中考数学专题——方案设计问题知识点

合集下载

中考数学 专题三 方案设计与决策型问题

中考数学 专题三 方案设计与决策型问题
中考数学 专题三 方案设 计与决策型问题
汇报人: 2023-12-11
目 录
• 方案设计型问题 • 决策型问题 • 方案设计与决策型问题的关系 • 方案设计与决策型问题的实际应用 • 方案设计与决策型问题的备考策略
01
方案设计型问题
定义与特点
定义
方案设计型问题通常是指给定一 个具体的任务或目标,要求考生 设计一个可操作的具体方案或计 划,以实现该任务或目标。
特点
方案设计型问题通常需要考生具 备一定的创新能力和实际操作经 验,同时还需要对相关领域的知 识有一定的了解和掌握。
常见类型与解题思路
• 常见类型:方案设计型问题可以涵盖各个领域,如工程设 计、市场营销、金融投资、产品设计等等。
常见类型与解题思路
解题思路 1. 仔细阅读题目,明确任务和目标。
2. 分析相关领域的知识和背景资料,了解行业标准和最佳实践。
常见类型与解题思路
3. 设计具体的方案和计划,确保其可 行性和可操作性。
5. 综合评估方案的经济效益、社会效 益和环境效益,确保其综合效益最大 化。
4. 针对可能出现的风险和问题,制定 相应的应对措施。
经典案例解析
案例
某城市计划建设一个大型公园,要求实现以下目标:提高市民的生活质量、促进城市的可持续发展、 提升城市的生态环境。请设计一个具体的方案,包括选址、设计、施工和维护等方面的具体计划。
掌握转换技巧与应用场景
1 2 3
代数式转换
掌握代数式转换的技巧和方法,如提取公因式、 平方差公式、完全平方公式等,了解代数式转换 在实际问题中的应用场景。
函数图像转换
了解函数图像的转换方法和技巧,如平移、伸缩 、对称等变换,熟悉函数图像转换在实际问题中 的应用场景。

