聚乳酸的合成与改性

合集下载

聚乳酸的合成与改性

聚乳酸的合成与改性
H3C O H O C
开环聚合
O O CH3 O O C CH3
Cat
2n
3-methoxybutan-2-one 聚乳酸(PLA)
3,6-dimethyl-1,4-dioxane-2,5-dione 丙交酯
丙交酯合成原理
聚 乳 酸 合 成 的 方 法 2
直接 缩聚
开始人们认为,直接缩合法只 能得到相对分子质量低的低聚物。 如今在反应过程中及时除去产生 的小分子水的技术,已有所突破。 直接缩聚的方法日渐成熟
右旋的D-PLA
左旋的L-PLA和右旋的D-PLA的性能比较
结晶性 玻璃化 温度 Mp 力学 性能 弯曲程度 在生理盐水 中降解半衰期
左旋的 等规立构聚合物, L-PLA
具有光学活性的 55-65 170-180 好 270MPa 3-10个月
半结晶
右 旋 的 无定型非晶聚合 D-PLA 物
50-60
发酵
O H3C CH OH
单体乳酸
C
OH
聚合
燃烧/堆肥 聚纤 产品
CO2 Exhaust
植物
淀粉
乳酸
PLA
燃烧降 解
聚 乳 酸 合 成 的 方 法 1
开环 聚合
首先把乳酸制得丙交酯,然后进行开环 聚合。丙交酯的开环聚合可用阴离子聚合、 阳离子聚合及配位聚合。用于阳离子聚合的 引发剂主要包括质子酸、路易斯酸及烷基化 试剂,如三氟甲磺酸、甲基三氟甲磺酸等, 阳离子外消旋不可避免,难以得到高相对分 子质量的聚乳酸。阴离子开环聚合的引发剂 有苯甲酸钾、苯酚钾、硬脂酸钾。
可降解高分子材料
聚乳酸
化学1203班刘福来
聚乳酸(PLA)的简介
聚乳酸属于合成脂肪族聚酯,是一种用途非常广泛的 完全可生物降解的新型高分子材料,它以绿色植物经过现 代生物技术生产出的乳酸为原料,再经过特殊的聚合反应 过程生成的高分子材料,也被称为生物质塑料。它是以可 再生能源而非石油资源的生物基高分子,摆脱了人来对石 油资源的过分依赖。

生物可降解材料聚乳酸的制备改性及应用

生物可降解材料聚乳酸的制备改性及应用

生物可降解材料聚乳酸的制备改性及应用摘要:聚乳酸(PLA)是人工合成的可生物降解的的热塑性脂肪族聚酯,其具有良好的机械性能、热塑性、生物相容性和生物降解性等,广泛应用于可控释材料、生物医用材料、组织工程材料、合成纤维等领域。

本文主要介绍了聚乳酸的合成、改性及其在各个领域的应用。

关键词:聚乳酸;生物降解;合成;应用随着大量高分子材料在各个领域的应用,废弃高分子材料对环境的污染有着日益加剧的趋势。

处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。

而乳酸主要来源于自然界十分丰富的可再生植物资源如玉米淀粉、甜菜糖等的发酵。

聚乳酸(polylactide简称PLA)在自然环境中可被水解或微生物降解为无公害的最终产物CO2和H2O,对其进行堆肥或焚烧处理也不会带来新的环境污染[1]。

此外聚乳酸及其共聚物是一种具有优良的生物相容性的合成高分子材料。

它具有无毒、无刺激性、强度高、可塑性强、易加工成型等特点,因而被认为是最有前途的生物可降解高分子材料[2]。

利用其可降解性,也可用作生物医用材料如组织支架、外科手术缝合线、专业包装、外科固定等。

1 生物降解机理[3,4]生物降解是指高分子材料通过溶剂化作用、简单水解或酶反应,以及其他有机体转化为相对简单的中间产物或小分子的过程。

高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。

微生物首先向体外分泌水解酶,与可生物降解材料表面结合,通过水解切断这些材料表面的高分子链,生成低相对分子质量的化合物(有机酸、糖等),然后,降解的生成物被微生物摄入体内,合成为微生物体物或转化为微生物活动能量,在耗氧条件下转化为CO2,完成生物降解的全过程。

材料的结构是决定其是否可生物降解的根本因素。

合成高分子多为憎水性的,一般不能生物降解,只有能保持一定湿度的材料才有可能生物降解。

生物降解材料聚乳酸的合成与改性工艺的研究

生物降解材料聚乳酸的合成与改性工艺的研究

molecular weight co-polymer. 、7 ̄re found that the hydrophilic performance of the polymer was obViously
improVed and the Tg was reduced through introducing polyethylene the polylactic acid chain through contact angle and DSC analysis.
学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许
论文被查阅和借阅。本人授权兰州理工大学可以将本学位论文的全部或部 分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段
保存和汇编本学位论文。同时授权中国科学技术信息研究所将本学位论文
收录到《中国学位论文全文数据库》,并通过网络向社会公众提供信息服务。
在白色污染日益严重的今天,聚乳酸由于有可降解性以及降解产物的矿化作
用,人们已经开始利用可降解的聚乳酸来代替一般通用聚合物产品。同时,现代
社会的大量能源消耗使得煤和石油等化工原料越来越紧张,传统的高聚物合成又 依赖于从天然资源石油中提取的单体,而石化燃料需数百万年才能产生。可以预 见,随着石油等资源的枯竭,源自石化原料的聚合物生产必将受到限制,与之相
polylactic acid products was 4.5×1 04 which was determined by Viscosimetry. Synthesize the co-polymer—PLA—PEGl using the lactide and PEG
as
monomer and temperature,

聚乳酸材料制备及性能研究

聚乳酸材料制备及性能研究

聚乳酸材料制备及性能研究在人工合成可降解高分子材料中,聚乳酸是近年来最受研究者们关注的一种。

它是一种生物可降解的热塑性脂肪族聚酯,是一种无毒、无刺激性,具有良好生物相容性、强度高、可塑性加工成型的生物降解高分子材料。

合成聚乳酸的原料可以通过发酵玉米等粮食作物获得,因此它的合成是一个低能耗的过程。

废弃的聚乳酸可以自行降解成二氧化碳和水,而且降解产物经光合作用后可再形成淀粉等物质,可以再次成为合成聚乳酸的原料,从而实现碳循环[3]。

因此,聚乳酸是一种完全具备可持续发展特性的高分子材料,在生物可降解高分子材料中占有重要地位。

迄今为止,学者们对聚乳酸的合成、性质、改性等方面进行了深入的研究。

2.1聚乳酸的合成聚乳酸以微生物发酵产物-乳酸为单体进行化学合成的,由于乳酸是手性分子,所以有两种立体结构。

聚乳酸的合成方法有两种;一种是通过乳酸直接缩合;另一种是先将乳酸单体脱水环化合成丙交酯,然后丙交酯开环聚合得到聚乳酸[4]。

2.1.1直接缩合[4]直接合成法采用高效脱水剂和催化剂使乳酸低聚物分子间脱水缩合成聚乳酸,是直接合成过程,但是缩聚反应是可逆反应,很难保证反应正向进行,因此不易得到高分子量的聚乳酸。

