最新人教版初中八年级上册数学《整式的除法》精品教案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 = - ab2c.
3
商式=系数 • 同底的幂 • 被除式里单独有的幂
被除式的系数 底数不变, 除式的系数 指数相减
保留在商里 作为因式
三 多项式除以单项式
问题1 如何计算(am+bm) ÷m?
计算(am+bm) ÷m就是相当于求( 因此不难想到 括里应填a+b.
又知am ÷m+bm ÷m=a+b. 即 (am+bm) ÷m=am ÷m+bm ÷m
) ﹒3ab2=12a3b2x3.
解法2:原式=4a2x3 ·3ab2 ÷ 3ab2=4a2x3. 理解:上面的商式4a2x3的系数4=12 ÷3;a的指数2=3-1,b 的指数0=2-2,而b0=1,x的指数3=3-0.
知识要点
单项式除以单项式的法则
单项式相除, 把系数、同底数的幂分别相除后,作为商 的因式;对于只在被除式里含有的字母,则连它的指数一起 作为商的一个因式. 理解 商式=系数 • 同底的幂 • 被除式里单独有的幂
造的 自读
3. 已知一多项式与单项式-7x5y4 的积为21x5y7-28x6y5, 则这个多项式是 -3y3+4xy .
2.计算:(1)6a3÷2a2; (2)24a2b3÷3ab; (3)-21a2b3c÷3ab.
解:(1) 6a3÷2a2
(2) 24a2b3÷3ab
=(6÷2)(a3÷a2)
=(24÷3)a2-1b3-1
=12a3÷3a+(-6a2) ÷3a+3a÷3a =4a2+(-2a)+1 =4a2-2a+1.
在计算单项式除以单项式时,要注意什么? (1)先定商的符号(同号得正,异号得负); (2) 注意添括号;
当堂练习
同底数幂的除法,底数不变, 1.下列计算错在哪里?应怎样改正? 指数相减
(1)4a8 ÷2a 2= 2a 4 ( × ) 2a6
多项式除以 单项式
1.系数相除; 2.同底数的幂相除; 3.只在被除式里的因式照搬 作为商的一个因式
转化为单项式除以单项式的问题
课堂小结
1.同学们,今天你学到了什么呀? 和同桌说说有什么收获。
2.师生共同总结反思学习情况。
1.从课后习题中选取; 2.完成练习册本课时的习题.
再见!
己书中 的方国 未式人 来,自 。创己
相当于求28 ÷23=? (3)( 2 )( m)×2n=2m+n
相当于求x10÷x6=?
相当于求2m+n ÷2n=?
3. 观察下面的等式,你能发现什么规律?
(1)28 ÷23=25 =28-3
(2)x10÷x6=x4 =x10--6 同底数幂相除,底数不变,指数相减 (3) 2m+n ÷2n=2m =2(m+n)-n
) ·m=am+bm,
知识要点
多项式除以单项式的法则
多项式除以单项式,就是用多项式的 每一项 除以这 个 单项式 ,再把所得的商 相加 . 关键: 应用法则是把多项式除以单项式转化为单项式除以单项式.
典例精析
例3 计算(12a3-6a2+3a) ÷3a. 解: (12a3-6a2+3a) ÷3a
被除式的系数 底数不变, 除式的系数 指数相减。
保留在商里 作为因式。
典例精析
例2 计算:
(1)28x4y2 ÷7x3y; (2)-5a5b3c ÷15a4b.
解:(1)28x4y2 ÷7x3y =(28 ÷7)x4-3y2-1 =4xy;
(2)-5a5b3c ÷15a4b
=(-5÷15)a5-4b3-1c
=3a.
=8ab2.
(3)-21a2b3c÷3ab =(-21÷3)a2-1b3-1c = -7ab2c.
4.计算:(6x2y3 )2÷(3xy2)2. =36x4y6÷9 x2y4 =4x2y2.
注意:运算顺序先乘方再乘除.
课堂小结
同底数幂 的除法
底数不变,指数相减
整式的 除法
单项式除以 单项式
(2)10a3 ÷5a2=5a ( × ) 2a
系数相除
(3)(-9x5) ÷(-3x) =-3x4 (× ) 3x4
求系数的商,应 注意符号
(4)12a3b ÷4a2=3a (
×
) 7ab
只在一个被除式里含有的字母,要连同它的 指数写在商里,防止遗漏.
2.(情境引入问题) 木星的质量约为地球质量的(1.90×1024)÷(5.98×10213)=.18 ×102 倍.