九年级数学中考第二轮复习—方案设计问题冀教版

九年级数学中考第二轮复习—方案设计问题冀教版

初三数学中考第二轮复习—方案设计问题冀教版【本讲教育信息】一. 教学内容:专题四:方案设计问题二. 知识要点:这类问题常常给出问题情景与解决问题的要求,让学生设计解决问题的方案,或给出多种不同方案,让学生判断它们的优劣.解这类问题的关键是寻找相等关系,利用函数的图像和性质解决问题;或列出相关不等式(组),通过寻求不等关系找到问题的答案;或利用图形变换、解直角三角形解决图形的设计方案、测量方案等.三. 考点分析:近年来,在各地的中考试题中,出现了方案设计题.方案设计题可以综合考查学生的阅读理解能力、分析推理能力、数据处理能力、文字概括能力、动手能力等.方案设计题还呈现出创新、新颖、异彩纷呈的新趋势.【典型例题】题型一利用方程(组)进行方案设计例1.一牛奶制品厂现有鲜奶9t.若将这批鲜奶制成酸奶销售,则加工1t鲜奶可获利1200元;若制成奶粉销售,则加工1t鲜奶可获利2000元.该厂的生产能力是:若专门生产酸奶,则每天可用去鲜奶3t;若专门生产奶粉,则每天可用去鲜奶1t.由于受人员和设备的限制,酸奶和奶粉两产品不可能同时生产,为保证产品的质量,这批鲜奶必须在不超过4天的时间内全部加工完毕.假如你是厂长,你将如何设计生产方案,才能使工厂获利最大,最大利润是多少?分析:要确定哪种方案获利最多,首先应求出每种方案各获得的利润,再比较即可.解:生产方案设计如下:(1)将9t鲜奶全部制成酸奶,则可获利1200×9=10800元.(2)4天内全部生产奶粉,则有5t鲜奶得不到加工而浪费,且利润仅为2000×4=8000元.(3)4天中,用x天生产酸奶,用4-x天生产奶粉,并保证9t鲜奶如期加工完毕.由题意,得3x+(4-x)×1=9.解得x.∴4-x(天).故在4天中,,,则利润为(×3××1×2000)元=12000元.答:按第三种方案组织生产能使该厂获利最大,最大利润是12000元.评析:运用数学知识解决现代经济生产中的实际问题是中考的热点考查对象之一,同学们应多关心商品经济,生活中的规律、规则,把数学与生活有机结合起来.题型二利用不等式进行方案设计例2.某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲,乙两种机器供选择,其中每台机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不低于380个,那么为了节约资金应选择哪种购买方案?分析:(1)可设购买甲种机器x 台,然后用x 表示出购买甲、乙两种机器的实际费用,根据“本次购买机器所耗资金不能超过34万元”列不等式求解.(2)分别算出(1)中各方案每天的生产量,根据“日生产能力不低于380个”与“节约资金”两个条件选择购买方案.解:(1)设购买甲种机器x 台,则购买乙种机器(6-x )台, 则:7x +5(6-x )≤34,解得x ≤2, 又x ≥0,∴0≤x ≤2,∴整数x =0、1、2, ∴可得三种购买方案: 方案一:购买乙种机器6台;方案二:购买甲种机器1台,乙种机器5台; 方案三:购买甲种机器2台,乙种机器4台. (2)列表如下:由于方案一的日生产量小于380个,因此不选择方案一;•方案三比方案二多耗资2万元,故选择方案二.评析:①部分实际问题的解通常为整数;②方案的各种情况可以用表格的形式表达;③对关键词“不低于”、“至少”、“不少于”的理解是解本例的关键.题型三 利用函数进行方案设计例3.已知某种水果的批发单价与批发量的函数关系如图(1)所示. (1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的函数关系式;在下图(2)的坐标系中画出该函数图象;指出金额在什么X 围内,以同样的资金可以批发到较多数量的该种水果.图(1)m (kg )图(2)(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(3)所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.图(3)分析:(1)中注意图像中的圆圈表示不包括该点;(2)中金额w (元)与批发量m (kg )之间的函数关系式分两部分,实际是两个函数图像.当240<w ≤300时,批发量m 有两个值,可比较这两者的大小;当w 取其他值时,m 只有一个值.(3)利用二次函数的最值求获得最大利润的进货和销售方案.解:(1)图(1)中①表示批发量不少于20kg 且不多于60kg 的该种水果,可按5元/kg 批发;②表示批发量高于60kg 的该种水果,可按4元/kg 批发.(2)解:由题意得:w =⎩⎪⎨⎪⎧5m (20≤m ≤60)4m (m >60) ,函数图象如图(4)所示.由图可知资金金额满足240<w ≤300时,以同样的资金可批发到较多数量的该种水果.(3)解法一:设当日零售价为x 元,由图可得日最高销量m =320-40x , 当m >60时,x <6.5,由题意,销售利润为: y =(x -4)(320-40x )=40[-(x -6)2+4], 当x =6时,y 最大=160,此时m =80,即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元. 解法二:设日最高销售量为xkg (x >60),则由图(3)日零售价p 满足:x =320-40p ,于是p =320-x40, 销售利润y =x (320-x 40-4)=-140(x -80)2+160,当x =80时,y 最大=160,此时p =6,即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.m (kg )图(4)评析:本题考查同学们的读图能力,解题关键是数形结合,弄清题目的数量关系.题型四 利用解直角三角形进行方案设计例4. 如图所示,小山上有一棵树.现有测角仪和皮尺两种测量工具,请你设计一种测量方案,在山脚水平地面上测出小树顶端A 到水平地面的距离AB . 要求:(1)画出测量示意图.(2)写出测量步骤.(测量数据用字母表示) (3)根据(2)中的数据计算AB .分析:本题是一道开放性问题,设计方案时要注意测角仪有高度,同时还要注意测量所需数据可用a 、b 、c 、d 以及角度α、β来表示.最后还要注意直角三角形的模型.解:(1)测量图(示意图)如图所示.ABCD EFH αβhhm(2)测量步骤:第一步:在地面上选择点C 安装测角仪,测得此时树尖A 的仰角∠AHE =α. 第二步:沿CB 前进到点D ,用皮尺量出C 、D 之间的距离CD =m . 第三步:在点D 安装测角仪,测得此时树尖A 的仰角∠AFE =β. 第四步:用皮尺量出测角仪的高h .(3)AB =αββαtan tan tan tan m -⋅+h .评析:利用解直角三角形进行方案设计时一定要使用题目中所给的测量工具,而不能利用题目以外的测量工具.同时还要关注测量时是否有障碍物,是用具体的数值表示还是用字母表示等.本题的易错点在于同学们容易忽视测角仪的高度.设计测量方案时,结合我们平时在解直角三角形中已经建立的模型来考虑是一条捷径.题型五 利用统计和概率进行方案设计例5. 某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分): 方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数. 方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.如图所示是这个同学的得分统计图.(1)分别按上述4个方案计算这个同学演讲的最后得分.(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.分析:对于题目中的四种方案我们可以分别计算出结果,只要注意平均数、中位数、众数的概念及三种统计量的意义即可.解:(1)方案1最后得分: 110(3.2+7.0+7.8+3×8.0+3×8.4+9.8)=7.7. 方案2最后得分:18(7.0+7.8+3×8.0+3×8.4)=8.方案3最后得分:8. 方案4最后得分:8或8.4.(2)因为方案1中的平均数受较大或较小数据的影响,不能反映这组数据的“平均水平”,所以方案1不适合作为统计最后得分的方案.因为方案4中的众数有两个,众数没有实际意义,所以方案4不适合作为统计最后得分的方案.评析:本题考查了统计中三个统计量的计算和意义的使用.题型六 实际应用图形方案设计例6. 在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm 的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切) (1)请说明方案一不可行的理由;(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆的半径;若不可行,请说明理由.A BCD ABDC方案一方案二分析:判断方案是否可行,可用反证法,假设方案可行,确定正方形的大小,与所给正方形进行比较得出结论.解:(1)理由如下:假设方案一可行.∵扇形的弧长=2π×16×14=8π,圆锥底面周长=2πr ,则圆的半径为4cm .由于所给正方形纸片的对角线长为162cm ,而制作这样的圆锥实际需要正方形纸片的对角线长为16+4+42=20+42cm ,20+42>162.∴假设不成立,故方案一不可行. (2)方案二可行.求解过程如下:设圆锥底面圆的半径为rcm ,圆锥的母线长为R cm ,则(1+2)r +R =162——①.2πr =2πR4——②.由①②,可得R =6425+2=3202-12823,r =1625+2=802-3223.故所求圆锥的母线长为3202-12823cm ,底面圆的半径为802-3223cm .评析:图形方案设计问题,关键要弄清楚设计要求,图形变化前后变化的量和不变的量.【方法总结】这类试题不仅要求学生要有扎实的数学双基知识,而且要能够把实际问题中所涉及的数学问题转化,抽象成具体的数学问题.从方法上分两类进行概括:(1)方案已知,要求选优;(2)先求方案,再选最优.【预习导学案】(专题五:开放探索性问题)一. 预习导学1. 如图所示,AC 、BD 相交于点O ,∠A =∠D ,请你再添加一个条件__________,使得∠ABC ≌△DCB .ABCDO2. 请同学们写出两个具有轴对称性的汉字__________.3. 已知二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,下列结论:①abc >0;②2a +b <0;③4a -2b +c <0;④a +c >0.其中正确的个数是( ) A .4个B .3个C .2个D .1个二. 反思1. 开放探索性问题有什么特征?2. 开放探索性问题的解题策略是什么?【模拟试题】(答题时间:50分钟)一. 选择题*1. 一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有()A. 4种B. 3种C. 2种D. 1种**2. 奥运期间,体育场馆要对观众进行安全检查。

人教版中考复习数学练习专题五:方案设计专题(含答案)

人教版中考复习数学练习专题五:方案设计专题(含答案)

专题五方案设计专题【考纲与命题规律】考纲要求方案设计问题是运用学过的技能和方法,进行设计和操作,然后通过分析计算,证明等,确定出最佳方案的数学问题,一般涉及生产的方方面面,如:测量,购物,生产配料,汽车调配,图形拼接,所用到的数学知识有方程、不等式、函数解直角三角形,概率和统计等知识.命题规律方案设计问题应用性比较强,解题时要注重综合应用转化思想,数形结合的思想,方程函数思想及分类讨论等各种数学思想.【课堂精讲】例1.手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)分析:(1)正方形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,连接HE、EF、FG、GH、HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(2)正方形ABCD中,E、F分别是AB、BC的中点,O是AC、BD的交点,连接OE、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.(4)正方形ABCD中,E、F分别是AB、BC的中点,O是AC的中点,I是AO的中点,连接OE、OB、OF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可.解答:根据分析,可得。

(1)第一种情况下,分割后得到的最小等腰直角三角形是△AEH、△BEF、△CFG、△DHG,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(2)第二种情况下,分割后得到的最小等腰直角三角形是△AEO、△BEO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(3)第三种情况下,分割后得到的最小等腰直角三角形是△AHO、△DHO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2)(4)第四种情况下,分割后得到的最小等腰直角三角形是△AEI、△OEI,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2÷2=2×2÷2÷2=1(cm2).例2.甲乙两家商场平时以同样的价格出售相同的商品。

