第一章 概率论基础(3)

合集下载

概率论基础 PPT课件

概率论基础 PPT课件

正概率点为至多可列个
连续型 其他
任何随机变量X都是从负无穷到正无穷
离散型随机变量特点:正概率点为有限个或者可列个
0,1:正概率点 P(1)=1/2
P(0)=1/2
非离散型
连续型 其他
三.随机变量(random variable)的分布
4.1 概率的数学(公理化)定义 概率就是广义的函数
数学定义:设E是一个随机试验,Ω为它的样本空间,以E中所有的随机事件 组成的集合(事件体)为定义域,定义一个函数P(A)(其中A为任一随机事件),
且P(A)满足以下三个公理,则称函数P(A)为事件A的概率。
公理1(非负性) 0≤P(A)≤1 公理2(规范性) P(Ω)=1 公理3(可列可加性) 若A1,A2, …,An,…两两相斥,则
第一章 概率论基础
§1.1 概率简述
1. 随机现象及其统计规律性
在一组不变的条件下,具有多种可能发生的结果的现象称为随机现象, 这类现象的一个共同点是: 事先不能预言多种可能结果中究竟出现哪一种。
2. 随机试验与随机事件 我们把对随机现象进行的一次观测或者一次实验统称为一个试验, 如果这个试验满足下面的三个条件: (1)在相同的条件下,试验可以重复地进行;(可重复) (2)试验的结果不止一种,而且事先可以确知试验的所有结果; (3)在进行试验前不能确定出现哪一个结果。(不可预测) 那么我们就称它是一个随机试验,简称试验。一般用字母E表示。
数值p为事件A在条件S下发生的概率(probability) ,记作P(A)=p。
例2:捕鱼问题
× f
n

A

n
P
A
池塘中有鱼若干(不妨假设为n条),先捞上1000条作记号,放回后再

概率论基础知识

概率论基础知识
几何性质:介于曲线y=f(x)与Ox轴之间的面积等于1。X落在区间(x1,x2]的概率P{x1<X≤x2}等于区间(x1,x2]上曲线y=f(x)之下的曲边梯形的面积。
对于连续型随机变量来说,它取任一指定实数值a的概率均为0,即P{X=a}=0。事实上0≤P{X=a}≤P{a-△x<X≤a}=F(a)-F(a-△x).P{a<X≤b}=P{a≤X≤b}=P{a<X<b}.
定理二:若事件A与B相互独立,则下列各对事件也相互独立:
多个事件相互独立:一般,设A1,A2,…,An是n(n≥2)个事件,如果对于其中任意2个,任意3个,…,任意n个事件的积事件的概率,都等于各事件概率之积,则称事件A1,A2,…,An相互独立。
推论:①若事件A1,A2,…,An(n≥2)相互独立,则其中任意k(2≤k≤n)个事件也是相互独立的。
第一章 概率论的基本概念
一、事件运算常用定律(设A,B,C为事件):
二、频率与概率
1.概率的公理化定义:
①非负性:对于每一个事件A,有P加性:设A1,A2,…是两两互不相容的事件,即对于AiAj=∅,i≠j,i,j=1,2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+….
P{X>s+t|X>s}=P{X>t}
3.正态分布(高斯分布)[X~N(μ,σ2)]:
正态分布性质:
①曲线关于x=μ对称,这表明对于任意h>0有P{μ-h<X≤μ}=P{μ<X≤μ+h }.
②当x=μ时取到最大值 ,x离μ越远,f(x)的值越小。
③在x=μ±σ处曲线有拐点。曲线以Ox轴为渐近线。
标准正态分布:μ=0,σ=1.其概率密度和分布函数分别用φ(x),Φ(x)表示,即有:
②若n个事件A1,A2,…,An(n≥2)相互独立,则将A1,A2,…,An中任意多个事件换成它们各自的对立事件,所得的n个事件仍相互独立。

高等数理统计笔记

高等数理统计笔记

高等数理统计笔记高等数理统计笔记第一章:概率论基础1.1 概率的引入1.2 概率的公理化定义1.3 概率的基本性质1.4 条件概率与独立性1.5 全概率公式与贝叶斯公式1.6 随机变量的引入与分布函数1.7 随机变量的分布函数及其性质1.8 随机变量的密度函数及其性质1.9 随机变量的数字特征第二章:多维随机变量及其分布2.1 二维随机变量及其联合分布函数2.2 二维随机变量的联合密度函数及其性质2.3 二维随机变量的条件分布函数及其性质2.4 二维随机变量的条件密度函数及其性质2.5 相互独立的随机变量2.6 随机变量的函数的分布及其性质2.7 两个随机变量的和的分布及其性质第三章:大数定理与中心极限定理3.1 大数定理的概念3.2 切比雪夫不等式3.3 伯努利大数定理3.4 辛钦大数定理3.5 中心极限定理的概念3.6 李雅普诺夫中心极限定理3.7 林德贝格-列维中心极限定理3.8 中心极限定理的应用第四章:参数估计4.1 点估计的概念与性质4.2 最大似然估计法4.3 矩估计法4.4 经验分布函数与分位数的估计4.5 贝叶斯估计第五章:假设检验5.1 总体均值检验的基本知识5.2 单个总体均值的假设检验5.3 单个总体比例的假设检验5.4 两个总体均值的假设检验5.5 两个总体比例的假设检验5.6 方差的假设检验5.7 单个总体分布的非参数检验5.8 两个总体分布的非参数检验第六章:方差分析与回归分析6.1 方差分析的基本概念6.2 单因素方差分析6.3 多因素方差分析6.4 回归分析的概念与简单回归6.5 最小二乘估计法6.6 多元回归分析第七章:统计抽样与抽样分布7.1 抽样调查的概念与方法7.2 抽样分布及其基本性质7.3 样本均值的分布7.4 样本平均数与总体均值的关系7.5 样本方差与总体方差的关系7.6 样本比与总体比的关系第八章:贝叶斯统计推断8.1 贝叶斯定理及其含义8.2 贝叶斯估计量的概念与性质8.3 最大后验概率估计8.4 确定性问题的贝叶斯推断方法第九章:序贯统计与时间序列分析9.1 序贯统计的概念与应用9.2 时间序列的基本概念与应用9.3 平稳序列与非平稳序列的区别9.4 自相关函数与自协方差函数9.5 平稳序列的谱分析9.6 自回归模型与移动平均模型9.7 估计方法与模型诊断第十章:非参数统计方法10.1 非参数统计的基本概念10.2 秩和检验10.3 秩和检验的应用10.4 秩次相关检验10.5 Friedmann检验10.6 克鲁斯卡尔-华里斯检验以上是一份高等数理统计的笔记,涵盖了概率论基础、多维随机变量及其分布、大数定理与中心极限定理、参数估计、假设检验、方差分析与回归分析、统计抽样与抽样分布、贝叶斯推断、序贯统计与时间序列分析、非参数统计方法等内容,共计6000字。

第一章概率论基础3(1)PPT课件

第一章概率论基础3(1)PPT课件
• 概率分布函数
– 分布在x左边的总质量
• 概率密度函数
– 在x处的概率的密度
随机变量的分类
• 离散型随机变量
– 除了cdf和pdf,还可以用pmf描述
• 连续型随机变量
– 只能用cdf和pdf描述,不能用pmf描述
1.3.2随机向量
• 样本空间标准化为高维欧氏空间 • 总概率1分布在n维欧氏空间内 • 分布的方式和一维类似
(Ω ,F, P)是概率空间。记Ω上的实值映射X (ω)=k,ω Ω,k=0,1,2
即: X10,,21,or3
2, 4
X(ω)是定义在概率空间(Ω ,F, P)上的离散型随机变量。 并且,它的分布律为:
X~0.0360.1480.216
分布函数为:0,F()0 . 360
.
84
, ,
1 ,
F(x)P(:X()x)P({:X()xi}) xix
P(:X()xi)Pi
xix
xix
۞离散型随机变量的分布函数是右连续单调不减的阶梯函数.
设X是取有穷个值的随机变量,不失一般性,假设x0<x1<x2< ∙∙∙ <xn, ,那么在分布律(a)下, X 的分布函数FX (x)具有下图所 表现的一般特征。
(b)
x
FX(x) fX(u)du
连续型随机变量的分布函数
其中 f (x)称作随机变量 X 的概率密度函数(probability density function)。
۞设 f (x) (xR1)是连续型随机变量 X=X(ω)的概率密度函数,其性质:
(1) f (x) ≥ 0 , xR1 ;
(2)
– 当样本空间为定义于某个数集上的函数组成,则称 该函数集合为随机过程

