个创新的过程,需要大胆的想象力。
而直线上的无穷远点只能引进一个则是原来的原则“两直线只有一个交点”的要求所至。
无穷远点根据研究需要而引入,又是原系统的规则的延伸,从而“无穷远点”又受到原系统的规则的“约束”,这充分体现了继承与发展的关系。
对照一维中心投影,请自行考虑二维中心投影的相应问题。
2. 无穷远元素规定一 在平面内对任何一组平行线引入唯一一点叫做无穷远点(记作∞P )与之对应,此点在组中每一直线上而不在组外的任何直线上。
规定二 平面内无穷远点的集合是一条直线,叫做无穷远直线,记作∞l 。
规定三 空间里所有无穷远点的集合是一个平面,叫做无穷远平面,记作∞π。
21射影平面
如果两个三点形对应边的交点在一直线上,则 对应顶点的连线交于一点.
定义1.11 如果两个三点形对应边的交点共线,则
这条直线叫做透视轴.如果两个三点形对应 顶点的连线共点,则这个点叫做透视中心.
§ 1 射影直线和射影平面
1.4 德萨格(Desargues)定理
应用举例
例1 在欧氏平面上, 设ΔABC的高线分别为 AD, BE, CF. 而 BC×EF=X, CA×FD=Y, AB×DE=Z. 求证:X, Y, Z三点共线.
约定 (2)一平面内一切无穷远点的集合组成一条直线叫做 无穷远直线,记作l∞,区别起见,称平面上原有的直线为有穷 远直线(通常直线)
约定 (3) 空间里一切无穷远点的集合组成一个平面叫做无穷 远平面,记作π∞,为区别起见,空间里原有平面称为非无穷远平 面或普通平面.
总结:在平面上添加无穷远元素之后,没有破坏点与直线 的关联关系,同时使得中心射影成为一一对应.
§ 1 射影直线和射影平面
理解约定 (1), (2)
1、对应平面上每一方向,有惟一无穷远点. 平行的直线交于同 一无穷远点;交于同一无穷远点的直线相互平行.
2、每一条通常直线上有且仅有一个无穷远点.
3、不平行的直线上的无穷远点不同. 因而,对于通常直线:
平行
无穷远点
两直线 不平行 交于惟一 有穷远点
§ 1 射影直线和射影平面
一、中心射影
定义1.1 : l l'
2、平面到平面的中心射影
定义1.2 : '
均不是一一对应
中心射影不是一一对应的原因:存在影消点、影消线 存在影消点、影消线的原因:平行的直线没有交点
如何使得中心射影成为一个一一对应?
射影平面知识点总结
射影平面知识点总结射影平面是射影几何的基本概念,它是在射影空间的基础上引入的一种几何结构。
射影平面是一种具有射影性质的空间,它拥有特殊的性质和结构,因此在几何学和代数学中有着重要的应用。
本文将对射影平面的基本知识点进行介绍和总结,包括射影平面的定义、性质、构造方法以及相关定理和定律等内容。
一、射影平面的定义射影平面是指一个由点、直线和射线组成的空间结构,它是由二维实射影空间定义的。
在射影平面中,任意两条不共线的直线都有且只有一个交点,这是射影平面的基本性质之一。
另外,射影平面满足幂零定理,即任意两条相交的直线在其交点处的切线都是无穷远的。
在代数几何中,射影平面可以通过将欧几里德平面上的点扩充为射线上的点,从而得到一个射影平面。
这样的扩充是通过引入无穷远点的方式来实现的,因此射影平面上的点包括有限远的点和无穷远的点。
二、射影平面的性质1. 射影平面是紧致的。
这意味着射影平面上的任意闭曲线都可以用有限个闭曲线来覆盖。
2. 射影平面是连通的。
任意两点之间都存在一条直线。
3. 射影平面是欧几里德平面的紧致化,因此它具有相同的拓扑性质。
4. 射影平面上的直线都是闭曲线。
这意味着任意两条直线的交点都是封闭的。
5. 射影平面是一种紧致性空间,可以用带权和的方式来描述其拓扑结构。
三、射影平面的构造射影平面可以通过多种方式进行构造,其中最常见的方法包括射影坐标系的引入、齐次坐标系的应用以及仿射几何的推广等。
以下是射影平面的几种常见构造方法:1. 射影坐标系的引入。
通过引入射影坐标系,可以将欧几里德平面上的点扩充为射线上的点,从而得到一个射影平面。
2. 齐次坐标系的应用。
齐次坐标系是射影几何中常用的坐标系,它可以用于描述射影空间中的点、直线和射线等基本几何元素。
3. 仿射几何的推广。
通过将仿射几何的概念推广到射影几何中,可以得到一个射影平面的构造方法。
四、射影平面的相关定理和定律1. 帕斯卡定理。
帕斯卡定理是射影几何中的重要定理,它描述了射影平面上的六点共线的条件。
高等几何学习指导