中考数学复习专题四 方案设计与动手操作型问题

中考数学复习专题四 方案设计与动手操作型问题
好拼成一个矩形,那么△BMC 应满足什么条
件?(不必说理)
单击此处编辑母版标题样式
解:①根据这个多面体的表面展开图,可得这个多面体是直三棱
• 单柱击,点此处A,编M辑,母D版三文个本字样母表式示多面体的同一点 ②△BMC 应满足的
• 第二级
条件•是第:三a级.∠BMC=90°,且 BM=DH,或 CM=DH b.∠MBC=
形,又余下一• 第个五四级边形,……依此类推,请画出剪三次后余下的四边
形是菱形的裁剪线的各种示意图,并求出 a 的值.
单击此处编辑母版标题样式 解:①如图,a=4,
• 单•击第此二②处级如编图辑,母a=版25文,本样式
• 第三级
③•如第图四• 级第,五a级=34,
④如图,a=35,
【点评】 本题主要考查了图形的剪拼以及菱形的判定,根据已
解:• 设第二矩级形纸板的宽为 x cm,则长为 2x cm,由题意得:4(x-2×4)(2x
• 第三级
-2×4)=• 6第1四•6,级第五解级得:x1=15,x2=-3(舍去),∴2x=2×15=30,答:
矩形纸板的长为 30 cm,宽为 15 cm
单击此处编辑母版标题样式
• 任单务击二此:处图编②辑是母一版个文高本为样4 式cm 的无盖的五棱柱盒子(直棱柱),图③是
中考数学专题复习
专题四 方案设计与动手操作型问题
单击此处编辑母版标题样式
方案设计型问题是设置一个实际问题的情景,给出若干信息,提 • 单击此处编辑母版文本样式 出解• 决第问二题级 的要求,寻求恰当的解决方案,有时还给出几个不同的解
• 第三级
决方案,要• 第求四判级断其中哪个方案最优.方案设计型问题主要考查学生 • 第五级

