第六章 酶的非水相催化

合集下载

非水相催化.

非水相催化.
通过选择适当的有机溶剂以及适度的水相调节(如pH、 盐浓度)可以控制反应物在两相中的分配,进而缓解匀 相系统中底物或产物的抑制。

4、胶束和反相胶束体系

反相胶束体系是含有表面活性剂与少量水的有机 溶剂系统。 当体系中水浓度高于有机溶剂时,形成胶束的极 性端朝向外侧,有机溶剂被包在胶束内部,称为 正相胶束。当体系中水浓度低于有机溶剂时,形 成胶束的极性端朝向胶束中部,而非极性端朝向 胶束外侧,水被包在胶束的内部,称为反相胶束。
一、非水相酶学的研究历史

水相和非水相酶的催化反应
二、非水相酶催化的特点和优势
(8) 改变酶选择性,包括底物专一性、对映和区域选择性
三、非水相酶催化的主要类型
(一)有机介质的酶催化; (二)气相介质的四)离子液介质中的酶催化
(一)有机介质的酶催化
指酶在含有一定水的有机溶剂中进行催化反应。
1、水不互溶有机溶剂单相体系(微水有机介质体系)
2、水互溶有机溶剂单相体系
3、水- 有机溶剂两相系统;
4、胶束和反相胶束体系
1、水不互溶有机溶剂单相体系 (微水有机介质体系)

是指用水不互溶有机溶剂(含量>98%)取代几 乎所有的水,微量水一部分为酶分子的结合水, 才能保证其空间构象和催化活性。 酶以冻干粉或固定化酶的形式悬浮于有机溶剂 中,在悬浮状态下进行反应。 水不互溶性有机溶剂通常是烷烃类、芳香族化 合物、卤代烃、醚等。
非水相酶催化
Enzymatic catalysis in Non-aqueous system
内 容
第一节 非水酶学概述
第二节 非水介质中酶的结构与性质
第三节 水对有机介质中酶催化的影响
第一节 非水酶学概述

第六章 酶的非水相催化 PPT

第六章 酶的非水相催化 PPT
1)用于酶催化反应的超临界流体应当对酶的结构没有 破坏作用,对催化作用没有明显的不良影响;
2)具有良好的化学稳定性,对设备没有腐蚀性; 3)超临界温度不能太高或太低,最好在室温附近或在
酶催化的最适温度附近; 4)超临界压力不能太高,可节约压缩动力费用; 5)超临界流体要容易获得,价格要便宜等。
Klibanov A M. Enzyme memory-what is remembered and why? [J]. Nature, 1995, 374: 596-600.
一、酶非水相催化的几种类型
2、气相介质中的酶催化 定义:气相介质中的酶催化是指酶在气相介
质中进行的催化反应。 特点:
酶非水相催化的几种类型
4、离子液介质中的酶催化:
离子液介质中的酶催化是指酶在离子液中进 行的催化作用。
离子液(ionic liquids)是由有机阳离子与有机(无机) 阴离子构成的在室温条件下呈液态的低熔点盐类,挥发 性低、稳定性好。酶在离子液中的催化作用具有良好的 稳定性和区域选择性、立体选择性、键选择性等显著特 点。
卤化物的水解等; (4)容易分离回收; (5)无微生物污染;
酶的非水相催化
非水相酶催化的相关问题
★在完全无水的情况下,酶是无活性的,极少量的水就 会激发酶的活性;但含水量低于最适水量时,酶会失去 催化活性。
★有机溶剂可能直接与酶分子水合层中的必须水发生反 应,影响酶的结构和功能,尤其是极性较强的溶剂,它 可以溶解大量的水,将酶分子水合层中的必须水剥离掉, 导致酶失活,相对来讲,疏水性溶剂对水的溶解能力较 低,故对酶活和结构影响较小。
酶的非水相催化
酶的非水相催化 酶在非水介质中进行的催化作用称为酶的非
水相催化。 在非水相中,酶分子受到非水相介质的影响,