但是工艺简单,与开环聚合物相比具有成本优势。

因此目前仍然有大量围绕直接合成法生产工艺的研究工作,而研究重点集中在高效催化剂的开发和催化工艺的优化上。

目前通过直接聚合法已经可以制备具有较高分子量的聚乳酸,但与开环聚合相比,得到的聚乳酸分子量仍然偏低,而且分子量和分子量分布控制较难。

2.1.2丙交酯开环缩合[4]丙交酯的开环聚合是迄今为止研究较多的一种聚乳酸合成方法。

这种聚合方法很容易实现,并且制得的聚乳酸分子量很大。

根据其所用的催化剂不同,有阳离子开环聚合、阴离子开环聚合和配位聚合三种形式。

(1)阳离子开环聚合只有在少数极强或是碳鎓离子供体时才能够引发,并且阳离子开环聚合多为本体聚合体系,反应温度高,引发剂用量大,因此这种聚合方法吸引力不高;(2)阴离子开环聚合的引发剂主要为碱金属化合物。

生物医用材料聚乳酸的合成及其改性研究进展

生物医用材料聚乳酸的合成及其改性研究进展

化工进展CHEMICAL INDUSTRY AND ENGINEERING PROGRESS2020年第39卷第1期开放科学(资源服务)标识码(OSID ):生物医用材料聚乳酸的合成及其改性研究进展詹世平1,2,万泽韬1,2,王景昌1,2,阜金秋1,2,赵启成1,2(1大连大学环境与化学工程学院,辽宁大连116622;2辽宁省化工环保工程技术研究中心,辽宁大连116622)摘要:聚乳酸是一种具有良好生物相容性的可降解生物材料,被广泛应用于医药、医疗和食品包装等领域。

随着科学技术的进步,对聚乳酸材料的性能提出了新的要求和用途,研究者在合成方法和改性研究方面也取得了新的成果。

本文阐述了聚乳酸的化学结构和基本特性,常用合成方法,包括阳离子聚合、阴离子聚合和配位聚合的基本概念和应用实例,介绍了近年来发展的酶催化聚合、超临界二氧化碳中聚合等绿色合成方法,着重介绍了聚乳酸亲水改性、pH 响应改性和分支结构改性等几种用于医用方面的改性方法,最后对聚乳酸材料研究发展方向进行了展望,提出在聚乳酸基体中添加极低含量的无机纳米粒子填充物,可显著改善复合材料的性能,指出生物纳米复合包装材料的技术开发是未来几年着重研究的方向。

关键词:聚乳酸;合成方法;改性;生物相容性中图分类号:TB34文献标志码:A文章编号:1000-6613(2020)01-0199-07Synthesis and modification of biomedical material polylactic acidZHAN Shiping 1,2,WAN Zetao 1,2,WANG Jingchang 1,2,FU Jinqiu 1,2,ZHAO Qicheng 1,2(1College of Environmental and Chemical Engineering,Dalian University,Dalian 116622,Liaoning,China;2Chemical andEnvironmental Protection Engineering Research Technology Center,Dalian 116622,Liaoning,China)Abstract:Due to its good biocompatibility and biodegradability,polylactic acid is widely used in thefields of the drug,medicine and food packing and so on.With the progress of science and technology,some new requirements and purposes have been put forward for the properties of polylactic acid materials.Researchers have also made some new achievements in the synthesis methods and the modification research.The chemical constitution and basic properties of polylactic acid were described and the common synthetic methods of polylactic acid were discussed,including the basic concepts and application examples on cationic polymerization,anionic polymerization and coordination polymerization.The green synthetic methods such as enzymatic catalytic polymerization and polymerization in supercritical carbon dioxide developed in recent years were introduced.The hydrophilic modification,pH response modification and branch structure modification of polylactic acid were also emphatically introduced.Finally,the development directions of polylactic acid material research were prospected.It was proposed that adding very low content of inorganic nanoparticles filler into polylactic acid matrix can significantly improve the properties of composite materials.It was pointed out that the development of bio-nanocomposite packaging materials was a development direction of emphasis on research in the next few years.Keywords:polylactic acid;synthetic method;modification;biocompatibility综述与专论DOI :10.16085/j.issn.1000-6613.2019-0656收稿日期:2019-04-24;修改稿日期:2019-06-16。

生物可降解材料聚乳酸的制备改性及应用

生物可降解材料聚乳酸的制备改性及应用

生物可降解材料聚乳酸的制备改性及应用摘要:聚乳酸(PLA)是人工合成的可生物降解的的热塑性脂肪族聚酯,其具有良好的机械性能、热塑性、生物相容性和生物降解性等,广泛应用于可控释材料、生物医用材料、组织工程材料、合成纤维等领域。

本文主要介绍了聚乳酸的合成、改性及其在各个领域的应用。

关键词:聚乳酸;生物降解;合成;应用随着大量高分子材料在各个领域的应用,废弃高分子材料对环境的污染有着日益加剧的趋势。

处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。

而乳酸主要来源于自然界十分丰富的可再生植物资源如玉米淀粉、甜菜糖等的发酵。

聚乳酸(polylactide简称PLA)在自然环境中可被水解或微生物降解为无公害的最终产物CO2和H2O,对其进行堆肥或焚烧处理也不会带来新的环境污染[1]。

此外聚乳酸及其共聚物是一种具有优良的生物相容性的合成高分子材料。

它具有无毒、无刺激性、强度高、可塑性强、易加工成型等特点,因而被认为是最有前途的生物可降解高分子材料[2]。

利用其可降解性,也可用作生物医用材料如组织支架、外科手术缝合线、专业包装、外科固定等。

1 生物降解机理[3,4]生物降解是指高分子材料通过溶剂化作用、简单水解或酶反应,以及其他有机体转化为相对简单的中间产物或小分子的过程。

高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。

微生物首先向体外分泌水解酶,与可生物降解材料表面结合,通过水解切断这些材料表面的高分子链,生成低相对分子质量的化合物(有机酸、糖等),然后,降解的生成物被微生物摄入体内,合成为微生物体物或转化为微生物活动能量,在耗氧条件下转化为CO2,完成生物降解的全过程。