中考数学专题复习 方案设计问题

中考数学专题复习 方案设计问题

方案设计问题方案设计型题是通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的技能和方法,进行设计和操作,寻求恰当的解决方案.有时也给出几个不同的解决方案,要求判断哪个方案较优.它包括测量方案设计、作图方案设计和经济类方案设计等.题型之一 利用方程、不等式进行方案设计例1 (2014·益阳)某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:销售时段 销售数量 销售收入A 种型号B 种型号 第一周 3台 5台 1 800元 第二周4台10台3 100元 (进价、售价均保持不变,利润=销售收入-进货成本) (1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5 400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1 400元的目标,若能,请给出相应的采购方案;若不能,请说明理由.【思路点拨】(1)根据“3台A 型+5台B 型”的销售收入=1 800以及“4台A 型+10台B 型”的销售收入=3 100,列方程组得各自售价;(2)设购进A 型a 台,则B 型(30-a)台,利用金额不超过5 400建立不等式求解; (3)根据(2)中30台得利润为为1 400,建立方程,求解.【解答】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元.依题意,得35 1 800,410 3 100x y x y +=+=⎧⎨⎩.解得250,210.x y ==⎧⎨⎩答:A 、B 两种型号电风扇的销售单价分别为250元、210元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a)台.依题意,得 200a+170(30-a)≤5 400,解得a ≤10.答:超市最多采购A 种型号电风扇10台时,采购金额不多于5 400元. (3)依题意有:(250-200)a+(210-170)(30-a)=1 400,解得a=20, 此时,a>10.即在(2)的条件下超市不能实现利润1 400元的目标.方法归纳:列方程(组)或不等式组设计方案问题的关键是找到题目中的等量关系或者不等关系,然后根据结果设计方案.1.(2013·自贡)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满. (1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?2.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物. 根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.3.(2014·衡阳)某班组织班团活动,班委会准备用15元钱全部用来购买笔记本和中性笔两种奖品.已知笔记本2元/本,中性笔1元/支,且每种奖品至少买一件.(1)若设购买笔记本x本,中性笔y支,写出y与x之间的关系式;(2)有多少种购买方案?请列举所有可能的结果;(3)从上述方案中任选一种方案购买,求买到的中性笔与笔记本数量相等的概率.题型之二利用函数进行方案设计例2 (2013·桂林)在“美丽广西,清洁乡村”活动中,李家村村长提出两种购买垃圾桶方案:方案1:买分类垃圾桶,需要费用3 000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1 000元,以后每月的垃圾处理费用500元;设方案1的购买费和每月垃圾处理费共为y1元,设方案2的购买费和每月垃圾处理费共为y2元,交费时间为x个月.(1)直接写出y1、y2与x的函数关系式;(2)在同一坐标系内,画出函数y1、y2的图象;(3)在垃圾桶使用寿命相同的情况下,哪种方案省钱?【思路点拨】(1)根据题意可直接写出y与x的函数关系式;(2)分别过两点画图象;(3)根据图象得到方案.【解答】(1)y1=250x+3 000,y2=500x+1 000.(2)如图:(3)由(2)得当x>8时,方案1省钱;当x=8时,两种方案一样;当x<8时,方案2省钱.方法归纳:运用一次函数判断何种方式更合算,通常用分类讨论的方法列出方程和不等式,求自变量取值范围,但如果题目中有画好的函数图象,也可以直接观察图象解决.1.我市某医药公司把一批药品运往外地,现有两种运输方式可供选择:方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;方式二:使用快递公司的火车运输,装卸收费820元,另外每公里再加收2元.(1)请分别写出邮车、火车运输的总费用y1,y2(元)与运输路程x(公里)之间的函数关系;(2)你认为选用哪种运输方式较好,为什么?2.(2014·凉山)我州某校计划购买甲、乙两种树苗共1 000株用以绿化校园.甲种树苗每株25元,乙种树苗每株30元,通过调查了解,甲、乙两种树苗的成活率分别是90%和95%.(1)若购买这两种树苗共用去28 000元,则甲、乙两种树苗各购买多少株?(2)要使这批树苗的成活率不低于92%,则甲种树苗最多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.3.某教育行政部门计划今年暑假组织部分教师到外地进行学习,预订宾馆住宿时,有住宿条件一样的甲、乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案:甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费;乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按八折收费.如果你是这个部门的负责人,你应选哪家宾馆更实惠些?4.(2014·丽水)为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A 型B型价格(万元/台) m m-3月处理污水量(吨/台) 220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.题型之三图形问题中的方案设计例3 (2014·济宁)在数学活动课上,王老师发给每位同学一张半径为6个单位长度的圆形纸板,要求同学们:(1)从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四部分;(2)设.名称四等分圆的面积方案方案一方案二方案三选用的工具带刻度的三角板画出示意图简述设计方案作⊙O两条互相垂直的直径AB、CD,将⊙O的面积分成相等的四份.指出对称性既是轴对称图形又是中心对称图形【思路点拨】方案二:由题意得分割成的一部分面积为9π,故在圆心O处以3个单位长度为半径作圆,然后将圆环三等分即可;方案三:作出圆的直径AB,分别画两个半径为3个单位长度的小圆即可.【名称四等分圆的面积方案方案一方案二方案三选用的工具带刻度的三角板带刻度三角板、量角器、圆规. 带刻度三角板、圆规.画出示意图简述设计方案作⊙O两条互相垂直的直径AB、CD,将⊙O的面积分成相等的四份.(1)以点O为圆心,以3个单位长度为半径作圆;(2)在大⊙O上依次取三等分点A、B、C;(3)连接OA、OB、OC.则小圆O与三等分圆环把⊙O的面积四等分.(1)作⊙O的一条直径AB;(2)分别以OA、OB的中点为圆心,以3个单位长度为半径作⊙O1、⊙O2;(3)则⊙O1、⊙O2和⊙O中剩余的两部分把⊙O的面积四等分.指出对称性既是轴对称图形又是中心对称图形轴对称图形既是轴对称图形又是中心对称图形.形分成形状或面积相等的几部分.解决这类问题可借助对称的性质、角度的大小、面积公式等进行分割.1.某市要在一块平行四边形ABCD的空地上建造一个四边形花园,要求花园所占面积是□ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求四点顶点分别在□ABCD的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E,F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;方案(2):如图2所示,一个出入口M已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.2.(2014·拱墅模拟)请用直尺和圆规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上,面积相同的图形视为同一种.(保留作图痕迹).题型之四测量问题中的方案设计例4 如图,EF是一条笔直的河岸,A村与B村相距4千米,A,B两村到河岸EF的距离分别是5千米,3千米,现要在河岸E F上选一地址C建一个自来水厂,并铺设水管把水引至A,B两村.问:如图1,图2,图3所示的三条铺设水管的路径(图中实线部分)哪条最短?并说明理由.【思路点拨】图1,图2中铺设水管路径长都可以一眼看出,在图3中由对称性可得:BC=B′C,AB′=BC+AC,以AB′为斜边构造一个直角三角形(要求直角边平行EF或垂直EF),若再能求出A,B两村的垂直距离,问题就不难解决了.【解答】图1:4+5=9(千米);图2:3+4=7(千米);图3:BC=B′C,过B′作B′M∥EF,过A作AN∥BB′交B′M于D,则构成Rt△ADB′.B′D=23,∴AB′=76.∵7<76<9,∴图2的路径最短.方法归纳:这是一道判断方案题,题中给出了三种不同方案,由同学们根据所学图形与空间的知识按题中要求选择方案.1.某高速铁路即将动工,工程需要测量长江某一段的宽度.如图1,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.(1)求所测之处江的宽度(sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.48);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图2中画出图形.2.恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷(A)和世界级自然保护区星斗山(B)位于笔直的沪渝高速公路x同侧,AB=50 km,A、B到直线x的距离分别为10 km和40 km,要在沪渝高速公路旁修建一服务区P ,向A 、B 两景区运送游客.小明设计了两种方案,图1是方案一的示意图(AP 与直线x 垂直,垂足为P),P 到A 、B 的距离之和s 1=PA+PB ,图2是方案二的示意图(点A 关于直线x 的对称点是A ′,连接BA ′交直线x 于点P),P 到A 、B 的距离之和s 2=PA+PB. (1)求s 1、s 2,并比较它们的大小; (2)请你说明s2=PA+PB 的值为最小;(3)恩施到张家界高速公路y 与沪渝高速公路垂直,建立如图3所示的直角坐标系,B 到直线y 的距离为30 km ,请你在x 旁和y 旁各修建一服务区P 、Q ,使P 、A 、B 、Q 组成的四边形的周长最小.并求出这个最小值.参考答案题型之一 利用方程、不等式进行方案设计1.(1)设该校大寝室每间住x 人,小寝室每间住y 人,则5550740,5055730x y x y +=⎧⎨+=⎩.解得8,6.x y =⎧⎨=⎩ 答:该校大寝室每间住8人,小寝室每间住6人.(2)设应安排小寝室z 间,则有 6z+8(80-z)≥630,解得z ≤5.∵z 为自然数,∴z=0,1,2,3,4,5. 答:共有6种安排住宿方案.2.(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨、y 吨,根据题意,得210,211.x y x y +=⎧⎨+=⎩解得3,4x y =⎧⎨=⎩. 答:1辆A 型车和1辆B 型车都装满货物一次可分别运货3吨、4吨.(2)根据题意可得3a+4b=31.因为租车数a ,b 都是自然数,使a ,b 都为整数的情况共有a=1,b=7或a=5,b=4或a=9,b=1三种情况. 故租车方案分别为:①A 型车1辆,B 型车7辆; ②A 型车5辆,B 型车4辆; ③A 型车9辆,B 型车1辆.(3)方案①花费为100×1+120×7=940(元);方案②花费为100×5+120×4=980(元); 方案③花费为100×9+120×1=1 020(元).故方案①最省钱,即租用A 型车1辆,B 型车7辆. 3.(1)y=15-2x ;(2)设笔记本和中性笔两种奖品各a ,b 件, 则a ≥1,b ≥1,2a+b=15.当a=1时,b=13;当a=2时,b=11;当a=3时,b=9;当a=4时,b=7;当a=5时,b=5;当a=6时,b=3;当a=7时,b=1.故有7种购买方案;(3)买到的笔记本和中性笔数量相等的购买方案有1种,共有7种购买方案. ∵1÷7=17,∴买到的笔记本和中性笔数量相等的概率为17. 题型之二 利用函数进行方案设计1.(1)由题意得,y 1=4x+400,y 2=2x+820. (2)当y 1=y 2时,4x+400=2x+820.解得x=210.∴当运输路程小于210 km 时,y 1<y 2,选择邮车运输较好; 当运输路程等于210 km 时,y 1=y 2,选择两种方式一样; 当运输路程大于210 km 时,y 1>y 2,选择火车运输较好. 2.(1)设购甲种树苗x 株,乙种树苗y 株,则1 000,253028 000x y x y +=⎧⎨+=⎩.解得400,600x y =⎧⎨=⎩.答:购甲种树苗400株,乙种树苗600株.(2)设购买甲种树苗z 株,则乙种树苗(1 000-z)株,列不等式: 90%z+95%(1 000-z)≥92%×1 000,解得z ≤600. 答:甲种树苗至多购买600株.(3)设购买树苗的总费用为w 元,则 w=25z+30(1 000-z)=-5z+30 000. ∵-5<0,∴w 随z 的增大而减小.∵0<z ≤600,∴当z=600时,w 最小值为30 000-5×600=27 000(元).答:当购甲种树苗600株,乙种树苗400株时,总费用最低,最低费用是27 000元.3.设有x(x>0)名教师到外地进行学习,甲宾馆费用为y 甲,乙宾馆费用为y 乙,当x>45时,由题意,得 y 甲=120×35+(x-35)×120×90%=108x+420; y 乙=120×45+(x-45)×120×80%=96x+1 080. 分三种情况:①当y 甲>y 乙时,108x+420>96x+1 080.解得x>55; ②当y 甲=y 乙时,108x+420=96x+1 080.解得x=55; ③当y 甲<y 乙时,108x+420<96x+1 080.解得45<x<55. 当x ≤45时,又分两种情况: ①当0<x ≤35时,y 甲=y 乙=120x;②当35<x ≤45时,y 甲=108x+420,y 乙=120x. 此时y 甲<y 乙.综上所述当人数大于55人时选乙宾馆,当人数大于0小于等于35人或等于55人时甲乙宾馆均可,当人数大于35人小于55人时选甲宾馆. 4.(1)根据题意,得90m =753m -,解得m=18. 经检验,m=18是所列方程的解,且符合题意. 答:m 的值为18.(2)由(1)可知,A 型号的污水处理设备每台18万元,B 型号的污水处理设备每台15万元.设购买A型号的污水处理设备x台,则18x+15(10-x)≤165,解得x≤5.又∵0<x<10,且x为整数,∴x可取0,1,2,3,4,5,即共有6种购买方案.设某种方案每月能处理的污水量为w吨,则w=220x+180(10-x)=40x+1 800.∵w随x的增大而增大,∴当x=5时,w有最大值,其最大值为2 000.即购买A型号、B型号的污水处理设备分别为5台、5台时,月处理的污水量最多,为2 000吨.题型之三图形问题中的方案设计1.方案(1):画法1(如图甲):①过F作FH∥AB交AD于点H.②在DC上任取一点G,连接EF,FG,GH,HE,则四边形EFGH就是所要画的四边形.画法2(如图乙):①过F作FH∥AB交AD于点H.②过E作EG∥AD交DC于点G,连接EF、FG、GH、HE,则四边形EFGH就是所要画的四边形.画法3(如图丙):①在AD上取一点H,使DH=CF.②在CD上任取一点G,连接EF,FG,GH,HE,则四边形EFGH就是所要画的四边形.方案(2):画法(如图2):①过M点作MP∥AB交AD于点P.②在CD上取一点N,连接MN.③过点P作PQ∥MN交AB于点Q,连接QM,PN.则四边形QMNP就是所要画的四边形.2.所作菱形如图1,图2所示.说明:作法相同的图形视为同一种.例如:类似图3,4的图形视为与图2是同一种.题型之四测量问题中的方案设计1.(1)在Rt△BAC中,∠ACB=68°,AC=100米,∴AB=AC·tan 68°≈100×2.48=248(米).答:所测之处江的宽度约为248米.(2)可以利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可.如:方案2,如图2,测量员从A点开始沿岸边向正东方向前进到E处,再从E点开始向点E的正南方向上插上标杆F,并在线段AE的中点C处插上标杆C,当标杆B,C,F在同一直线上时,直接测出EF的长也就是江的宽度.2.(1)图1中过B 作BC ⊥x 于C ,过A 作AD ⊥BC 于D ,则BC=40.又∵AP=10,∴BD=BC-CD=40-10=30. 由勾股定理可得AD=40.在Rt △PBC 中,BP=22CP BC +=402. s 1=(402+10)km.图2中,过B 作BC ⊥AA ′,垂足为C ,AA ′与直线x 交于点N ,则A ′C=NC+NA ′=NC+AN=50, 又AC=CN-AN=40-10=30,AB=50, 则在Rt △BCA 中,BC=40, ∴BA ′=224050+=1041, 由轴对称知:PA=PA ′,∴s 2=PA+PB=PA ′+PB=BA ′=1041 km. ∴s 1>s 2.(2)如图2,在公路上任找一点M ,连接MA ,MB ,MA ′,由轴对称知MA=MA ′, ∴MB+MA=MB+MA ′>A ′B , ∴s 2=BA ′=PA+PA 为最小.(3)如图3过A 作关于x 轴的对称点A ′,过B 作关于y 轴的对称点B ′,连接A ′B ′,交x 轴于点P ,交y 轴于点Q ,则P ,Q 即为所求.过A ′、B ′分别作x 轴、y 轴的平行线交于点G ,B ′G=40+10=50,A ′G=30+30+40=100,A ′B ′2210050+5∴AB+AP+BQ+QP=AB+A′P+PQ+B′∴所求四边形的周长为(km.11。