概率论基础

概率论基础

第1章概率论基础========================本章将复习与总结概率论的基本知识也扩充一些新知识点,比如:1)利用冲激函数表示离散与混合型随机变量的概率密度函数,2)随机变量的条件数学期望3)特征函数4)瑞利与莱斯分布5)随机变量的基本实验方法========================1.1概率公理与随机变量1.2多维随机变量与条件随机变量1.3随机变量的函数1.4数字特征与条件数学期望121.5特征函数1.6典型分布1.7随机变量的仿真与实验========================1.1概率公理与随机变量此句作为后面每页ppt的标题========================随机试验(Random Experiment):对随机现象做出的观察与科学实验。

样本空间(Sample space):随机试验所有的基本可能结果构成的集合称Ω。

Ω的元素为样本点(Sample point)。

事件(Event)是试验中“人们感兴趣的结果”构成的集合,是Ω的子集。

各种不同的事件的总体构成一个事件集合,称为事件域F。

========================事件是随机的。

赋予事件一个出现可能性的度量值,称为概率(Probability )。

“可能性的度量值”是 “宏观”意义下(即大数量的情形下)的比例值,由相对频率(Relative frequency )来计算,()AA n P A n ≈=试验中出现的次数总试验次数 (n 很大)========================概率公理: 任何事件A 的概率满足:(1) 非负性:任取事件A ,()0P A ≥ (2) 归一性:()=1P Ω(3) 可加性:若事件,A B 互斥,即,A B ⋂=∅,则,()()()=P A B P A P B ⋃+======================== 事件概率的基本性质:(1) ()=0P ∅ (2) ()01P A ≤≤(3) ()()P A P B ≤,如果A B ⊆ (4) ()()()P AB P A P A B ≤≤⋃======================== 条件事件:A B B A =事件发生条件下的事件 条件概率(Conditional probability ),()()()P AB P B A P A =, ()0P A >======================== 事件A 与B 独立(Independent )等价地定义为()()()P AB P A P B =多个事件12,,,n A A A 彼此独立,()()()()1212m m k k k k k k P A A A P A P A P A ========================= 事件的最基本运算:(参见教材)========================例1.1 分析掷均匀硬币问题。

第一章概率论的基础知识3-45学分

第一章概率论的基础知识3-45学分

随机事件
二、样本空间
1、样本空间:试验的所有可能结果所组成的 集合称为样本空间,记为S( Ω ) . 2、样本点: 试验的每一个结果或样本空间的 元素称为一个样本点,记为e ( ω ). 3.由一个样本点组成的单点集称为一个基本事 件,记为{e} ( {ω} ).
请给出E1-E7的样本空间
三、随机事件
五、事件的运算
1、交换律:AB=BA,AB=BA 2、结合律:(AB)C=A(BC), (AB)C=A(BC) 3、分配律:(AB)C=(AC)(BC), (AB)C=(AC)(BC) 4、德.摩根(De Morgan)律:
A B A B,
k k
AB A B
可推广 Ak Ak ,
A
k
k
Ak .
k
交变并,并变交,最后加补
例2
甲、乙、丙三人各向目标射击一发子弹, 以A、B、C分别表示甲、乙、丙命中目标, 试用A、B、C的运算关系表示下列事件:
A1 : “至少有一人命中目标 ” :
A B C
A2 : “恰有一人命中目标” : ABC ABC ABC A3 : “恰有两人命中目标” : ABC ABC ABC A4 : “最多有一人命中目标 ” : A5 : “三人均命中目标” :
i 1
n
4. 积(交)事件:A与B同时发生 AB=AB发生
4’n个事件A1, A2,…, An同时发生 A1A2…An发生
5.差事件:A-B称为A与B的差事件。A-B发生
事件A发生而B不发生
何时A-B=? 何时A-B=A?
6 互不相容(互斥)
7 对立事件 (逆事件)
A B
组合一:从含有n个元素的集合中随机抽取k 个, 共有

概率论与数理统计基础知识

概率论与数理统计基础知识

从集合的角度看

B
A

事件是由某些样本点所构成的一个集合.一个事件发 生,当且仅当属于该事件的样本点之一出现.由此可 见,样本空间Ω作为一个事件是必然事件,空集Ø作 为一个事件是不可能事件,仅含一个样本点的事件称 为基本事件.
2. 几点说明
⑴ 随机事件可简称为事件, 并以大写英文字母
A, B, C,
基本事件 实例
由一个样本点组成的单点集.
“出现1点”, “出现2点”, … , “出现6点”.
必然事件 随机试验中必然会出现的结果. 实例 上述试验中 “点数不大于6” 就是必然事件. 不可能事件 随机试验中不可能出现的结果. 实例 上述试验中 “点数大于6” 就是不可能事件. 必然事件的对立面是不可能事件,不可能事 件的对立面是必然事件,它们互称为对立事件.
说明 1. 随机试验简称为试验, 是一个广泛的术语.它包 括各种各样的科学实验, 也包括对客观事物进行的 “调查”、“观察”或 “测量” 等. 2. 随机试验通常用 E 来表示. 实例 “抛掷一枚硬币,观 察正面,反面出现的情况”.
分析 (1) 试验可以在相同的条件下重复地进行; (2) 试验的所有可能结果: 字面、花面; (3) 进行一次试验之前不能 确定哪一个结果会出现. 故为随机试验.
将下列事件均表示为样本空间的子集. (1) 试验 E2 中(将一枚硬币连抛三次,考虑正反 面出现的情况),随机事件: A=“至少出现一个正面” B=“三 次出现同一面” C=“恰好出现一次正面” (2) 试验 E6 中(在一批灯泡中任取一只,测试其 寿命),D=“灯泡寿命不超过1000小时”
(1)由S2= {HHH, HHT, HTH, THH,HTT,THT, TTH,TTT}; 故: A={HHH, HHT, HTH, THH,HTT,THT, TTH}; B={HHH,TTT} C={HTT,THT,TTH} (2) D={x: x<1000(小时)}。

概率论与数理统计 1-3

概率论与数理统计 1-3

3
1. 条件概率的定义
设A、B是两个事件,且P(A)>0,则称 P(B | A) P( AB) (1) P( A)
为在事件A发生的条件下,事件B的条件概率.
1.3条件概率
B ABA
S
若事件A已发生, 则为使 B也发 生 , 试验结果必须是既在 B 中又在 A中的样本点 , 即此点必属于AB. 由于我们已经知道A已发生, 故A变 成了新的样本空间 , 于是 有(1).
3
P( Ai ) P(A1)P(A2 / A1)P(A3 / A1A2 )
i 1
※想一想: ①应如何推导此式? ② n个事件的公式如何写呢?
7
1.3条件概率
例2 一批零件共100个,其中有10个是次品。今从这批零
件中随机抽取,每次一件,1)若不放回地抽取3次,求3次都 取得合格品的概率;2)若有放回地抽取2次,求2次都取得合 格品的概率。
注 通常, P(B|A) ≠ P(B)
4
2. 条件概率P(.|A)的性质
1.3条件概率
(1)非负性 对每一个事件B, P(B|A) ≧0 概
(2)规范性 对必然事件S, P(S|A) =1


(3)可列可加性 若B1, B2 ,是两两互不相容的事件,则有


P Bi | A P(Bi | A)
解 记 Ai=“第i次取得合格品”,i=1,2,3;
1) 若不放回地抽,则
P
(
A1
)

90 100
,
P(
A2
|
A1 )

89 99
,
P(
A3
|
A1
A2
)