《高等几何》学习指导第一章仿射坐标与仿射变换一、教学目的要求1、理解透视仿射对应、仿射对应和仿射变换的概念,注意其区别和联系;2、熟练掌握共线三点单比的概念及其坐标表示法;3、理解仿射不变性与仿射不变量的概念,并能利用它们证明平面图形的其它仿射性质;4、熟练掌握仿射变换的代数表示.二、教学重点、难点重点:透视仿射对应、仿射变换的概念;仿射不变性与仿射不变量;仿射变换的代数表示和共线三点单比的坐标表示法.难点:透视仿射对应的概念、特征及判断.三、内容小结本章主要介绍下述内容:1、共线三点单比(简比)的概念2、透视仿射对应1)、概念:①、同一平面内,直线l到直线/l的透视仿射对应;②、平面π到平面/π的透视仿射对应.2)、判断:对应点连线互相平行.3)、性质: ①、保持同素性; ②、保持结合性; ③、保持平行性; ④、保持共线三点单比不变. 3、仿射对应与仿射变换 概念:透视仿射链. 4、仿射坐标 1)、仿射坐标系;2)、共线三点单比的坐标表示: 设31311233232(,),(1,2,3),()i i i x x y y P x y i PP P x x y y --===--则; 3)、仿射变换的代数表示:/111213/212223x a x a y a y a x a y a ⎧=++⎪⎨=++⎪⎩, 111221220a a a a ∆=≠;5、仿射性质1)、仿射不变性:同素性、结合性、平行性. 2)、仿射不变量: 共线三点的单比; 两条平行线段之比; 两个三角形面积之比; 两个封闭图形面积之比.3)、常见的仿射不变图形:三角形、平行四边形、梯形. 四、例题例1、直线上三点的非齐次坐标分别为A(-2,-4),B(5,2),C3(,1)2-,求单比(ABC ). 解:设A 、B 、C 的非齐次坐标分别为112233(,),(,),(,)A x y B x y C x y由3132322()1352x x ABC x x +-===---.例2、平面上是否存在仿射变换,使点A (1,2),B (-2,-4), C (3,6)分别变为点A /(-1,-1),B /(2,2),C /(0,0)?解:由于A ,B ,C 三点共线,A /,B /, C /也共线,下面验证它们的单比是否保持不变,由于://////////312011(),(),()()325022AC A C ABC A B C ABC A B C BC B C -+======-∴≠+-因此这样的仿射变换不存在.例3、求使三点(0,0),(1,1),(1,-1)顺次变到三点(2,3),(2,5),(3,-7)的仿射变换.解:设所求仿射变换为:/111213/212223x a x a y a y a x a y a ⎧=++⎪⎨=++⎪⎩111221220a a a a ∆=≠, 将(0,0)对应(2,3), (1,1)对应(2,5),(1,-1)对应(3,-7)分别代人上式得:1323111213212223111223212223232537a a a a a a a a a a a a a a ===++=++=-+-=-+ ,解此方程组,得132311122122112,3,,,4,622a a a a a a ====-==故所求仿射变换为://11222463x x y y x y ⎧=-+⎪⎨⎪=-++⎩, 且1102246-∆=≠-. 例4、求一仿射变换,它使直线210x y +-=210x y +-=上的每个点都不变,且使点(1,-1)变为(-1,2).解:在直线210x y +-=上任取两点(1,0),(-1,1),由于 (1,0)→(1,0);(-1,1)→(-1,1),又(1,-1)→(-1,2),由于三对对应点分别不共线,从而可唯一确定一仿射变换,将它们的坐标分别代入仿射变换式/111213/212223x a x a y a y a x a y a ⎧=++⎪⎨=++⎪⎩,解得://22133222x x y y x y ⎧=+-⎪⎨=--+⎪⎩,220322∆=≠--,即为所求的仿射变换.例5、求椭圆的面积. 解法1(见教材第15页)解法2:设在笛氏直角坐标下圆的方程为222x y r +=即22221x y r r+=,令仿射变换T ://x x a r y yb r⎧=⎪⎪⎨⎪=⎪⎩,即//ax x rb y y r ⎧=⎪⎪⎨⎪=⎪⎩, 其中2000aabr b rr ∆==≠, 其对应图形为椭圆:/2/2221x y a b+=故T 是圆到椭圆的仿射变换,设圆的面积为S ,椭圆的面积为S / 由定理4.3//22S abS S r ab S rππ=∆⇒=∆== 所以椭圆的面积为ab л.例6、求将点O (0,0),A (1,0),B (0,1)分别变为O /(1,1),A /(3,1),B /(3,2)的仿射变换;并求在这个变换下,半径为2的圆的仿射对应图形的面积.解:①、设所求仿射变换为:/111213/212223x a x a y a y a x a y a ⎧=++⎪⎨=++⎪⎩111221220a a a a ∆=≠ 将O (0,0)对应O /(1,1), A (1,0)对应A /(3,1),B (0,1)对应B /(3,2)分别代人上式解得//2211x x y y y ⎧=++⎪⎨=+⎪⎩且 22001∆=≠ 为所求仿射变换.②、////1,1,42OAB O A B S S S π∆∆===圆,设圆的仿射对应图形面积为/S ,则//////1,42812O A B OABS S S S S ππ∆∆==∴=⨯=圆. 