高中数学阶段常见函数性质汇总
高中数学函数的基本性质 doc
![高中数学函数的基本性质 doc](https://img.taocdn.com/s3/m/d73b9e12fad6195f312ba6d9.png)
高一数学函数的基本性质一、知识点1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
高中数学函数性质
![高中数学函数性质](https://img.taocdn.com/s3/m/096511df0d22590102020740be1e650e52eacfd3.png)
高中数学函数性质函数是高中数学的重点难点,也是基础。
你都掌握了函数的基本知识点吗?接下来店铺为你整理了高中数学函数性质,一起来看看吧。
高中数学函数性质一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ① 和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
高一函数 知识点大全
![高一函数 知识点大全](https://img.taocdn.com/s3/m/63dcbb4702d8ce2f0066f5335a8102d276a261ca.png)
高一函数知识点大全一、函数的定义函数是一种数学操作,它将输入值(或参数)映射到输出值(或结果)。
函数的定义通常包括函数名称、参数列表和函数体。
在高一阶段,我们将学习一些基本的函数,如一次函数、二次函数、幂函数和对数函数等。
二、函数的表示方法函数的表示方法有三种:符号表示法、列表表示法和图像表示法。
符号表示法是用函数名称和参数列表来表示函数,例如y = 2x + 1;列表表示法是将输入值和对应的输出值列成一个表格;图像表示法是通过绘制函数的图像来表示函数的关系。
三、函数的性质函数的性质包括奇偶性、单调性、周期性和对称性等。
奇偶性是指函数是否具有奇偶性;单调性是指函数在某个区间内是单调递增或单调递减;周期性是指函数是否存在周期性;对称性是指函数是否具有对称性。
四、函数的运算函数的运算包括函数的加减乘除、复合运算和反函数运算等。
函数的加减乘除是指将两个或多个函数进行加、减、乘、除运算;复合运算是指将多个函数嵌套在一起,形成一个复合函数;反函数运算是指将一个函数转换为其反函数。
五、函数的图像函数的图像是用来描述函数变化的直观工具。
在绘制函数的图像时,我们需要先确定函数的定义域和值域,然后根据函数的表达式绘制出对应的图像。
同时,我们还需要掌握一些常见的图像变换方法,如平移、伸缩和对称变换等。
六、函数的实际应用高一函数知识点还包括一些实际应用,如利用函数解决实际问题、利用函数进行数据分析等。
在实际问题中,我们需要根据问题的具体情境来选择合适的函数和数学模型进行解决。
我们还需要掌握一些数据处理和分析的方法,如回归分析、聚类分析等。
高一函数知识点是数学学习的重要内容之一。
通过学习和掌握这些知识点,我们可以更好地理解函数的本质和特点,为后续的学习和实际应用打下坚实的基础。
高一函数知识点总结函数是数学的重要概念,是高中数学的核心内容。
在初中数学中,函数通常被视为变量之间的依赖关系,而高中的函数则更加强调映射的概念。
高中数学阶段常见函数性质汇总
![高中数学阶段常见函数性质汇总](https://img.taocdn.com/s3/m/4a6ac6932af90242a995e526.png)
高中阶段常见函数性质汇总函 数 名 称:常数函数解析式 形 式:f (x )=b (b ∈R) 图象及其性质:函数f (x)得图象就是平行于x 轴或与x 轴重合(垂直于y 轴)得直线定 义 域:R值 域:{b} 单 调 性:没有单调性奇 偶 性:均为偶函数[当b=0时,函数既就是奇函数又就是偶函数]反 函 数:无反函数周 期 性:无周期性函 数 名 称:一次函数解析式 形 式:f(x )=kx +b (k ≠0,b∈R) 图象及其性质:直线型图象、|k |越大,图象越陡;|k |越小,图象越平缓;当b =0时,函数f(x)得图象过原点;当b =0且k =1时,函数f(x )得图象为一、三象限角平分线;当b=0且k =-1时,函数f (x )得图象为二、四象限角平分线;定 义 域:R值 域:R单 调 性:当k >0时,函数f (x )为R上得增函数;当k<0时,函数f (x)为R上得减函数;奇 偶 性:当b=0时,函数f(x )为奇函数;当b ≠0时,函数f (x)没有奇偶性;反 函 数:有反函数。
[特殊地,当k=-1或b =0且k=1时,函数f (x)得反函数为原函数f (x )本身]周 期 性:无函 数 名 称:反比例函数解析式 形 式:f (x )= (k ≠0)图象及其性质:图象分为两部分,均不与坐标轴相交,当k 〉0时,函数f (x )得图象分别在第一、第三象限;当k<0时,函数f(x )得图象分别在第二、第四象限;双曲线型曲线,x 轴与y 轴分别就是曲线得两条渐近线;图象成中心对称图形,对称中心为原点;图象成轴对称图形,对称轴有两条,分别为y =x 、y =-x ;定 义 域:值 域:单 调 性:当k〉0时,函数f (x )为与上得减函数;当k 〈0时,函数f(x )为与上得增函数;奇 偶 性:奇函数反 函 数:原函数本身 周 期 性:无函 数 名 称:变式型反比例函数解析式 形 式:f (x)= (c ≠0且 d ≠0)图象及其性质:图象分为两部分,均不与直线、直线相交,当k〉0时,函数f (x )得图象分别在直线与直线形成得左下与右上部分;当k<0时,函数f (x)得图象分别在直线与直线形成得左上与b右下部分;双曲线型曲线,直线与直线分别就是曲线得两条渐近线;图象成中心对称图形,对称中心为点;图象成轴对称图形,对称轴有两条,分别为、;反 函 数:周 期 性:无函 数 名 称:二次函数 解析式 形 式:一般式: 顶点式:两根式:图象及其性质:①图形为抛物线,对称轴为,顶点坐标为或,与轴得交点为;②当时,抛物线得开口向上,此时函数图象有最低点;当时,抛物线得开口向下,此时函数图象有最高点; ③当时,函数图象与轴有两个交点,当时,函数图象与轴有一个交点,当时,函数图象与轴没有交点; ④横坐标关于对称轴对称时,纵坐标相等;当时,横坐标距对称轴近则函数值小,当时,横坐标距对称轴近则函数值大;⑤函数均可由函数平移得到;定 义 域:R值 域:当时,值域为;当时,值域为单 调 性:当时,上为减函数,上为增函数;当时,上为减函数,上为增函数;奇 偶 性:当时,函数为偶函数;当时,函数为非奇非偶函数反 函 数:定义域范围内无反函数,在单调区间内有反函数周 期 性:无函 数 名 称:指数函数 解析式 形 式:图象及其性质:①函数图象恒过点,与 轴不相交,只就是无限靠近;②函数与得图象关于轴对称;③当时,轴以左得图象夹在在直线与轴之间,轴以右得图象在直线以上;当时,轴以左得图象在直线以上,轴以右得图象夹在在直线与轴之间;f (x )=④第一象限内,底数大,图象在上方;定 义 域:R值 域:单 调 性:当时,函数为增函数;当时,函数为减函数;奇 偶 性:无反 函 数:对数函数周 期 性:无 函 数 名 称:对数函数解析式 形 式: 图象及其性质:①函数图象恒过点,与轴不相交,只就是无限靠近;②函数与得图象关于轴对称;③当时,轴以下得图象夹在在直线与轴之间,轴以上得图象在直线以右;当时,轴以下得图象在直线以右,轴以上得图象夹在在直线与轴之间;④第一象限内,底数大,图象在右方;定 义 域:R值 域:单 调 性:当时,函数为增函数;当时,函数为减函数;[与系数函数得单调性类似,因为两函数互为反函数]奇 偶 性:无 反 函 数:指数函数周 期 性:无函 数 名 称:对钩函数解析式 形 式:图象及其性质:①函数图象与轴及直线不相交,只就是无限靠近;②当时,函数有最低点,即当时函数取得最小值;③当时,函数有最高点,即当时函数取得最大值;定 义 域:值 域:单 调 性:在与上函数为增函数;在与上函数为减函数;奇 偶 性:奇函数反 函 数:定义域内无反函数周 期 性:无 2、3函数单调性(考点疏理+典型例题+练习题与解析)2.3函数单调性【典型例题】例1、(1)则a 得范围为( D)A 。
高中数学函数性质总结
![高中数学函数性质总结](https://img.taocdn.com/s3/m/e806486f783e0912a2162a3e.png)
函数性质1. .函数的单调性 (1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.注:如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数;如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.2. 奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.注:若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.注:对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 注:若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称;若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.3. 多项式函数110()nn n n P x a x a xa --=+++ 的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.4. 两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称. (3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.5. 互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数. 6. 几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=. (2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. 7. 几个函数方程的周期(约定a>0) (1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]21()()(),(()0,1)2f x f x f x a f x +-=+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.8. 