材料的结构是决定其是否可生物降解的根本因素。

合成高分子多为憎水性的,一般不能生物降解,只有能保持一定湿度的材料才有可能生物降解。

聚乳酸的合成与改性研究进展

聚乳酸的合成与改性研究进展
关键词 : 聚乳酸 ; 合 成 ቤተ መጻሕፍቲ ባይዱ 改性 ; 研 究
聚乳酸在医疗界中被广泛使用 , 主要在外科 手术 中缝合 等临床 对于聚乳酸而言 , 降低了降解速率 , 具有更好的强度保持性 , 可更好 界得 到广泛 的使用 。因此 , 随着历史 的发 展 , 聚乳 酸依然在不 断完 地满足骨折内固定材料 的使用要求。 善 。然 而, 由于聚乳 酸分子 中的相关结构会 对分子主链产 生一定的 2 . 3聚乳 酸的增 塑改性 。增 塑聚乳 酸可以理解 是依据生物具有 影响, 同时是结晶的主要组成部分 , 即使熔点较高但是速度却很慢 , 相容性 的特点 , 将增塑剂加人 到聚乳 酸中能够改变 聚乳 酸的柔韧性 致使温度停 留在不小于 5 8  ̄ C 不大于 6 0  ̄ C 之间 ,比聚苯乙烯温度要 等多方面的功能。 利用增塑 的方式进行 改变 聚乳酸的情况是较 为普 小 。因此 , 通过不断的实践找到方法进行合理完善 。 遍 的。聚乳酸在增塑以后通过弹性模量变化从不同方面合理分析 , 1 聚 乳 酸 的 合成 从而对增塑剂的性能得 到确定 。 目前 , 常用合成 聚乳酸的方法有两种 : 3 在超临界二氧化碳中合成 P I _ A 1 . 1 直接缩聚( P C法 ) 。在脱水机存在 的环境下 , 脱去一分 子的 在超 临界 当中的二氧化碳有较多不可思议 的特质 现象 ,例如 : 羧基 和一分子的羟基 , 使乳酸分子间形成低分子的聚合物 。然后在 由于压力的变化溶解性 能也会发生变化 , 而且具有较 强的溶胀性 能 使 用催化剂 以及升温的条件下 , 把低分子聚合物转化成高分子的聚 等 多方面特质。在这些不可思议 的特质下 , 能够将传统 的方式所存 合 物。 这一过程常采用的聚合方法有 : 熔 融缩 聚法 , 熔融缩聚——固 在 的不足进行合理完善 , 从而提高 P L A的性能 。 相聚合法 , 溶液缩聚法 。 通过传统 的方式对 P L A进行合成过程 中, 由于相关 的化合 物会 在熔融 聚合 的过程中 , 使用这个方式 即使能够得到 比较干净的 对 高分子产生一定的影 响 , 因此一定要除去。二氧化碳在 超临界中 产物 , 同时处理方式也较 为简便 。然而 , 产生的分子数量 不多 , 反应 进行合成时 , 能够较好的减少这种情况的发 生。 由于通过超临界的 在持续 时的粘度也会逐渐增加 , 这样就会对反应 的效率带来一定的 形式在溶解状态下的小分子 和高分子之 问存在较大 的区别 , 通常可 影响。 除此之外 , 温度也会对分子量大小带来干扰。 倘若温度逐渐升 以轻而 易举 的就能够将其分离 。 同时 , 通过传统的方式进行生产 时, 高时 , 低聚物就会出现裂解环化的现象 , 形成丙交酯。 倘若使用 固相 也许会 出现溶液残留的现象 , 产品存在一定的毒性。 但是 , 采取超临 缩聚的方式对分子量进行提升 , 应 当将压力减少或者是将副产物排 界方法 中的二氧化碳作 为反应的物质 , 根本不会出现毒性 , 也 确保 出等操作 。这样做会让制备过程变得很繁琐 , 与此 同时也增加 了大 了产品的品质有所提高。 除此之外 , 相关物质在反应过程中 , 由于粘 量资金。 度变大 , 分子运 动速度较慢 , 从而对聚合速率产生一定的影响。 倘若 溶液聚合优点是 反应 温度相对较低 , 副反应少 , 容易得 到较高 相关物质在超临界进行反应过程 中, 分子就能够运动较快。 分子质量 的产 物 , 但反应 中需要大量 的溶剂 , 因此需要增设 溶剂提 通过使用 超临界二 氧化碳 的形式 ,能够有效 的增加反应效率 。 纯、 回收设备 。另外难以除净 的溶剂残 留, 对制品也有一定的危害。 然而 , 这种方式也存 在一定 的不足之处 。在超临界 中有多数聚合物 此外 , 由于单体浓 度低 , 集合 速率较慢 , 设 备 的生 产能力也 相对较 是很难 进行溶解 的, 因此不是所有的方法都能够实施。 但是 , 随着科 低 。此外还有乳液法和悬浮造粒法。将 P L A溶于有机溶剂 , 再 与药 学技术水平 的提 高 ,这项技术 同样也在其他领 域中得到广泛 的使 物水溶 液及 助剂高速搅拌混合 , 形成微小 的包覆 体 , 再通 过有机溶 用 , 比如 : 在高分子加工 中就能达到预期 的效果等多种 的领域 中。 剂萃取或真空喷雾的方法成型 。但缺点是药物损失较大 , 无法避免 用超临界 喷射成型技术可以制备 P L A纤维 。 P L A纤维 的缓释过 有机溶剂及助剂 的残 留。 程受 P L A纤维 的降解所控制 , 突释时 间短 , 有较好 的缓解 性能 。超 1 . 2 开 环聚合法( R O P法 ) 。这 种方法常常采用的聚合方法 主要 临界技术制备 P L A泡沫 目前有温度诱导 , 溶液诱 导 , 压力诱 导三种 有三种 : 阳离子 聚合 、 阴离子聚合 、 配位 聚合 。这些方法都需要 引发 技术 , 其 中压力诱导发泡是最成功 的, 因为它的相变 速度很快 , 没有 剂来引发经行 , 对于引发剂的选择是 至关重要 的。引发剂在有机溶 压力梯度 ,而温度和溶液诱导需要仔 细考 虑温度梯 度和扩散 势垒 , 剂 中与溶剂分子可能发生很复杂 的副反应而生成混合物。另外 , 相 控制难度较大 。超临界二氧化碳能大幅度降低 P L A的玻 璃转变温 比之下 ,这种方法的到的产物后处理 比较麻烦 ,成本也相对较高。 度, 使P L A溶解于超临界二 氧化碳 中。 L A的配位开环聚合常用 的引发剂 为羧酸锡盐类 、 异丙醇铝 、 烷 氧铝 4 结论 或 双金属烷氧化合物等。其 中 , 羧酸锡盐类 , 尤其是辛酸亚锡 , 处理 通过 以上 内容 的总体阐述 , 我 国应 当沿着 可持续 发展的路线 出 相对简单 。其催化活性高 , 也安全无毒 。 发, 聚乳酸实现 了工业 化的发展 , 并 且随着时间 的推移会 越来越具 2 聚 乳 酸 的 改性 有潜力 , 在塑料领域 中发挥出重要 的作用。 聚乳酸具有较多的优势 , 现今为止 , 我 国以及世界 已经有很多 聚乳 酸的改性方法 , 以下 可 以用在多个领域。但是 , 由于聚乳酸 合成 的方式都是在机溶剂里 简单介 绍几种常用的改性 方法 。 实现的 , 并且还存在一些残留以及 废液等其他情况成 为了难题 。对 2 . 1 聚乳酸的共 聚改性 。这种共聚改性的方法是利用两种 单体 此 , 随着科学 的不断发展 , 相关人员的技术不断创新 , 这类 问题会得 活性相近 , 极 性也相近 的性质 , 将两种单体 混合 , 以 自由基共聚合 , 到较好 的解决 , 从而为我国的社会经济做出贡献 。 生成无规共 聚物 。 若两种单体活性相近 , 但极性相反 , 且竞 聚率 r 1 — 参 考 文 献 0 或r 2 —0 , 将 两种单体混合 , 通过 自由基聚合 , 可得到交 替共 聚物 。 【 1 】 余木 火, 徐红, 滕翠青, 韩克清. 一种 高分子量聚乳酸的制备 方法『 P 】 . 2 . 2聚乳酸的复合改性 。 由于聚乳酸具有一定 的脆性 , 在骨科固 中国专利: C N I 7 5 7 6 5 9 . 定 中作 为重要 的材料 ,把聚乳 酸和相关 的材料通过改性 的方式 , 能 [ 2 ] 任 杰, 王秦峰, 张乃文. 一种直接 熔融制备 高分子 量聚乳酸 的方法 够较好 的将 聚乳酸产生脆性的问题进行处理 。 [ P ] . 中国专f f  ̄ ] : C N 1 5 6 3 1 3 9 . 例如: 上海交通 大学孙康等发 明了一种改性 甲壳素纤维增强聚 f 3 】 刘文明, 赵凌 冲, 肖青, 李凤仪. 稀土 固体超 强酸 S 0 4 2 一 0 2 一 C e 4 + 乳 酸复合材料 , 该 复合材料具有很好 的界面结合与生物相容性 。相 直接法催化合成聚乳酸『 J 1 . 应用化学 , 2 0 0 6 ( 1 2 1 .