中考数学复习专题讲座(三)方案设计问题

中考数学复习专题讲座(三)方案设计问题

专题复习(三)——方案设计问题题型概述方案设计型问题是通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的技能和方法,进行设计和操作,寻求恰当的解决方案,有时也给出几个不同的解决方案,要求判断哪个方案较优。

它包括测量方案设计、作图方案设计和经济类方案设计等。

题型例析类型1:利用方程、不等式(组)进行方案设计这类问题往往列方程组或不等式(组)解应用题,但是列方程的关键又是找出题目中存在的的等量关系或不等式关系;对于设计方案题一般要根据题意列出不等式或不等式组,求不等式组的整数解(或者符合要求的解)。

【例题】一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?考点:一元一次不等式的应用.分析:(1)经销商能盈利=水果箱数×每箱水果的盈利;(2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,进一步利用经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果甲店盈利×x;列出函数解析式利用函数性质求得答案即可.解答:(1)经销商能盈利=5×11+5×17+5×9+5×13=5×50=250;(2)设甲店配A种水果x箱,则甲店配B种水果(10﹣x)箱,乙店配A种水果(10﹣x)箱,乙店配B种水果10﹣(10﹣x)=x箱.∵9×(10﹣x)+13x≥100,∴x≥2,经销商盈利为w=11x+17•(10﹣x)+9•(10﹣x)+13x=﹣2x+260.∵﹣2<0,∴w随x增大而减小,∴当x=3时,w值最大.甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:﹣2×3+260=254(元).点评:此题考查一元一次不等式的运用,一次函数的实际运用,找出题目蕴含的不等关系与等量关系解决问题.【变式练习】某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵。

中考数学专题复习(方案设计)

中考数学专题复习(方案设计)

中考数学专题复习:方案设计问题【知识梳理】方案设计问题特点是题中给出几种方案让考生通过计算选取最佳方案,或给出设计要求,让考生自己设计方案,这种方案有时不止一种,因而又具有开放型题的特点,此种题型考查考生的数学应用意识,命题的背景广泛,考生自由施展才华的空间大,因此倍受命题者的青睐。