酶的非水相催化考研考点总结

酶的非水相催化考研考点总结

酶的非水相催化考研考点总结●水相酶反应的限制●仅限于水溶性底物●大部分有机物在水中溶解性差●水会引发副反应或造成产物分解●不利于反应平衡向产物推进●产物回收困难●非水相催化的优势●增加非极性底物的溶解度●使某些原本在水相不能进行的反应顺利进行,如肽的合成、酯的合成等●可减少在水相容易发生的副反应,如酸酐的水解、卤化物的水解等●容易分离回收●无微生物污染●相关问题●非水相并不代表完全无水,完全无水的情况下酶是无活性的●极性较强的溶剂可能剥离掉酶分子中必须的水,导致酶失活;而疏水性溶剂对水的溶解能力较低●在无水溶剂中,酶蛋白分子的刚性增加,空间构象较难发生改变●非水相催化的类型●有机介质中的酶催化●气相介质中的酶催化●超临界流体介质中的酶催化●离子液介质中的酶催化由有机阳离子与有机(无机)阴离子构成的在室温条件下呈液态的低熔点盐类●非水相催化的体系●与水不溶性有机溶剂组成的两相或多相体系●(正)胶束体系●反胶束体系●与水溶性有机溶剂组成的均一体●微水介质体系●酶非水相催化的影响因素●水●水对酶分子构象的影响酶分子需要一层水化层,以维持其完整的空间构象●水对酶催化反应速度的影响●水活度在有机介质体系中,酶的催化活性随着结合水量的增加而提高●有机溶液●有机溶剂对酶结构与功能的影响在有机溶剂中,酶分子(经过修饰后可溶于有机溶剂者除外)不能直接溶解,而是悬浮在溶剂中进行催化反应●有机溶剂对酶分子表面结构的影响●有机溶剂对酶活性中心结合位点的影响溶剂有可能渗入到酶分子的活性中心,与底物竞争活性中心的结合位点●有机溶剂对酶活性的影响有机溶剂的极性越强,越容易夺取酶分子结合水●有机溶剂对底物和产物分配的影响●酶的催化特性●底物专一性可能受影响●对映体选择性●区域选择性酶能够选择底物分子中某一区域的基团优先进行反应●健选择性●热稳定性更好●pH值特性:pH记忆●非水相催化条件的控制●水含量●酶的选择●底物的选择和浓度控制●有机溶剂的选择●温度控制。

非水相中的酶催化技术ppt课件

非水相中的酶催化技术ppt课件
非水相中的酶催 化技术
Enzyme
酶作为一种高效生物催化剂, 具有高度的特异
立体选择性及区域选择性, 并在常温、常压和值 中性附近条件下具有十分高效的催化活力。利 用酶的高效选择性催化作用可制造出种类繁多 的目标产物, 避免了化学合成中的许多不足。目 前, 酶催化技术在医药方面的应用是当前最为关 注的领域之一, 这主要是因为医药产品一般附加 值高, 且大多是光学活性物质, 作为十分优良的 手性催化剂—酶, 用于多种高效手性药物的合成 及制备将十分有效, 潜力巨大。
二辛酸丙二醇酯的工艺条件研究
底物摩尔比对酯化率的影响
辛酸与丙二醇的摩尔比对辛酸转化为二辛酸丙二醇 酯的酯化率影响较大,考察底物摩尔比对酯化率的影响。 固定丙二醇的量不变,按辛酸与丙二醇摩尔比为1:1、2:1、 3:1、4:1 加入辛酸,加酶量均为丙二醇质量的 1.5%进行反 应。测定不同底物摩尔比下酯化率(以二辛酸丙二醇酯 计)随反应时间的变化,结果如下图所示。 由图可知,随着辛酸与丙二醇 摩尔比从1:1增加至2:1时,丙二醇转 化为二辛酸丙二醇酯的酯化率有很 大幅度的提高,继续增加至3:1、4:1 酯化率增加幅度不大。同时,考虑 到辛酸过高不利于二辛酸丙二醇酯 的纯化,故选择辛酸与丙二醇最佳 摩尔比为2:1.
按辛酸与丙二醇的摩尔比为 2:1加入原料,加酶量为丙二 醇质量的1.5%,分别在温度为40 ℃、45 ℃、50 ℃、55 ℃、 60 ℃、65 ℃下进行反应,每隔1d取样进行GC分析。测定不 同温度下的酯化率(以二辛酸丙二醇酯计),结果如下图所 示。由下图可见,BT—01脂肪酶催化合成二辛酸丙二醇酯最 佳反应温度为50 ℃,温度过高或过低均不利于反应进行。
GRAS24最新公布的香料化合物中丙二醇酯类占 有较大的比例。目前,合成该类化合物主要采用化 学合成法。而化学合成工艺往往需要使用腐蚀性强 的强酸作为催化剂,以毒性高的有机原料为溶剂, 易造成环境污染。随着人们对健康的关注和环保意 识的增强,开辟一条对环境友好、安全的合成工艺 路线极为重要。与化学合成法相比,生物催化是一 种“绿色的”环境友好的合成工艺,它具有反应条 件温和、催化效率高、催化专一性强等优点。目前, 国外用生物催化剂替代化学催化剂生产化学品已成 为必然的发展趋势。