分数指数幂 (1)1m nnm a a =(0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).9. 根式的性质 (1)()nn a a =.(2)当n 为奇数时,nna a =;当n 为偶数时,,0||,0nna a a a a a ≥⎧==⎨-<⎩.10. 有理指数幂的运算性质 (1)(0,,)rsr sa a aa r s Q +⋅=>∈.(2)()(0,,)r s rsa a a r s Q =>∈.(3)()(0,0,)r r rab a b a b r Q =>>∈.注:若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).11. 对数的四则运算法则 若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2)log log log aa a MM N N =-; (3)log log ()na a M n M n R =∈.注:设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.12. 对数换底不等式及其推论若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数.(2)(2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2log log log 2a a am nm n +<. 【例1】求下列各式的值:(1)3n nπ-()(*1,n n N >∈且); (2)2()x y -. 解:(1)当n 为奇数时,33nnππ-=-(); 当n 为偶数时,3|3|3nnπππ-=-=-(). (2)2()||x y x y -=-.当x y ≥时,2()x y x y -=-;当x y <时,2()x y y x -=-.【例2】已知221na =+,求33n nn na a a a--++的值. 解:332222()(1)1121122121n n n n n n n nn n n na a a a a a a a a a a a ------++-+==-+=+-+=-+++【例4】已知函数23()(0,1)x f x a a a -=>≠且.(1)求该函数的图象恒过的定点坐标;(2)指出该函数的单调性.解:(1)当230x -=,即23x =时,2301x a a -==. 所以,该函数的图象恒过定点2(,1)3.(2)∵ 23u x =-是减函数,∴ 当01a <<时,()f x 在R 上是增函数;当1a >时,()f x 在R 上是减函数.【例3】求下列函数的单调区间:(1)223x x y a +-=; (2)10.21xy =-. 解:(1)设2,23u y a u x x ==+-.由2223(1)4u x x x =+-=+-知,u 在(,1]-∞-上为减函数,在[1,)-+∞上为增函数. 根据u y a =的单调性,当1a >时,y 关于u 为增函数;当01a <<时,y 关于u 为减函数. ∴ 当1a >时,原函数的增区间为[1,)-+∞,减区间为(,1]-∞-; 当01a <<时,原函数的增区间为(,1]-∞-,减区间为[1,)-+∞. (2)函数的定义域为{|0}x x ≠. 设1,0.21x y u u ==-. 易知0.2x u =为减函数. 而根据11y u =-的图象可以得到,在区间(,1)-∞与(1,)+∞上,y 关于u 均为减函数. ∴在(,0)-∞上,原函数为增函数;在(0,)+∞上,原函数也为增函数.【例1】若()(0,1)x f x a a a =>≠且,则1212()()()22x x f x f x f ++≤. 证明:121212122()()()222x x x x f x f x x x a a f a++++-=-12121222()022x x x x x x a a a a a a +--==≥. ∴ 1212()()()22x x f x f x f ++≤. (注:此性质为函数的凹凸性) 【例2】已知函数2()(0,0)1bxf x b a ax =≠>+.(1)判断()f x 的奇偶性; (2)若3211(1),log (4)log 422f a b =-=,求a ,b 的值.解:(1)()f x 定义域为R ,2()()1bxf x f x ax --==-+,故()f x 是奇函数.(2)由1(1)12b f a ==+,则210a b -+=.又log 3(4a -b )=1,即4a -b =3.由{21043a b a b -+=-=得a =1,b =1.【例3】(01天津卷.19)设a >0, ()x xe af x a e =+是R 上的偶函数.(1)求a 的值; (2)证明()f x 在(0,)+∞上是增函数.解:(1)∵ ()x xe af x a e =+是R 上的偶函数,∴ ()()0f x f x --=.∴ 110()()x x x x x x e a e a a e a e a e a e a a ---+--=⇒-+-10()()0x x a e e a-=⇒--=.e x -e -x 不可能恒为“0”, ∴ 当1a-a =0时等式恒成立, ∴a =1. (2)在(0,)+∞上任取x 1<x 2,1212121212111()()()()x x x x x x x x e f x f x e e e a e e e e -=+--=-+-12121()(1)x x x x e e e e=-- ∵ e >1,x 1<x 2, ∴ 121x x e e >>, ∴12x x e e >1,121212()(1)x x x x x x e e e e e e --<0,∴ 12()()0f x f x -<, ∴ ()f x 是在(0,)+∞上的增函数.【例4】已知1992年底世界人口达到54.8亿.(1)若人口的平均增长率为1.2%,写出经过t 年后的世界人口数y (亿)与t 的函数解析式;(2)若人口的平均增长率为x %,写出2010年底世界人口数为y (亿)与x 的函数解析式. 如果要使2010年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?解:(1)经过t 年后的世界人口数为 *54.8(1 1.2)54.8 1.012,t t y t N =⨯+%=⨯∈. (2)2010年底的世界人口数y 与x 的函数解析式为 1854.8(1)y x =⨯+%. 由1854.8(1)y x =⨯+%≤66.8, 解得1866.8100(1) 1.154.8x ≤⨯-≈. 所以,人口的年平均增长率应控制在1.1%以内.。
高中数学 14种函数图像和性质知识解析 新人教A版必修1
![高中数学 14种函数图像和性质知识解析 新人教A版必修1](https://img.taocdn.com/s3/m/2a2713196ad97f192279168884868762caaebb60.png)
高中数学14种函数图像和性质知识解析新人教A版必修1高中数学 14种函数图像和性质知识解析新人教A版必修1高中不得不掌握的函数图像与常用性质高中常用函数有14种,它们是:1.正比例函数;2.反比例函数;3.根式函数;4一次函数;5.二次函数;6双勾函数.;7..双抛函数;8.指数函数;9对数函数;10.三角函数;11分段函数.;12.绝对值函数;13.超越函数;14.抽象函数。
而函数的性质常见的有:1.定义域;2.值域;3.单调性;4.奇偶性;5.周期性;6.对称性;7.有界性;8.反函数;9.连续性.高中都是从函数解析式入手画出函数图像,再利用函数图像研究其性质,下面我们就函数的图像和性质做归纳总结。
1.正比例函数解析式图像定义域:值域:单调性:奇偶性:反函数:2.反比例函数解析式图像性质定义域:值域:单调性:奇偶性:反函数:对称性:定义域:值域:单调性:对称性:3根式函数解析式图像定义域:值域:单调性:奇偶性:反函数:4一次函数解析式图像定义域:值域:1 性质性质性质用心爱心专心单调性:反函数:5二次函数解析式图像定义域:值域:单调性:对称性:定义域:值域:单调性:对称性:6.双勾函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:值域:单调性:奇偶性:对称性:7.双抛函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:性质性质性质用心爱心专心值域:单调性:奇偶性:对称性:8.指数函数解析式图像定义域:值域:单调性:9.对数函数解析式图像定义域:值域:单调性:10.三角函数解析式图像单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:11.分段函数分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。
高中数学—函数的基本性质—完整版课件
![高中数学—函数的基本性质—完整版课件](https://img.taocdn.com/s3/m/e33d4331a517866fb84ae45c3b3567ec102ddc05.png)
• 当 > 时, − < ,则
• − = −
− = − = − ().
• 综上,对 ∈ (−∞,) ∪ (,+∞),
• ∴ ()为奇函数.
都有 − = − ().
奇偶性判定
• 【解析】 (4) =
−
−
• 定义域为 −, 关于原点对称
• ③一个奇函数,一个偶函数的积是 奇函数 .
函数的奇偶性
• 判断函数的奇偶性
• 1、首先分析函数的定义域,在分析时,不要把函数化简,而要根据
原来的结构去求解定义域,如果定义域不关于原点对称,则一定是非
奇非偶函数.
• 2、如果满足定义域对称,则计算(−),看与()是否有相等或互为
相反数的关系.
−
−−
+
++
−+
• 即
= 恒成立,
• 则2(+)2+2=0对任意的实数恒成立.
• ∴ ==0.
函数的单调性
+
•
(2)∵ =
∈ 是奇函数, 只需研究(, +∞)上()的单调区间即可.
•
任取, ∈ (,+∞),且 < ,则
应值,故函数取得最值时,一定有相应的x的值.
抽象函数的单调性
• 函数()对任意的、 ∈ ,都有 + = + − ,并且当
> 时,() > .
• (1)求证:()是上的增函数;
• (2)若()=,解不等式( − − ) < .