【课前预习】1.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是 .2.某班50名同学分别站在公路的A 、B 两点处,A 、B 两点相距1000米,A 处有30人,B 处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在( )A .A 点处B .线段A B 的中点处C .线段A B 上,距A 点10003米处D .线段A B 上,距A 点400米处3.如图,是由一些大小相同的小正方体组成的几何体的主视图和 俯视图,则组成这个几何体的小正方体最多块数是( )A. 9B. 10C. 11D. 124.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( ) A .2种 B .3种 C .4种 D .5种 5.某饮料厂为了开发新产品,用A 种果汁原料和B 种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x 千克,两种饮料的成本总额为y 元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y 与x 之间的函数关系式.(2)若用19千克A 种果汁原料和17.2千克B 种果汁原料试制甲、乙两种新型饮料,下表是请你列出关于x 且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y 值最小,最小值是多少? 35° A B 主视图俯视图【例题精讲】【例1】如图,甲转盘被分成3个面积相等的扇形、乙转盘被分成2个面积相等的扇形.小夏和小秋利用它们来做决定获胜与否的游戏.规定小夏转甲盘一次,小秋转乙盘一次为一次游戏(当指针指在边界线上时视为无效,重转).(1)小夏说:“如果两个指针所指区域内的数之和为6或7,则我获胜;否则你获胜”.按小夏设计的规则,请你写出两人获胜的可能性分别是多少? (2)请你对小夏和小秋玩的这种游戏设计一种公平的游戏规则,并用一种合适的方法(例如:树状图,列表)说明其公平性.【例2】某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)若需要这种规格的纸箱x 个,请分别写出从纸箱厂购买纸箱的费用y 1(元)和蔬菜加工厂自己加工制作纸箱的费用y 2(元)关于x (个)的函数关系式; (2)假设你是决策者,你认为应该选择哪种方案?并说明理由.【例3】某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家电的进价和售价如下表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下. 如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?甲 乙【巩固练习】1.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()A.只有1个 B.可以有2个 C.有2个以上,但有限 D.有无数个2.从2、3、4、5这四个数中,任取两个数p和q(p≠q),构成函数y=px-2和y=x+q,并使这两个函数图象的交点在直线x=2的右侧,则这样的有序数对(p,q)共有()A.12对B.6对C.5对D.3对3.某工厂现有甲种原料226kg,乙种原料250kg,计划利用这两种原料生产A、B两种产品共40件,生产A、B两种产品用料情况如下表,设生产A产品x件,请解答下列问题:(1)求x的值,并说明有哪几种符合题意的生产方案。

2023年中考数学热点专题复习课件4 方案设计型

2023年中考数学热点专题复习课件4 方案设计型
在 Rt△ACF 中,∠EAC=22°,






∵tan∠EAC= =tan 22°≈ ,∴DC=AF≈ FC=50(m).
在 Rt△ABD 中,∠ABD=∠EAB=67°,
∵tan∠ABD=








=tan 67°≈ ,∴BD≈ AD= (m),

∴BC=DC-BD=50- ≈41.7(m),即大桥 BC 的长约为 41.7 m.
若6x+160>8x,则x<80;
若6x+160=8x,则x=80;
若6x+160<8x,则x>80.
综上所述,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超
市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.
利用方程(组)或不等式(组)解决方案设计问题, 首先要根据题中蕴含的相等关系或不等关系,列
专题四
方案设计型
1.方案设计型问题涉及生产生活的方方面面,一般主要有以下几种类型:
(1)方程、不等式型方案设计问题;
(2)函数型方案设计问题;
(3)测量方案设计问题.
2.解决方案设计型问题的关键点:
方案设计题贴近生活,具有较强的操作性和实践性,应用性非常突出,题目一般较长,做题之前要认
真读题,理解题意,选择和构造合适的数学模型,并能在实践中对所有可能的方案进行罗列与分析,

方法2:(利用全等)
方法3:(利用相似)
解决测量方案设计题应熟练掌握三角形全等、相似、锐角三角函数的有关性质,认真审题,理解
题意,选择恰当的测量方案,注意:(1)不同的方案,所用的数学原理不同,所选用的测量工具、测

中考专题复习--方案设计型问题

中考专题复习--方案设计型问题

类型一
考点二 考点三
方程型方案设计
不等式(组)型方案设计 函数型方案设计
类型一
[例1]
方程型购进一批篮球和足
球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个
数与900元购进的足球个数相等. (1)篮球和足球的单价各是多少元? (2)该校打算用1 000元购买篮球和足球,问恰好用完1 000元,并 且篮球、足球都买的购买方案有哪几种?
方案设计型问题
方案设计型问题是通过设置一个实际问题情景,给 出若干信息,提出解决问题的要求,要求学生运用学过 的技能和方法,进行设计和操作,寻求恰当的解决方案. 有时也给出几个不同的解决方案,要求判断哪个方案较 优。
方案设计型问题主要考查学生利用列方程(组)、 不等式组和一次函数等知识解决实际问题。考查数学建 模的核心素养。
树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.
[解] (1)设 y 与 x 的函数关系式为 y=kx+b, 把(20,160),(40,288)代入 y=kx+b 得 20k+b=160, 40k+b=288. k=6.4, 解得 b=32. ∴y=6.4x+32. (2)∵B 种果树苗的数量不超过 35 棵,但不少于 A 种果树苗的数 量, x≤35, ∴ x≥45-x, ∴22.5≤x≤35, 设总费用为 W,则 W=6.4x+32+7(45-x)=-0.6x+347, ∵k=-0.6, ∴y 随 x 的增大而减小, ∴当 x=35 时, 总费用 W 最低, W 最小=-0.6× 35+347=326(元).
小 结
谈谈你的收获
1.方案设计问题的类型. 3.方案设计问题的解决思路和方法.
作业:课后练习
两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务, 且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并

2025年中考数学高分拓展必刷题之方案设计类问题

2025年中考数学高分拓展必刷题之方案设计类问题

2025年中考数学高分拓展必刷题方案设计类问题1.考点解析方案设计型问题是设置一个实际问题的情景,给出若干信息,提出解决问题的要求,寻求恰当的解决方案,有时还给出几个不同的解决方案,要求判断其中哪个方案最优.方案设计型问题主要考查学生的动手操作能力和实践能力.2.考点分类:考点分类见下表考点分类考点内容考点分析与常见题型常考热点二元一次方程组,不等式路程问题,面积最值一般考点一次函数、二次函数求最大值最大利润等冷门考点统计型设计题数目统计解决问题【方法点拨】此类题目往往要求所设计的问题中出现路程最短、运费最少、效率最高等词语,解题时常常与函数、几何联系在一起.我们在阅读材料的时候一定要把相关的信息进行整理与分类,便于后面做的过程中有条理,不会弄错条件,可以列成表格形式便于自己看清楚。

一、中考题型分析方案设计问题在近几年的中考中出现的频率还是比较高的,一般以应用题的形式出现行联结,一般以工程方案或者销售购买方案居多,占8-10分左右。

此类题目难度中等,需要学生对题目的条件理清楚,掌握基本的列方程解题的能力。

二、典例精析★考点一:函数类方案设计问题◆典例一:某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:原料型号甲种原料乙种原料A产品(每件)9 3B产品(每件) 4 10(1)该工厂生产A、B两种产品有哪几种方案?(2)若生成一件A产品可获利80元,生产一件B产品可获利120元,怎样安排生产可获得最大利润?【考点】一次函数的应用;一元一次不等式组的应用.【解析】(1)设工厂可安排生产x件A产品,则生产(50﹣x)件B产品,根据不能多于原料的做为不等量关系可列不等式组求解;(2)可以分别求出三种方案比较即可.学¥#科网◆典例二:1.某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元. (1)若该商店同时购进甲、乙两种商品共100件,恰好用去2 700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3 100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少(利润=售价-进价)?【解答】(1)设购进甲种商品x件,购进乙种商品y件,根据题意,得,解得:答:商店购进甲种商品40件,购进乙种商品60件.(2)设商店购进甲种商品a件,则购进乙种商品(100-a)件,根据题意列,得解得20≤a≤22.∵总利润W=5a+10(100-a)=-5a+1000,W是关于x的一次函数,W随x的增大而减小,∴当x=20时,W有最大值,此时W=900,且100-20=80。