五、习题1、直线上三点的非齐次坐标分别为A(-3,2),B(6,1),C 33(,)22,求单比(ABC ).2、经过点A (-3,2)和B (6,1)的直线AB 与直线x+3y-6=0相交于P ,求(ABP).3、求仿射变换{4y 2x 4y 1y x 7x ++='+-='的不变点.4、试求:在仿射变换下,梯形、菱形、等边三角形、正方形、等腰三角形、圆、两全等矩形的对应图形.5、二平行线间的平行性是仿射不变性吗?6、任意两线段之比是仿射不变量吗?7、三角形三高线共点是仿射性质吗?三角形三中线共点是仿射性质吗?8、若(ACB )=2,则C 是A ,B 的中点吗? 9、在仿射变换 {73532-+='+-='y x y y x x 下,点O (0,0),A (3,2),的像点为 、 ;B (1,-4)的原像点为 .10、求将点A (1,0),B (0,-1),C (-1,1)分别变为A /(8,-1),B /(6,-6),C /(1,1)的仿射变换;并求在这个变换下,半径为3的圆的仿射对应图形的面积.第二章射影平面一、教学目的要求1、理解中心射影、无穷远元素及射影平面的概念,掌握无穷远元素的性质,了解射影观点与仿射观点的区别;2、掌握笛沙格定理及其应用,了解笛沙格构图;3、掌握齐次坐标的定义,熟练掌握点和直线的方程、齐次坐标的求法及其应用;4、理解对偶元素、对偶运算及对偶命题的概念,掌握对偶原理及写出一命题的对偶命题的方法;5、明确完全四点形、四线形的概念,掌握它们的调和性质及应用;6、了解复元素的概念.二、教学重点、难点重点:无穷远元素的概念及其性质,齐次坐标的定义及运算,笛沙格定理及其应用,对偶原理.难点:无穷远元素的概念,点方程、线坐标的定义.三、内容小结本章主要介绍下述内容:1、无穷远元素的概念2、射影直线与射影平面的概念3、图形的射影性质经过中心射影(透视对应)后图形的不变性质(量)叫做图形的射影性质(不变量).射影性质⎧⎧⎨⎨⎩⎩点列同素性,射影图形结合性线束但平行性、共线三点的单比不是射影性质.4、笛沙格定理1)、笛沙格(Desargues )定理:如果两个三点形对应顶点的连线交于一点,则对应边的交点在一直线上.2)、笛沙格(Desargues )定理的逆定理:如果两个三点形对应边的交点在一直线上,则对应顶点的连线交于一点.3)、透视三点形:如果两个三点形对应边的交点共线——所在直线称为透视轴; 如果两个三点形对应顶点的连线共点——该点称为透视中心. 由笛沙格定理知,两个三点形若有透视心,则必有透视轴,反之亦然,这样的两个三点形称为透视三点形.4)、笛沙格构图:构成一个图形的基本元素有两类:点和线,分别称为第一类和第二类元素,用11a 和22a 表示,而12a 表示第一类元素点与第二类元素线结合,21a 表示第二类元素线与第一类元素点结合.Desargues 定理所表示的图形所含的第一类元素点的个数11a =10个,所含的第二类元素线22a =10条,每一点与12a =3个第二类元素线结合,每一线与21a =3个第一类元素点结合.可表示为:A=⎪⎪⎭⎫⎝⎛103310 (A 称为构形矩阵,且A 为对称矩阵). 即:图形中有10个点,每个点有3条线通过;有10条线,每条线上有3个点.布局十分巧妙!更为巧妙的是:在10个点中,任一个点都可作为透视心,在10条线中,任一条线都可作为透视轴.如图,对于任一点C,考察两个三点形/YXC ABO 和,它们对应顶点连线/,,AY BX OC 交于一点C,则其对应边交点YX AB Z Y C OA A XC BO B ===,,////共线.即如果以C 为透视心,则其对应的透视轴为直线Z A B //. (读者可另行考虑以图中其余的点作为透视心,则必能找到其对应的透视轴!)5、齐次坐标 1)、齐次点坐标:① 一维齐次点坐标设直线上普通点的坐标为x,则该点的齐次坐标是122(,),,(0)x x x x x x =≠12其中, 当210,(,0)(1,0)(0)x x =∝≠1时即其中x 规定为这直线上无穷远点的一维齐次坐标.② 二维齐次点坐标设平面上的点的非齐次坐标为(x,y),则该点的齐次坐标是1212333(,,),,x xx x x x y x x == 斜率为k 的直线上的无穷远点的齐次坐标为(1,k,0)或者2121(,,0),x x x k x = ③ 直线的(齐次坐标)方程:1122330a x a x a x ++= ④ 无穷远直线的方程:30x = 2)、齐次线坐标:① 直线的齐次线坐标 []123,,u u u点123(,,)x x x x 在直线[]123,,u u u u 上1122330u x u x u x ⇒++= ② 点的方程(线有坐标,点有方程)在齐次坐标中,点123(,,)a a a a 的方程为 1122330a u a u a u ++=, 反之,[]123,,u u u 所构成的一次齐次方程表示一点. 3)、点几何与线几何的观点: 点几何——点有坐标;线有方程,平面上,把点看成几何基本元素,点的轨迹构成曲线,直线看成一系列点构成;线几何——线有坐标;点有方程,平面上,把直线看成几何基本元素,直线的集合构成曲线,点看成一束直线构成.6、对偶原理 1)、对偶图形:对偶元素 ——“点”与“直线”;对偶作图——“点在线上”与“线通过点”;对偶图形——由点和直线组成的图形,将其元素换成对偶元素,其作图改为对偶作图,这样的两个图形称为一对对偶图形.