抽象函数的单调性
• ∴ ()=, ∴原不等式可化为( − − ) < (),
• ∵ ()是上的增函数,
高考常用函数知识点汇总
![高考常用函数知识点汇总](https://img.taocdn.com/s3/m/cd29fcfffc0a79563c1ec5da50e2524de418d07f.png)
高考常用函数知识点汇总函数是数学中非常重要的一个概念,也是高考中常常出现的考点。
理解和掌握常用函数的知识点对于高考数学题目的解答非常有帮助。
本文将对高考常用的函数知识点进行汇总,以帮助同学们更好地备考。
一、一次函数一次函数是最基本的函数之一,其定义域为全体实数。
一次函数的一般形式为y = kx + b,其中k和b是常数。
一次函数的图像为一条直线,其斜率k决定了直线的倾斜程度,常数b决定了直线与y轴的交点。
二、二次函数二次函数是高中数学中较为复杂的函数之一,其定义域为全体实数。
二次函数的一般形式为y = ax^2 + bx + c,其中a、b和c是常数且a ≠ 0。
二次函数的图像为一条抛物线,其开口方向由二次项系数a的正负决定。
三、指数函数指数函数是以一个正常数为底数的幂函数,其定义域为全体实数。
指数函数的一般形式为y = a^x,其中a是正常数且a ≠ 1。
指数函数的特点是呈现指数递增或递减的趋势,底数a的大小决定了函数的增长速度。
四、对数函数对数函数是指数函数的逆函数,其定义域为x > 0。
对数函数的一般形式为y = loga(x),其中a是正常数且a ≠ 1。
对数函数的特点是呈现递增或递减的趋势,底数a的大小决定了函数的增长速度。
五、三角函数三角函数是研究角及其变化规律的函数,其定义域为全体实数。
常见的三角函数有正弦函数、余弦函数和正切函数。
三角函数的图像为周期性的波动曲线,其周期和振幅由函数的参数决定。
六、反三角函数反三角函数是三角函数的逆函数,其定义域由对应的三角函数确定。
常见的反三角函数有反正弦函数、反余弦函数和反正切函数。
反三角函数的图像可通过对应的三角函数的图像通过y = x镜像得到。
七、指数对数函数指数对数函数是指数函数和对数函数的组合,其定义域由对应的函数确定。
常见的指数对数函数有指数对数函数、指数对数对函数和对数指数函数。
这些函数的图像由对应的指数函数和对数函数的图像组合而成。
高中数学必修1函数的基本性质
![高中数学必修1函数的基本性质](https://img.taocdn.com/s3/m/c1d4bcf79ec3d5bbfc0a7407.png)
高中数学必修1函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。
(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
高中数学函数知识点最新总结
![高中数学函数知识点最新总结](https://img.taocdn.com/s3/m/d0fc48b077eeaeaad1f34693daef5ef7ba0d1235.png)
高中数学函数知识点总结一、函数的概念与性质1.1 函数的定义函数是一种数学关系,它将一个集合(称为定义域)中的每个元素唯一地对应到另一个集合(称为值域)中的一个元素。
形式化地,如果集合A和B都是数集,且对于A中的任意一个元素x,按照某个确定的规则,在B中都有唯一的一个元素y与之对应,那么就称y为x的函数,记作y=f(x),A称为定义域,B称为值域。
1.2 函数的性质(1)一一映射:函数具有唯一性,即对于定义域中的任意一个元素x,在值域中都有唯一的元素y与之对应。
(2)单调性:函数可以在定义域内单调增加或单调减少,也可以是单调不增不减。
(3)连续性:函数在定义域内连续。
(4)周期性:函数可以具有周期性,即存在正数T,使得对于任意x,都有f(x+T)=f(x)。
二、常见函数类型2.1 线性函数形式为y=kx+b的函数,其中k和b为常数,k称为斜率,b称为截距。
2.2 二次函数形式为y=ax^2+bx+c的函数,其中a、b、c为常数,a≠0。
2.3 对数函数形式为y=log_a(x)的函数,其中a为底数,x为真数。
2.4 三角函数包括正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)等。
2.5 反三角函数包括反正弦函数arcsin(x)、反余弦函数arccos(x)、反正切函数arctan(x)等。
2.6 指数函数形式为y=a^x的函数,其中a为底数,x为指数。
三、函数的图像与性质3.1 图像的画法函数的图像可以通过解析法、描点法、图象平移等方法来画出。
3.2 函数的单调区间通过导数或者图像,可以判断函数在定义域内的单调性。
3.3 函数的极值函数的极值是指在定义域内函数取得最大值或最小值的点。
3.4 函数的周期性通过观察函数的周期性,可以简化函数的计算。
四、函数的应用4.1 函数的求值给定函数和自变量,求出函数的值。
4.2 函数的解析式求解已知函数的图像或性质,求出函数的解析式。
4.3 函数的图像变换通过平移、缩放等操作,可以得到函数的图像变换。
高中数学函数的性质知识点整理
![高中数学函数的性质知识点整理](https://img.taocdn.com/s3/m/db283edd453610661ed9f4fb.png)
一、函数(一)、函数的单调性1、定义:一般地,设函数f(x)的定义域为I,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1 ,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说函数f(x)在区间D 上是增函数; 当x 1<x 2时,都有f(x 1)>f(x 2),那么就说函数f(x)在区间D 上是减函数。
单调性定义的等价形式:设x 1,x 2∈[a,b],x 1≠x 2.(1)若有(x 1-x 2)[f(x 1)-f(x 2)]>0或>0,则f(x)在闭区间[a,b]上是增函数;(2)若有(x 1-x 2)[f(x 1)-f(x 2)]<0或<0,则f(x)在闭区间[a,b]上是减函数.2、常用结论(1)若f(x),g(x)均为区间A 上的增(减)函数,则f(x)+g(x)也是区间A 上的增(减)函数. (2)若k>0,则kf(x)与f(x)单调性相同;若k<0,则kf(x)与f(x)单调性相反.(3)函数y=f(x)(f(x)>0)在公共定义域内与y=-f(x),y=的单调性相反.(4)函数y=f(x)(f(x)≥0)在公共定义域内与y=的单调性相同.(5)复合函数单调性的确定方法:若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数.简称“同增异减”. (二)、函数的奇偶性1.函数奇偶性的定义:函数()f x 的定义域必须关于原点对称,对定义域内的任意一个x 都满足 ①()()f x f x -=⇔函数()f x 为偶函数;②()()()()0f x f x f x f x -=-⇔-+=⇔函数()f x 为奇函数.2.奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;反过来如果一个函数的图像关于原点对称,则该函数为奇函数,若该函数的图像关于y 轴对称,该函数为偶函数. 3.函数奇偶性的性质①既是奇函数又是偶函数的函数只有一种类型,即()0f x =,x D ∈,其中定义域D 是关于原点对称的非空数集.②奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.即奇函数()f x 在区间[,](0)a b a b ≤<上单调递增(减),则()f x 在区间[,]b a --上也是单调递增(减); ③偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.即偶函数()f x 在区间[,](0)a b a b ≤<上单调递增(减),则()f x 在区间[,]b a --上也是单调递减(增); ④任意定义在R 上的函数()f x 都可以唯一地表示成一个奇函数与一个偶函数的和.即()()()()()22f x f x f x f x f x +---=+(三)、函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x -=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)特别的(2)()()()f a x f b x f x -=+⇔关于2a bx +=轴对称; (3)()f x a +是偶函数,则()()f x a f x a +=-+,进而可得到:()f x 关于x a =轴对称.本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称. 3、中心对称的等价描述:(1)()()f a x f a x -=-+⇔()f x 关于(),0a 中心对称(当0a =时,恰好就是奇函数); (2)()()()f a x f b x f x -=-+⇔关于,02a b +⎛⎫⎪⎝⎭中心对称;(3)()f x a +是奇函数,则()()f x a f x a +=--+,进而可得到:()f x 关于(),0a 中心对称。
高中数学 函数概念及其性质知识总结
![高中数学 函数概念及其性质知识总结](https://img.taocdn.com/s3/m/c7793070b207e87101f69e3143323968011cf4df.png)
高中数学函数概念及其性质知识总结数学必修1:函数概念及性质函数的概念函数是指从一个集合到另一个集合的一种对应关系。
具体而言,设A、B是非空的数集,如果按照某个确定的对应关系f,使得对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作:y=f(x),其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。
函数的定义域能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时,列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1;(5)如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是使各部分都有意义的x的值组成的集合;(6)指数为零底不可以等于零。
实际问题中的函数的定义域还要保证实际问题有意义。
注意:求出不等式组的解集即为函数的定义域。
构成函数的三要素构成函数的三个要素是定义域、对应关系和值域。
由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)。
两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)。
函数的值域函数的值域取决于定义域和对应法则。
不论采取什么方法求函数的值域都应先考虑其定义域。
应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。
求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等。
函数图象在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象。
高中数学中的函数性质知识点总结
![高中数学中的函数性质知识点总结](https://img.taocdn.com/s3/m/bcca262fcd7931b765ce0508763231126edb77a0.png)
高中数学中的函数性质知识点总结函数是数学中的重要概念,它是将一个或多个输入值映射到唯一的输出值。
在高中数学中,函数性质是一个重要的研究方向。
本文将对高中数学中的函数性质知识点进行总结,包括定义域、值域、奇偶性、单调性、反函数以及复合函数等内容。
1. 函数的定义域与值域函数的定义域表示输入变量的可能取值范围,是一个集合。
函数的值域表示函数的所有可能输出值构成的集合。
在确定函数的定义域和值域时,需要考虑函数的定义条件以及数学上的限制。
2. 奇偶函数性质奇函数和偶函数是函数的一种特殊性质。
若函数f(-x) = -f(x),则称函数f(x)为奇函数;若函数f(-x) = f(x),则称函数f(x)为偶函数。
奇函数关于原点对称,偶函数关于y轴对称。
判断函数的奇偶性可以通过函数图像的对称性来进行。
3. 单调性函数的单调性描述了函数在定义域上的递增或递减规律。
若函数在定义域上满足f(x1) < f(x2)当且仅当x1 < x2,则称函数为递增函数;若函数在定义域上满足f(x1) > f(x2)当且仅当x1 < x2,则称函数为递减函数。
根据函数的导数可以判断函数的单调性。
4. 反函数若函数f的定义域和值域分别为A和B,则存在另一个函数g,使得g的定义域为B,值域为A,并且满足f(g(x)) = x和g(f(x)) = x,称函数g为函数f的反函数。
反函数关系可以通过互换自变量和因变量来得到。
5. 复合函数复合函数是将一个函数作为另一个函数的输入的一种特殊表示。
设有函数f和g,当g(x)的值属于f(x)的定义域时,可以构成复合函数(f∘g)(x) = f(g(x))。
复合函数的运算顺序要注意,即先执行g再执行f。
通过对高中数学中的函数性质进行总结,我们可以更好地理解函数的概念和特性。
函数的定义域与值域、奇偶性、单调性、反函数以及复合函数等知识点在解决数学问题时起着重要的作用。
深入掌握这些知识,可以提高我们的数学分析和解决问题的能力。
高中数学函数的基本性质
![高中数学函数的基本性质](https://img.taocdn.com/s3/m/583c4b27bed5b9f3f90f1c48.png)
考点三 函数的周期性 1.周期函数的概念 设函数y=f(x),x∈D.如存在非零常数T,使得对任何x∈D都有f(x+T)=f(x), 则函数f(x)为周期函数,T为y=f(x)的一个周期. 2.关于函数周期性的几个常用结论 (1)若T为函数f(x)的一个周期,则kT(k为非零整数)也是函数f(x)的周期,这 就是说,一个函数如果有周期,就有无数多个.