聚乳酸改性研究及其在包装领域的应用

聚乳酸改性研究及其在包装领域的应用

聚乳酸改性研究及其在包装领域的应用聚乳酸是一种新型的环保塑料,具有较好的力学性能、适度的耐热性、高抗冲击性和柔韧性,对包装行业具有较高的价值。

本文通过实验研究,研究了聚乳酸的改性、表征及在包装领域的应用。

1、聚乳酸的改性聚乳酸原料通常是由植物油或动物油经水解、酸催化及结晶加工制得,目前被广泛应用在纤维、表面涂层及塑料制品等领域。

为了改变聚乳酸的结构和性能,在很多应用过程中将聚乳酸进行改性处理,可以改变聚乳酸的性能,使其更加适用于某些特定应用。

聚乳酸改性处理的常用方法有空气乳化法和溶剂液化法。

空气乳化法可以有效地改变聚乳酸分子链构造,从而改变聚乳酸的物理性质;溶剂液化法则可以对分子结构进行改变,使聚乳酸具有更高的抗氧性。

2、聚乳酸的表征聚乳酸的表征包括理化性质表征和不同基态表征。

理化表征采用液相热重分析(LCR-GPC)法,可以计算出聚乳酸的分子量、分子量分布及其分子结构。

不同基态表征包括X射线衍射(XRD)、扫描电子显微镜(SEM)、紫外光可见分光光度计(UV-Vis)等,可以准确地检测出聚乳酸的结构变化。

3、聚乳酸在包装领域的应用聚乳酸可以用作包装材料,在包装行业有着重要的应用。

聚乳酸的改性可以提高其力学性能、耐热性和抗冲击性,使其应用在包装行业,特别是食品包装具有重要的意义。

此外,聚乳酸还具有良好的附着性和抗疲劳属性,可以有效地抵御温度变化和湿度变化,保护产品不受污染。

因此,聚乳酸在包装领域有着广泛的应用前景。

总之,聚乳酸在包装领域有着重要的应用,本文通过改性、表征研究去深入研究,分析了聚乳酸在包装领域的应用,发现聚乳酸具有良好的力学性能、耐热性、抗冲击性和抗疲劳性,可以更好地用作包装材料,为塑料包装领域的发展提供新的思路和方向。

聚乳酸合成

聚乳酸合成

聚乳酸是由生物发酵生产的乳酸经人工化学合成而得的聚合物,但仍保持着良好的生物相容性和生物可降解性,具有与聚酯相似的防渗透性,同时具有与聚苯乙烯相似的光泽度、清晰度和加工性,并提供了比聚烯烃更低温度的可热合性,可采用熔融加工技术,包括纺纱技术进行加工。

因此聚乳酸可以被加工成各种包装用材料,农业、建筑业用的塑料型材、薄膜,以及化工、纺织业用的无纺布、聚酯纤维、医用材料等等。

适合的加工方式有:真空成型、射出成型、吹瓶、透明膜、贴合膜、保鲜膜、纸淋膜,融溶纺丝等。

聚乳酸(PLA)的原料主要为玉米等天然原料,降低了对石油资源的依赖,同时也间接降低了原油炼油等过程中所排放的氮氧化物及硫氧化物等污染气体的排放。

为了摆脱对日趋枯竭的石油资源的依赖,大力开发环境友好的可生物降解的聚合物,替代石油基塑料产品,已成为当前研究开发的热点。

根据我国可持续发展战略,以再生资源为原料,采用生物技术生产可生物降解的聚乳酸(PLA)市场潜力巨大。

将粮食产品深加工,生产高附加值的产品是实现跨越式经济发展的重大举措。

国内聚乳酸市场分析:我国是一个生产塑料树脂材料及消费大国,年生产各类塑料制品近1900多万吨。

大力开发生产对环境友好的EDP塑料制品,势在必行,这有益于减少石油基塑料制品所带来的环境污染和对不可再生石油资源的依赖及消耗。

目前,国内有多家企事业单位从事“聚乳酸〔PLA〕”聚酯材料的研究及应用工作,国家和省及部委也将PLA开发项目列入“九五”、“十五”、“863”、“973”、《火炬计划》、《星火计划》、“十一五”和《国家中长期科学科技发展规划》重点科研攻关项目。

但是,目前国内PLA产业化步伐缓慢,产品经过多年的研发仅有浙江海正集团和上海同杰良生物技术有限公司等较有实力的企事业单位较有成效,江阴杲信也开发了粒子,纤维和无纺布等产品,PLA聚酯材料主要依赖国外进口,由于PLA 原料进口价格比较昂贵,这也限制了PLA高分子材料在我国的应用和发展。

聚乳酸(PLA)合成与改性的研究进展

聚乳酸(PLA)合成与改性的研究进展

聚乳酸(PLA)合成与改性的研究进展范兆乾【摘要】在无数种类的可降解聚合物中,聚乳酸(PLA)塑料是一种脂肪族聚酯,是具有生物相容性的热塑性塑料,它是目前最具有发展前景的环境友好型塑料材料。