酶在有机介质中的催化反应

酶在有机介质中的催化反应
第六章 酶在有机介质中的催化
概念:
酶在含有一定量水的有机溶剂中进行催化
反应的过程。
是目前非水相酶催化溶剂反应体系
1、微水介质(含微量水) 2、水与有机溶剂的互溶体系 3、水与有机溶剂的双液相体系
4、(正)胶束体系
5、反胶束体系
二、水对有机介质中酶催化的影响
1、水与酶的柔性有关
2、结合水又称必需水,对酶的催化活性至关重 要。 3、水活度反映酶活性与水含量的关系,每种酶 的最大催化活力都在相同的最佳水活度下。
三、酶在有机介质中的催化活性
1、底物选择性 2、对映体选择性 3、区域选择性 4、热稳定性好 5、分子印记 6、pH印记
四、有机介质中酶催化反应的类型
1、合成反应(水解反应的逆反应) 2、转移反应(酯与有机酸) 3、醇解反应 4、氨解反应 5、异构反应 6、氧化还原反应 7、裂合反应
五、有机介质中酶催化的应用
1、手性药物的拆分 2、手性高分子聚合物的制备 3、酚树脂的合成 4、导电有机聚合物的合成 5、发光有机聚合物的合成 6、食品添加剂的生产 7、生物柴油的生产

(高考生物)生物学第六章酶的非水相催化

(高考生物)生物学第六章酶的非水相催化

(生物科技行业)生物学第六章酶的非水相催化第六章酶的非水相催化◆人们以往普遍认为只有在水溶液中酶才具有催化活性。

◆酶在非水相介质中催化反应的研究:在理论上进行了非水介质(包括有机溶剂介质,超临界流体介质,气相介质,离子液介质等)中酶的结构与功能、非水介质中酶的作用机制,非水介质中酶催化作用动力学等方面的研究,初步建立起非水酶学(non-aqueousenzymology)的理论体系。

◆非水介质中酶催化作用的应用研究,取得显著成果。

1.酶非水相催化的研究概况◆酶在非水介质中进行的催化作用称为酶的非水相催化。

1.1有机介质中的酶催化:◆有机介质中的酶催化是指酶在含有一定量水的有机溶剂中进行的催化反应。

◆适用于底物、产物两者或其中之一为疏水性物质的酶催化作用。

◆酶在有机介质中由于能够基本保持其完整的结构和活性中心的空间构象,所以能够发挥其催化功能。

◆酶在有机介质中起催化作用时,酶的底物特异性、立体选择性、区域选择性、键选择性和热稳定性等都有所改变。

1.2气相介质中的酶催化:◆气相介质中的酶催化是指酶在气相介质中进行的催化反应。

◆适用于底物是气体或者能够转化为气体的物质的酶催化反应。

◆由于气体介质的密度低,扩散容易,所以酶在气相中的催化作用与在水溶液中的催化作用有明显的不同特点。

1.3超临界流体介质中的酶催化:◆超临界介质中的酶催化是指酶在超临界流体中进行的催化反应。

◆用于酶催化反应的超临界流体应当对酶的结构没有破坏作用,对催化作用没有明显的不良影响;具有良好的化学稳定性,对设备没有腐蚀性;超临界温度不能太高或太低,最好在室温附近或在酶催化的最适温度附近;超临界压力不能太高,可节约压缩动力费用;超临界流体要容易获得,价格要便宜等。

1.4离子液介质中的酶催化:◆离子液介质中的酶催化是指酶在离子液中进行的催化作用。

◆离子液(ionicliquids)是由有机阳离子与有机(无机)阴离子构成的在室温条件下呈液态的低熔点盐类,挥发性低、稳定性好。

酶非水相催化

  酶非水相催化

黏合剂、导电聚合物和发光聚合物等)。
15
3.与水不溶性有机溶剂组成的两相或多相体系
概念:是指由水和疏水性较强的有机溶剂组成的两相
或多相反应体系。
反应体系中酶的存在形式:游离酶以溶解状态存在;
固定化酶以悬浮形式存在。
➢催化反应通常在两相界面进行;
➢适用于底物和产物两者或其中一种属于疏水化合物的催
化反应;
具有与水溶液中可比的催化活性。5用于酶 Nhomakorabea催