1 x x2 1
x 2 1 )=-f(x),∴f(x)是奇函数. =-log2(x+
解法二:易知f(x)的定义域为R. ∵f(-x)+f(x)=log2[(-x)+ ( x)2 1 ]+log2(x+ x 2 1 )=log21=0,∴f(-x)=-f(x),
∴f(x)为奇函数.
∵定义域关于原点不对称,∴函数f(x)是非奇非偶函数. (2)函数的定义域为{x|x≠0},关于原点对称, 当x>0时,-x<0, f(-x)=x2-2x-1=-f(x); 当x<0时,-x>0, f(-x)=-x2-2x+1=-f(x), ∴f(-x)=-f(x),即函数是奇函数.
4 x 2 0, (3)由题意知 ⇒-2≤x≤2且x≠0, | x 3 | 3
解题导引
求出f(x)的周期为8 f(80),f(11) 在[-2,2]内求f(-25),
根据f(x)为奇函数且在[0,2]上是 结论
增函数得f(x)在[-2,2]上是增函数
解析 ∵f(x+4)=-f(x),∴f(x+8)=-f(x+4), ∴f(x+8)=f(x), ∴f(x)的周期为8,∴f(-25)=f(-1), f(80)=f(0), f(11)=f(3)=f(-1+4)=-f(-1)=f(1), 又∵奇函数f(x)在区间[0,2]上是增函数, ∴f(x)在区间[-2,2]上是增函数, ∴f(-25)<f(80)<f(11),故选D.
高一数学必修一函数的概念与性质知识点总结
![高一数学必修一函数的概念与性质知识点总结](https://img.taocdn.com/s3/m/0ef28e653868011ca300a6c30c2259010302f34a.png)
高一数学必修一函数的概念与性质知识点总结一、内容描述高一数学必修一函数的概念与性质知识点总结涵盖了高中阶段关于函数基础概念及其性质的核心内容。
文章首先介绍了函数的基本概念,包括函数的定义、表示方法以及函数的性质等。
文章详细阐述了函数的性质,包括单调性、奇偶性、周期性以及复合函数的性质等。
文章还介绍了函数图像的画法及其与性质之间的关系,以及如何利用函数性质解决实际问题。
文章总结了函数在数学学习中的重要性,强调掌握函数概念与性质对于后续数学学习的基础作用。
通过本文的学习,学生可以更好地理解和掌握函数知识,为后续数学学习打下坚实的基础。
1. 简述函数概念的重要性函数是描述自然现象和规律的重要工具。
在物理、化学、生物等自然学科中,许多现象的变化过程都可以通过函数关系进行描述。
物理学中的运动规律、化学中的化学反应速率与浓度的关系等,都需要借助函数概念进行建模和分析。
函数是数学体系中的核心和基础。
函数连接了代数、几何、三角学等多个分支,是数学知识和方法综合运用的基础。
对函数概念的深入理解,有助于我们更好地理解和掌握数学的其它分支和领域。
函数也是解决实际问题的重要工具。
在现实生活中,很多问题的解决都需要建立数学模型,而函数作为构建数学模型的基本元素之一,能够帮助我们准确地描述问题并找到解决方案。
在经济学、统计学、工程学等领域,函数的运用非常广泛。
函数概念的重要性不言而喻。
高一学生在学习数学时,应深入理解函数的概念,掌握其性质和特点,为后续学习和解决实际问题打下坚实的基础。
2. 引出本文目的:总结函数的概念与性质本文旨在系统梳理和归纳高一数学必修一课程中函数的核心概念与基本性质。
函数是数学中的核心概念之一,具有广泛的应用领域。
在高中阶段,学生需要深入理解函数的基础定义、性质和图像特征,为后续学习奠定坚实基础。
本文的目的在于帮助学生全面总结函数的相关知识点,加深对函数概念与性质的理解,以便更好地掌握和应用函数这一重要的数学工具。
高中数学必修一函数性质详解及知识点总结及题型详解
![高中数学必修一函数性质详解及知识点总结及题型详解](https://img.taocdn.com/s3/m/0d3578f377a20029bd64783e0912a21614797f84.png)
经典高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:1对映射定义的理解;2判断一个对应是映射的方法;一对多不是映射,多对一是映射集合A,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:x,y →x 2+y 2,xy,求象5,2的原象.3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11-x ,则集合A 中的元素最多有几个写出元素最多时的集合A.2、函数;构成函数概念的三要素 ①定义域②对应法则③值域函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法; 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法;但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域;例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式;与配凑法一样,要注意所换元的定义域的变化; 例3 已知x x x f 2)1(+=+,求)1(+x f四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法; 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式;例5 设,)1(2)()(x xf x f x f =-满足求)(x f例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式;例7 已知:1)0(=f ,对于任意实数x 、y,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式;例8 设)(x f 是+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f1、求函数定义域的主要依据:1分式的分母不为零;2偶次方根的被开方数不小于零,零取零次方没有意义;32 2 (21)x x 已知f -的定义域是[-1,3],求f()的定义域1求函数值域的方法①直接法:从自变量x 的范围出发,推出y=fx 的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式; ③判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且x ∈R 的分式;④分离常数:适合分子分母皆为一次式x 有范围限制时要画图; ⑤单调性法:利用函数的单调性求值域; ⑥图象法:二次函数必画草图求其值域; ⑦利用对号函数四.1.定义:2.性质:①y=fx 是偶函数⇔y=fx 的图象关于y 轴对称, y=fx 是奇函数⇔y=fx 的图象关于原点对称,②若函数fx 的定义域关于原点对称,则f0=0③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇两函数的定义域D 1 ,D 2,D 1∩D 2要关于原点对称31、函数单调性的定义:2 设()[]x g f y =是定义在M 上的函数,若fx 与gx 的单调性相反,则()[]x g f y =在M 上是减函数;若fx 与gx 的单调性相同,则()[]x g f y =在M 上是增函数;时,1)(>x f ,⑴求证:)(x f 在R 上是增函数; ⑵若4)3(=f ,解不等式2)5(2<-+a a f 3函数)26(log 21.0x x y -+=的单调增区间是________4高考真题已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是A (0,1)B 1(0,)3C 11[,)73D 1[,1)7一:函数单调性的证明1.取值 2,作差 3,定号 4,结论 二:函数单调性的判定,求单调区间x a x y += 0>a xax y -= 0>a 三:函数单调性的应用1.比较大小 例:如果函数c bx x x f ++=2)(对任意实数t 都有)2()2(-=+t f t f ,那么 A 、)4()1()2(f f f << B 、)4()2()1(f f f <<C 、)1()4()2(f f f << C 、)1()2()4(f f f <<2.解不等式例:定义在-1,1上的函数()f x 是减函数,且满足:(1)()f a f a -<,求实数a 的取值范围; 例:设是定义在上的增函数,,且,求满足不等式的x 的取值范围.3.取值范围例: 函数 在上是减函数,则 的取值范围是_______.例:若(31)41()log 1a a x a x f x x x -+≤⎧=⎨>⎩是R 上的减函数,那么a 的取值范围是A.(0,1)B.1(0,)3C.11[,)73D.1[,1)74. 二次函数最值例:探究函数12)(2+-=ax x x f 在区间[]1,0的最大值和最小值;例:探究函数12)(2+-=x x x f 在区间[]1,+a a 的最大值和最小值;5.抽象函数单调性判断例:已知函数)(x f 的定义域是),0(+∞,当1>x 时,0)(>x f ,且)()()(y f x f xy f +=⑴求)1(f ,⑵证明)(x f 在定义域上是增函数⑶如果1)31(-=f ,求满足不等式)21()(--x f x f ≥2的x 的取值范围例:已知函数fx 对于任意x ,y ∈R ,总有fx +fy =fx +y ,且当x >0时,fx <0,f 1=-错误!.1求证:fx 在R 上是减函数; 2求fx 在-3,3上的最大值和最小值.例:已知定义在区间0,+∞上的函数fx 满足f 错误!=fx 1-fx 2,且当x >1时,fx <0. 1求f 1的值;2判断fx 的单调性;3若f 3=-1,解不等式f |x |<-2.六.函数的周期性:1.定义若⇔≠=+)0)(()(T x f T x f )(x f 是周期函数,T 是它的一个周期;说明:nT 也是)(x f 的周期推广若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期对照记忆()()f x a f x a +=-说明:()()f a x f a x +=-说明:2.