如:点列——线束三点形——三线性(自对偶) 简单四点形——简单四线形(自对偶) 完全四点形——完全四线形 2)、对偶命题与对偶原则:对偶命题——由点和直线组成的命题,将其元素换成对偶元素,其作图改为对偶作图,这样的两个命题称为一对对偶命题.对偶原则——在射影平面上,如果一个命题成立,则其对偶命题也成立. 3)、代数对偶:① 两个不同点(线)123123(,,),(,,)a a a a b b b b 的连线(交点)的线坐标(点坐标)为:233112233112(,,)a a a a a a a b b b b b b b =⨯ ② 三个不同点(线)123123123(,,),(,,),(,,)a a a a b b b b c c c c 共线(共点)的充要条件是:1231231230a a a b b b c c c =③ 以两个不同已知点(线)123123(,,),(,,)a a a a b b b b 的连线为底的点列中一点(交点为顶点的线束中任一直线)的齐次坐标能够写为la mb +,其中,l m 为不全为零的常数.7、复元素在复射影平面上有以下重要结论:1)、一元素为实元素的充要条件是该元素与其共轭复元素重合; 2)、如果点x 在直线u 上,则x 的共轭复点x 在直线u 的共轭复直线u 上;3)、两共轭复直线的交点为一实点,两共轭复点的连线为一实直线. 四、例题例1、写出下列点的齐次坐标:(0,0)、(1,0)、(0,1)、以3为斜率的直线上的无穷远点.解:这些点的齐次坐标依次为:(0,0,1)、(1,0,1)、(0,1,1)、(1,3,0) 例2、写出下列直线的齐次坐标:x 轴、y 轴、无穷远直线、过原点且斜率为2的直线.解:这些直线的齐次坐标依次为:[0,1,0]、[1,0,0]、[0,0,1]、[2,-1,0].例3、求直线340x y -+=上的无穷远点的坐标和线坐标方程. 解:直线的齐次坐标方程为123340x x x -+=,这条直线与无穷远直线30x =的交点1233340x x x x -+=⎧⎨=⎩即为无穷远点,从而无穷远点的坐标(3,1,0).这个点的齐次线坐标方程是1230u u +=.例4、求直线[1,-1,2]与两点A (3,4,-1)、B (5,-3,1)之连线的交点的坐标.解:两点A (3,4,-1)、B (5,-3,1)连线上的点(3+5λ,4-3λ,-1+λ)在直线[1,-1,2]上,所以(3+5λ)-(4-3λ)+2(-1+λ)=0,解得310λ= 所以交点坐标为(45,31,-7).例5、试证、[2,-1,1]、[3,1,-2]和[7,-1,0]三线共点,并把[2,-1,1]表示成[3,1,-2]和[7,-1,0]的线性组合.解:由2113120710--=-得三线共点,所以存在二实数λ,μ,使得 [2,-1,1]=λ[3,1,-2]+μ[7,-1,0],于是有372121λμλμλ+=⎧⎪-=-⎨⎪-=⎩,解得11,22λμ=-=,故[][][]112,1,13,1,27,1,022-=--+-,即 [2,-1,1]表示成[3,1,-2]和[7,-1,0]的线性组合.例6、利用对偶命题解题:(1)、求通过两直线[2,1,3]与[1,-1,0]的交点与点P :12320u u u +-=的直线坐标;(2)、求两点123340u u u +-=,123530u u u -+=的连线与直线12320x x x -+=的交点坐标.解:(1)、这两直线的交点Q 方程为123213011u u u =-, 即1230u u u +-=,即Q 点的坐标为(1,1,-1),而P 点的坐标为(1,2,-1),所以过这两点的直线方程为1231210111x x x -=-,即130x x +=,其坐标为[1,0,1] .(2)、过这两点的直线l 的方程为1233410531x x x -=-,即1238290x x x --=,其坐标为[1,-8,-29],而直线/l 坐标为[1,-1,2],所以这两直线交点的方程为12311201829u u u -=--,即123453170u u u +-=,其坐标为(45,31,-7).例7、(1)求过点(1,,0)i -的实直线;(2)求直线[,2,1]i i -上的实点.解:(1)因为过点(1,,0)i -的实直线必过其共轭复点(1,,0)i ,所以所求直线为1231001x x x i i-=,即30x =为所求.(2)直线[,2,1]i i -上的实点为此直线与其共轭复直线[,2,1]i i -+的交点,由方程1231232(1)02(1)0ix x i x ix x i x ++-=⎧⎨-+++=⎩,解得实点为(2,-1,2).例8、设三点形ABC 的三边BC, CA, AB 的方程分别为052,0153,0237=-+=--=+-y x y x y x ,求证三点形 ABC 与坐标三点形A 1A 2A 3透视,并求出透视轴方程.