① 含微量水的有机溶剂
② 与水混溶的有机溶剂和水形成的均一体系
③ 水与有机溶剂形成的两相或多相体系
④ 胶束与反胶束体系
⑤ 超临界流体
⑥ 气相
⑦ 离子液


它们不同于标准的水溶液体系,在这些体系中水含量
受到不同程度的严格控制,因此又称为非常规介质。
特性:酶的底物特异性、立体选择性、区域选择
性、键选择性、热稳定性等有所改变。
应用:多肽、酯类、甾体转化、功能高分子合成、
手性药物拆分的研究。
9
二、气相介质中的酶催化
指酶在气相介质中进行的催化反应。
适用范围:底物是气体或者能够转化为气体物质的酶
催化反应。
特性:气体介质密度低,扩散容易;与在水相中明显
离子液是由有机阳离子与有机/无机阴离子构成的在室
温条件下呈液态的低熔点盐类,挥发性好,稳定性好。
酶反应具有良好的稳定性和区域选择性、立体选择性、
键选择性等优点。
13
第二节 有机介质中水和有机溶剂
对酶催化反应的影响
一、有机介质反应体系
1、微水介质体系

酶的非水相催化

 酶的非水相催化
.
一、酶非水相催化的几种类型
1、有机介质中的酶催化
克利巴诺夫(Klibanov)研究表明:酶在一定浓度的 有机溶剂中具有一定的“分子记忆”效应,这种记忆是 因为酶存在配体而产生的,当配体被移走后,由于大量 有机溶剂存在状态下酶构象的高度刚性, 使得这种与 配体具有高亲和性的构象得以保持,而过量水的介入会 加速这种记忆丧失。
空间构象和催化活性至关重要。另外有一部分水分配在 有机溶剂中。 ◆通常所说的有机介质反应体系主要是指微水介质体系。
.
二、酶非水相催化的几种体系
(一)、有机介质反应体系
(2)与水溶性有机溶剂组成的均一体系: ◆这种均一体系是由水和极性较大的有机溶剂互相混溶
组成的反应体系。 ◆酶和底物都是以溶解状态存在于均一体系中。由于极
.
1 酶催化反应的介质
水是酶促反应最常用的反应介质。
但对于大多数有机化合物来说,水并不是一种适宜的溶剂。因为 许多有机化合物(底物)在水介质中难溶或不溶。 由于水的存在,往往有利于如水解、消旋化、聚合和分解等副反 应的发生。
是否存在非水介质能保证酶催化??
1984年,美国MIT的克利巴诺夫(Klibanov)等人在有机介质中进行 了酶催化反应的研究,他们成功地在利用酶有机介质中的催化作用,获 得酯类、肽类、手性醇等多种有机化合物,明确指出酶可以在水与有机 溶剂的互溶体系中进行催化反应。 .
.
酶的非水相催化
类型
有机介质
气相介质
离子介质 超临界介质
.
一、酶非水相催化的几种类型
1、有机介质中的酶催化: 有机介质中的酶催化是指酶在含有一定量水
的有机溶剂中进行的催化反应。 特点:
1)适用于底物、产物两者或其中之一为疏水性物质的 酶催化作用。