若)()(x f a x f -=+;)(1)(x f a x f =+;)(1)(x f a x f -=+;则)(x f 周期是2a1 已知定义在R 上的奇函数fx 满足fx+2=-fx ,则,f 6的值为A -1B 0C 1 D22 定义在R 上的偶函数()f x ,满足(2)(2)f x f x +=-,在区间-2,0上单调递减,设( 1.5),(2),(5)a f b f c f =-==,则,,a b c 的大小顺序为_____________3 已知f x 是定义在实数集上的函数,且,32)1(,)(1)(1)2(+=-+=+f x f x f x f 若则f 2005= .4 已知)(x f 是-∞+∞,上的奇函数,)()2(x f x f -=+,当0≤≤x 1时,fx=x,则f=________ 例11 设)(x f 是定义在R 上的奇函数,且对任意实数x 恒满足)()2(x f x f -=+,当]2,0[∈x 时22)(x x x f -=⑴求证:)(x f 是周期函数;⑵当]4,2[∈x 时,求)(x f 的解析式;⑶计算:1、已知函数54)(2+-=mx x x f 在区间),2[+∞-上是增函数,则)1(f 的范围是A 25)1(≥fB 25)1(=fC 25)1(≤fD 25)1(>f2、方程0122=++mx mx 有一根大于1,另一根小于1,则实根m 的取值范围是_______八.指数式与对数式 1.幂的有关概念1零指数幂)0(10≠=a a 2负整数指数幂()10,n na a n N a-*=≠∈ 3正分数指数幂()0,,,1m n m na a a m n N n *=>∈>; 5负分数指数幂()110,,,1m nm nmnaa m n N n a a-*==>∈>60的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质3.根式根式的性质:当n 是奇数,则a a n n =;当n 是偶数,则⎩⎨⎧<-≥==00a aa aa a n n4.对数1对数的概念:如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a2对数的性质:①零与负数没有对数 ②01log =a ③1log =a a3对数的运算性质 logMN=logM+logN对数换底公式:)10,10,0(log log log ≠>≠>>=m m a a N aNN m m a 且且 对数的降幂公式:)10,0(log log ≠>>=a a N N mnN a n a m 且 1 213323121)()1.0()4()41(----⨯b a ab 2 1.0lg 10lg 5lg 2lg 125lg 8lg ⋅--+x 名称 指数函数 对数函数 一般形式 Y=a x a>0且a ≠1 y=log a x a>0 , a ≠1 定义域 -∞,+ ∞ 0,+ ∞ 值域 0,+ ∞ -∞,+ ∞ 过定点 0,1 1,0 图象 指数函数y=a x 与对数函数y=log a x a>0 , a ≠1图象关于y=x 对称数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系对数式比较大小同理记住下列特殊值为底数的函数图象:3、研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4、指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的(1)1、平移变换:左+ 右- ,上+ 下- 即①函数图象及变化规则掌握几类基本的初等函数图像是学好本内容的前题1、基本函数1一次函数、2二次函数、3反比例函数、4指数函数、5对数函数、6三角函数;2、图象的变换1平移变换左加右减①函数y=fx+2的图象是把函数y=fx的图像沿x轴向左平移2个单位得到的;反之向右移2个单位②函数y=fx-3的图象是把函数y=fx的图像沿y轴向下平移3个单位得到的;反之向上移3个单位2对称变换①函数y=fx 与函数y=f-x 的图象关于直线x=0对称; 函数y=fx 与函数y=-fx 的图象关于直线y=0对称;函数y=fx 与函数y=-f-x 的图象关于坐标原点对称;②如果函数y=fx 对于一切x ∈R 都有fx+a=fx-a,那么y=fx 的图象关于直线x=a对称;③y=f-1x 与y=fx 关于直线y=x 对称 ⑤y=fx →y=f|x|3、伸缩变换y=afxa>0的图象,可将y=fx 的图象上的每一点的纵坐标伸长a>1或缩短0<a<1到原来的a 倍;y=faxa>0的图象,可将y=fx 的图象上的每一点的横坐标缩短a>1或伸长0<a<1到原来的a 倍;十.函数的其他性质1.函数的单调性通常也可以以下列形式表达:1212()()0f x f x x x ->- 单调递增1212()()0f x f x x x -<- 单调递减2.函数的奇偶性也可以通过下面方法证明:()()0f x f x +-= 奇函数 ()()0f x f x --= 偶函数3.函数的凸凹性:1212()()()22x x f x f x f ++<凹函数图象“下凹”,如:指数函数 1212()()()22x x f x f x f ++>凸函数图象“上凸”,如:对数函数。
高中数学第三章函数的概念与性质知识点归纳总结(精华版)(带答案)
![高中数学第三章函数的概念与性质知识点归纳总结(精华版)(带答案)](https://img.taocdn.com/s3/m/28a0ac8827fff705cc1755270722192e4536588a.png)
高中数学第三章函数的概念与性质知识点归纳总结(精华版)单选题1、若函数f(x)=x2−mx+10在(−2,1)上是减函数,则实数m的取值范围是()A.[2,+∞)B.[−4,+∞)C.(−∞,2]D.(−∞,−4]答案:A分析:结合二次函数的对称轴和单调性求得m的取值范围.,由于f(x)在(−2,1)上是减函数,函数f(x)=x2−mx+10的对称轴为x=m2≥1⇒m≥2.所以m2故选:A2、函数f(x)在(−∞,+∞)上是减函数,且a为实数,则有()A.f(a)<f(2a) B.f(a2)<f(a)C.f(a2+1)<f(a)D.f(a2−a)<f(a)答案:C分析:利用a=0可排除ABD;根据函数单调性和a2+1>a恒成立可知C正确.当a=0时,ABD中不等式左右两侧均为f(0),不等式不成立,ABD错误;∵a2+1−a>0对于a∈R恒成立,即a2+1>a恒成立,又f(x)为R上的减函数,∴f(a2+1)<f(a),C正确.故选:C.3、已知定义在R上的函数f(x)满足f(x+2)=f(x+4),且f(x+1)是奇函数,则()对称A.f(x)是偶函数B.f(x)的图象关于直线x=12,0)对称C.f(x)是奇函数D.f(x)的图象关于点(12答案:C分析:由周期函数的概念易知函数f(x)的周期为2,根据图象平移可得f(x)的图象关于点(1,0)对称,进而可得奇偶性.由f(x+2)=f(x+4)可得2是函数f(x)的周期,因为f(x+1)是奇函数,所以函数f(x)的图象关于点(1,0)对称,所以f(x)=−f(2−x),f(x)=−f(−x),所以f(x)是奇函数,故选:C.4、已知f(x)是定义在(−2,2)上的单调递减函数,且f(2a−3)<f(a−2),则实数a的取值范围是()A.(0,4)B.(1,+∞)C.(12,52)D.(1,52)答案:D分析:根据函数自变量的定义域以及函数单调递减列式,求出a的取值范围. ∵f(x)是定义在(−2,2)上的单调递减函数,且f(2a−3)<f(a−2),则{2a−3>a−2−2<a−2<2−2<2a−3<2,解得1<a<52故选:D..5、已知幂函数的图象经过点P(4,12),则该幂函数的大致图象是()A.B.C.D.答案:A分析:设出幂函数的解析式,利用函数图象经过点求出解析式,再由定义域及单调性排除CDB即可. 设幂函数为y=xα,因为该幂函数得图象经过点P(4,12),所以4α=12,即22α=2−1,解得α=−12,即函数为y =x −12,则函数的定义域为(0,+∞),所以排除CD ,因为α=−12<0,所以f(x)=x −12在(0,+∞)上为减函数,所以排除B ,故选:A6、已知函数f (x )={√x −2,x >2|x −3|+2,x ≤2,则f(f (9))=( )A .1B .2C .4D .8答案:C分析:根据定义域选择合适的表达式代入求值f(f (9))=f(√9−2)=f(1)=|1−3|+2=4故选:C7、已知函数f (x 2+1)=x 4,则函数y =f (x )的解析式是( )A .f (x )=(x −1)2,x ≥0B .f (x )=(x −1)2,x ≥1C .f (x )=(x +1)2,x ≥0D .f (x )=(x +1)2,x ≥1答案:B分析:利用凑配法求得f (x )解析式.f (x 2+1)=x 4=(x 2+1)2−2(x 2+1)+1,且x 2+1≥1,所以f (x )=x 2−2x +1=(x −1)2,x ≥1.故选:B8、已知函数f (x )=(m 2−2m −2)⋅x m−2是幂函数,且在(0,+∞)上递增,则实数m =()A .-1B .-1或3C .3D .2答案:C分析:根据幂函数的定义和性质,列出相应的方程,即可求得答案.由题意知:m 2−2m −2=1,即(m +1)(m −3)=0,解得m =−1或m =3,∴当m =−1时,m −2=−3,则f (x )=x −3在(0,+∞)上单调递减,不合题意;当m=3时,m−2=1,则f(x)=x在(0,+∞)上单调递增,符合题意,∴m=3,故选:C多选题9、已知偶函数f(x)满足f(x)+f(2−x)=0,下列说法正确的是()A.函数f(x)是以2为周期的周期函数B.函数f(x)是以4为周期的周期函数C.函数f(x+2)为偶函数D.函数f(x−3)为偶函数答案:BC分析:根据函数的奇偶性和周期性确定正确选项.依题意f(x)是偶函数,且f(x)+f(2−x)=0,f(x)=−f(2−x)=−f(x−2),所以A错误.f(x)=−f(x−2)=−[−f(x−2−2)]=f(x−4),所以B正确.f(x+2)=f(x−2+4)=f(x−2)=f(−(x−2))=f(−x+2),所以函数f(x+2)为偶函数,C正确.