这篇综述提供了目前的PLA市场信息,并介绍了近年来PLA合成和PLA改性方面的研究进展。

%In myriad types of biodegradable polymer, polylactic acid plastic is a kind of aliphatic polyester, it have the biocompatibility of thermoplastic, it is currently the most potential environment - friendly plastic material. The market information are provides in this paper, the advances in the research of PLA synthesis and PLA modification in recent years are introduced.【期刊名称】《河南化工》【年(卷),期】2011(000)015【总页数】4页(P21-24)【关键词】聚乳酸;PLA;塑料;合成;改性【作者】范兆乾【作者单位】青岛科技大学化工学院,山东青岛266042【正文语种】中文【中图分类】TQ325目前,全世界塑料年产量已经超过2亿t,相应的,塑料废弃物也逐年增加,严重污染环境,减少废塑料污染的方法之一是使用在自然界无论生物体内外都可以自然降解,不会造成环境污染的生物降解材料。

聚乳酸(Poly Lactic Acid,PLA)就是一种可生物降解材料。

PLA有三种立体化学存在形式,聚L-乳酸(PLLA)、聚D-乳酸(PDLA)和聚DL-乳酸(PDLLA)。

聚乳酸合成和改性

聚乳酸合成和改性

n H0一 CH— C00H C l H 3
H - E 0 一c H —c 0 于 0 H +( n一 1 ) H 2 0
由于反应 中存 在 着 游 离 乳 酸 、 水、 聚 合 物 之 间
收 稿 日期 : 2 0 1 4 02 - ・ 2 5:
的平衡 , 要 想获 得 高分子 质量 的聚 乳酸 , 就必 须尽量 脱 除 反应 生成 的水 , 使反 应 向缩聚 物生成 方 向进行 。 但 是 在反 应后期 , 去 除高 黏 度 聚 合熔 体 中 的水 分相 当 困难 , 同时 由于存 在聚 合物 降解 成丙交 酯 的反应 , 从 而 限制 了 P L A分 子 质 量 的提 高 。所 以一 步 法 合 成 出的 聚乳酸相 对 分子质 量往 往小 于 4 0 0 0, 且 强度
聚 乳 酸 合 成 和 改 性
马 佳
( 中国昆仑工程公 司, 北京 1 0 0 0 3 7 )
摘要 : 介绍了聚乳酸的合成 [艺一步法 、 两步法及其改进 , 通过分析 聚乳酸 自身存 在的特性及局 限性 , 介绍 了近几年聚乳 酸 的改性发展 , 包括耐热性的改性 , 亲水性改性以及机械性能方面 的改性 。 关键词 : 聚乳酸 ; 一步法 ; 两 步法 ; 改性 中图分类号 : T Q 2 4 5 . 1 2 文献标识码 : A 文章编号 : 1 0 0 8 82 - 6 1 ( 2 0 1 4) 0 3 - 0 0 0 5 - 0 5
提高反 应 温度 , 及 时将反 应产 生 的水分脱 出 , 反应条 件较 为苛 刻 。
面对 以上 问题 , 近几 年 来 直接 法 合 成 聚乳 酸有
和一 C O 0 H 分别 与其 他 乳 酸 分 子 中 的一 c O O H 和一 O H脱 水 缩合 , 形 成大 分子 的 聚合物 叫做聚乳 酸 。 目前 , 聚乳 酸 的制备 方 法通 常 可 以分 为 2大 类 :

聚乳酸的合成与改性课件

聚乳酸的合成与改性课件

聚乳酸的合成与改性课件聚乳酸(Polylactic Acid,简称PLA)是一种使用天然和可再生资源(如玉米淀粉和蔗糖)制造的生物降解塑料。

PLA能分解成二氧化碳和水,降解速度较快,不会造成环境污染。

聚乳酸可以通过两种主要方法合成:1. 乙酸乙酯法聚乳酸的乙酸乙酯法是由乙酸乙酯和乳酸的环状缩合反应得到的。

此时,锡催化剂在反应过程中起到了催化作用。

发生反应后,PLA在高真空条件下被制备出来。

这种方法生产PLA的优点在于反应速度快,在反应结束后,产物的纯度很高。

2. 玉米淀粉法玉米淀粉法是由含高量玉米淀粉、lactic acid和无机物盐构成的杂交体系反应而成的。

反应进行在130°C - 150°C工作温度的高真空条件下,在其中加入≤5%的过氧化钙(PMC)作为引发剂。

酒精是反应的副产物之一,副反应的成本是压低玉米淀粉法所生产的PLA的优点之一。

控制分子量和分子量分布是PLA高速率合成的主要涉及。

分子量的分布与聚合反应的催化机理,含有Pd均相催化剂在反应中催化了乳酸分子的马尾退化,使聚乳酸分子量不均匀分布。

不同反应条件下的淀粉和lactic acid的含量,包括溶剂类型和使用时间等也会影响分子量和分子量分布。

改性聚乳酸是通过添加某些物质,改变PLA的物理性能、热稳定性、耐磨性和生物降解性能的一种方法。

一些常用的改性方法包括添加纳米颗粒、均聚物和活性剂。

例如,纳米颗粒的添加可以提高PLA的机械强度和耐热性,而均聚物的添加可以改善PLA的生物降解性能。

总之,聚乳酸的合成是一个很重要的课题,也是塑料方面的发展方向之一。

通过不断改进合成方法和改善性能,有望实现生产环保塑料的目标,促进可持续发展。

聚乳酸的改性及应用研究进展

聚乳酸的改性及应用研究进展

近年来,随着技术的不断发展,聚乳酸在各个领域的应用也在不断拓展。例如, 通过共聚改性等方法,聚乳酸在高性能纤维和医用材料等领域取得了重要进展。 此外,聚乳酸在3D打印技术中也表现出良好的应用前景,为个性化医疗和产品 定制提供了新的可能。
环境保护及其挑战聚乳酸作为一种生物降解材料,具有较好的环境友好性。然 而,在聚乳酸的制备和使用过程中,仍存在一些环境保护问题。首先,聚乳酸 的制备需要大量的有机溶剂,这些溶剂在使用后往往会产生大量废液,对环境 造成一定压力。其次,聚乳酸的降解过程中可能会产生一些有污染性的降解产 物,如何有效控制这些产物对环境的影响是一个重要问题。
1、改进生产工艺,降低聚乳酸的生产成本,提高产量和质量。 2、深入探讨聚乳酸的改性技术,以便更好地满足不同领域的应用需求。
3、在应用研究方面,应聚乳酸在生物医学、纺织、包装和建筑材料等领域的 新应用模式的探索和现有应用问题的优化。
总之,聚乳酸作为一种环保材料,其改性和应用研究具有重要的理论和实践意 义。随着技术的不断进步和应用领域的拓展,我们有理由相信聚酸将在未来 的可持续发展中发挥更加重要的作用。
研究PLA阻燃改性后的生物相容性和降解性能;4)优化加工过程中的阻燃保护 措施。随着聚乳酸阻燃改性研究的深入,有望为拓宽PLA的应用领域提供重要 支持。
聚乳酸(PLA)是一种由可再生资源——乳酸合成的生物降解材料,被广泛应 用于包装、医疗、纤维等领域。由于其良好的生物相容性和可降解性,聚乳酸 在现代社会中具有广泛的应用前景。本次演示将重点探讨聚乳酸的制备方法、 应用领域、环境保护问题以及研究进展。
聚乳酸纤维的应用领域与优势聚乳酸纤维具有许多优点,如环保可降解、良好 的力学性能和化学稳定性等,使得它在许多领域都有广泛的应用。首先,在服 装领域,聚乳酸纤维具有优异的透气性、吸湿性和保暖性,适合制作各种服装, 如运动服、户外服装和内衣等。其次,在建筑领域,聚乳酸纤维可以用于制作 建筑保温材料、装饰材料和土工布等。此外,在农业领域,聚乳酸纤维可用于 制作农用膜、包装材料和生物降解的农用无人机等。

