整数大小的比较和求一个整数的近似数(篇五)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整数大小的比较和求一个整数的近似数
教学目标
(一)使学生掌握亿级的数的大小比较方法.
(二)会用“四舍五入法”求亿以上的数的近似数.
(三)建立自然数的概念.
(四)培养学生比较、分析的思维方法.
教学重点和难点
比较亿以上的数的大小是重点,省略亿后面的尾数,求近似数是学习的难点.
教学过程设计
(一)教学自然数概念
我们数物体的个数用的1,2,3,4,…10,11…叫
做自然数.
提问:
1.这些自然数是怎样排列的?
2.每相邻的两个自然数的差是几?
3.最小的自然数是几?
4.有没有最大的自然数?
引导学生得出:自然数每相邻的两个数中,后面的
一个数比前面的一个多1,最小的自然数是1,没有最大的自然数,因为数数总也数不完,数出一个很大的数以
后还可以再数出一个比它大1的数,所以自然数的个数
是无限多的.
提问:
1.一个物体也没有怎样表示?
2.0是不是自然数?
引导学生得出:一个物体也没有,用0表示.0不是自然数.
自然数和0都是整数,我们在小学学的是大于0和等于0的整数,其它的整数以后再学,可以用图来表示.
(二)教学整数大小的比较
1.复习准备
在下面○里填上“>”、“<”或“=”.
99999999○100000000 65432○75432
8909034○8908034
提问:
(1)每一组两个数是怎样比较的?
引导学生说出:两个数的位数不同,位数多的数就大,八位数小于九位数,所以填“<”.
(2)第二组两个数都是五位数,你是怎样比较的?
引导学生说出:两个五位数比较,万位上大的那个数就大;所以应该填“<”.
(3)第三组的两个数你是怎样比较的?
引导学生说出:这两个数的位数相同,就从最高位
比起;如果最高位上数相同,依次比较下一位……相同
数位上数大的那个数大,所以应填“>”.
2.新课引入.
我们已经学过亿以内的数比较大小,今天我们要学
习的第一个内容是亿以上数比较大小.
(板书课题:整数大小的比较)
3.出示例4.
比较下面每组中两个数的大小.
999999999○1000000000
提问:
(1)这两个数各是几位数?它们的最高位各是什么位?应填什么符号?
(2)如果两个数的位数不同,怎样比较大小呢?
最后得出:两个数的位数不同,位数多的那个数大.出示第二组数,把复习题中的第二组数末尾各添4
个0.
654320000○754320000
学生观察后独立解答,思考这两个数的特点,怎样
比较它们的大小.
从而得出:这两个数位数相同,从最高位比起,6
亿多比7亿多小,应该填“<”.
出示第三组数,把复习题中的第三组两个数末尾各添3个0.
8909034000○8908034000
这两个数都是十位数,并且左起第一位都是8,你怎样比较?
学生独立比较后说出:左起第一位相同,依次比较左起第二位……到第四位数百万位上的9比第二个数百万位上的8大,所以应填“>”.
启发学生逐步总结出完整的比较数的大小的方法.
提问:
(1)比较两个数的大小有几种情况?位数不同的怎么比?
(2)位数相同的两个数怎样比?先从哪一位比?如果左起第一位上的数也相同,怎么比呢?
在学生讨论的基础上总结出整数大小比较的一般方法,(把复习时的板书补充完整)明确以前总结的方法同样适用于比较亿以上的数.
练一练
完成练习十的第1题.
(三)教学求近似数
1.复习.
我们学过求一个亿以内数的近似数,请你们把下面
各数省略万后面的尾数,求出近似数.
729380 5384000
提问:
省略万后面的尾数,根据哪一位上的数进行四舍五入?并说出求近似数的方法.
2.新课引入.
省略亿后面的尾数,我们也可以用同样的方法求它的近似数,这就是我们今天要学习的另一个内容.(板书课题:求近似数)
3.出示例5.
省略下面各数亿位后面的尾数,求它们的近似数. (1)1034500000 (2)20897000000
同学们自己试做.
共同订正,让学生说一说是怎么想的.
根据学生的回答,教师强调,省略亿后面的尾数,只要看省略尾数的左边起第一位上的数是不是满5.不要管尾数后的几位是多少.
如第(1)题:10eq \x(3)45000000154≈10亿
千万位上的数不满5,把亿位后面的尾数舍去.
如第(2)题:208eq \x(9)7000000≈209亿
千万位上的数满5,把亿位后面的尾数舍去,在亿位上加1.
启发同学自己总结出求一个整数的近似数的方法.
阅读课本43页的求近似数的方法,并明确这种求近似数的方法叫做四舍五入法.(板书)
练一练
第43页“做一做”的第1,2题.
(四)课堂练习
1.指导学生做练习十第2题:写出最大的九位数和最小的十位数.
应该怎样想?相邻的二人讨论.
教师启发学生根据数的大小比较来想.要想使九位数是最大的,那么从高位起每一位上的数都必须是最大的,因此只能是9,因而可以得出最大的九位数.同样想最小的十位数,每一位上的数必须是最小的,只能是0,但0不能做自然数的首位,所以最小的十位数是1000000000.
2.判断正误:
4528800000=45亿( )
1214000000人≈12亿( )
608754000000≈6088( )
通过分析错误之处,启发同学说出求一个数的近似数应注意什么.
(1)求近似数应用“≈”符号.