专题52 中考数学最值问题(解析版)
中考数学专题训练:定值和最值问题解析汇报版

定值问题解1、如图,在平面直角坐标系x O y 中,矩形AOCD 的顶点A 的坐标是(0,4),现有两动点P 、Q ,点P 从点O 出发沿线段OC (不包括端点O ,C )以每秒2个单位长度的速度,匀速向点C 运动,点Q 从点C 出发沿线段CD (不包括端点C ,D )以每秒1个单位长度的速度匀速向点D 运动.点P ,Q 同时出发,同时停止,设运动时间为t 秒,当t=2秒时PQ=52. (1)求点D 的坐标,并直接写出t 的取值范围;(2)连接AQ 并延长交x 轴于点E,把AE 沿AD 翻折交CD 延长线于点F,连接EF ,则△A EF 的面积S 是否随t 的变化而变化?若变化,求出S 与t 的函数关系式;若不变化,求出S 的值. (3)在(2)的条件下,t 为何值时,四边形APQF 是梯形?【答案】解:(1)由题意可知,当t=2(秒)时,OP=4,CQ=2,在Rt △PCQ 中,由勾股定理得:PC=()2222PQ CQ 252-=-=4,∴OC=OP+P C=4+4=8。
又∵矩形AOCD ,A (0,4),∴D (8,4)。
t 的取值范围为:0<t <4。
(2)结论:△AEF 的面积S 不变化。
∵AOCD 是矩形,∴AD ∥OE ,∴△AQD ∽△EQC 。
∴CE CQ AD DQ =,即CE t 84t =-,解得CE=8t4t-。
由翻折变换的性质可知:DF=DQ=4-t ,则CF=CD+DF=8-t 。
S=S 梯形AOCF +S △FCE -S △AOE =12(OA+CF )•OC+12CF •CE -12OA •OE =12 [4+(8-t )]×8+12(8-t )•8t 4t --12×4×(8+8t 4t-)。
化简得:S=32为定值。
所以△AEF 的面积S 不变化,S=32。
(3)若四边形APQF 是梯形,因为AP 与CF 不平行,所以只有PQ ∥AF 。
二次函数与几何的动点及最值、存在性问题(解析版)-2024中考数学

二次函数与几何的动点及最值、存在性问题目录题型01平行y轴动线段最大值与最小值问题题型02抛物线上的点到某一直线的距离问题题型03已知点关于直线对称点问题题型04特殊角度存在性问题题型05将军饮马模型解决存在性问题题型06二次函数中面积存在性问题题型07二次函数中等腰三角形存在性问题题型08二次函数中直角三角形存在性问题题型09二次函数中全等三角形存在性问题题型10二次函数中相似三角形存在性问题题型11二次函数中平行四边形存在性问题题型12二次函数中矩形存在性问题题型13二次函数中菱形存在性问题题型14二次函数中正方形存在性问题二次函数常见存在性问题:(1)等线段问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再利用点到点或点到直线的距离公式列出方程或方程组,然后解出参数的值,即可以将线段表示出来.【说明】在平面直角坐标系中该点在某一函数图像上,设该点的横坐标为m,则可用含m字母的函数解析式来表示该点的纵坐标,简称“设横表纵”或“一母式”.(2)平行y轴动线段最大值与最小值问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再用纵坐标的较大值减去较小值,再利用二次函数的性质求出动线段的最大值或最小值.(3)求已知点关于直线对称点问题:先求出直线解析式,再利用两直线垂直的性质(两直线垂直,斜率之积等于-1)求出已知点所在直线的斜率及解析式,最后用中点坐标公式即可求出对称点的坐标.(4)“抛物线上是否存在一点,使其到某一直线的距离为最值”的问题:常常利用直线方程与二次函数解析式联立方程组,求出切点坐标,运用点到直线的距离公式进行求解.(5)二次函数与一次函数、特殊图形、旋转及特殊角度综合:图形或一次函数与x 轴的角度特殊化,利用与角度有关知识点求解函数图像上的点,结合动点的活动范围,求已知点与动点是否构成新的特殊图形.2.二次函数与三角形综合(1)将军饮马问题:本考点主要分为两类:①在定直线上是否存在点到两定点的距离之和最小;②三角形周长最小或最大的问题,主要运用的就是二次函数具有对称性.(2)不规则三角形面积最大或最小值问题:利用割补法将不规则三角形分割成两个或以上的三角形或四边形,在利用“一母式”将动点坐标表示出来,作线段差,用线段差来表示三角形的底或高,用面积公式求出各部分面积,各部分面积之和就是所求三角形的面积.将三角形的面积用二次函数的结构表示出来,再利用二次函数的性质求出面积的最值及动点坐标.