若f(x−3)是偶函数,则f(x−3)=f(−x−3)=f(x+3),则函数f(x)是周期为6的周期函数,这与上述分析矛盾,所以f(x−3)不是偶函数.D错误.故选:BC10、(多选题)下列函数中,定义域是其值域子集的有()A.y=85x+6B.y=−x2−2x+5C.y=√x−1D.y=1x−1答案:AC分析:分别求得函数的定义域和值域,利用子集的定义判断.A函数的定义域和值域都是R,符合题意;B.定义域为R,因为y=−x2−2x+5=−(x+1)2+6≤6,所以函数值域为(−∞,6],值域是定义域的真子集不符合题意;C.易得定义域为[1,+∞),值域为[0,+∞),定义域是值域的真子集;D.定义域为{x|x ≠0},值域为{x|x ≠−1},两个集合只有交集;故选:AC11、已知函数f (x )={kx +1,x ≤0log 2x,x >0,下列是关于函数y =f [f (x )]+1的零点个数的判断,其中正确的是( ) A .当k >0时,有3个零点B .当k <0时,有2个零点C .当k >0时,有4个零点D .当k <0时,有1个零点答案:CD解析:令y =0得f [f (x )]=−1,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论.令y =f [f (x )]+1=0,得f [f (x )]=−1,设f (x )=t ,则方程f [f (x )]=−1等价为f (t )=﹣1, ①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解,由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解,即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点.故选:CD .小提示:本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.12、下列函数既是偶函数,在(0,+∞)上又是增函数的是()A.y=x2+1B.y=2x C.y=|x|D.y=|1x−x|答案:AC分析:根据偶函数的定义和增函数的性质,逐个分析判断即可得解.对A,开口向上,且对称轴为x=0,所以y=x2+1是偶函数,在(0,+∞)上是增函数,故A正确;对B,y=2x为奇函数,故B错误;对C,y=|x|为偶函数,当x∈(0,+∞)时,y=x为增函数,故C正确;对D,令f(x)=|1x −x|,f(−x)=|1−x+x|=|1x−x|=f(x)为偶函数,当x∈(0,1),y=1x−x为减函数,故D错误,故选:AC13、关于直线y=m与函数y=|x|+|2x+4|的图象的交点有如下四个结论,其中正确的是()A.不论m为何值时都有交点B.当m>2时,有两个交点C.当m=2时,有一个交点D.当m<2时,没有交点答案:BCD分析:化简函数y=|x|+|2x+4|表达式即为y=|x|+|2x+4|={−3x−4,x<−2x+4,−2≤x≤03x+4,x>0,作出直线y=m与函数y=|x|+|2x+4|的图象,通过数形结合直接判断即可.由题意得,y=|x|+|2x+4|={−3x−4,x<−2x+4,−2≤x≤03x+4,x>0,作此函数图像如下图折线所示;y=m即平行于x轴的直线,作图像如下图直线所示.对于A,由图可知,当m<2时,直线y=m与函数y=|x|+|2x+4|的图象无交点,故A错误;对于B,由图可知,当m>2时,直线y=m与函数y=|x|+|2x+4|的图象有两个交点,故B正确;对于C,由图可知,当m=2时,直线y=m与函数y=|x|+|2x+4|的图象,有一个交点,故C正确;对于D,由图可知,当m<2时,直线y=m与函数y=|x|+|2x+4|的图象无交点,故D正确.故选:BCD填空题14、函数f(x)=√x−4|x|−5的定义域是______.答案:[4,5)∪(5,+∞)解析:利用分式的分母不等于0.偶次根式的被开方数大于或等于0,列不等式组求得自变量的取值范围即可.要使函数f(x)=√x−4|x|−5有意义,则{x−4≥0|x|−5≠0,解得x≥4且,x≠±5,故函数的定义域为[4,5)∪(5,+∞),所以答案是:[4,5)∪(5,+∞).15、设函数f(x)=(x+1)2+ax 1 32x2+2,a∈R的最大值为M,最小值为m,则M+m=__.答案:1分析:令g(x)=f(x)−12=2x+ax132x2+2,易判断g(x)为奇函数,由奇函数的性质,可得(M−12)+(m−12)=0,即可求出M+m的值.解:f(x)=(x+1)2+ax 1 32x2+2=x2+2x+1+ax132x2+2=12+2x+ax132x2+2,令g (x )=f (x )−12=2x+ax 132x 2+2, 则g (﹣x )=−2x−ax 132x 2+2=−g (x ),所以g (x )为奇函数,所以g (x )的最大最小值分别为M −12,m −12,由奇函数的性质,可得(M −12)+(m −12)=0,所以M +m =1.所以答案是:1.16、已知f (x )={ax +4,x ≤1log 2x,x ≥2,若函数f (x )的值域为[1,+∞),则a 的最小值为______. 答案:−3分析:根据函数的解析式,结合f (2)=1和一次函数的性质,列出不等式组,即可求解.由题意,函数f (x )={ax +4,x ≤1log 2x,x ≥2,可得f (2)=1, 要使得函数f (x )的值域为[1,+∞),则满足{a ≤0a +4≥1,解得−3≤a ≤0, 所以实数a 的最小值为−3.所以答案是:−3.解答题17、已知函数f (x )=x |x −a |(1)讨论函数f(x)的奇偶性(只需写出正确结论);(2)当a =2时,写出函数f(x)的单调递增区间:(3)当a ≥2时,求函数f(x)在区间[0,2]上的最大值.答案:(1)答案见解析(2)单调递增区间为(−∞,1],[2,+∞)(3)f max (x)={a 24,2≤a ≤42a −4,a >4分析:(1)利用奇偶性的定义求解即可;(2)按x 的范围去绝对值,进而求单调递增区间即可;(3)由a≥2且x∈[0,2]可得f(x)=−x(x−a)=−x2+ax,讨论对称轴的位置求最大值即可. (1)当a=0时,f(x)=x|x|,f(−x)=−x|−x|=−x|x|=−f(x),故f(x)为奇函数;当a≠0时,f(x)=x|x−a|为非奇非偶函数.(2)当a=2时,f(x)=x|x−2|,所以f(x)={x(x−2)=x2−2x,x≥2x(2−x)=−x2+2x,x<2,所以当x≥2时,x2−2x的单调递增区间为[2,+∞);当x<2时,−x2+2x的单调递增区间为(−∞,1],所以f(x)的单调递增区间为(−∞,1],[2,+∞).(3)因为a≥2且x∈[0,2],所以f(x)=−x(x−a)=−x2+ax,对称轴为x=a2,当0<a2≤2,即2≤a≤4时,f max(x)=f(a2)=a24;当a2>2,即a>4时,f(x)在[0,2]上单调递增,f max(x)=f(2)=2a−4,综上f max(x)={a24,2≤a≤42a−4,a>4.18、已知函数f(x)的图象如图所示,其中y轴的左侧为一条线段,右侧为某抛物线的一段.(1)写出函数f(x)的定义域和值域;(2)求f[f(−1)]的值.答案:(1)定义域为[−2,3],值域为[−2,2];(2)-1.分析:(1)由图像直接得到定义域和值域;(2)先求出解析式,再直接代入求f[f(−1)]的值.解:(1)由图象可知,函数f(x)的定义域为[−2,3],值域为[−2,2];(2)当x ∈[−2,0]时,设f(x)=kx +b(k ≠0),将(−2,0),(0,2)代入可得{−2k +b =0b =2, 解得k =1,b =2,即f(x)=x +2,当x ∈(0,3]时,设f(x)=a(x −2)2−2,将点(3,−1)代入可得−1=a(3−2)2−2,解得a =1, ∴f(x)=(x −2)2−2=x 2−4x +2,∴f(x)={x +2,−2⩽x ⩽0x 2−4x +2,0<x ⩽3, ∴f(−1)=−1+2=1,∴f[f(−1)]=f (1)=12−4+2=−1.。
高中数学阶段常见函数性质汇总情况
![高中数学阶段常见函数性质汇总情况](https://img.taocdn.com/s3/m/ac2023727c1cfad6185fa748.png)
高中阶段常见函数性质汇总函数名称:常数函数解析式形式:f(x)=b (b∈R)图象及其性质:函数f(x)的图象是平行于x轴或与x轴重合(垂直于y轴)的直线定义域:R值域:{b}单调性:没有单调性奇偶性:均为偶函数[当b=0时,函数既是奇函数又是偶函数]反函数:无反函数周期性:无周期性函数名称:一次函数解析式形式:f(x)=kx+b (k≠0,b∈R)图象及其性质:直线型图象。
|k|越大,图象越陡;|k|越小,图象越平缓;当b=0时,函数f(x)的图象过原点;当b=0且k=1时,函数f(x)的图象为一、三象限角平分线;当b=0且k=-1时,函数f(x)的图象为二、四象限角平分线;定义域:R值域:R单调性:当k>0时,函数f(x)为R上的增函数;当k<0时,函数f(x)为R上的减函数;奇偶性:当b=0时,函数f(x)为奇函数;当b≠0时,函数f(x)没有奇偶性;b反 函 数:有反函数。