4. 试猜想:am ÷an=? (m,n都是正整数,且m>n) am ÷an=am-n
验证一:因为am-n ·an=am-n+n=am,所以am ÷an=am-n.
验证二:
am an
Leabharlann Baidu
am an
amnn an
amn an an
amn
知识要点
同底数幂的除法
一般地,我们有
am ÷an=am-n (a ≠0,m,n都是正整数,且m>n)
(2) (ab)5 ÷(ab)2=(ab)5-2=(ab)3=a3b3.
二 单项式除以单项式
探究发现
(1)计算:4a2x3·3ab2=12a3b2x3 ; (2)计算:12a3b2x3 ÷ 3ab2= 4a2x3 .
解法1: 12a3b2x3 ÷ 3ab2相当于求( 由(1)可知括号里应填4a2x3.
想一想:你还有哪些计 算方法?
地球 木星
讲授新课
一 同底数幂的除法
探究发现
1.计算:
本题直接利用同底数 幂的乘法法则计算
(1)25×23=?28
(2)x6·x4=?x10
(3)2m×2n=?2m+n
2.填空:
本题逆向利用同底数 幂的乘法法则计算
(1)( 2 )( 5)×23=28
(2)x6·( x )(4)=x10
第十四章 整式的乘法与因式分解
14.1.4 整式的乘法
第3课时 整式的除法
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.运算掌握同底数幂的除法法则并运用其进行计算.(重点) 2.探索整式除法的三个运算法则,能够运用其解决实际问题. (难点)
导入新课
情境引入
问题 木星的质量约是1.9×1024吨,地球的质量约是5.98×1021 吨,你知道木星的质量约为地球质量的多少倍吗? 木星的质量约为地球质量的 (1.90×1024)÷(5.98×1021)倍.
即 同底数幂相除,底数不变,指数相减.
想一想:am÷am=? (a≠0)
答:am÷am=1,根据同底数幂的除法则可得am÷am=a0.
规定
a0 =1(a ≠0)
这就是说,任何不等于0的数的0次幂都等于1.
典例精析
例1 计算: (1)x8 ÷x2 ;
(2) (ab)5 ÷(ab)2.
解:(1)x8 ÷x2=x8-2=x6;
3
商式=系数 • 同底的幂 • 被除式里单独有的幂
被除式的系数 底数不变, 除式的系数 指数相减
保留在商里 作为因式
三 多项式除以单项式
问题1 如何计算(am+bm) ÷m?
计算(am+bm) ÷m就是相当于求( 因此不难想到 括里应填a+b.
又知am ÷m+bm ÷m=a+b. 即 (am+bm) ÷m=am ÷m+bm ÷m
) ﹒3ab2=12a3b2x3.
解法2:原式=4a2x3 ·3ab2 ÷ 3ab2=4a2x3. 理解:上面的商式4a2x3的系数4=12 ÷3;a的指数2=3-1,b 的指数0=2-2,而b0=1,x的指数3=3-0.
知识要点
单项式除以单项式的法则
单项式相除, 把系数、同底数的幂分别相除后,作为商 的因式;对于只在被除式里含有的字母,则连它的指数一起 作为商的一个因式. 理解 商式=系数 • 同底的幂 • 被除式里单独有的幂
造的 自读
3. 已知一多项式与单项式-7x5y4 的积为21x5y7-28x6y5, 则这个多项式是 -3y3+4xy .
2.计算:(1)6a3÷2a2; (2)24a2b3÷3ab; (3)-21a2b3c÷3ab.
解:(1) 6a3÷2a2
(2) 24a2b3÷3ab
=(6÷2)(a3÷a2)
=(24÷3)a2-1b3-1
=12a3÷3a+(-6a2) ÷3a+3a÷3a =4a2+(-2a)+1 =4a2-2a+1.
在计算单项式除以单项式时,要注意什么? (1)先定商的符号(同号得正,异号得负); (2) 注意添括号;
当堂练习
同底数幂的除法,底数不变, 1.下列计算错在哪里?应怎样改正? 指数相减
(1)4a8 ÷2a 2= 2a 4 ( × ) 2a6
多项式除以 单项式
1.系数相除; 2.同底数的幂相除; 3.只在被除式里的因式照搬 作为商的一个因式
转化为单项式除以单项式的问题
课堂小结
1.同学们,今天你学到了什么呀? 和同桌说说有什么收获。
2.师生共同总结反思学习情况。
1.从课后习题中选取; 2.完成练习册本课时的习题.