李贤平《概率论基础》第三版课后答案

李贤平《概率论基础》第三版课后答案
(3)p=P{第一卷出现在旁边}+P{第五卷出现旁边}-P{第一卷及第五卷出现在旁
边}= 2 + 2 − 1 = 7 . 5 5 10 10 (4)这里事件是(3)中事件的对立事件,所以 P = 1− 7 /10 = 3/10 (5)第三卷居中,其余四卷在剩下四个位置上可任意排,所以 P = 1× 4 !/ 5 != 1/ 5
1
A + C = {1,2,3}。
6、解:(1){至少发生一个}= A ∪ B ∪ C ∪ D . (2){恰发生两个}= ABC D + ACBD + ADBC + BC AD + CD AB + BDAC .
(3){A,B 都发生而 C,D 都不发生}= ABC D . (4){都不发生}= ABC D = A ∪ B ∪ C ∪ D .
4、解:(1) ABC ={抽到的是男同学,又不爱唱歌,又不是运动员};
ABC ={抽到的是男同学,又爱唱歌,又是运动员}。 (2) ABC = A ⇒ BC ⊃ A ,当男同学都不爱唱歌且是运动员时成立。 (3)当不是运动员的学生必是不爱唱歌的时, C ⊂ B 成立。
(4)A=B 及 A = C ⇒ A = B = C ,当男学生的全体也就是不爱唱歌的学生全体,也
(2)在上式中令 x=-1 即得所欲证。
(3)要原式有意义,必须
0

r

a
。由于
C a−r a+b
=
C b+r a+b
,
Cbk
=
C b−k b
,此题即等于
a
∑ 要证
C C k +r b−k ab
=
C b+r a+b

第一章_概率论基础

第一章_概率论基础
使P{X<x}总有意义. 通常F是包含全体{X<x} 的最小代数.
注2
随机变量概念的理解
1) 对于ω∈Ω,有唯一X(ω)与之对应, 随机变量 X可理解为 从样本空间 Ω到实数集 Rx的一个映 射.

A
B
易知 A+= A+=A
n个事件A1,A2,…,An中至少有一个发生 是一个事件, 称为事件的和, 记作: A1+A2+…+An 或 A1A2…An
可列个事件的和表示可列个事件中至少有一个事件发生, 记作
A
i 1

i

A
i 1

i
事件的交(积)
两个事件A与B同时发生, 即"A且B", 是一 个事件, 称为事件A与B的交. 它是由既属于A 又属于B的所有公共样本点构成的集合. 记作 AB 或 AB
事件间的关系及其运算
为了直观, 经常使用图示来表示事件, 一般地, 用一个平面上某个方(或矩)形区表示必然事件 或者整个样本空间, 其中的一个子区域表示 一具体的事件.

A
事件的包含
如果事件A发生必然导致事件B发生, 即属 于A的每一个样本点都属于B,则称事件B包含事 件A或称事件A含于事件B,记作: BA或AB

A
B
易知 A=A A=
对立事件
事件"非A"称为A的对立事件(或逆事件). 它是由样本空间中所有不属于A的样本点组成 的集合. 记作 A

显然
AA , A A , AA
A
A
事件的差
事件A发生而事件B不发生, 是一个事件, 称为事件A与B的差. 它是由属于A但不属于B 的那些样本点构成的集合. 记作 AB

概率论基础讲义全

概率论基础讲义全

概率论基础知识第一章随机事件及其概率随机事件§几个概念1、随机实验:满足下列三个条件的试验称为随机试验|;(1)试验可在相同条件下重复进行;(2)试验的可能结果不止一个,且所有可能结果是已知的;(3)每次试验哪个结果出现是未知的;随机试验以后简称为试验,并常记为E。

例如:曰:掷一骰子,观察出现的总数;E2:上抛硬币两次,观察正反面出现的情况;E3:观察某电话交换台在某段时间内接到的呼唤次数2、随机事件:在试验中可能出现也可能不出现的事情称为随机事件:常记为A,B, C例如,在E i中,A表示掷出2点”,B表示掷出偶数点”均为随机事件3、必然事件与不可能事件:每次试验必发生的事情称为必然事件,记为Q。

每次试验都不可能发生的事情称为不可能事件,记为①。

例如,在E i中,掷出不大于6点”的事件便是必然事件,而掷出大于6点”的事件便是不可能事件,以后,随机事件,必然事件和不可能事件统称为事件4、基本事件:试验中直接观察到的最简单的结果称为基本事件。

例如,在曰中,掷出1点”,掷出2点”,……,掷'出6点”均为此试验的基本事件由基本事件构成的事件称为复,例如,在E i中掷出偶数点”便是复合事件5、样本空间:从集合观点看,称构成基本事件的元素为样本点,常记为e.例如,在E i中,用数字1, 2,......,6表示掷出的点数,而由它们分别构成的单点集{1}, {2}, (6)便是E i中的基本事件。

在E2中,用H表示正面,T表示反面,此试验的样本点有(H , H),( H , T),( T, H ),( T, T),其基本事件便是{ ( H, H) }, { ( H , T) }, { (T, H ) }, { (T, T) }显然,任何事件均为某些样本点构成的集合。

例如,在E i中掷出偶数点”的事件便可表为{2, 4, 6}。

试验中所有样本点构成的集合称为样本空间。

记为Qo例如,在E i 中,Q={1 , 2, 3, 4, 5, 6}在E2 中,Q={ ( H , H),( H , T),( T, H),( T, T) }在E s 中,Q={0 , 1, 2,……}例1, 一条新建铁路共10个车站,从它们所有车票中任取一张,观察取得车票的票种此试验样本空间所有样本点的个数为N Q=P 210=90.(排列:和顺序有关,如北京至天津、天津至北京)若观察的是取得车票的票价,则该试验样本空间中所有样本点的个数为10)=452(组合)例2 .随机地将15名新生平均分配到三个班级中去,观察15名新生分配的情况。

概率论基础3——条件概率

概率论基础3——条件概率

一、条件概率生活中很多概率都是在某些特殊条件下的概率。

比如你想知道你在家感染新冠的概率,这是取决于很多方面的,比如,政策有没有放开、是否位于高风险区等等。

只有在这些条件的限制下,我们才能较为准确的求出你想知道的概率。

基本概念:设A,B是随机试验E的两个随机试验,且P(B)>0,称P(A|B)=\frac{P(AB)}{P(B)} 为在事件B发生的条件下,事件A发生的条件概率。

韦恩图:上面A、B分别有两个椭圆,代表了他们的事件范围。

我们想要求在B的条件下A发生的概率,那么直观上分母应该是P(B),因为条件是事件B就相当于要以事件B作为基础;而由于事件B的限制,事件A中不属于B的部分应该被舍去,它们不在B的控制之下。

所以也很容易理解,分子是A和B的和事件(交集)的概率。

性质条件概率也属于概率,所以它也满足概率的基本性质,只不过会有所改变。

(1)对于每一事件A,0≤P(A|B)≤1(2) P(\Omega|B)=1(3)若A_1,A_2,……,A_n 互不相容,则P(\bigcup_{i=1}^{m} A_i|B)=\sum_{i=1}^mP(A_i|B) (4) P(A|B)+P(\overlineA|B)=1(5)容斥原理: P(A\bigcup B|B)=P(A|B)+P(B|B)-P(AB|B)二、乘法公式在上文我们知道条件概率的公式为: P(A|B)=\frac{P(AB)}{P(B)} 。

那如果我们此时知道P(B)和P(A|B),相求P(AB),可以通过移项转化成下列公式: P(A|B)P(B)=P(AB)同理,我们也可以得到: P(B|A)P(A)=P(AB) 这两个公式我们称其为乘法公式。

上面两个式子在实际计算中要根据问题灵活选择。

我们也可以将其拓展到n个事件中:P(A_1A_2…A_n)=P(A_1)P(A_2|A_1)P(A_3|A_2A_1)…P(A_n|A_n…A_2A_1) 我们可以这样理解:$P(A_1)$是假设A1正确,$P(A_2|A_1)$是假设A1正确的情况下A2正确,以此类推三、全概率公式有限划分基本概念:设 \Omega 为随机试验E的样本空间,B1,B2 ,…,Bn为E的一组事件,若(1) Bi∩Bj =f ,i ≠ j(2) B_1∪B_2 ∪…∪B_n=\Omega则称B1,B2,…,Bn 为 \emptyset 的一个有限划分,或称完备事件组。