数学方案问题

数学方案问题

数学方案问题初中数学方案设计型问题初中数学方案设计型问题知识点1、用方程或不等式解决方案设计型问题此类问题属于利用方程、不等式或综合利用方程和不等式解决方案设计型问题。

解决这类问题时,首先要弄清题意,根据题意构建恰当的方程模型或不等式模型,求出所求未知数的取值范围,然后再结合实际问题确定方案设计的种数。

例1. (黑龙江省哈尔滨市)青青商场经销甲、乙两种商品,已知甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元。

(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案。

(3)在五一黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打九折超过400元售价打八折按上述优惠条件,若小王第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(1)设该商场能购进甲种商品x件,则乙种商品为(100-x)解:件,根据题意,得。

解得,则乙种商品为(件)。

所以该商场能购进甲种商品40件,乙种商品60件。

(2)设该商场购进甲种商品a件,则购进乙种商品(100-a)件,根据题意,得解得,因为a的值是整数,所以或49或50,即该商场共有三种进货方案,分别为:(方案一)购进甲种商品48件,乙种商品52件;(方案二)购进甲种商品49件,乙种商品51件;(方案三)购进甲种商品50件,乙种商品50件。

(3)根据题意,得第一天只购买甲种商品不享受优惠条件,所以甲种商品的件数为。

第二天只购买乙种商品有以下两种情况:①购买打九折的乙种商品件数为②购买打八折的乙种商品件数为所以这两天他一共可购买甲、乙两种商品;;(件)或(件)。

九年级数学方案设计

九年级数学方案设计

精典专题十方案设计问题一.考情分析二.知识回顾方案设计问题是指:提出一个数学问题情景(比如最优化设计、图形设计等),要求考生按要求设计某种方案来解决问题的一种探索性问题。

它可以综合考查学生的阅读理解能力、分析推理能力、数据处理能力、文字概括能力、动手能力等。

是中考的热点题型之一。

解决方案设计问题的一般过程是:1、阅读:了解问题的背景和要求;2、观察:寻找问题的等量关系;3、建模:利用数学知识将问题转化为数学问题;4、解模:求相关数学问题;5、作答:根据实际意义,对所获得的结论进行归纳、探索、比较,确立符合题目要求的最佳方案。