聚乳酸PLA改性

聚乳酸PLA改性

聚乳酸改性聚乳酸由于自身存在一些缺陷,从而影响了其加工性能和应用,主要缺陷有:自身强度不高、脆性、阻透性差、耐热性差等。

具有较高的拉伸强度、压缩模量,但质硬而韧性较差,缺乏柔性和弹性,极易弯曲变形;另外,PLA的化学结构缺乏反应性官能团,也不具有亲水性,降解速度需要控制,因此有必要对PLA进行改性。

聚乳酸可与丝素、木质素、淀粉、羟基磷灰石、据羟基脂肪酸酯、聚己内酯、聚氧化乙烯、聚乙烯基吡咯烷酮、聚丙烯酸酯、聚醋酸乙烯、聚乙烯等进行共混,制备各种不同结构和性能的共混体系,满足不同的应用。

聚乳酸的改性方法一般分为化学改性和物理改性。

化学改性主要是通过接枝交联等途径引入各种类型的功能化侧基(如羧基、氨基、羟基等)改变PLA主链的化学结构或表面结构,从而改善其脆性、疏水性及降解速度等性能;物理改性主要是通过添加增塑剂、纳米材料等改变PLA的机械、光学、热学等性能。

一、化学改性⑴表面改性PLA表面改性原理是,利用改性剂改善其表面组织与性能,从而提高与其他材料之间的粘附性。

通过表面改性,赋予了PLA衍生物良好的生物相容性,使其应用更为广泛。

Li等用淀粉(starch)对PLLA进行表面改性,获得了中等阻抗性的St-g-PLLA,将St-g-PLLA与PLLA共混得到的材料的机械性能明显优于PLLA/starch共混物。

Aiping Zhu等通过壳聚糖上的自由氨基与4-叠氮苯甲酸上的羧基进行反应,将4-叠氮苯甲酸固定在壳聚糖上。

利用4-叠氮苯甲酸的光敏性,采用咋外光照射涂抹在PLA薄膜表面的壳聚糖,叠氮基团光解,从而将PLA和壳聚糖共价连接起来。

改性后壳聚糖上的羟基和氨基又可以引入其他的官能团,从而可以对PLA进行进一步的改性。

⑵共聚改性由于内酯开环均聚物如PLA、聚己内酯等均为疏水性物质,且降解周期也难于控制,常需与其他单体共聚来改变材料的亲水疏水性、结晶性等,根据共聚物的分子量及共聚单体种类及配比等加以控制聚合物的降解速度。

聚乳酸(PLA)的合成及改性研究

聚乳酸(PLA)的合成及改性研究

聚乳酸(PLA)的合成及改性研究摘要介绍聚乳酸(PLA)的基本性质、合成方法及应用范围。

综述了国内外PLA 的改性研究及目前有关PLA性能改进的方法。

概括了PLA在合成改性中需要注意的问题,展望了PLA的发展前景:不断改进、简化和缩短PLA的合成工艺;用新材料、新方法对PLA进行改性,开发出新用途、高性能的PLA材料是PLA的研究方向。

关键词:聚乳酸合成改性前言聚乳酸(PLA)是一种以可再生生物资源为原料的生物基高分子,具有良好的生物降解性、生物相容性、较强的机械性能和易加工性。

聚乳酸材料的开发和应用,不但可解决环境污染问题,更重要的意义在于为以石油资源为基础的塑料工业开辟了取之不尽的原料资源。

此外,由于它的最终降解产物为二氧化碳和水,可由机体正常的新陈代谢排出体外,是具有广泛应用前景的生物医用高分子材料(如可吸收手术缝合线)、烧伤覆盖物、骨折内固定材料、骨缺损修复材料等。

近几年来,有应用到纺织材料、包装材料、结构材料、电子材料、发泡材料等更广泛的领域的研究报道。

PLA 的应用市场空间和发展潜力巨大,有关它的研究一直是可生物降解高分子材料研究领域的热点。

1、聚乳酸的研究背景聚乳酸(PLA)是由人工合成的热塑性脂肪族聚酯。

早在20 世纪初,法国人首先用缩聚的方法合成了PLA[1];在50 年代,美国Dupont 公司用间接的方法制备出了相对分子质量很高的PLA;60 年代初,美国Cyanamid 公司发现,用PLA 做成可吸收的手术缝合线,可克服以往用多肽制备的缝合线所具有的过敏性;70 年代开始合成高分子量的具有旋光性的D 或L 型PLA,用于药物制剂和外科等方面的研究;80 年代以来,为克服PLA 单靠分子量及分子量分布来调节降解速度的局限,PLA 开始向降解塑料方面发展[2]。

作为石油基塑料的可替代品,其最大的缺点就是脆性大、力学强度较低,亲水性差,在自然条件下它降解速率较慢;因此近年来对PLA 的改性己成为研究的热点。

聚乳酸及其改性的研究和应用进展

聚乳酸及其改性的研究和应用进展

聚乳酸及其改性的研究和应用进展1 聚乳酸的研究进展绿色化学为开发新的乳酸衍生物拓展了思路,生物聚合物(如聚乳酸)就是绿色化学的应用领域之一。

目前环保行业的明星是利用乳酸生产的新型聚酯材料——聚乳酸(PLA),它也称为聚丙交酯(polylactide),属于聚酯家族。

聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分而且可以再生,主要以玉米、木薯等为原料。

聚乳酸的生产过程无污染,而且产品可以生物降解,实现在自然界中的循环,因此是理想的绿色高分子材料。

聚乳酸中间体丙交酯具有3种立体异构体,因此由丙交酯开环聚合所得到的聚乳酸有多种链结构,如聚L一乳酸(PLLA)、聚D一乳酸(PDLA)和聚D,L 一乳酸(PDLLA)等,链结构决定了聚乳酸的性能。

Purac公司和Sulzer Chemtech公司联合开发一种新型低成本、高效的聚合工艺以生产高质量聚乳酸。

这种新型工艺基于先进的聚合和液化技术并利用由Purac提供的特种丙交酯以高效生产各种各样的PLA产品。

Purac提供丙交酯单体作为聚合进料并利用先进聚合技术与Sulzer合作以生产PLA。

这项工艺可大幅度降低工艺和产品的开发时间,从而促进PLA产品快速可靠地进入市场。

这项新工艺仅要求较少的投资,并具有放大化生产的巨大潜力。

Purac介绍说,由丙交酯合成PLA相当简单,而且不会产生任何副产品。

丙交酯是一种环状二聚物,由两种不同构型的乳酸单体组成。

使乳酸生成环状二聚体(丙交酯),再开环缩聚成PLA。

在此过程中,丙交酯必须经过提纯,否则难以获得分子量较高的聚合物。

Pyramid Bioplastics公司在德国东北部威廉·皮克城应用Uhde Inventa Fischer公司(德国纤维机械制造商)的技术在建设年产6万t的装置。