概率论基础知识

概率论基础知识
独立是事 互斥是事 件间的概 件间本身 率属性 的关系
两事件相互独立 P ( AB ) P ( A) P ( B ) 两事件互斥
AB
二者之间没 有必然联系
定义2: 设A,B,C是三个事件,若满足: P(AB)=P(A)P(B), P(AC)=P(A)P(C), P(BC)=P(B)P(C), P(ABC)=P(A)P(B)P(C) 则称A,B,C为相互独立的事件. 定义3:对n个事件A1,A2,…,An,如果对所有可 能的组合1≤i<j<k<…≤n成立着 P(AiAj)=P(Ai)P(Aj) P(AiAjAk)=P(Ai)P(Aj)P(Ak) P(A1A2…An)=P(A1)P(A2)…P(An), 则称这n个事件A1,A2,…,An相互独立.
概率的统计定义直观地描述了事件发生的 可能性大小,反映了概率的本质内容,但 也有不足,即无法根据此定义计算某事件 的概率。
2.2、古典概型
若随机试验满足以下特征:
(1)试验的可能结果只有有限个;
(2)各个结果的出现是等可能的. 则称此试验为古典概型.
古典概型中事件概率的计算公式
设随机试验E为古典概型,其样本空间Ω及 事件A分别为: Ω={ω1,ω2,…,ωn} A={ωi1,ωi2,…,ωik} 则随机事件 A 的概率为:
Ai — 第i次试验中A发生, 则
k P( X k ) Cn p k q nk , k 0,1,2,, n
称随机变量X服从参数为n,p的二项分布,记为
P( A n A1A 2 A n1 )
2.4 全概率公式和贝叶斯公式:
1. 样本空间的划分 定义 : 若B1, B2 , , Bn一组事件满足:
(i) Bi B j , i j, i, j 1, 2, ...,n,

第一章概率论基础知识

第一章概率论基础知识
P {x1Xx2}PXx2PXx1 F x2F x1
P{x1Xx2}P{x1Xx2}P{Xx1} F(x2)F(x1)P{Xx1}
2020/12/26
■分布函数的性质
⑴ 单调不减性:若x1 x2,则 F(x1) F(x2)
⑵ 归一 性:对任意实数x, 0Fx1,且
F ( )lim F (x)0,F( )lim F(x)1 ;
解 由题意可知 RX{0,1,2,3},则 X 的分布律为
X0
1
2
3
p k p 3 C31(1p)p2 C32(1p)2p (1 p )3
2020/12/26
将 p 1/2带入可得 X 的分布律为
X0
1
2
3
pk 1
3
3
1
8
8
8
8
2020/12/26
2.常用的离散型随机变量
(1) (0—1)分布 定义1 如果随机变量X的分布律为
x
x
⑶ 右连续性:对任意实数 X F (x 0 ) lim F (t) F (x ).
t x
具有上述三个性质的实函数,必是某个随机变量的分 布函数。故该三个性质是分布函数的充分必要性质。
2020/12/26
例1 已知 F xA arcx tB a,n求 A,B。

FAB0
2
FAB1
A1
F'xfx
2020/12/26
例1 设X 的分布函数为 Fx1e2x, x0
0, x0
求 P X 2 ,P X 3 ,fx .
解 PX2F2 1e4
P X31PX31F3 e 6
fxFx
2e
2
x

01-概率论基础

01-概率论基础
– M落在区域Ω内旳任意位置旳概率都是相等旳 – M落在区域Ω旳任何部分区域g内旳概率只与g
旳测度(长度、面积、体积等)成正比,而且 与g旳位置和形状无关
• 几何概型中随机事件Ag旳概率
g的测度 P(A g ) 的测度
例1.5 会面问题
• 已知甲、乙两人约定在6到7时间在某处会面,并约
定先到者应等待另一人20分钟,过时即可离去
(n 2)! 1
P(Ai A j )
n!
n(n 1)
把每封信放入一只信封中
P(Ai A jA k
)
(n
3)! n!
n(n
1 1)(n
2)
• 求至少有一封信与信封匹 配旳概率
• 解:

P(A1A 2
An
)
1 n!
所以有
– 若以Ai记第i封信与信封 匹配,则所求事件为 A1∪A2∪…∪An,所以,
Ω B
A
A-B
Ω A
A
例1.3 产品抽样检验
• 已知一批外形无差别旳产品 • 解:
中有3件次品,现随机地从 这批产品中依次抽取3件, 分别以A、B、C代表第一次、 第二次、第三次抽到次品
• 试表达
①三次都抽到次品
②只有第一次抽到次品
①三次都抽到次品:ABC
②只有第一次抽到次品:ABC
③三次都没有抽到次品:ABC ④至少抽到一件次品:A B C ⑤最多抽到一件次品,即A,
部可能出现旳成果 – 试验完毕之前不能预知会出现哪一种旳成果
• 样本空间():一种随机试验旳全部可能成 果旳集合
• 样本点():试验旳每一种可能成果
例1.2 随机现象旳样本空间
• 试列出例1.1中随机现象旳样本空间

概率论与统计高等数学教材

概率论与统计高等数学教材

概率论与统计高等数学教材概述:概率论与统计是一门研究随机现象及其统计规律的学科,也是高等数学的重要分支之一。

本教材旨在系统介绍概率论与统计的基本概念、理论和方法,并通过大量的例题和习题,培养学生分析和解决实际问题的能力。

第一章:概率论基础1.1 概率的定义与性质概率的基本概念、概率公理、事件的概率、基本性质等。

1.2 随机事件与随机变量随机事件的关系、随机变量的定义、离散型和连续型随机变量的概念与性质。

1.3 概率分布函数与密度函数概率分布函数的定义、性质与图像、概率密度函数的定义、性质与图像。

第二章:随机变量的数字特征2.1 数学期望随机变量及其分布的数学期望、性质与计算方法。

2.2 方差与协方差方差的定义、性质、计算方法,协方差的定义、性质、计算方法。

2.3 常用概率分布离散型分布(贝努利分布、二项分布、泊松分布)、连续型分布(均匀分布、正态分布、指数分布)的定义、性质与应用。

第三章:多维随机变量及其分布3.1 多维随机变量及其联合分布二维随机变量的定义、联合分布函数、边缘分布函数与密度函数。

3.2 边缘分布与条件分布边缘分布的定义、条件分布的定义与性质。

3.3 随机变量的独立性独立性的定义、多维随机变量的独立性。

第四章:大数定律与中心极限定理4.1 大数定律大数定律的定义、切比雪夫不等式、弱大数定律与强大数定律。

4.2 中心极限定理中心极限定理的定义、林德伯格-列维定理、切比雪夫定理。

第五章:参数估计与假设检验5.1 点估计参数估计的基本概念、最大似然估计与矩估计。

5.2 区间估计置信区间的定义、均值与比例的置信区间、样本量的选择。

5.3 假设检验假设检验的基本原理、拒绝域与接受域、单侧检验与双侧检验。

第六章:样本调查与质量控制6.1 样本调查与抽样方法样本调查的基本原理、简单随机抽样、分层抽样、整群抽样等抽样方法。

6.2 统计质量控制质量控制的基本概念、X-R 控制图、P 控制图、样本量的确定。

概率论基础知识

概率论基础知识
6、互不相容:若事件 A 与事件 B 不能同时发生,即 AB=φ,则称 A 与 B 是互不相容的。 例如,观察某定义通路口在某时刻的红绿灯:若 A={红灯亮},B={绿灯亮},
则 A 与 B 便是互不相容的。
7、对立:称事件 A 不发生的事件为 A 的对立事件,记为 显然
,A∩ =φ
例如,从有 3 个次品,7 个正品的 10 个产品中任取 3 个,若令 A={取得的 3 个产品中至少有一个次品},则 ={取得的 3 个产品均为正品}。
第 4 页 共 73 页
而 P(B)=3P(A)=
概率论基础知识
定义 1:在古典概型中,设其样本空间Ω所含的样本点总数,即试验的基本事件总数为 NΩ而事件 A 所 含的样本数,即有利于事件 A 发生的基本事件数为 NA,则事件 A 的概率便定义为:
例 1,将一枚质地均匀的硬币一抛三次,求恰有一次正面向上的概率。 解:用 H 表示正面,T 表示反面,则该试验的样本空间
若 A B,则 A∪ B=B, A∩ B=A A-B=A-AB= A
等等。
第 3 页 共 73 页
概率论基础知识
例 3,从一批产品中每次取一件进行检验,令 Ai={第 i 次取得合格品},i=1,2,3,试用事件的运算符号表示 下列事件。A={三次都取得合格品}B={三次中至少有一次取得合格品}C={三次中恰有两次取得合 格品}D={三次中最多有一次取得合格品}
2048 4040 12000 24000 30000
概率论基础知识
1061 2148 6019 12012 14994
0.5180 0.5069 0.5016 0.5005 0.4998
定义 2:在相同条件下,将试验重复 n 次,如果随着重复试验次数 n 的增大,事件 A 的频率 fn(A)越来越 稳定地在某一常数 p 附近摆动,则称常数 p 为事件 A 的概率,即 P(A)=p 不难证明频率有以下基本性质:

第一章概率论基础3(1)PPT课件

第一章概率论基础3(1)PPT课件
1, 2, 3, . 实例3 设某射手每次射击打中目标的概率是0.8, 现该射手射了30次,则随机变量 X 记为“击中目标 的次数”,则 X 的所有可能取值为:
0 , 1 , 2 , 3 , , 3.0
(2)连续型 随机变量所取的可能值可以连续地充 满某个区间,叫做连续型随机变量.
实例1 随机变量 X 为“灯泡的寿命”. 则 X 的取值范围为 [0,).
1.3 随机变量
1.3.1 随机变量 1.3.2 随机向量 1.3.3 随机变量的独立性和条件概率 • 附注:常用随机变量的分布
1.3.1 随机变量
1.3.1.1随机变量 一、随机变量的引入
1. 为什么引入随机变量?
概率论是从数量上来研究随机现象内在规律 性的,为了更方便有力的研究随机现象,就要用 数学分析的方法来研究, 因此为了便于数学上的 推导和计算,就需将任意的随机事件数量化.当 把一些非数量表示的随机事件用数字来表示时, 就建立起了随机变量的概念.
• 映射方法:将具体的样本空间映射到数集或者 函数集(传统的方法;概率论中常用)
• 直接方法:直接指定样本空间为数集或函数集
– 当样本空间为一维实数集合时,则称该一维实变量 为随机变量
– 当样本空间为一维复数集合时,则称该一维复数变 量为复随机变量
– 当样本空间为高维实数空间时,则称该高维实数空 间为随机向量
3.随机变量的分类
随机变量
离散型 非离散型
连续型 其它 (1)离散型 随机变量所取的可能值是有限多个或 无限可列个, 叫做离散型随机变量. 实例1 观察掷一个骰子出现的点数. 随机变量 X 的可能值是 : 1, 2, 3, 4, 5, 6.
实例2 若随机变量 X 记为 “连续射击, 直至命 中时的射击次数”, 则 X 的可能值是:

第一讲概率论基本知识

第一讲概率论基本知识

第一章 概率论基础知识概率论是随机过程的基础,在传统的概率论中,限于各种原因,往往借助于直观理解来说明一些基本概念,这对于简单随机现象似乎无懈可击,但对于一些复杂随机现象就难以令人信服了.随着随机数学理论的不断完善,随机过程越来越成为现代概率论的一个重要分支和发展方向. 为了更好地学习随机过程,我们必须对基础概率论的理论有一个比较深入和全面的了解.本章就是在此基础上系统介绍概率论基础知识,包括概率空间、随机变量及其分布、数学期望的若干性质、特征函数和母函数、随机变量列的收敛性及其相互关系、条件数学期望等.1.1 概率空间概率论是研究随机现象统计规律的一门数学分科,由于随机现象的普遍性,使得概率论具有极其广泛的应用.随机试验是概率论的基本概念之一,随机试验所有可能结果组成的集合称为这个试验的样本空间,记为Ω.Ω中的元素ω称为样本点,Ω中的子集A 称为随机事件,样本空间Ω也称为必然事件,空集Φ称为不可能事件.定义 1.1 设Ω是一个集合,F 是Ω的某些子集组成的集合簇(collection )(或称集类),如果 (1)Ω∈F ;(2)若A ∈F ,则\A A =Ω∈F ;(取余集封闭) (3)若n A ∈F ,1,2,n = ,则1n n A ∞=∈ F ;(可列并封闭)则称F 为σ-代数(sigma algebra -)(B orel 域或事件域(field of events )),(,ΩF )称为可测空间(m easurable space ).由定义可以得到 (4)Φ∈F ;(5)若,A B ∈F ,则\A B ∈F ;(取差集封闭)(6)n A ∈F ,1,2,n = ,则1ni i A = ,1ni i A = ,1i i A ∞= ∈F (有限交,有限并,可列交封闭)定义1.2 设(,ΩF )为可测空间,()P ⋅是定义在F 上的实值函数,如果 (1)任意A ∈F ,0()1P A ≤≤;(非负性) (2)()1P Ω=;(正规性)(3)对两两互不相容事件12,,A A (当i j ≠时,i j A A =Φ ),有11()i ii i P A P A ∞∞==⎛⎫=⎪⎝⎭∑ (可列可加性). 则称P 是(,Ω F)上的概率(p r o b a b i l i ),(,ΩF ,P )称为概率空间(probability space ),()P A 为事件A 的概率. 由定义知(4),A B ∈F ,A B ⊂,则(\)()()P B A P B P A =- (可减性)一事件列{,1}n A n ≥称为单调增列,若1,1n n A A n +⊂≥;称为单调减列,若1,n n A A +⊃1n ≥. 显然,如果{,1}n A n ≥为单调增列,则1lim n in i A A∞→∞==;如果{,1}n A n ≥为单调减列,则1lim n in i A A∞→∞==.(5)(概率的连续性)若{,1}n A n ≥是递增或递减的事件列,则lim ()(lim )n n n n P A P A →∞→∞=定义1.3 设(,ΩF ,P )为概率空间,B ∈F ,且()0P B >,如果对任意A ∈F ,记()(|)()P AB P A B P B =则称(|)P A B 为事件B 发生条件下事件A 发生的条件概率(conditional probability ). 由条件概率的定义可得到: (1)乘法公式 设,A B ∈F ,则()()(|)P AB P B P A B =一般地,若i A ∈F ,1,2,,i n = ,且121()0n P A A A -> ,则121121312121()()(|)(|)(|)n n n P A A A P A P A A P A A A P A A A A --=(2) 全概率公式 设(,ΩF ,P )是概率空间,A ∈F ,i B ∈F ,1,2,,i n =()i j B B i j =Φ≠,且1,()0,ni i i B P B ==Ω> ,则1()()(|)niii P A P B P A B ==∑(3) (Bayes 公式)设(,ΩF ,P )是概率空间,A ∈F ,i B ∈F ,1,2,,i n =()i j B B i j =Φ≠,且1,()0,()0ni i i B P B P A ==Ω>> ,则1()(|)(|)()(|)i i i niii P B P A B P B A P B P A B ==∑一般地,若12,,,n A A A ∈ F ,有11()()nni ii i P A P A ===∏ , 则称F 为独立事件簇.1.2 随机变量及其分布随机变量是概率论的主要研究对象之一,随机变量的统计规律用分布函数来描述. 定义 1.4 设(,ΩF ,P )为概率空间,()X X ω=是定义在Ω上的实值函数,如果对于任意实数x ,有()1(,]Xx --∞={}:()X x ωω≤∈F ,则称()X ω为F上的随机变量(random variable ),简记为..r v X .随机变量实质上是(,ΩF )到(,R B ()R )上的可测映射(函数),记1(){()|X XB B σ-=∈B ()R }⊂F ,称()X σ为随机变量X 所生成的σ域.称{}()1()():()((,])(,]F x P X x P X xP X x P Xx ωω-=≤=≤=∈-∞=-∞为随机变量X 的分布函数(distribution function )(简记.d f ).由定义,分布函数有如下性质:(1)()F x 为不降函数:即当12x x <时,有12()()F x F x ≤; (2)()lim ()0,x F F x →-∞-∞==()lim ()1x F F x →+∞+∞==;(3)()F x 是右连续的,即()()F x F x ο+=可以证明,定义在R 上的实值函数()F x ,若满足上述三个性质,必能作为某个概率空间(,ΩF ,P )上某个随机变量的分布函数.推广到多维情形,类似可得到定义 1.5 设(,ΩF ,P )为概率空间,()12()(),(),,()n X X X X X ωωωω== 是定义在Ω上的n 维空间n R 中取值的向量实值函数.对于任意12(,,,)n n x x x x R =∈ ,有{}1122:(),(),,()n n X x X x X x ωωωω≤≤⋅⋅⋅≤∈F ,则称()X X ω=为n 维随机变量,称12()(,,,)n F x F x x x P =⋅⋅⋅={}1122:(),(),,()n n X x X x X x ωωωω≤≤⋅⋅⋅≤为()12()(),(),,()n X X X X X ωωωω==⋅⋅⋅的联合分布函数.随机变量有两种类型:离散型随机变量和连续型随机变量,离散型随机变量的概率分布用概率分布列来描述:(),1,2,k k p P X x k === ,其分布函数为()k k x xF x p ≤=∑;连续型随机变量的概率分布用概率密度函数()f x 来描述,其分布函数为()()x F x f t dt -∞=⎰.类似地可定义n 维随机变量12(,,,)n X X X X = 的联合分布列和联合分布函数如下: 对于离散型随机变量12(,,,)n X X X X = ,联合分布列为()121122,,,n x x x n n p P X x X x X x ====其中,i i i x I I ∈为离散集,1,2,,i = n ,X 的联合分布函数为: 1,12,,121,2,,(,,,)(,,,)n i i nn x x n x y i n F y y y p y y y R ≤==⋅⋅⋅∈∑对于连续型随机变量12(,,,)n X X X X = ,如果存在n R 上的非负函数12(,,,)n f x x x ,对于任意12(,,,)nn y y y R ∈ ,有12(,,,)n X X X X = 的联合分布函数12121212(,,,)...(,,,)n y y y n n n F y y y f x x x dx dx dx -∞-∞-∞⋅⋅⋅=⋅⋅⋅⋅⋅⋅⎰⎰⎰12(,,,)n f x x x 为X 的联合密度函数.1.3 数学期望及其性质设()X X =⋅是定义在概率空间(,ΩF ,P )上的.r v ,如果||X dP Ω<∞⎰,就称.r v .X的数学期望(expectation )或均值存在(或称.r v .X 是可积的),记为E X ,有下列定义:EX XdP Ω=⎰利用积分变换,也可写成()EX xdF x +∞-∞=⎰.设()g x 是1R 上的B orel 可测函数,如果.r v .()g X 的数学期望存在,即|()|E g X <∞,由积分变换可知()()()()Eg X g X dP g x dF x +∞Ω-∞==⎰⎰设k 是正整数,若.r v .k X 的数学期望存在,就称它的k 阶原点矩(k th -moment aboutthe origin ),记为k α,即()kkk EXx dF x α+∞-∞==⎰设k 是正整数,若.r v .||k X 的数学期望存在,就称它的k 阶绝对原点矩(k th - absolute m o m e n tabout the origin ),记为k β,即 ||||()kkk E X x dF x β+∞-∞==⎰类似地,X 的k 阶中心矩(k th - central moment )k μ和k 阶绝对中心矩(k th -absolutely central moment )k υ分别定义为1()()()kkk E X EX x dF x μα+∞-∞=-=-⎰1||||()kkk E X EX x dF x να+∞-∞=-=-⎰我们称二阶中心矩为方差(variance ),记为V a r X 或D X ,显然有22221VarX μναα===-关于数学期望,容易验证下列的性质:(1)若.r v .X ,Y 的期望E X 和E Y 存在,则对任意实数,αβ,()E X Y αβ+也存在,且()E X Y EX EY αβαβ+=+(2)设A ∈F ,用A I 表示集A 的示性函数,若E X 存在,则()A E XI 也存在,且()A AE XI XdP =⎰(3)若{}k A 是Ω的一个划分,即()i j A A i j =Φ≠ ,且i iA Ω= ,则iA i EX XdP XdP Ω==∑⎰⎰关于矩的存在性,有如下的必要条件和充分条件定理1.1 设对.r v X 存在0p >,使||pE X <∞,则有lim (||)0px x P X x →∞≥=定理1.2 设对.r v X 0(.)a s ≥,它的.d f 为()F x ,那么E X <∞的充要条件是(1())F x dx ∞-<∞⎰此时EX =(1())F x dx ∞-⎰推论1.1 ||E X <∞的充要条件是0()F x dx -∞⎰与0(1())F x dx +∞-⎰均有限,这时有EX =(1())F x dx ∞-⎰()F x dx -∞-⎰推论 1.2 对于0,||pp E X <<∞<∞的充要条件是11(||)p n P X n ∞=≥<∞∑,也等价于11(||)p n nP X n ∞-=≥<∞∑1.4 特征函数和母函数特征函数是研究随机变量分布又一个很重要的工具,用特征函数求分布律比直接求分布律容易得多,而且特征函数有良好的分析性质.定义 1.6 设X 是n 维随机变量(随机向量),分布函数为()F x ,称()F x 的Fourier Stieltjes -变换()()(),itXitxg t E ee dF x t ∞-∞==-∞<<∞⎰为X 的特征函数(characteristic function ).简记.c f从本质上看,特征函数是实变量t 的复值函数,随机变量的特征函数一定是存在的. 当X 是离散型随机变量,分布列(),1,2,k k p P X x k === ,则1()kitx k k g t ep ∞==∑当X 是连续型随机变量,概率密度函数为()f x ,则()(),itxg t ef x dx t ∞-∞=-∞<<∞⎰从定义,我们能够看出特征函数有如下性质: (1)(0)1;g =(2)(有界性)|()|1;g t ≤ (3)(共轭对称性)()();g t g t -=(4)(非负定性)对于任意正整数n 及任意实数12,,,n t t t 和复数12,,,n z z z ,有,1()0nk l k l k l g t t z z =-≥∑(5)(连续性)()g t 为n R 上一致连续函数;(6)有限多个独立随机变量和的特征函数等于各自特征函数的乘积,即随机变量12,,,n X X X 相互独立,12n X X X X =+++ 的特征函数为:12()()()()n g t g t g t g t =其中()i g t 为随机变量i X 的特征函数;(7)(特征函数与矩的关系)若随机变量X 的n 阶矩n EX 存在,则X 的特征函数()g t 可微分n 次,且当k n ≤时,有()(0)k k k g i EX =;(8)随机变量的分布函数由其特征函数唯一确定.定理1.3 (B ocher 定理) n R 上函数()g t 是某个随机变量特征函数当且仅当()g t 连续非负定且(0)1g =.定理1.4 (逆转公式) 设()F x 是随机变量X 的分布函数,相应的特征函数为()g t 若12,x x 为()F x 的连续点,则12211()()lim()2itx itx TT Tee F x F x g t dt itπ--→∞---=-⎰很显然,具有相同特征函数的两个分布函数是恒等的.由此还可推出一个事实:一个随机变量是对称的,当且仅当它的特征函数是实的. 