酶非水相催化性质与应用

酶非水相催化性质与应用
• 由水与极性较大的有机溶剂互混组成; • 水与有机剂含量均较大; • 适用的酶较少; • 辣根过氧化酶(HRP)应用: • 催化酚类或芳香胺类聚合成聚酚或聚
胺类物,在环保黏合剂、导电聚物、 发光聚合物材料中有重要作用。
酶的非水相催化性质和应用
3、与水不溶性有机溶剂组成的两相或多相体系
• 由水和疏水性较强的有机溶剂组成两相或 多相体系;
• 游离酶、亲水性底物溶于水相,疏水性底 物或产物溶于有机相;
• 固定化酶在界面; • 催化反应在两相界面进行; • 适于底物或产物属于疏水化合物的反应。
酶的非水相催化性质和应用
4、(正)胶束体系
大量水溶液中含少量与水不溶的有机溶剂,加入表面活性剂形 成水包油微小液滴; 表面活性剂极性端朝外,非极性端朝内,有机溶剂包在液滴内部; 酶在水溶液中,疏水底物或产物在胶束内,反应在胶束界面进行.
不同介质中酶活性中心的完整性相差 不大,但酶活力却相差4个数量级。 因此认为酶分子结构的动态变化很可 能是主要因素.
北口博司认为酶分子的“紧密”和“开启” 两种状态处于一种可动平衡中,表现 出一定柔性。
有机溶剂中酶分子和水合作用、蛋白 质柔性和酶活力之间和关系比过去的 认识要复杂得多。
酶的非水相催化性质和应用
酶的非水相催化性质和应用
第二节 有机介质中水和有机溶剂
对酶催化反应的影响
go
酶的非水相催化性质和应用
一、有机介质反应体系
• 1、微水介质体系; • 2、与水溶性有机溶剂组成的均一体系; • 3、与水不溶性有机溶剂组成的两相或多相体系; • 4、(正)胶束体系; • 5、反胶束体系。
酶的非水相催化性质和应用
性、动力学特性。

水相
有机相

酶的非水相催化

酶的非水相催化
而达到最大反应速度的水活度却变化不大,都在的范围内。 还可以在只含有微量水的有机介质(microaqueous media,又称为微水介质)中进行催化反应。
异性、立体选择性、区域选择性、键选 在有机介质酶催化反应中,有机溶剂对酶的活力、酶的稳定性、酶的催化特性及酶催化速度等都有显著影响。
产物是:酯类、肽类、手性醇等有机化合物
择性和热稳定性等都有所改变。 因此,作为催化介质使用的有机溶剂必须通过实验进行选择、确定。
二、气相介质中的酶催化
气相介质中的酶催化是指酶在气相介 质中进行的催化反应。
适用于底物是气体或者能够转化为气 体的物质的酶催化反应。
由于气体介质的密度低,扩散容易,
所以酶在气象介质中的酶催化作用与在 水溶液中的催化作用有明显的不同特点 。
。 有机溶剂中酶对底物的对映体选择性由于介质的亲(疏)水性的变化而发生改变,例如胰凝乳蛋白酶,胰蛋白酶、枯草杆菌蛋白酶、弹性
蛋白酶等蛋白水解酶对于底物N—Ac-A1a—OetCl(N—乙酰基丙氨酸氯乙酯)的立体选择因子[即(kcaL/Km)l/(kcat/Km)D的比值]在有
aw=rwXw
体系














相混合组成的反应体系。 三、超临界流体介质中的酶催化
酶催化过程,pH值影响酶活性中心基团和底物的解离状态,直接影响酶的催化活性; 第三节
酶和反 酶在有机介质中的催化特性
而最佳水活度与溶剂的极性大小无关。














第六章酶的非水相催化

第六章酶的非水相催化

第六章酶的非水相催化教学目的:使学生了解并掌握酶非水相催化的概念及意义,掌握酶非水相催化技术。

教学重点、难点:酶非水相催化机理。

教学方法:讲授教学手段:多媒体第一节酶非水相催化研究概况一、概念及分类(一)、概念:酶在非水介质中进行的催化作用。

1984 年,美国A.M.Klibanov 在《科学》上发表一篇关于酶在有机介质中催化条件和特点的综述,并成功酶促合成了酯、肽、手性醇等许多有机化合物。

指出,酶可在非生物体系的疏水介质中催化天然或非天然的疏水性底物和产物的转化,对酶只能在水溶液中起作用的传统酶学思想提出了挑战。

(二)、分类1、有机介质中的酶催化指酶在含有一定量水的有机溶剂中进行的催化作用适用范围:底物、产物两者或其中之一为疏水性物质的酶催化作用。

主要研究对象2、气相介质中的酶催化指酶在气相介质中进行的酶催化反应。

适用范围:底物是气体或者能够转化为气体物质的酶催化反应。

研究较少。

3、超临界流体介质中的酶催化指酶在超临界流体中进行的催化反应。

, 绿色化学? ——无毒、无害要求,代替有机溶剂4、离子液介质中酶的催化离子液:有机阳离子与有机(无机)阴离子构成的在室温条件下呈液态的低熔点盐类,挥发性低、稳定性好;酶反应具有良好的稳定性和区域选择性、立体选择性、键选择性等优点。