方案设计问题一般分为四大类:1、方程、函数和不等式型方案设计题;2、统计型方案设计题;3、测量方案设计题;4、图形设计题。

三.重点突破类型一:方程函数不等式方案设计(B)【典型例题1】光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y 与x 间的函数关系式,并写出x 的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.(B )【典型例题2】已知甲、乙两辆汽车同时、同方向从同一地点A 出发行驶.(1)若甲车的速度是乙车的2倍,甲车走了90千米后立即返回与乙车相遇,相遇时乙车走了1小时.求甲、乙两车的速度;(2)假设甲、乙每辆车最多只能带200升汽油,每升汽油可以行驶10千米,途中不能再加油,但两车可以互相借用对方的油,若两车都必须沿原路返回到出发点A ,请你设计一种方案使甲车尽可能地远离出发点A ,并求出甲车一共行驶了多少千米?(A )【典型例题3】有甲、乙两家通迅公司,甲公司每月通话的收费标准如图所示;乙公司每月通话收费标准如下表所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题————方案设计问题1、光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A 、B 两地区收割小麦,其中30台派往A 地区,20台派往B 地区.两地与该农机(1y (元),求y 与x 间的函数关系式,并写出x 的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.解:(1)若派往A 地区的乙型收割机为x 台,则派往A 地区的甲型收割机为(30-x )台;派往B 地区的乙型收割机为(30-x )台,派往B 地区的甲型收割机为(x -10)台.∴y =1600x +1800(30-x )+1200(30-x )+1600(x -10)=200x +74000.x 的取值范围是:10≤x ≤30(x 是正整数).(2)由题意得200x +74000≥79600,解不等式得x ≥28.由于10≤x ≤30,∴x 取28,29,30这三个值,∴有3种不同分配方案.①当x =28时,即派往A 地区甲型收割机2台,乙型收割机28台;派往B 地区甲型收割机18台,乙型收割机2台.②当x =29时,即派往A 地区甲型收割机1台,乙型收割机29台;派往B 地区甲型收割机19台,乙型收割机1台.③当x =29时,即派往A 地区甲型收割机1台,乙型收割机29台;派往B 地区甲型收割机19台,乙型收割机1台.③ 当x =30时,即30台乙型收割机全部派往A 地区;20台甲型收割机全部派往B 地区.(3)由于一次函数y =200x +74000的值y 是随着x 的增大而增大的,所以,当x =30时,y 取得最大值.如果要使农机租赁公司这50台联合收割机每天获得租金最高,只需x =30,此时,y =6000+74000=80000.建议农机租赁公司将30台乙型收割机全部派往A 地区;20台甲型收割要全部派往B 地区,可使公司获得的租金最高.2.今年6月份,我市某果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可装荔枝4吨和香蕉1吨,一种货车可装荔枝香蕉各2吨;(1) 该果农按排甲、乙两种货车时有几种方案?请你帮助设计出来,(2) 甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,则该果农应选哪种方案?使运费最少?最少运费是多少元?解:(1)设安排甲种货车x 辆,则安排乙种货车(10-x )辆,依题意,得⎩⎨⎧≥-+≥-+13)10(230)10(24x x x x 解这个不等式组,得 ⎩⎨⎧≤≥75x x 75≤≤∴x ∵x 是整数,∴x 可取5、6、7,既安排甲、乙两种货车有三种方案:① 甲种货车5辆,乙种货车5辆;② 甲种货车6辆,乙种货车4辆;③ 甲种货车7辆,乙种货车3辆;(2)方法一:由于甲种货车的运费高于乙种货车的运费,两种货车共10辆,所以当甲种货车的数量越少时,总运费就越少,故该果农应选择① 运费最少,最少运费是16500元; 方法二:方案①需要运费2000×5+1300×5=16500(元)方案②需要运费2000×6+1300×4=17200(元)方案③需要运费2000×7+1300×3=17900(元)∴该果农应选择① 运费最少,最少运费是16500元;3、某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?解:(1)设购买甲种机器x 台,则购买乙种机器(6-x )台.由题意,得75(6)34x x +-≤,解这个不等式,得2x ≤,即x 可以取0、1、2三个值,所以,该公司按要求可以有以下三种购买方案:方案一:不购买甲种机器,购买乙种机器6台;方案二:购买甲种机器1台,购买乙种机器5台;方案三:购买甲种机器2台,购买乙种机器4台;(2)按方案一购买机器,所耗资金为30万元,新购买机器日生产量为360个;按方案二购买机器,所耗资金为1×7+5×5=32万元;,新购买机器日生产量为1×100+5×60=400个;按方案三购买机器,所耗资金为2×7+4×5=34万元;新购买机器日生产量为2×100+4×60=440个.因此,选择方案二既能达到生产能力不低于380个的要求,又比方案三节约2万元资金,故应选择方案二.4、我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下(1)设装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,求y 与x 之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采哪种安排方案?并求出最大利润的值.解:(1)根据题意,装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,那么装运C 种脐橙的车辆数为()y x --20,则有:()10020456=--++y x y x 整理得:202+-=x y(2)由(1)知,装运A 、B 、C 三种脐橙的车辆数分别为x 、202+-x 、x ,由题意得:⎩⎨⎧≥+-≥42024x x ,解得:4≤x ≤8,因为x 为整数,所以x 的值为4、5、6、7、8,所以安排方案共有5种.方案一:装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车;方案二:装运A 种脐橙5车,B 种脐橙10车,C 种脐橙5车;方案三:装运A 种脐橙6车,B 种脐橙8车,C 种脐橙6车;方案四:装运A 种脐橙7车,B 种脐橙6车,C 种脐橙7车;方案五:装运A 种脐橙8车,B 种脐橙4车,C 种脐橙8车;(3)设利润为W (百元)则:()160048104162025126+-=⨯+⨯+-+⨯=x x x x W∵048<-=k ∴W 的值随x 的增大而减小要使利润W 最大,则4=x ,故选方案一1600448+⨯-=最大W =1408(百元)=14.08(万元)答:当装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车时,获利最大,最大利润为14.08万元. 5、2007年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A B ,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?解:(1)设搭配A 种造型x 个,则B 种造型为(50)x -个,依题意,得:8050(50)34904090(50)2950x x x x +-⎧⎨+-⎩≤≤ 解这个不等式组,得:3331x x ⎧⎨⎩≤≥,3133x ∴≤≤ x 是整数, x ∴可取313233,,, ∴可设计三种搭配方案:①A 种园艺造型31个 B 种园艺造型19个②A 种园艺造型32个 B 种园艺造型18个③A 种园艺造型33个 B 种园艺造型17个.(2)方法一:由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元)方法二:方案①需成本:318001996043040⨯+⨯=(元)方案②需成本:328001896042880⨯+⨯=(元)方案③需成本:338001796042720⨯+⨯=元∴应选择方案③,成本最低,最低成本为42720元6、某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)解:(1)设购进电视机x 台,则购进洗衣机(100-x )台,根据题意,得1(100),218001500(100)161800.x x x x ⎧≥-⎪⎨⎪+-≤⎩ ,解不等式组,得 1333≤x ≤1393.即购进电视机最少34台,最多39台,商店有6种进货方案.(2)设商店销售完毕后获利为y 元,根据题意,得y =(2000-1800)x +(1600-1500)(100-x )=100x +10000.∵ 100>0,∴ 当x 最大时,y 的值最大.即 当x =39时,商店获利最多为13900元.7、绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意,得4x + 2(8-x )≥20,且x + 2(8-x )≥12,解此不等式组,得 x ≥2,且 x ≤4, 即 2≤x ≤4.∵ x x 可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:(2方案二所需运费 300×3 + 240×5 = 2100元;方案三所需运费 300×4 + 240×4 = 2160元.所以王灿应选择方案一运费最少,最少运费是2040元.8、某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案;(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.解:(1)由租用甲种汽车x 辆,则租用乙种汽车(8)x -辆由题意得:4030(8)2901020(8)100x x x x +-⎧⎨+-⎩≥≥ 解得:56x ≤≤ 即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.(2)第一种租车方案的费用为520003180015400⨯+⨯=元;第二种租车方案的费用为620002180015600⨯+⨯=元∴第一种租车方案更省费用.9、在社会主义新农村建设中,李叔叔承包了家乡的50亩荒山.经过市场调查,预测水果上市后A 种水果每年每亩可获利0.3万元,B 种水果每年每亩可获利0.2万元,李叔叔决定在承包的山上种植A 、B 两种水果.他了解到需要一次性投入的成本为:A 种水果每亩1万元,B 种水果每亩0.9万元.设种植A 种水果x 亩,投入成本总共y 万元.(1)求y 与x 之间的函数关系式;(2)若李叔叔在开发时投入的资金不超过47万元,为使总利润每年不少于11.8万元,应如何安排种植面积(亩数x 取整数)?请写出获利最大的种植方案.解:(1)y=0.1x+4.5 .(2)根据题意得:0.9(50)470.30.2(50)11.8x x x x +-≤⎧⎨+-≥⎩ 解得:1820x ≤≤所以,有如下种植方案:B 水果20亩.10、某电脑公司现有A ,B ,C 三种型号的甲品牌电脑和D ,E 两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1) 写出所有选购方案(利用树状图或列表方法表示);(2) 如果(1)中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(3) 现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A 型号电脑,求购买的A 型号电脑有几台.解:(1) 树状图如下 列表如下:有6可能结果:(A ,D ),(A ,E ),(B ,D ),(B ,E ),(C ,D ),(C ,E ).(注:用其它方式表达选购方案且正确给1分)(2) 因为选中A 型号电脑有2种方案,即(A ,D )(A ,E ),所以A 型号电脑被选中的概率是31 (3) 由(2)可知,当选用方案(A ,D )时,设购买A 型号、D 型号电脑分别为x ,y 台,根据题意,得⎩⎨⎧=+=+.10000050006000,36y x y x 解得⎩⎨⎧=-=.116,80y x 经检验不符合题意,舍去; (注:如考生不列方程,直接判断(A ,D )不合题意,舍去,也给2分)当选用方案(A ,E)时,设购买A 型号、E型号电脑分别为x ,y 台,根据题意,得⎩⎨⎧=+=+.10000020006000,36y x y x 解得⎩⎨⎧==.29,7y x 所以希望中学购买了7台A 型号电脑.11、已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的(3) 之间的函数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.解:(1)解:图①表示批发量不少于20kg 且不多于60kg 的该种水果,可按5元/kg批发; 图②表示批发量高于60kg 的该种水果,可按4元/kg 批发. (2)解:由题意得: 2060 6054m m w m m ⎧=⎨⎩≤≤())>(,函数图象如图所示.由图可知资金金额满足 240<w ≤300时,以同样的资金可批发到较多数量的该种水果.(3)解法一:设当日零售价为x 元,由图可得日最高销量32040w m =-当m >60时,x <6.5 由题意,销售利润为 2(4)(32040)40[(6)4]y x m x =--=--+ 当x =6时,160y =最大值,此时m =80即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.解法二:设日最高销售量为x kg (x >60)则由图②日零售价p 满足:32040x p =-,于是32040x p -= 销售利润23201(4)(80)1604040x y x x -=-=--+ 当x =80时,160y=最大值,此时p =6即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.)。

相关文档
最新文档