事实上,由X 的对称性知X 和X -有相同的分布函数,根据定义()()()itX itXg t E e E eg t g t -===-=,也就是说()g t 是实的;反之,从()()()itX itXg t Ee g t g t Ee -===-=知X 和X -有相同的特征函数,因此,它们的分布函数相等,这说明X 是对称的.例1.1 设X 服从(,)B n p ,求X 的特征函数()g t 及2,,EX EX D X解 X 的分布列为{},1,0,1,2,,k k n kn P X k C p q q p k n -===-=()()()n nitxk k n kk it k n kit nnnk k g t eC p qCpe qpe q --=====+∑∑因此 0(0)()|itt d E X ig ipe qnp dt='=-=-+=22222202()(0)()()|it t d EXi g i pe q npq n p dt=''=-=-+=+故 22()D X EX EX npq =-= 例1.2 设~(0,1)X N ,求X 的特征函数()g t解 22()itx xg t edx ∞--∞=由于2222||||itx xxixe xe--=221||xx edx ∞--∞<∞⎰,可对上式两边求导,得2222()()itx xitx xg t ixedx e de∞∞---∞-∞'==-⎰2222()x x itx itx edx tg t ∞∞---∞-∞=--=-于是得到微分方程 ()()g t t g t '+=. 这是变量可分离型方程,有()()dg t tdt g t =-两边积分得 2l n ()2g t tc=-+,得方程的通解为 22()tcg t e -+=.由于(0)1g =,因此,0c =.于是X 的特征函数为22()tg t e -=例1.3 设,X Y 相互独立,~(,),~(,)X B n p Y m p ,证明:~(,)X Y n m p ++ 证明 ,X Y 的特征函数分别为()(),()(),1itnitmX Y g t q pe g t q pe q p =+=+=-X Y +的特征函数为()()()(),1it n mX Y X Y g t g t g t q pe q p ++==+=-即X Y +的特征函数是服从参数为,n m p +二项分布的特征函数,由唯一性定理~(,)X Y n m p ++附表一给出了常用分布的均值、方差和特征函数.在研究只取非负整数值的随机变量时,以母函数代替特征函数比较方便.定义1.7 设随机变量X 的分布列为(),0,1,2,k p P X k k === 其中01k k p ∞==∑,称()()kk k k P s E s p s ∞===∑为X 的母函数(或称概率生成函数)(p r o b a b i l i t y generating function ).母函数具有下列性质:(1)非负整数值随机变量的分布列由其母函数唯一确定; (2)(1)1P =,()P s 在||1s ≤绝对且一致收敛;(3)若随机变量X 的l 阶矩存在,则可以用母函数在1s =的导数值来表示,特别地, 有2(1),(1)(1)EX P EXP P ''''==+;(4)独立随机变量之和的母函数等于母函数的积.证明 (1)01(),0,1,2,nkkkk k k k k k n P s p s p s p s n ∞∞===+==+=∑∑∑两边对s 求n 阶导数,得到()1()!(1)(1)n k nn k k n Ps n p k k k n p s∞-=+=+--+∑令0s =,则()(0)!n n p n p =,因此()(0),0,1,!n n pp n n ==(3)由0()kk k P s p s ∞==∑,得到11()k kk P s kps∞-='=∑,令1s ↑,得到1(1)kk EX kpP ∞='==∑,类似可得到 2(1)(1)E X PP '''=+ 例1.4 从装有号码为1,2,3,4,5,6的小球的袋中,有放回地抽取5个球,求所得号码总和为15的概率.解 令i X 为第i 次取得的小球的号码,且i X 相互独立,125X X X X =+++ 为所取的球的号码的总和.i X 的母函数为261()()6i P s s s s =+++X 的母函数为 5265655551()()(1)(1)66s P s s s s s s -=+++=--所求概率为()P s 展开式的15s 的系数,因此,5651{15}6P X ==1.5 随机变量列的收敛性定义 1.8设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,如果存在集A ∈F ,()0P A =,当cA ω∈时,有lim ()()n n X X ωω→∞=,则称n X 几乎处处收敛(convergencealm ost everywhere )到X ,简称n X ..a s 收敛到X ,记为n X X → ..a s下面我们给出..a s 收敛的一个判别准则.定理1.5 n X X → ..a s 的充分必要条件是任一ε>0,有lim (||)0m n m n P X X ε∞→∞=⎧⎫-≥=⎨⎬⎩⎭下面给出定理1.3的一个应用.例1.5 设{}n X 是..r v 列,且11()()2n n n P X n P X n +===-=,1111122n n n P X P X n n ⎧⎫⎧⎫⎛⎫===-=-⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎝⎭对于给定的ε>0,考虑1n ε>,有 1(||)0,2m mm nm n P X n ε∞∞==⎧⎫≥≤→→∞⎨⎬⎩⎭∑,因此 0n X →,..a s定义1.9 设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,如果对任一0ε>,{}lim ||0n n P X X ε→∞-≥=则称n X 依概率收敛(convergence in probability )到X ,简记Pn X X −−→. 由定义,n X 依概率收敛到X ,那么极限随机变量X ..a s 是唯一的.定义 1.10 设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,若||rn E X (0r >)存在,且lim ||0rn n E X X →∞-=,则称 n X r 阶平均收敛(convergence in mean oforder r )到X ,特别地,当2r =时,称为均方收敛.定义1.11 设{},;1n X X n ≥概率空间(,ΩF ,P )上随机变量,其分布函数序列()n F x 满足lim ()()n n F x F x →∞=在每个()F x 连续点处成立,则称n X 依分布收敛(convergence indistribution )到X .简记dn X X −−→.这里()F x 为X 的分布函数.下面我们不加证明地给出几种收敛之间的关系.a sPn n X X X X −−→⇒−−→dn X X ⇒−−→⇓..k a s n X X −−→且11(||)2kn kk P X X ∞=-≥<∞∑⇑,r rn n X X X X '−−→⇒−−→ 0r r '<< 1.6 条件数学期望设,X Y 是离散型随机变量,对一切使{}0P Y y =>的y ,定义给定Y y =时,X 的条件概率为 {,}{|}{}P X x Y y P X x Y y P Y y ======;给定Y y =时,X 的条件分布函数为(|){|}F x y P X x Y y =≤=; 给定Y y =时,X 的条件期望为(|)(|){|}xE X Y y xdF x y xP Xx Y y =====∑⎰设,X Y 是连续型随机变量,其联合密度函数为(,)f x y ,对一切使()0Y f y ≥,给定Y y =时,X 的条件密度函数为(,)(|)()Y f x y f x y f y =;给定Y y =时,X 的条件分布函数(|){|}F x y P X x Y y =≤==(|)xf x y dx ⎰; 给定Y y =时,X 的条件期望定义为 (|)(|)(|)E X Y y x d F x y x f x y d x===⎰⎰由定义可以看出,条件概率具有无条件概率的所有性质.(|)E X Y y =是y 的函数,y 是Y 的一个可能值,若在Y 已知的条件下,全面考察X 的均值,需要用Y 替代y ,(|)E X Y y =是Y 的函数,显然,它也是随机变量,称为X 在Y 条件下的条件期望(conditional expectation ).条件期望在概率论、数理统计和随机过程中是一个十分重要的概念,下面我们列举以下性质:设,,X Y Z 为随机变量,()g x 在R 上连续,且,,,[()]EX EY EZ E g Y Z ⋅都存在. (1) 当X 和Y 相互独立时,(|)E X Y EX =; (2) [(|)]EX E E X Y =;(3) [()|]()(|)E g Y X Y g Y E X Y ⋅=; (4) (|)E c Y c =,c 为常数;(5) (线性可加性)[()|](|)(|)E aX bY Z aE X Z bE Y Z +=+ (,a b 为常数); (6) 若0,X ≥则(|)0,..E X Y a s ≥ 下面只对(2)和(3)证明:证明 (2)离散型情况.设(,)X Y 的联合分布列为{,},,1,2,i j ij P X x Y y p i j ====则 [(|)](|){}jj j y E E X Y E XY y P Y y ===∑{|}{}ji i i j j y x x P X x Y y P Y y ⎡⎤====⎢⎥⎣⎦∑∑ {,}{}ji ii i j i y x x x P X x Y y P Xx EX ⎡⎤======⎢⎥⎣⎦∑∑∑由此可见,E X 是给定j Y y =时X 条件期望的一个加权平均值,每一项(|)j E X Y y =所加的权数是作为条件事件的概率,称(|){}jj j y EX E XY y P Y y ===∑为全期望公式.连续型情形:设(,)X Y 的联合密度函数为(,)f x y ,则[](|)(|)()(|)()Y Y E E X Y E X Y y f y dy xf x y dx f y dy ∞∞∞-∞-∞-∞⎡⎤===⎢⎥⎣⎦⎰⎰⎰(,)(,)x f x y d x d yx f x y dy d x∞∞∞∞-∞-∞-∞-∞⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰()X xf x dx EX ∞-∞==⎰(|)()Y EX E X Y y f y dy ∞-∞==⎰也称为全期望公式.全期望公式表明:条件期望的期望是无条件期望. (3)只需证明对任意使[]()|E g Y X Y y ⋅=存在的y 都有[]()|()(|)E g y X Y y g y E X Y y ⋅===因为[|](|)E X Y y xdF x y ∞-∞==⎰,因此,当y 固定时,[]()|()(|)()(|)E g y X Y y g y xdF x y g y xdF x y ∞∞-∞-∞⋅===⎰⎰()[|]g y E X Y y ==例1.6 设在某一天走进商店的人数是期望为1000的随机变量,又设这些顾客在该商店所花钱数都为期望为100元的相互独立的随机变量,并设一个顾客花钱数和进入该商店的总人数独立,问在给定的一天内,顾客们在该商店所花钱数的期望是多少?解 设N 表示这天进入该商店的总人数,i X 表示第i 个顾客所花的钱数,则N 个顾客所花的总数为1Ni i X =∑.由于 11|N N i i i i E X E E X N ==⎡⎤⎡⎤⎛⎫=⎢⎥ ⎪⎢⎥⎣⎦⎝⎭⎣⎦∑∑而 1111||N n n i i i i i i E X N n E X N n E X nEX ===⎡⎤⎡⎤⎡⎤=====⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦∑∑∑因此 11|,N i i E X N N E X =⎡⎤=⎢⎥⎣⎦∑[]111N i i E X E N E X E N E X =⎡⎤=⋅=⎢⎥⎣⎦∑由题设 11000,100EN EX == 于是11000100100000Ni i X ==⨯=∑即该天顾客花费在该商店的钱数的期望为100000元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.F( ,) 1; F(x, ) 0, F(, y) 0
4. F(x,y)关于x,y右连续。
设x1 x2, y1 y2,则概率P(x1 X x2, y1 Y y2 ) 用分布函数F(x, y)如何表示?
5.P(x1 X x2, y1 Y y2 ) =F (x2,y2 )- F (x1,y2 )- F (x2,y1)+ F(x1,y1) 0
§1.3
二维分布函数
定义 对任意的x, y R,则称
F(x, y) P(X x,Y y) 为随机变量(X ,Y )的二维分布函数。
性质 1. F(x,y)是变量x,y的单调不减函数。
对于任意y, x1<x2, F(x1,y)≤ F(x2,y) 对于任意x, y1<y2, F(x,y1)≤ F(x,y2) 2.0≤ F(x,y) ≤1
概率P(x1<X ≤ x2 ,y1<Y ≤ y2)用 分布密度f(x,y)如何表示?
4.P(x1 X x2, y1 Y y2 )
x2 x1
y2 f (x, y)dydx
y1
设G为一平面区域,则(X,Y)落在G内的概率为
P((x, y) G) f (x, y)dxdy
G
常见的二维随机变量的分布
p· p·1 p·2
…j …
… p2 …
… …