[特殊地,当k =-1或b =0且k =1时,函数f (x )的反函数为原函数f (x )本身] 周 期 性:无函 数 名 称:反比例函数 解析式 形 式:f (x )=xk(k ≠0) 图象及其性质:图象分为两部分,均不与坐标轴相交,当k>0时,函数f (x )的图象分别在第一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限;双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 图象成中心对称图形,对称中心为原点;图象成轴对称图形,对称轴有两条,分别为y =x 、y =-x ;定 义 域:),0()0,(+∞-∞Y 值 域:),0()0,(+∞-∞Y单 调 性:当k>0时,函数f (x )为)0,(-∞和),0(+∞上的减函数;当k<0时,函数f (x )为)0,(-∞和),0(+∞上的增函数;奇 偶 性:奇函数 反 函 数:原函数本身 周 期 性:无函 数 名 称:变式型反比例函数解析式 形 式:f (x )=dcx bax ++ (c ≠0且 d ≠0) 图象及其性质:图象分为两部分,均不与直线cay =、直线c d x -=相交,当k>0时,函数f (x )的图象分别在直线cay =与直线c d x -=形成的左下与右上部分;当k<0时,函数f (x )的图象分别在直线cay =与直线c d x -=形成的左上与右下部分;双曲线型曲线,直线cay =与直线c d x -=分别是曲线的两条渐近线;图象成中心对称图形,对称中心为点,(cac d -;图象成轴对称图形,对称轴有两条,分别为d a x y ++=、da x y -+-=;个单位得定 义 域:),(),(+∞---∞c dc d Y 值 域:),(),(+∞-∞cac a Y单 调 性:当0>-ad bc 时,函数在,(c d --∞和),(+∞-cd上均为减函数; 当0<-ad bc 时,函数在),(c d --∞和),(+∞-cd上均为增函数; 奇 偶 性:非奇非偶函数 反 函 数:acx b dx y -+-=周 期 性:无a b x 2-=函 数 名 称:二次函数解析式 形 式:一般式:)0()(2≠++=a c bx ax x f顶点式:)0()()(2≠+-=a h k x a x f两根式:)0)()(()(21≠--=a x x x x a x f图象及其性质:①图形为抛物线,对称轴为abx 2-=,顶点坐标为)44,2(2a b ac a b --或),(h k ,与y 轴的交点为),0(c ;②当0>a 时,抛物线的开口向上,此时函数图象有最低点)44,2(2a b ac a b --;当0<a 时,抛物线的开口向下,此时函数图象有最高点)44,2(2ab ac a b --; ③当042>-=∆ac b 时,函数图象与x 轴有两个交点,当042=-=∆ac b 时,函数图象与x 轴有一个交点,当042<-=∆ac b 时,函数图象与x 轴没有交点;④横坐标关于对称轴对称时,纵坐标相等;当0>a 时,横坐标距对称轴近则函数值小,当0<a 时,横坐标距对称轴近则函数值大;⑤函数)0()(2≠++=a c bx ax x f 均可由函数)0()(2≠=a ax x f 平移得到;定 义 域:R值 域:当0>a 时,值域为),44(2+∞-a b ac ;当0<a 时,值域为)44,(2ab ac --∞ 单 调 性:当0>a 时,]2,(a b --∞上为减函数,),2[+∞-a b上为增函数; 当0<a 时,),2[+∞-a b 上为减函数,]2,(ab--∞上为增函数;奇 偶 性:当0=b 时,函数为偶函数;当0≠b 时,函数为非奇非偶函数 反 函 数:定义域范围内无反函数,在单调区间内有反函数 周 期 性:无c bx ++函 数 名 称:指数函数解析式 形 式:)1,0()(≠>=a a a x f x图象及其性质:①函数图象恒过点)1,0(,与x 轴不相交,只是无限靠近;②函数xa x f =)(与xx a ax f -==)1()(的图象关于y 轴对称;③当1>a 时,y 轴以左的图象夹在在直线1=y 与x 轴之间,y 轴以右的图象在直线1=y 以上;当10<<a 时,y 轴以左的图象在直线1=y 以上,y 轴以右的图象夹在在直线1=y 与x 轴之间;④第一象限内,底数大,图象在上方;定 义 域:R 值 域:),0(+∞单 调 性:当0>a 时,函数为增函数;当0<a 时,函数为减函数; 奇 偶 性:无反 函 数:对数函数)1,0(log )(≠>=a a x x f a 周 期 性:无函 数 名 称:对数函数解析式 形 式:)1,0(log )(≠>=a a x x f a图象及其性质:①函数图象恒过点)0,1(,与y 轴不相交,只是无限靠近;②函数x x f a log )(=与x x x f a alog log )(1-==的图象关于x 轴对称;)f (x )=a xxyOf (x )=)1(log >a x af (x )=)10(log <<a x a③当1>a 时,x 轴以下的图象夹在在直线1=x 与y 轴之间,x 轴以上的图象在直线1=x 以右;当10<<a 时,x 轴以下的图象在直线1=x 以右,x 轴以上的图象夹在在直线1=x 与y 轴之间;④第一象限内,底数大,图象在右方;定 义 域:R 值 域:),0(+∞单 调 性:当0>a 时,函数为增函数;当0<a 时,函数为减函数;[与系数函数的单调性类似,因为两函数互为反函数] 奇 偶 性:无反 函 数:指数函数)1,0()(≠>=a a a x f x周 期 性:无函 数 名 称:对钩函数 解析式 形 式:xx x f 1)(+= 图象及其性质:①函数图象与y 轴及直线x y =不相交,只是无限靠近;②当0>x 时,函数)(x f y =有最低点)2,1(,即当1=x 时函数取得最小值2)1(=f ; ③当0<x 时,函数)(x f y =有最高点)2,1(--,即当1-=x 时函数取得最大值2)1(-=-f ;定 义 域:),0()0,(+∞-∞Y 值 域: ),2[]2,(+∞--∞Y单 调 性:在]1,(--∞和),1[+∞上函数为增函数;在)0,1[-和]1,0(上函数为减函数;奇 偶 性:奇函数反 函 数:定义域内无反函数 周 期 性:无2.3函数单调性(考点疏理+典型例题+练习题和解析)2.3函数单调性【典型例题】例1.(1)()(21),f x a x b R =-+设函数是上的减函数则a 的范围为( D) A .12a ≥B .12a ≤C .12a >-D .12a < 提示:2a -1<0时该函数是R 上的减函数.(2)函数2([0,)y x bx c x =++∈+∞)是单调函数的充要条件是( A ) A .0b ≥ B .0b ≤ C .0b > D .0b <提示:考虑对称轴和区间端点.结合二次函数图象(3)已知()f x 在区间(,)-∞+∞上是减函数,,a b R ∈且0a b +≤,则下列表达正确的是( D ) A .()()[()()]f a f b f a f b +≤-+ B .()()()()f a f b f a f b +≤-+- C .()()[()()]f a f b f a f b +≥-+ D .()()()()f a f b f a f b +≥-+- 提示:0a b +≤可转化为a b ≤-和b a ≤-在利用函数单调性可得. (4) 如下图是定义在闭区间上的函数()y f x = 的图象,该函数的单调增区间为 [-2,1]和[3,5] 提示:根据图象写出函数的单调区间.注意区间不能合并. (5) 函数223y x x +-的单调减区间是(,3]-∞-提示:结合二次函数的图象,注意函数的定义域. 例2.画出下列函数图象并写出函数的单调区间(1)22||1y x x =-++ (2)2|23|y x x =-++解:(1)2221(0)21(0)x x x y x x x ⎧-++≥⎪=⎨--+<⎪⎩ 即22(1)2(0)(1)2(0)x x y x x ⎧--+≥⎪=⎨-++<⎪⎩如图所示,单调增区间为(,1][0,1]-∞-和,单调减区间为[1,0][1,)-+∞和(2)当2230,13x x x-++≥-≤≤得,函数2223(1)4y x x x=-++=--+当2230,13x x x x-++<<->得或,函数2223(1)4y x x x=--=--即22(1)4(13)(1)4(13)x xyx x x⎧--+-≤≤⎪=⎨--<->⎪⎩或如图所示,单调增区间为[1,1][3,]-+∞和,单调减区间为(,1][1,3]-∞-和(1) (2)例3.根据函数单调性的定义,证明函数在上是减函数.证明:设1212,x x R x x∈<且则33221221212121()()()()f x f x x x x x x x x x-=-=-++12x x<因为21x x->所以,且在1x与2x中至少有一个不为0,不妨设2x≠,那么222222121123()24xx x x x x x++=++0>,12()()f x f x>所以故()f x在(,)-∞+∞上为减函数例4.设)(xf是定义在R上的函数,对m、Rn∈恒有)()()(nfmfnmf⋅=+,且当0>x时,1)(0<<xf。
高中数学函数的性质及其证明方法
![高中数学函数的性质及其证明方法](https://img.taocdn.com/s3/m/8770bae8250c844769eae009581b6bd97f19bc00.png)
高中数学函数的性质及其证明方法函数是数学中的重要概念,它描述了两个数集之间的对应关系。
在高中数学中,函数的性质是我们学习的重点之一。
本文将从函数的连续性、单调性、奇偶性以及周期性等方面,介绍函数的性质及其证明方法。
一、函数的连续性连续性是函数的基本性质之一。
我们知道,函数在某一点连续,意味着函数在该点的图像没有突变,可以用手绘图或者计算机绘图来观察函数的连续性。
但是,如何用数学语言来描述和证明函数的连续性呢?以函数f(x) = x^2为例,我们可以通过极限的方法来证明其连续性。
假设函数在点a处连续,即lim(x→a)f(x) = f(a),那么我们需要证明对于任意给定的ε > 0,存在δ > 0,使得当0 < |x - a| < δ时,有|f(x) - f(a)| < ε。
对于函数f(x) = x^2,我们可以通过计算来证明其连续性。
假设a = 2,我们需要找到一个δ > 0,使得当0 < |x - 2| < δ时,有|f(x) - f(2)| < ε。
我们可以选择δ = ε/5,这样当0 < |x - 2| < δ时,有|f(x) - f(2)| = |x^2 - 4| = |x - 2||x + 2| < 5|x - 2| < ε,即满足连续性的条件。
二、函数的单调性函数的单调性描述了函数在定义域上的增减情况。
在高中数学中,我们通常通过导数的正负来判断函数的单调性。
以函数f(x) = x^3为例,我们可以通过导数的正负来证明其单调性。
对于函数f(x) = x^3,我们需要计算其导数f'(x) = 3x^2。
当x > 0时,f'(x) > 0,即函数在正半轴上单调递增;当x < 0时,f'(x) < 0,即函数在负半轴上单调递减。