解:在三点形ABC 和 A 1A 2A 3中,123123123:7320,:350,:250,BC x x x CA x x x AB x x x -+=--=+-= 231312123:0,:0,:0,A A x A A x A A x ===其对应边之交点:233112(0,2,3),(1,0,3),(1,2,0)BC A A L CA A A M AB A A N ⨯=⨯=⨯=-因为0231030120=-,所以L 、M 、N 共线, 即三点形ABC 和 A 1A 2A 3透视,且透视轴方程为1236320x x x +-=例9、如图,设直线AB 与CD 交于M ,AC 与BD 交于N ,直线MN 分别交AD 、BC 于K 、H ,直线BK 交AC 于L ,求证:HL 、CK 、MA 交于一点.解:在三点形HCM 与LKA 中,对应边的交点HC хLK=B ,CM хKA=D ,MH хAL=N ,而B 、D 、N 在一条直线上,由笛沙格定理的逆定理,这两个三点形对应顶点的连线HL 、CK 、MA 交于一点.五、习题1、回答下列问题:①、坐标原点的方程是U 3=0吗?②、X 轴上的无穷远点坐标是(0,1,0)吗?③、三直线[1,1,1],[1,-1,1],[3,-1,3]共点吗? ④、共线三点的单比是射影不变量吗?⑤、直线03)2()1(321=+++-ix x i x i 上的实点有无数多个吗? ⑥、方程22120x x -=表示什么图形?方程22120u u -=表示什么图形? ⑦、当正负号任意选取是,齐次坐标(1,1,1±±±)表示多少个相异的点?2、写出下列点的坐标:①、P 1(3,7,-2),P 2(0,0,1),P 3(3,-1,0)的非齐次坐标. ②、直线5x+3y-1=0上的无穷远点的齐次坐标. ③、直线l [1,1,2]与m[0,1,1]的交点坐标. ④、直线ix 1+4x 2+(1+i)x 3 = 0上的实点坐标.3、直线03)2()1(321=+++-ix x i x i 上的实点有无数多个,对吗?4、写出下列直线的方程:①、点A(0,1,2)与B(1,0,1)D 连线方程. ②、通过点(1,i,0)的实直线方程.5、已知点123(1,1,1),(1,1,1),(3,1,3)P P P --,求证123,,P P P 共线,并求λ,μ的值,使得312P P P λμ=+.6、下列诸方程表示什么?123123120;0;0;20u u u u u u u u =-=++=+=;221122540;u u u u -+=7、已知Pappus 定理:设直线l 上有互异三点A ,B ,C ,直线l '有互异三点C ,B ,A ''',那么三点B A B A N ,A C A C M ,C B C B L '⨯'='⨯'='⨯'=共线.写出其对偶命题.8、“一线束中三直线a,b,c 与不过中心的二直线21,l l 相交得两个互成透视的点列”.写出其对偶命题.9、“如果两个三角形对应边的交点在一直线上,则对应顶点的连线共点”.写出此命题的对偶命题.10、证明三角形三中线共点.11、指出下图中以B 为透视心的两个三点形和其对应的透视轴.12、ABCD 是个四面体,点M 在BC 上,一直线通过M 分别交AB ,AC 于P 、Q ,另一直线过M 分别交DB 、DC 于R 、S ,求证PR 、QS 、AD 交于一点.13、画出下面图形的平面对偶图形。
高等几何讲义第一章欧氏平面及仿射平面上的变换仿射坐标及仿射坐标变换
§1 变换与变换群
• 4.变换群
• 若集合 S 上的某些变换构成的集合 G 满足条件 : 1. G 中任二变换的乘积仍属于 G ; 2. G 中每一变换 T 的逆 T 1也属于 G , 则称 G 为集合 S 上的一个变换群.
• 由定义知:任何变换群一定包含恒等变换.
• 可以证明:平面上绕定点 O 的旋转变换的集合 G 是一个变换群,称为旋转群.记为 G1 .
|OM/| |OM|,MOM/
的点变换称为以 O 为中心的旋转变换,简称
旋转,记为R .其表达式为:y M/
R
:
x/ y/
xcos ysin xsin ycos
(1.3)
j
oi
M x
§1 变换与变换群
• 例4.镜射变换 对平面上的定直线,使原象点 M与象点M/之间的线段被 垂直平分的点变换称 为以 为轴的镜射变换,简称镜射.建立如图坐
主要内容
欧氏几何 仿射几何 射影几何
第一章:欧氏平面及仿射平面上的变换,仿
射坐标及仿射坐标变换
本
重点讨论共点性与共线性
教 材 基
射 影 几
第二章:射影平面的定义,射影坐标, 交比,调和共轭,对偶原理 第三章:射影变换,包括透视、一维射
本 框 架
何
影变换、直射、对射、配极 第四章:配极与二次曲线、一维射影变 换与二次曲线、二次曲线的射影分类
标系,则其表达式为: y
Mox: xy//
x
y
(1.4)
M
j
Oi
x
M/
§1 变换与变换群
• 例5.平行射影 二平面
、 / 交于直线 ,向量
M
与二平面都不平行.对
高等几何复习要点
高等几何复习要点第一章仿射坐标和仿射变换1.1 透视仿射对应单比,透视对应及其性质。
1.2仿射对应和仿射变换仿射对应、仿射变换及其性质。