计划于2012年建成,预计2010年全世界塑料消费量预计将达为2.5亿t,西欧消费量为4900万t(占19.5%,其中29.5 用于包装材料),预计1445万t包装材料中5 (约70万t)会被以聚乳酸为主的生物塑料所替代。

聚乳酸材料的合成原理

聚乳酸材料的合成原理

聚乳酸材料的合成原理聚乳酸是一种生物可降解的聚合物材料,具有广泛的应用领域,例如医疗、生物工程、食品包装等。

它的合成原理主要包括以下几个步骤:单体脱水聚合、高分子化学改性以及加工制备。

首先是单体脱水聚合。

聚乳酸的合成主要是通过乳酸单体的缩合反应实现的。

乳酸分子由一个酸基和一个醇基组成,可以通过快速脱水聚合反应将其缩合成聚乳酸。

在这个过程中,通常会添加过量的酸催化剂来促进反应的进行。

乳酸分子之间的羟基与羧基发生缩合反应,形成酯键,同时伴随着水分子的生成。

这个反应是可逆的,当乳酸单体中的水分含量过高时,反应会向乳酸单体的方向进行,增加单体的含量。

反之,当反应温度和反应时间增加时,聚合反应会更倾向于生成较长的聚合物链。

其次是高分子化学改性。

由于聚乳酸作为一种热塑性聚合物,其机械性能和加工性较差,所以需要通过化学改性来提高其综合性能。

一种常见的改性方式是通过共聚合反应引入其他单体,如乙二醇和己内酰胺等。

这样可以在聚乳酸链上引入不同结构的单体单元,改变材料的物理特性,如热稳定性、溶解度和透明度等。

此外,还可以通过在聚乳酸链上引入交联剂,提高聚乳酸材料的力学性能。

最后是加工制备。

聚乳酸可以通过热塑性加工方法制备成不同形状的材料,例如挤出、注射模塑和压制等。

在加工过程中,需要根据聚乳酸的熔点和熔融温度进行控制,并确保加工温度不会超过聚乳酸的分解温度。

由于聚乳酸是一种可生物降解的材料,所以它的加工温度相对较低,使得加工过程对环境影响较小。

总的来说,聚乳酸材料的合成原理主要是通过乳酸单体的脱水聚合反应来实现,然后通过化学改性和加工制备来改善材料的性能。

这种合成方法简单易行,成本较低,同时聚乳酸材料还具有良好的生物相容性和可降解性能,使得它成为一种非常有前景的材料。

聚乳酸材料

聚乳酸材料

聚乳酸材料聚乳酸(PLA)是一种热塑性脂肪族聚酯,可从玉米、马铃薯或淀粉材料中提取,并在一定土壤和堆肥条件下可完全降解为二氧化碳和水,不会造成环境污染。

PLA 具有出色的生物相容性,可生物降解性、热性能和力学性能,被广泛应用于一次性餐具、食品包装和生物医疗器具等方面。

聚乳酸的合成聚乳酸常用的制备方法有以下三种:直接缩聚法:缩聚法就是把乳酸单体进行直接缩合,也称一步聚合法。

在脱水剂的存在下,乳酸分子中的羟基和羧基受热脱水,直接缩聚合成低聚物。

加入催化剂,继续升温,低相对分子质量的聚乳酸聚合成更高相对分子量的聚乳酸。

二步法:使乳酸生成环状二聚体丙交酯,再开环缩聚成聚乳酸。

这一技术较为成熟,主要过程是原料经微生物发酵制得乳酸后,再经过精制、脱水低聚、高温裂解,最后聚合成聚乳酸。

反应挤出制备高分子量聚乳酸:用间歇式搅拌反应器和双螺杆挤出机组合,进行连续的熔融聚合实验,可获得由乳酸通过连续熔融缩聚制得的分子量达150000的聚乳酸。

利用双螺杆挤出机将低摩尔质量的乳酸预聚物在挤出机上进一步缩聚,制备出较高摩尔质量的聚乳酸。

聚乳酸材料的应用1.聚乳酸具有良好的机械性能,适用于吹塑、热塑等各种加工方法,加工方便,应用十分广泛。

可用于加工从工业到民用的各种塑料制品、包装食品、快餐饭盒、无纺布、工业及民用布。

进而加工成农用织物、保健织物、抹布、卫生用品、室外防紫外线织物、帐篷布、地垫面等等。

2.聚乳酸材料相容性与可降解性良好。

聚乳酸在医药领域应用也非常广泛,如可生产一次性输液用具、免拆型手术缝合线等,低分子聚乳酸作药物缓释包装剂等。

3.、聚乳酸具有最良好的抗拉强度及延展度,聚乳酸也可以各种普通加工方式生产,例如:熔化挤出成型,射出成型,吹膜成型,发泡成型及真空成型,与广泛使用的聚合物有类似的成形条件,此外它也具有与传统薄膜相同的印刷性能。

如此,聚乳酸就可以应各不同业界的需求,制成各式各样的应用产品。

聚乳酸材料的缺点和改进方法缺点:聚乳酸的大分子链中的酯基和侧甲基的空间位阻效应,使得聚乳酸分子的刚性较大,柔顺性较差,因此聚乳酸材料有质地较脆、韧性差的缺点,大大限制了聚乳酸材料的应用范围,如果能改进这一缺点,聚乳酸材料的应用前景将更加宽广。