二、有机相酶反应的优点1.有利于疏水性底物的反应。

(主要提高脂溶性底物的溶解度,有利于高浓度底物连续生物转化。

)2.可提高酶的热稳定性,提高反应温度加速反应。

3.能催化在水中不能进行的反应(有许多难溶于水的非极性底物能够溶于有机溶剂中)4.可改变反应平衡移动方向(使许多热力学平衡从加水分解反应转为其逆反应,如酶合成,酯交换等)主要朝着合成而不是水解的方向进行。

5.可控制底物专一性(不同底物反应所选最适溶剂不一定相同)。

6.可防止由水引起的副反应。

7.可扩大反应pH值的适应性。

8.酶易于实现固定化。

9.酶和产物易于回收。

(酶不溶于有机溶剂,有利于产物分离和酶的回收利用,且从低沸点的溶剂中分离纯化产物比水中容易。

酶的非水相催化 ppt课件

酶的非水相催化  ppt课件

ppt课件
3
人类认识的进步
1966 年,Dostoli 和 Siegel 分别报道胰凝乳蛋白酶和辣根
过氧化物酶在几种非极性有机溶剂中具有催化活力 1975~1983 年间,Buckland 和 Martinek 等对游离酶和 固定化酶在有机溶剂中合成类固醇及甾醇转化中的应用进 行了大量的探索 1977 年,Klibanov 等人报道了在水/氯仿两相体系中脂肪 酶催化 N-乙酰-L-色氨酸与乙醇的酯化反应,在水中收率 极低,而在两相体系中竟达到 100% 1984 年,Zaks 和 Klibanov 在 Science 杂志上发表了一篇 关于酶在有机介质中催化条件和特点的文章,他们指出, 只要条件适合,酶可以在非水体系中表现出活性,并催化
ppt课件 4
引起全球关注的“非水相酶催化”的报道
Porcine pancreatic lipase catalyzes the transesterification reaction between tributyrin and various primary and secondary alcohols in a 99 percent organic medium. Upon further dehydration, the enzyme becomes extremely thermo-stable. Not only can the dry lipase withstand heating at 100 degrees C for many hours, but it exhibits a high catalytic activity at that temperature. Reduction in water content also alters the substrate specificity of the lipase: in contrast to its wet c o u n t e r p a r t , t h e d r y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