1.3仿射坐标仿射坐标系的定义,单比的坐标表示,仿射坐标系下的直线方程,仿射变换的代数表示及其计算。
1.4仿射性质仿射性质和仿射不变量。
Ex.1.4:1-4第二章射影平面2.1射影直线和射影平面中心射影,影消线,无穷远元素,射影直线和射影平面,射影性质与射影不变量,Desargues定理及其逆定理。
Ex.2.1:1-3,62.2齐次坐标齐次点坐标,齐次线坐标。
Ex.2.2:4,52.3对偶原理对偶元素,对偶命题,对偶原则。
Ex.2.3:1,2第三章射影变换与射影坐标3.1交比和调和比点列(线束)的交比及其性质,调和共轭,交比的计算,交比是射影不变量,完全四点形与完全四线形的调和性。
Ex. 3.1: 2-53.2一维射影变换一维基本型,一维基本型的透视对应与射影对应及其关系,Pappus定理,一维射影变换,对合。
Ex.3.2: 1-33.3一维射影坐标齐次射影坐标,交比的坐标表示,一维射影对应(变换)的代数表示,对合对应的参数间的关系。
Ex.3.3: 1-43.4二维射影变换与二维射影坐标二维基本型,二维基本型的透视对应与射影对应及其关系,二维射影坐标(齐次射影坐标),二维射影对应(变换)的代数表示,自对应(不变)元素。
P.84,例;Ex.3.4: 1-3第四章变换群与几何学4.1 变换群4.2变换群与几何学射影几何、仿射几何和欧式几何的比较,基本不变量(不变性,不变图形)Ex.4.2: 3,5第五章二次曲线的射影理论5.1二次曲线的射影定义二阶曲线的方程,二阶曲线的矩阵形式,二阶曲线的射影定义,二阶曲线与直线相关位置;二级曲线及其与二阶曲线的关系。
Ex.5.1:3,4,55.2 Pascal和 Brianchon定理Pascal定理及其逆定理的应用, Brianchon定理。
高等几何讲义 第二章射影平面____§1 扩大仿射平面
§1. 扩大仿射平面 ➢ 引入了无穷远点的平面称为扩大(仿射)平面,
引进了无穷远点的直线称为扩大直线. ➢ 注意:扩大仿射平面作为点的集合已不再是原
来的作为点集的仿射平面或欧氏平面.
高 等 几 何 ( Higher Geometry )
§1. 扩大仿射平面
一点的齐次仿射坐标;
2.若 x3 0,则 (x1, x2, x3)是(非齐次)仿射坐标为 x = x1/x3 , y = x2/x3 的普通点的齐次仿射坐标; 3.齐次仿射坐标为(x1,x2,0)的点称为无穷远点. ➢ 注意:条件 2 给出了普通点的(非齐次)仿射坐标 与齐次仿射坐标之间互化的方法.
答:为一束平行直线.
➢ 直线(1)上的无穷远点为(B, A, 0).
当直线平行于y轴时,其无穷远点可写为(0,1,0);
当不平行于 y 轴时,无穷远点可写为 (1,A/B,0).
高 等 几 何 ( Higher Geometry )
§1. 扩大仿射平面
➢ 因 k A/B 是直线 (1) 的方向数,故 方向数为 k 的直线上的无穷远点为 (1, k, 0); 方向数为 的直线上的无穷远点为 (0, 1, 0).
➢ 可见,方向数与无穷远点一一对应. ➢ 几个结论:
1. 每一普通直线上有且仅有唯一无穷远点; 2. 平行直线有同一无穷远点; 3. 不平行直线有不同无穷远点; 4. 两点确定唯一直线. ➢ 符号约定: 齐次坐标为 (x1, x2, x3) 的点记为 x; 点x的任一组确定的齐次坐标记为(x) (x1, x2, x3).
高 等 几 何 ( Higher Geometry )
§2. 射影平面
➢丛模型
2射影平面
条直线的方程,所以 π上的任何直线在齐次坐标下都由方程 2 2 a1 x1 + a2 x2 + a3 x3 = 0, (a1 + a 2 ≠ 0) (1.3) 给出,并且任何一个这样的方程都对应着π上的一条直 线。 我们把无穷远点的几何轨迹称为无穷远直线,根据 无穷远点的齐次坐标的特点,无穷远直线可由方程 x3 = 0 (1.4) 来表示。
如果点 M ∈ π 0使OM // π 1 , 则M的象为π1中与OM 平行的直线l‘上添加的无穷远点;直线{M ∈ π 0 OM // π 1 } 上添加的无穷远点的象为直线 M ∈ π 0使OM // π 1 , 上的无 穷远点,如图6.2。 由于射影平面上的直线方程(1.5)是三元一次齐次 方程,所以 a1 x1 + a 2 x2 + a3 x3 = 0 与 b1 x1 + b2 x2 + b3 x3 = 0 表示同一直线当且仅当存在非零实数λ,使 ( a1 , a 2 , a3 ) = λ (b1 , b2 , b3 ). 于是我们可以用直线方程的 系数( a1 , a2 , a3 ) 来表示直线,把( a1 , a2 , a3 ) 称为直线的齐 次坐标。