因此,函数f(x) = x^3在整个定义域上都是单调递增的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中阶段常见函数性质汇总函 数 名 称:常数函数 解析式 形 式:f (x )=b (b ∈R) 图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线定 义 域:R 值 域:{b} 单 调 性:没有单调性奇 偶 性:均为偶函数[当b =0时,函数既是奇函数又是偶函数] 反 函 数:无反函数 周 期 性:无周期性函 数 名 称:一次函数解析式 形 式:f (x )=kx +b (k ≠0,b ∈R)图象及其性质:直线型图象。
|k|越大,图象越陡;|k|越小,图象越平缓;当b =0时,函数f (x )的图象过原点;当b =0且k =1时,函数f (x )的图象为一、三象限角平分线;当b =0且k =-1时,函数f (x )的图象为二、四象限角平分线;定 义 域:R 值 域:R单 调 性:当k>0时,函数f (x )为R 上的增函数;当k<0时,函数f (x )为R 上的减函数;奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性;反 函 数:有反函数。
[特殊地,当k =-1或b =0且k =1时,函数f (x )的反函数为原函数f (x )本身] 周 期 性:无函 数 名 称:反比例函数 解析式 形 式:f (x )=xk(k ≠0) 图象及其性质:图象分为两部分,均不与坐标轴相交,当k>0时,函数f (x )的图象分别在第一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限;双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 图象成中心对称图形,对称中心为原点;图象成轴对称图形,对称轴有两条,分别为y =x 、y =-x ; 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞单 调 性:当k>0时,函数f (x )为)0,(-∞和),0(+∞上的减函数;当k<0时,函数f (x )为)0,(-∞和),0(+∞上的增函数;b奇 偶 性:奇函数 反 函 数:原函数本身 周 期 性:无函 数 名 称:变式型反比例函数 解析式 形 式:f (x )=dcx bax ++(c ≠0且 d ≠0) 图象及其性质:图象分为两部分,均不与直线c a y =、直线cdx -=相交,当k>0时,函数f (x )的图象分别在直线c a y =与直线c dx -=形成的左下与右上部分;当k<0时,函数f (x )的图象分别在直线c a y =与直线cdx -=形成的左上与右下部分;双曲线型曲线,直线c a y =与直线cdx -=分别是曲线的两条渐近线;图象成中心对称图形,对称中心为点,(cac d -;图象成轴对称图形,对称轴有两条,分别为d a x y ++=、da x y -+-=;定 义 域:),(),(+∞---∞c c 值 域:),(),(+∞-∞cac a单 调性:当0>-ad bc 时,函数在),(c d --∞和),(+∞-cd上均为减函数; 当0<-ad bc 时,函数在),(c d --∞和),(+∞-cd上均为增函数; 奇 偶 性:非奇非偶函数 反 函 数:acx b dx y -+-=周 期 性:无a b x 2-=函 数 名 称:二次函数解析式 形 式:一般式:)0()(2≠++=a c bx ax x f顶点式:)0()()(2≠+-=a h k x a x f两根式:)0)()(()(21≠--=a x x x x a x f图象及其性质:①图形为抛物线,对称轴为abx 2-=,顶点坐标为)44,2(2ab ac a b --或),(h k ,与y 轴的交点为),0(c ; ②当0>a 时,抛物线的开口向上,此时函数图象有最低点)44,2(2a b ac a b --;当0<a 时,抛物线的开口向下,此时函数图象有最高点)44,2(2ab ac a b --; ③当042>-=∆ac b 时,函数图象与x 轴有两个交点,当042=-=∆ac b 时,函数图象与x 轴有一个交点,当042<-=∆ac b 时,函数图象与x 轴没有交点;④横坐标关于对称轴对称时,纵坐标相等;当0>a 时,横坐标距对称轴近则函数值小,当0<a 时,横坐标距对称轴近则函数值大;⑤函数)0()(2≠++=a c bx ax x f 均可由函数)0()(2≠=a ax x f 平移得到;定 义 域:R值 域:当0>a 时,值域为),44(2+∞-a b ac ;当0<a 时,值域为)44,(2ab ac --∞ 单 调 性:当0>a 时,]2,(a b --∞上为减函数,),2[+∞-a b上为增函数; 当0<a 时,),2[+∞-a b 上为减函数,]2,(ab--∞上为增函数;奇 偶 性:当0=b 时,函数为偶函数;当0≠b 时,函数为非奇非偶函数反 函 数:定义域X 围内无反函数,在单调区间内有反函数 周 期 性:无函 数 名 称:指数函数解析式 形 式:)1,0()(≠>=a a a x f x图象及其性质:①函数图象恒过点)1,0(,与x 轴不相交,只是无限靠近;c bx ++)f (x )=a x②函数xa x f =)(与xx a ax f -==)1()(的图象关于y 轴对称;③当1>a 时,y 轴以左的图象夹在在直线1=y 与x 轴之间,y 轴以右的图象在直线1=y 以上;当10<<a 时,y 轴以左的图象在直线1=y 以上,y 轴以右的图象夹在在直线1=y 与x 轴之间;④第一象限内,底数大,图象在上方;定 义 域:R 值 域:),0(+∞单 调 性:当0>a 时,函数为增函数;当0<a 时,函数为减函数; 奇 偶 性:无反 函 数:对数函数)1,0(log )(≠>=a a x x f a 周 期 性:无函 数 名 称:对数函数解析式 形 式:)1,0(log )(≠>=a a x x f a图象及其性质:①函数图象恒过点)0,1(,与y 轴不相交,只是无限靠近;②函数x x f a log )(=与x x x f a alog log )(1-==的图象关于x 轴对称;③当1>a 时,x 轴以下的图象夹在在直线1=x 与y 轴之间,x 轴以上的图象在直线1=x 以右;当10<<a 时,x 轴以下的图象在直线1=x 以右,x 轴以上的图象夹在在直线1=x 与y 轴之间;④第一象限内,底数大,图象在右方;定 义 域:R 值 域:),0(+∞单 调 性:当0>a 时,函数为增函数;当0<a 时,函数为减函数;[与系数函数的单调性类似,因为两函数互为反函数] 奇 偶 性:无反 函 数:指数函数)1,0()(≠>=a a a x f x周 期 性:无函 数 名 称:对钩函数xyOf (x )=)1(log >a x af (x )=)10(log <<a x a解析式 形 式:xx x f 1)(+= 图象及其性质:①函数图象与y 轴及直线x y =不相交,只是无限靠近;②当0>x 时,函数)(x f y =有最低点)2,1(,即当1=x 时函数取得最小值2)1(=f ; ③当0<x 时,函数)(x f y =有最高点)2,1(--,即当1-=x 时函数取得最大值2)1(-=-f ;定 义 域:),0()0,(+∞-∞ 值 域:),2[]2,(+∞--∞单 调 性:在]1,(--∞和),1[+∞上函数为增函数;在)0,1[-和]1,0(上函数为减函数; 奇 偶 性:奇函数反 函 数:定义域内无反函数 周 期 性:无2.3函数单调性(考点疏理+典型例题+练习题和解析)2.3函数单调性【典型例题】例1.(1)()(21),f x a x b R =-+设函数是上的减函数则a 的X 围为( D) A .12a ≥B .12a ≤C .12a >-D .12a < 提示:2a -1<0时该函数是R 上的减函数.(2)函数2([0,)y x bx c x =++∈+∞)是单调函数的充要条件是( A )A .0b ≥B .0b ≤C .0b >D .0b <提示:考虑对称轴和区间端点.结合二次函数图象(3)已知()f x 在区间(,)-∞+∞上是减函数,,a b R ∈且0a b +≤,则下列表达正确的是( D )A .()()[()()]f a f b f a f b +≤-+B .()()()()f a f b f a f b +≤-+-C .()()[()()]f a f b f a f b +≥-+D .()()()()f a f b f a f b +≥-+- 提示:0a b +≤可转化为a b ≤-和b a ≤-在利用函数单调性可得. (4) 如下图是定义在闭区间上的函数()y f x = 的图象,该函数的单调增区间为 [-2,1]和[3,5]提示:根据图象写出函数的单调区间.注意区间不能合并. (5) 函数223y x x =+-(,3]-∞-提示:结合二次函数的图象,注意函数的定义域. 例2.画出下列函数图象并写出函数的单调区间(1)22||1y x x=-++(2)2|23|y x x=-++解:(1)2221(0)21(0)x x xyx x x⎧-++≥⎪=⎨--+<⎪⎩即22(1)2(0)(1)2(0)x xyx x⎧--+≥⎪=⎨-++<⎪⎩如图所示,单调增区间为(,1][0,1]-∞-和,单调减区间为[1,0][1,)-+∞和(2)当2230,13x x x-++≥-≤≤得,函数2223(1)4y x x x=-++=--+当2230,13x x x x-++<<->得或,函数2223(1)4y x x x=--=--即22(1)4(13)(1)4(13)x xyx x x⎧--+-≤≤⎪=⎨--<->⎪⎩或如图所示,单调增区间为[1,1][3,]-+∞和,单调减区间为(,1][1,3]-∞-和(1) (2)例3.根据函数单调性的定义,证明函数在上是减函数.证明:设1212,x x R x x∈<且则33221221212121()()()()f x f x x x x x x x x x-=-=-++12x x<因为21x x->所以,且在1x与2x中至少有一个不为0,不妨设20x≠,那么222222121123()24xx x x x x x++=++0>,12()()f x f x>所以故()f x在(,)-∞+∞上为减函数例 4.设)(xf是定义在R上的函数,对m、Rn∈恒有)()()(nfmfnmf⋅=+,且当0>x时,1)(0<<xf。