酶的非水相催化
非水相酶催化的相关问题
★在完全无水的情况下,酶是无活性的,极少量的水 就会激发酶的活性;但含水量低于最适水量时,酶会 失去催化活性。 ★有机溶剂可能直接与酶分子水合层中的必须水发生 反应,影响酶的结构和功能,尤其是极性较强的溶剂, 它可以溶解大量的水,将酶分子水合层中的必须水剥 离掉,导致酶失活,相对来讲,疏水性溶剂对水的溶 解能力较低,故对酶活和结构影响较小。
一、酶非水相催化的几种类型
1、有机介质中的酶催化
克利巴诺夫(Klibanov)研究表明:酶在一定浓度的有 机溶剂中具有一定的“分子记忆”效应,这种记忆是因 为酶存在配体而产生的,当配体被移走后,由于大量有 机溶剂存在状态下酶构象的高度刚性, 使得这种与配 体具有高亲和性的构象得以保持,而过量水的介入会加 速这种记忆丧失。 Klibanov A M. Enzyme memory-what is remembered and why? [J]. Nature, 1995, 374: 596-600.
二、酶非水相催化的几种体系
(一)、有机介质反应体系 (3)与水不溶性有机溶剂组成的两相或多相体系: ◆这种体系是由水和疏水性较强的有机溶剂组成的两相 或多相反应体系。游离酶、亲水性底物或产物溶解于水 相,疏水性底物或产物溶解于有机溶剂相。 ◆如果采用固定化酶,则以悬浮形式存在两相的界面。 ◆催化反应通常在两相的界面进行。一般适用于底物和 产物两者或其中一种是属于疏水化合物的催化反应。
一、酶非水相催化的几种类型
2、气相介质中的酶催化 定义:气相介质中的酶催化是指酶在气相介 质中进行的催化反应。 特点:
1)适用于底物是气体或者能够转化为气体的物质的酶 催化反应。 2)由于气体介质的密度低,扩散容易,所以酶在气相 中的催化作用与在水溶液中的催化作用有明显的不同特 点。
5、酶非水相催化的应用
1 酶催化反应的介质
水是酶促反应最常用的反应介质。
但对于大多数有机化合物来说,水并不是一种适宜的溶剂。因为 许多有机化合物(底物)在水介质中难溶或不溶。
由于水的存在,往往有利于如水解、消旋化、聚合和分解等副反 应的发生。
是否存在非水介质能保证酶催化??
1984年,美国MIT的克利巴诺夫(Klibanov)等人在有机介质中进行 了酶催化反应的研究,他们成功地在利用酶有机介质中的催化作用,获 得酯类、肽类、手性醇等多种有机化合物,明确指出酶可以在水与有机 溶剂的互溶体系中进行催化反应。
一、酶非水相催化的几种类型
3、超临界流体介质中的酶催化 定义:超临界介质中的酶催化是指酶在超临界流体 中进行的催化反应。 条件要求:
1)用于酶催化反应的超临界流体应当对酶的结构没有 破坏作用,对催化作用没有明显的不良影响; 2)具有良好的化学稳定性,对设备没有腐蚀性; 3)超临界温度不能太高或太低,最好在室温附近或在 酶催化的最适温度附近; 4)超临界压力不能太高,可节约压缩动力费用; 5)超临界流体要容易获得,价格要便宜等。
二、酶非水相催化的几种体系
(一)、有机介质反应体系 (4)(正)胶束体系: ◆胶束又称为正胶束或正胶团,是在大量水溶液中含有 少量与水不相混溶的有机溶剂,加入表面活性剂后形成 的水包油的微小液滴。 ◆表面活性剂的极性端朝外,非极性端朝内,有机溶剂 包在液滴内部。 ◆反应时,酶在胶束外面的水溶液中,疏水性的底物或 产物在胶束内部。反应在胶束的两相界面中进行。
三、酶非水相催化的影响因素
(二)、有机溶液对有机介质中酶的影响
◆常用的有机溶剂有辛烷,正己烷,苯,吡啶,季丁醇, 丙醇,乙腈,已酯,二氯甲烷等。 (1)有机溶剂对酶结构与功能的影响: ◆酶具有完整空间结构和活性中心才能发挥其催化功能。 ◆在有机溶剂中,酶分子(经过修饰后可溶于有机溶剂 者除外)不能直接溶解,而是悬浮在溶剂中进行催化反 应。 ◆有些酶在有机溶剂的作用下,其空间结构会受到某些 破坏,从而使酶的催化活性受到影响甚至引起酶的变性 失活。
(3)水活度: ◆在有机介质中含有的水,主要有两类,一类是与酶分 子紧密结合的结合水,另一类是溶解在有机溶剂中的游 离水。 ◆研究表明,在有机介质体系中,酶的催化活性随着结 合水量的增加而提高。
三、酶非水相催化的影响因素
(二)、水对有机介质中酶的影响
(3)水活度: ◆水活度(water activity, Aw)是指体系中水的逸度 与纯水逸度之比。通常可以用体系中水的蒸汽压与相同 条件下纯水的蒸汽压之比表示。即:Aw = P/P0式中,P 为在一定条件下体系中水的蒸汽压,Po为在相同条件下 纯水的蒸汽压。 研究表明,在一般情况下,最适水含量随着溶剂极性的 增加而增加。 采用水活度作为参数来研究有机介质中水对酶催化作用 的影响更为确切。