对于射影直线而言,如果它的方程为(1.5),则无穷远 点[ a 2 , a1 ,0] 在此射影直线上,且是此射影直线上的唯一 的无穷远点。实际上( a 2 ) : a1 表示仿射坐标中的直线 a1 x + a 2 y + a3 = 0 的方向,因而直观上,射影直线就是欧 氏平面上的直线添加上此直线的方向所得到的。 如果中心投影在两个射影平面 π 0 和π 1上进行,就能 使中心投影成为一个双射τ : π 0 → π 1 ,其中投影中心 如果点P ∈ π 0 , 使 OP与π 1 交于点P‘,则 O π 0 ∪ π 1。 τ(P)=P’;如果点 N ∈ π 1使ON // π 0 , 则N的原象为π 0 中 与ON平行的直线l上添加的无穷远点;
第二章射影平面
第二章射影平面本章是在欧氏平面的基础上,通过引进无穷远元素的方法来建立射影平面。
然后又在欧氏平面上引进齐次坐标,并介绍了对偶原理。
§1 射影直线与射影平面1.1 中心射影与无穷远元素定义1.1 设两条直线a和a′在同一平面内,O是两直线外一点,A为直线a上任一点,A与O连线交直线a′于A′,如此得到的直线a与a′的对应叫做以O为射心的中心射影。
A′叫做A从O投射到a′上的对应点。
OA叫投射线,O叫投射中心,简称射心。
显然,A也叫A′从O投射到a上的对应点。
选取射心不同,就会得到不同的中心射影。
如果,a和a′相交于点C,则C是自对应点(二重点)。
在欧氏平面上,中心射影不是一一的。
如果a上点P使OP∥a′,则P没有对应点。
同样,在a′上也存在一点Q′,使OQ′∥a,则Q′的对应点也不存在。
点P和Q′叫影消点。
类似的,我们可以定义两平面间的中心射影。
而且,如果两平面有交线l,则交线l上的每一点都是自对应点(二重点),l叫自对应直线(二重直线)。
另外,在两平面间的中心射影下,不但存在影消点(该点与射心连线平行于另一平面),还存在影消线(影消点的轨迹)。
1为使中心射影成为一一对应,我们必须引进新的元素,从而将欧氏平面加以扩充。
于是,我们约定:约定1在平面内的一组平行直线上引进唯一一点叫无穷远点,此点在组中每一条直线上,记作:P∞。
平面上原有的点称为有穷远点。
由此可知,一组平行直线有且只有一个公共点,即无穷远点。
另外,一条直线a与同它平行的平面交于无穷远点。
这是因为过直线a作与已知平面相交的平面,则交线平行于直线a,即两条直线相交于无穷远点。
约定2平面内所有无穷远点的集合叫做无穷远直线,记作:l∞。
平面内原有的直线称为有穷远直线。
可以证明,一组平行平面相交于一条无穷远直线。
约定3空间里所有无穷远点的集合叫做无穷远平面,记作:π∞。
空间中原有平面叫有穷远平面。
定义1.2无穷远点,无穷远直线,无穷远平面统称为无穷远元素。
21 射影直线和射影平面精品PPT课件
同一直线上点的集合
(1)' 线束 平面上过同一点的直线的集合
记号 l(A,B,C,…) 或 l(P)
底
元素
记号 L(a,b,c,…) 或 L(p)
线束中心
元素
2、二维基本形 (2) 点场
同一平面上点的集合
(2)' 线场 同一平面上直线的集合
π称为点场的底, 其上的点称为元素.
直线l与l分别交三直线于A, B,C与A, B,C,
并使 OA OB 且 OA OB , 于是, ( ABC) AC OA ,
BC OB ( ABC) AC OA ,
BC OB 所以, ( ABC) 1, ( ABC) 1
即, ( ABC) ( ABC)
A
A a
O
CB l
C
B l
b c
注: 1)同素件,结合性都是射影不变性。 2)圆锥曲线经过中心射影后的象还是圆锥曲线,所
以我们说圆锥曲线具有射影性质。 3) 圆经过某些中心射影后不变,但经过另一些中心
射影可能变成其它二次曲线而不一定是圆,因此圆这一图 形不具有射影性质。
例1:相交于影消线的二直线必射影成平行直线。
证明: 设平面上二直线l1,l2相交于影消线m上一点P,
You Know, The More Powerful You Will Be
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX 时 间:XX年XX月XX日
添加无穷远直线后的平面称为仿射平面; 若在仿射平面上不区分有穷远线和无穷远线,则这个平面 称为射影平面(拓广平面)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1. 扩大仿射平面
a2 a3 b1 b2 b3 = 0. c1 c2 c3
证明:若有至少二点相同,则显然成立.
不同三点共线 存在直线 A1x1 A2x2 A3x3 0, 使三点坐标均满足此方程,即关于 A1、A2、A3 的 齐次线性方程组
高 等 几 何 ( Higher Geometry )
§1. 扩大仿射平面
➢2. 点的齐次仿射坐标
➢ 定义 设 = [O; e1, e2 ]是平面仿射坐标系.在
之下,满足下述条件的有序实数组 (x1, x2, x3) (0, 0, 0) 称为平面上点的齐次仿射坐标:
1.若 0,则 ( x1, x2, x3) 与 (x1, x2, x3)为同
高 等 几 何 ( Higher Geometry )
§1. 扩大仿射平面 ➢ 引入了无穷远点的平面称为扩大(仿射)平面,
引进了无穷远点的直线称为扩大直线. ➢ 注意:扩大仿射平面作为点的集合已不再是原
来的作为点集的仿射平面或欧氏平面.