j... p...pij·j
… …

p... 2 · p... i ·
1
j
二维连续型随机变量的边缘概率密度
设(X,Y)的分布密度为f(x,y),则关于X和关于 Y的边缘概率密度分别为
fX
(x)
d dx
FX
(x)
f
(x,
y)dy
fY
( y)
d dy
FY
(
y2 2
)2
]
21 2 1 2
其中 1, 2,1, 2, 均为常数,且1 0,2 0,
| | 1 则称( X,Y)服从参数为 1, 2,1,2,
的二维正态分布.记作
(
X
,Y
)
~
N (1,
2 ,12 ,
2 2
,
)
二维随机变量(X,Y)分布函数为F(x,y),而 X,Y都是随机变量,各自具有分布函数,分别 记为FX(x)和FY(y),依次称为(X,Y)关于X和关 于Y的边缘分布函数。
二维离散型随机变量
定义 若X和Y 只可能取有限个或可数个孤立的值 他们的概率分布可表示为:
P(X ai ,Y bj ) pij, i, j =1,2, …
则称(X,Y)为二维离散型随机变量,上式为(X,Y) 的联合分布律或联合分布列.
Y X
b1
b2
...
bj

性质
a1 p11 p12 … p1
概率密度为 fY|X ( y | x)
f (x, y) fX (x)
f (x, y)
f
(
x,
y)dy
同样,对一切使 fY ( y) 0的 y, 定义
f X|Y (x | y)
f (x, y) fY ( y)
f (y)dx
为已知 Y=y下,X的条件概率密度 .
◆均匀分布
设G为平面区域,G的面积为A(0 A ), 若( X ,Y )的分布密度为
f
(
x,
y)
1 A
0,
,(x, y) G 其它
则称( X ,Y )在G上服从均匀分布。
◆二维正态分布
若二维随机变量(X,Y)具有概率密度
f (x, y)
1
e
1 2 (1 2
[( )
x1 1
)2
2
x1 1
y2 2
(
y)
f
(x,
y)dx
随机变量的独立性
如果二维随机变量(X,Y)满足,对任意x,y有
P(X x,Y y) P( X x)P(Y y) 即F (x, y) FX (x)FY ( y)
则称X,Y相互独立 .
离散型 pij pi• p• j , 对一切i, j
连续型 f (x, y) f X (x) fY ( y) , x, y
a... 2 p... 21 p... 22 a... i p... i1 p... i2
…j … p2 … j... … p... ij
pij 0, i, j 1,2,
pij 1
ij
… … … … …
F (x, y) pij
ai x bj y
二维连续型随机变量
定义 设(X,Y)是二维随机变量,如果存在一个非 负的函数f(x,y)使得对于任意的实数x,y,都有
二维离散型随机变量函数的分布
设(X,Y)为离散型随机变量,
P(X ai ,Y bj ) pij, i, j =1,2, …
如果二元函数 Z ( X ,Y ) 对于不同的(ai,bj)
有不同的值,则Z的分布密度为
P(Z (ai , bj )) pij i, j 1,2,...
若对于不同的(ai,bj),Z ( X ,Y )
P(X=xi|Y=yj)=
P( X xi,Y P(Y yj )
yj )
pi j ,i=1,2, … p• j
边缘分布
为在Y=yj条件下随机变量X的条件分布律.
连续型随机变量的条件分布
定义 设X和Y的联合概率密度为 f (x,y),
边缘概率密度为 fX (x), fY ( y),则对一切使
fX (x) 0 的x , 定义已知 X=x下,Y 的条件
pi• P ( X ai ) pij , i 1, 2,
j
p• j P (Y bj ) pij , j 1, 2,
i
边缘分布密度律
Y X
b1
b2
...
bj
… pi·
a1 p11 p12 … p1 … p1·
a... 2 p... 21 p... 22 a... i p... i1 p... i2
有相同的值,则应取这些相同值对应的概率之和
二维连续型随机变量函数的分布
分布函数法
若X与Y独立,则Z=X+Y的分布密度为
f
Z
(
z
)
f
X
(
x)
fY
(
z
x)dx
或f Z
(z)
f
X
(z
y)
fY
(
y)dy
连续型 卷积公式
正态分布具有可加性
1.
X
~
N
(1,
2 1
),
Y
~
N
(
2
,
2 2
),
且X
与Y
独立,则
X
Y
~
N (1
2 ,12
2 2
),
aX
bY
~
N (a1
b2
,
a
2 2 1
b2
2 2
)
2.
(X
,Y
)
~
N (1,
2
,
2 1
,
2 2
,
), 则
X
Y
~
N (1
2 ,12
2 2
21 2 )
离散型随机变量的条件分布
定义1 设 (X,Y) 是二维离散型随机变量, 对于固定的 j,若P(Y=yj)>0,则称 联合分布
FX (x) P(X x) P(X x,Y ) F(x, )
FY ( y) P(Y y) P(Y y, X ) F(, y)
二维离散型随机变量的边缘分布
设(X,Y)为离散型随机变量,
P(X ai ,Y bj ) pij, i, j =1,2, …
则(X,Y)关于X、Y的边缘概率分布分别为
F(x, y) P(X x,Y y)
y x f (u, v)dudv
则称(X,Y)为二维连续型随机变量。函数 f(x,y)称为(X,Y)的分布密度或联合密度。
性质
1. f (x, y) 0
2.
f (x, y)dxdy 1
3. 若f (x, y)在点(x, y)连续,则f (x, y) 2F(x, y) xy
相关文档
最新文档