再见!
己书中 的方国 未式人 来,自 。创己
相当于求28 ÷23=? (3)( 2 )( m)×2n=2m+n
相当于求x10÷x6=?
相当于求2m+n ÷2n=?
3. 观察下面的等式,你能发现什么规律?
(1)28 ÷23=25 =28-3
(2)x10÷x6=x4 =x10--6 同底数幂相除,底数不变,指数相减 (3) 2m+n ÷2n=2m =2(m+n)-n
) ·m=am+bm,
知识要点
多项式除以单项式的法则
多项式除以单项式,就是用多项式的 每一项 除以这 个 单项式 ,再把所得的商 相加 . 关键: 应用法则是把多项式除以单项式转化为单项式除以单项式.
典例精析
例3 计算(12a3-6a2+3a) ÷3a. 解: (12a3-6a2+3a) ÷3a
被除式的系数 底数不变, 除式的系数 指数相减。
保留在商里 作为因式。
典例精析
例2 计算:
(1)28x4y2 ÷7x3y; (2)-5a5b3c ÷15a4b.
解:(1)28x4y2 ÷7x3y =(28 ÷7)x4-3y2-1 =4xy;
(2)-5a5b3c ÷15a4b
=(-5÷15)a5-4b3-1c
=3a.
=8ab2.
(3)-21a2b3c÷3ab =(-21÷3)a2-1b3-1c = -7ab2c.
4.计算:(6x2y3 )2÷(3xy2)2. =36x4y6÷9 x2y4 =4x2y2.
注意:运算顺序先乘方再乘除.
课堂小结
同底数幂 的除法
底数不变,指数相减
整式的 除法
单项式除以 单项式
(2)10a3 ÷5a2=5a ( × ) 2a
系数相除
(3)(-9x5) ÷(-3x) =-3x4 (× ) 3x4
求系数的商,应 注意符号
(4)12a3b ÷4a2=3a (
×
) 7ab
只在一个被除式里含有的字母,要连同它的 指数写在商里,防止遗漏.
2.(情境引入问题) 木星的质量约为地球质量的(1.90×1024)÷(5.98×10213)=.18 ×102 倍.
4. 试猜想:am ÷an=? (m,n都是正整数,且m>n) am ÷an=am-n
验证一:因为am-n ·an=am-n+n=am,所以am ÷an=am-n.
验证二:
am an
Leabharlann Baidu
am an
amnn an
amn an an
amn
知识要点
同底数幂的除法
一般地,我们有
am ÷an=am-n (a ≠0,m,n都是正整数,且m>n)
(2) (ab)5 ÷(ab)2=(ab)5-2=(ab)3=a3b3.
二 单项式除以单项式
探究发现
(1)计算:4a2x3·3ab2=12a3b2x3 ; (2)计算:12a3b2x3 ÷ 3ab2= 4a2x3 .
解法1: 12a3b2x3 ÷ 3ab2相当于求( 由(1)可知括号里应填4a2x3.
想一想:你还有哪些计 算方法?
地球 木星
讲授新课
一 同底数幂的除法
探究发现
1.计算:
本题直接利用同底数 幂的乘法法则计算
(1)25×23=?28
(2)x6·x4=?x10
(3)2m×2n=?2m+n
2.填空:
本题逆向利用同底数 幂的乘法法则计算
(1)( 2 )( 5)×23=28
(2)x6·( x )(4)=x10
第十四章 整式的乘法与因式分解
14.1.4 整式的乘法
第3课时 整式的除法
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.运算掌握同底数幂的除法法则并运用其进行计算.(重点) 2.探索整式除法的三个运算法则,能够运用其解决实际问题. (难点)
导入新课
情境引入
问题 木星的质量约是1.9×1024吨,地球的质量约是5.98×1021 吨,你知道木星的质量约为地球质量的多少倍吗? 木星的质量约为地球质量的 (1.90×1024)÷(5.98×1021)倍.
即 同底数幂相除,底数不变,指数相减.
想一想:am÷am=? (a≠0)
答:am÷am=1,根据同底数幂的除法则可得am÷am=a0.
规定
a0 =1(a ≠0)
这就是说,任何不等于0的数的0次幂都等于1.
典例精析
例1 计算: (1)x8 ÷x2 ;
(2) (ab)5 ÷(ab)2.
解:(1)x8 ÷x2=x8-2=x6;