生物降解高分子聚乳酸的合成和改性研究进展

生物降解高分子聚乳酸的合成和改性研究进展

生物降解高分子聚乳酸的合成和改性研究进展摘要:聚乳酸(polylactic acid ,PLA) 是一种具有良好生物相容性、可降解性和可吸收性的高分子材料。

本文较全面地介绍了聚乳酸的合成与改性方法, 并对聚乳酸的合成及改性的研究方向进行了展望。

关键字:聚乳酸;合成;改性聚乳酸具有优良的生物相容性、生物可降解性,最终的降解产物是二氧化碳和水,不会对环境造成污染。

这使之在以环境和发展为主题的今天越来越受到人们的重视,并对其在工农业领域、生物医药领域、食品包装领域的应用展开了广泛的研究。

聚乳酸的合成是以乳酸为原料,直接缩聚得到,由于反应产物水难以从体系中排除,所以产物分子量较低,很难满足实际要求。

若采用两步聚合法丙交酯开环聚合,虽可制备出高相对分子质量的聚乳酸,但其流程冗长,成本高。

聚乳酸合成的高成本及其疏水性、脆性等性能缺陷,限制了其应用范围,所以目前对聚乳酸的研究主要集中在改性上。

本文主要从聚乳酸合成和改性两方面综述国内外聚乳酸的最新研究进展。

1 聚乳酸合成方法目前聚乳酸的合成主要有两种方法,即丙交酯开环聚合法和直接缩聚法[1-4]。

1.1 直接缩聚法乳酸同时具有—OH 和—COOH,是可直接缩聚的。

聚乳酸的直接缩合制备聚乳酸方法简单, 利用乳酸的活性, 在加热条件下, 乳酸分子间发生脱水缩合,可以直接合成分子量较高的聚乳酸。

但是, 乳酸的直接缩聚由于存在着乳酸、水、聚酯及丙交酯的平衡, 不易得到高分子量的聚合物。

直接合成法要获得高分子量的聚合物必须注意以下三个问题: (1) 动力学控制; (2) 水的有效脱出; (3) 抑制降解。

Hiltunen[5]等研究了不同催化剂对乳酸直接聚合的影响。

日本Ajioka 等开发了连续共沸除水直接聚合乳酸的工艺。

国内赵耀明[6]以联苯醚为溶剂,通过溶液直接聚合制得粘均分子量为 4 万的聚合物。

现已可由直接聚合方法制得具有实用价值的PLA 聚合物,并且此聚合方法工艺简单,化学原料及试剂用量少,但直接聚合的PLA 分子量仍偏低,需进一步提高,才能使其具有更加广泛的用途。

聚乳酸化学改性

聚乳酸化学改性

聚乳酸化学改性的研究摘要为了改善聚乳酸的使用性能,需要将聚乳酸改性,改善其力学性能、耐热性、柔韧性和作为生物材料所需的亲水性、生物相容性等。

近年来有许多研究者对聚乳酸的改性进行了大量研究。

本文致力于综述各种化学改性的方法如共聚、交联改性、表面改性,并对各种方法进行分析。

关键词聚乳酸化学改性共聚表面改性0引言合成聚乳酸的原料来自可再生的农副产品,而且聚乳酸本身可以生物降解、有较好生物相容性,因此聚乳酸在通用材料特别是一次性材料和生物材料等方面有较好的应用前景。

然而聚乳酸的韧性、强度等力学性能和耐热性较差,同时亲水性不高、生物相容性还不能满足作为生物材料的许多要求,因此近年来许多研究者从化学改性、物理改性、复合改性方面进行了大量研究。

而本文将从最有效的改性手段之一-化学改性的进展进行诉述和分析。

共聚改性共聚改性是指将乳酸和其他单体按一定比例进行共聚,以此改善聚乳酸某些性能。

1.1任建敏等【1】分别研究了聚乳酸与聚乙二醇改性聚乳酸的体外降解特性,通过测定分子量和重量在pH7.4的磷酸盐缓冲液中的变化表征它们的体外降解特性。

结果表明,聚乙二醇改性聚乳酸开始降解的时间早于聚乳酸,在相同时间内,前者的重量下降也较后者明显。

他们提到这些材料的降解与水引起酯基水解有关,降解较快表明亲水性更好,所以聚乙二醇改性聚乳酸亲水性优于聚乳酸,这使得它可能是蛋白抗原等亲水性药物的缓释载体材料。

而乙二醇的比例应该与亲水程度有关,因此研究乙二醇的比例与降解速率的关系对满足不同的缓释效果有重大的意义。

樊国栋等【2】就对在共聚物中PEG分子量对亲水性能的影响进行了研究,结果表明PEG聚合度为800时亲水性最好,水在其表面的接触角为63。

1.2马来酸酐改性聚乳酸指将乳酸和马来酸酐进行共聚而得到的共聚物。

许多研究证明了马来酸酐可以改性聚乳酸的亲水性和力学性能。

程艳玲和龚平【3】在不同的pH值的环境下研究了聚乳酸和马来酸酐改性聚乳酸的降解性能,结果表明聚乳酸在碱性环境中降解更快,而在酸性环境中马来酸酐改性聚乳酸降解更快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

把乳酸单体进行直接缩合已经成为制备聚 乳酸的重要方法,其直接缩聚反应过程如下:
O O OH
H
O
H C CH3
C
催化剂
O
H C CH3
C
+ 2n
nH2O
2-hydroxypropanoic acid
3-methoxybutan-2-one

COOH OH CH3 H H
COOH OH CH3
左旋的L-PLA
可降解高分子材料
聚乳酸
化学1203班刘福来
聚乳酸(PLA)的简介
聚乳酸属于合成脂肪族聚酯,是一种用途非常广泛的 完全可生物降解的新型高分子材料,它以绿色植物经过现 代生物技术生产出的乳酸为原料,再经过特殊的聚合反应 过程生成的高分子材料,也被称为生物质塑料。它是以可 再生能源而非石油资源的生物基高分子,摆脱了人来对石 油资源的过分依赖。
右旋的D-PLA
左旋的L-PLA和右旋的D-PLA的性能比较
结晶性 玻璃化 温度 Mp 力学 性能 弯曲程度 在生理盐水 中降解半衰期
左旋的 等规立构聚合物, L-PLA
具有光学活性的 55-65 170-180 好 270MPa 3-10个月
半结晶
右 旋 的 无定型非晶聚合 D-PLA 物
50-60
聚乳酸的特点
是百分百生物基的材料; 是完全降解的(温度60摄氏度,80%湿度,有氧 有微生物存在下,3-6个月可以接近百分之百生物 降解); 有很好的生物相容性,进入人体内是可以将降解 成乳酸,通过代谢; 材料透明度较好 机械强度比较高,收缩性比较低。
聚乳酸的原料
聚乳酸(PLA)是以乳酸 为基本原料制得的。所有碳水 化合物富集的物质,例如粮食、 有机废弃物(如玉米芯或其它 农作物的根、茎、叶、皮,城 市有机废物,工业下脚等)都 是乳酸生产的原料。
发酵
O H3C CH OH
单体乳酸
C
OH
聚合
燃烧/堆肥 聚纤 产品
CO2 Exhaust
植物
淀粉
乳酸
PLA
燃烧降 解
聚 乳 酸 合 成 的 方 法 1
开环 聚合
首先把乳酸制得丙交酯,然后进行开环 聚合。丙交酯的开环聚合可用阴离子聚合、 阳离子聚合及配位聚合。用于阳离子聚合的 引发剂主要包括质子酸、路易斯酸及烷基化 试剂,如三氟甲磺酸、甲基三氟甲磺酸等, 阳离子外消旋不可避免,难以得到高相对分 子质量的聚乳酸。阴离子开环聚合的引发剂 有苯甲酸钾、苯酚钾、硬脂酸钾。
---------

Байду номын сангаас
140MPa
至少5个月
H3C O H O C
开环聚合
O O CH3 O O C CH3
Cat
2n
3-methoxybutan-2-one 聚乳酸(PLA)
3,6-dimethyl-1,4-dioxane-2,5-dione 丙交酯
丙交酯合成原理
聚 乳 酸 合 成 的 方 法 2
直接 缩聚
开始人们认为,直接缩合法只 能得到相对分子质量低的低聚物。 如今在反应过程中及时除去产生 的小分子水的技术,已有所突破。 直接缩聚的方法日渐成熟
相关文档
最新文档