高 等 几 何 ( Higher Geometry )
§1. 扩大仿射平面
M
/
/
§1. 扩大仿射平面
➢ 另外,中心射影不是双射.(如上图中的点 M;
再如下图中,直线间的中心射影下,点 P 无对
应点)
S
Q/ /
P
M
P/
M/
Q 分析(原因):平行直线无交点;平行平面无交线.
➢ 方法:引入无穷远元素,使中心射影成为双射.
➢ 新问题:无穷远元素如何表示?
高 等 几 何 ( Higher Geometry )
➢3. 直线的齐次仿射坐标方程
➢ 仿射坐标系下,直线的方程为
Ax By C 0.
➢ 扩大直线的齐次仿射坐标方程为:
Ax1 Bx2 Cx3 0 (A、B、C不全为0). (1)
➢ 无穷远直线: x3 0 .
(2)
➢ 例.设 0 为非无穷远直线, 0 为无穷远直
线,则 0 (, 为参数)表示什么图形?
第二章 射影平面____§1. 扩大仿射平面
➢1.中心射影
S
D
A
/
/ C/ B(B/) A/
D/
/
C
设 与 /是二相交平面,S 是不在 和 /上的一定 点,取作射影中心.对上的任意点 A,作直线SA 交 /于 A/.将点 A/ 称作点 A 在 /上的中心射影,
从中心 S 引出的直线 SA 称为投射线.
§1. 扩大仿射平面
➢无穷远元素的坐标表示
➢ 分析:平面仿射坐标系下,二直线
(1): A1x + B1y + C1 = 0,(2): A2x + B2y + C2 = 0,
若相交,则交点坐标为:
B1 C1 C1 A1 B2 C2 , C2 A2 . A1 B1 A1 B1 A2 B2 A2 B2
注意:此坐标与比值 B1 B2
➢ 可见,方向数与无穷远点一一对应. ➢ 几个结论:
1. 每一普通直线上有且仅有唯一无穷远点; 2. 平行直线有同一无穷远点; 3. 不平行直线有不同无穷远点; 4. 两点确定唯一直线. ➢ 符号约定: 齐次坐标为 (x1, x2, x3) 的点记为 x; 点x的任一组确定的齐次坐标记为(x) (x1, x2, x3).
答:为一束平行直线.
➢ 直线(1)上的无穷远点为(B, A, 0).
当直线平行于y轴时,其无穷远点可写为(0,1,0);
当不平行于 y 轴时,无穷远点可写为 (1,A/B,0).
高 等 几 何 ( Higher Geometry )
§1. 扩大仿射平面
➢ 因 k A/B 是直线 (1) 的方向数,故 方向数为 k 的直线上的无穷远点为 (1, k, 0); 方向数为 的直线上的无穷远点为 (0, 1, 0).
则有 x1 x2 x2 2 3 1 0, 1 40
故所求直线方程为:4x1 x2 5x3 0.
高 等 几 何 ( Higher Geometry )
§1. 扩大仿射平面
➢ 一般地,记 a、b所连直线为 a b,其坐标方程为
x1 x2 x3 a1 a2 a3 0. b1 b2 b3
其参数方程为:
一点的齐次仿射坐标;
2.若 x3 0,则 (x1, x2, x3)是(非齐次)仿射坐标为 x = x1/x3 , y = x2/x3 的普通点的齐次仿射坐标; 3.齐次仿射坐标为(x1,x2,0)的点称为无穷远点. ➢ 注意:条件 2 给出了普通点的(非齐次)仿射坐标 与齐次仿射坐标之间互化的方法.
C1 C2
:
C1 C2
A1 A2
:
A1 A2
B1 B2
是一一对应的.
注意到,所谓坐标不外乎点与数组之间的一种双
射,因此也可将此比值定义为点的一种坐标.
高 等 几 何 ( Higher Geometry )
§1. 扩大仿射平面 ➢ 另外,注意到当一组直线平行于固定方向时,其
中任二直线的三数比值中,前两数比值不变而第 三数为零,且另一组平行直线的此种比值与之必 不同. ➢ 可见此类三数比值与平行直线上的无穷远点是一 一对应的,因而可作为无穷远点的一种坐标.
a1A1 a2A2 a3A3 0
b1A1 b2A2 b3A3 0
有非零解
a1 b1
a2 b2
a3 b3
0.
c1A1
c2A2
c3A3
0
c1 c2 c3
高 等 几 何 ( Higher Geometry )
§1. 扩大仿射平面 ➢ 注:在代数观点下,可说
三点共线 此三点的坐标三数组线性相关. ➢ 例2 求点 a (2, 3, 1)、b (1, 4, 0) 确定的直线. ➢ 解:设a、b确定的直线上的动点为 x( x1, x2, x3 ),
x1 x2
a1 a2
b1 b2,、
R
且
2
2
0.
x3
a3
b3
或 (x) (a) (b),、 R 且 2 2 0.
高 等 几 何 ( Higher Geometry )
➢ 中心射影具有性质: 1. 将点变成点; 2. 将直线变成直线; 3. 保持点与直线的结合关系.
➢ 这是平行射影也具有的性质. ➢ 但中心射影不保持平行性,这
与平行射影不同!(如图)
S
/
高 等 几 何 ( Higher Geometry )
§1. 扩大仿射平面