(1)水对酶分子空间构象的影响: ◆酶分子需要一层水化层,以维持其完整的空间构象。 ◆维持酶分子完整的空间构象所必需的最低水量称为必 需水(essential water)。 ◆必需水与酶分子的结构和性质有密切关系。不同的酶, 所要求的必需水的量差别很大。
三、酶非水相催化的影响因素
酶的非水相催化
类型
有机介质
气相介质
离子介质
超临界介质
一、酶非水相催化的几种类型
1、有机介质中的酶催化: 有机介质中的酶催化是指酶在含有一定量水 的有机溶剂中进行的催化反应。 特点:
1)适用于底物、产物两者或其中之一为疏水性物质的 酶催化作用。 2)酶在有机介质中由于能够基本保持其完整的结构和 活性中心的空间构象,所以能够发挥其催化功能。
三、酶非水相催化的影响因素
(二)、有机溶液对有机介质中酶的影响 (2)有机溶剂对酶分子表面结构的影响: ◆酶在有机介质中与有机溶剂接触,酶分子的 表面结构将有所变化。
三、酶非水相催化的影响因素
(二)、有机溶液对有机介质中酶的影响
(3)有机溶剂对酶活性中心结合位点的影响: ◆当酶悬浮于有机溶剂中,有一部分溶剂能渗入到酶分 子的活性中心,与底物竞争活性中心的结合位点,降低 底物结合能力,从而影响酶的催化活性。
二、酶非水相催化的几种体系
(一)、有机介质反应体系
有机介质 反应体系
微水介质
水与有机溶剂 的均一体系
水与不溶有机 溶剂的 非均一体系
正胶束体系
反胶束体系
二、酶非水相催化的几种体系
(一)、有机介质反应体系
(1)微水介质体系: ◆微水介质体系是由有机溶剂和微量的水组成的反应体 系,是在有机介质酶催化中广泛应用的一种反应体系。 ◆微量的水主要是酶分子的结合水,它对维持酶分子的 空间构象和催化活性至关重要。另外有一部分水分配在 有机溶剂中。 ◆通常所说的有机介质反应体系主要是指微水介质体系。
二、酶非水相催化的几种体系
(一)、有机介质反应体系 (5)反胶束体系: ◆反胶束又称为反胶团,是指在大量与水不相混溶的有 机溶剂中,含有少量的水溶液,加入表面活性剂后形成 的油包水的微小液滴。 ◆表面活性剂的极性端朝内,非极性端朝外,水溶液包 在胶束内部。 ◆反应时,酶分子在反胶束内部的水溶液中,疏水性底 物或产物在反胶束外部,催化反应在两相的界面中进行。
由于引起酶变性的许多因素都与水的存在有关, 因此在有机介质中 酶的稳定性得到显著提高。 由于有机溶剂的存在, 水量减少,大大降低了许多需要水参与的副 反应,如酸酐的水解、氰醇的消旋化和酰基转移等。 在有机介质中进行的酶促反应,可以省略产物的萃取分离过程, 提高收率。
三、酶非水相催化的影响因素
(二)、水对有机介质中酶的影响
三、酶非水相催化的影响因素
(二)、有机溶液对有机介质中酶的影响
(4)有机溶剂对酶活性的影响: ◆有些有机溶剂,特别是极性较强的有机溶剂, 如甲醇,乙醇等,会夺取酶分子的结合水,影 响酶分子微环境的水化层,从而降低酶的催化 活性,甚至引起酶的变性失活。 ◆研究表明,有机溶剂的极性越强,越容易夺 取酶分子结合水,对酶活力的影响就越大。
三、酶非水相催化的影响因素
(二)、有机溶液对有机介质中酶的影响
(5)有机溶剂对底物和产物分配的影响: ◆有机溶剂与水之间的极性不同,在反应过程中会影响 底物和产物的分配,从而影响酶的催化反应。 ◆有机容剂能改变酶分子必需水层中底物和产物的浓度。
四、酶非水相催化的催化特性
(三)酶在有机介质中的催化特性
1、底物专一性: ◆在有机介质中,由于酶分子活性中心的结合 部位与底物之间的结合状态发生某些变化,致 使酶的底物特异性会发生改变。 ◇
四、酶非水相催化的催化特性
(三)酶在有机介质中的催化特性
2、对映体选择性: ◆酶的对映体选择性又称为立体选择性或立体异构专一性,是 酶在对称的外消旋化合物中识别一种异构体的能力大小的指标。 ◆酶立体选择性的强弱可以用立体选择系数(KLD)的大小来衡 量。立体选择系数越大,表明酶催化的对映体选择性越强。 ◆立体选择系数与酶对L-型和D-型两种异构体的酶转换数 (Kcat)和米氏常数(Km)有关。即:
酶非水相催化的几种类型
4、离子液介质中的酶催化: 离子液介质中的酶催化是指酶在离子液中进 行的催化作用。
离子液(ionic liquids)是由有机阳离子与有机(无 机)阴离子构成的在室温条件下呈液态的低熔点盐类, 挥发性低、稳定性好。酶在离子液中的催化作用具有良 好的稳定性和区域选择性、立体选择性、键选择性等显 著特点。
(二)、水对有机介质中酶的影响
(2)水对酶催化反应速度的影响: ◆有机介质中水的含量对酶催化反应速度有显著影响。 ◆在催化反应速度达到最大时的水含量称为最适水含量。 ◆在实际应用时应当根据实际情况,通过实验确定最适 水含量。
三、酶非水相催化的影响因素
(二)、水对有机介质中酶的影响
Chapter 6
相关文档
最新文档