(3)与等腰三角形、直角三角形的综合问题:对于此类问题,我们可以利用两圆一线或两线一圆的基本模型来进行计算.问题分情况找点画图解法等腰三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为等腰三角形以AB为腰分别以点A ,B 为圆心,以AB 长为半径画圆,与已知直线的交点P 1,P 2,P 4,P 5即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标以AB 为底作线段AB 的垂直平分线,与已知直线的交点P 3即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标问题分情况找点画图解法直角三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为直角三角形以AB为直角边分别过点A ,B 作AB 的垂线,与已知直线的交点P 1,P 4即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB 2=BP 2+AP 2;②BP 2=AB 2+AP 2;③AP 2=AB 2+BP 2列方程解出坐标以AB 为斜边以AB 的中点Q 为圆心,QA 为半径作圆,与已知直线的交点P 2,P 3即为所求注:其他常见解题思路有:①作垂直,构造“三垂直”模型,利用相似列比例关系得方程求解;②平移垂线法:若以AB 为直角边,且AB 的一条垂线的解析式易求(通常为过原点O 与AB 垂直的直线),可将这条直线分别平移至过点A 或点B 得到相应解析式,再联立方程求解.(4)与全等三角形、相似三角形的综合问题:在没有指定对应点的情况下,理论上有六种情况需要讨论,但在实际情况中,通常不会超过四种,要注意边角关系,积极分类讨论来进行计算.情况一探究三角形相似的存在性问题的一般思路:解答三角形相似的存在性问题时,要具备分类讨论思想及数形结合思想,要先找出三角形相似的分类标准,一般涉及动态问题要以静制动,动中求静,具体如下:①假设结论成立,分情况讨论.探究三角形相似时,往往没有明确指出两个三角形的对应点(尤其是以文字形式出现求证两个三角形相似的题目),或者涉及动点问题,因动点问题中点的位置的不确定,此时应考虑不同的对应关系,分情况讨论;②确定分类标准.在分类时,先要找出分类的标准,看两个相似三角形是否有对应相等的角,若有,找出对应相等的角后,再根据其他角进行分类讨论来确定相似三角形成立的条件;若没有,则分别按三种角对应来分类讨论;③建立关系式,并计算.由相似三角形列出相应的比例式,将比例式中的线段用所设点的坐标表示出来(其长度多借助勾股定理运算),整理可得一元一次方程或者一元二次方程,解方程可得字母的值,再通过计算得出相应的点的坐标.情况二探究全等三角形的存在性问题的思路与探究相似三角形的存在性问题类似,但是除了要找角相等外,还至少要找一组对应边相等.3.二次函数与四边形的综合问题特殊四边形的探究问题解题步骤如下:①先假设结论成立;②设出点坐标,求边长;③建立关系式,并计算.若四边形的四个顶点位置已确定,则直接利用四边形边的性质进行计算;若四边形的四个顶点位置不确定,需分情况讨论:a.探究平行四边形:①以已知边为平行四边形的某条边,画出所有的符合条件的图形后,利用平行四边形的对边相等进行计算;②以已知边为平行四边形的对角线,画出所有的符合条件的图形后,利用平行四边形对角线互相平分的性质进行计算;③若平行四边形的各顶点位置不确定,需分情况讨论,常以已知的一边作为一边或对角线分情况讨论.b.探究菱形:①已知三个定点去求未知点坐标;②已知两个定点去求未知点坐标,一般会用到菱形的对角线互相垂直平分、四边相等的性质列关系式.c.探究正方形:利用正方形对角线互相垂直平分且相等的性质进行计算,一般是分别计算出两条对角线的长度,令其相等,得到方程再求解.d.探究矩形:利用矩形对边相等、对角线相等列等量关系式求解;或根据邻边垂直,利用勾股定理列关系式求解.题型01平行y轴动线段最大值与最小值问题1(2023·广东东莞·一模)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC =3,顶点为D.(1)求此函数的关系式;(2)在AC 下方的抛物线上有一点N ,过点N 作直线l ∥y 轴,交AC 与点M ,当点N 坐标为多少时,线段MN 的长度最大?最大是多少?(3)在对称轴上有一点K ,在抛物线上有一点L ,若使A ,B ,K ,L 为顶点形成平行四边形,求出K ,L 点的坐标.(4)在y 轴上是否存在一点E ,使△ADE 为直角三角形,若存在,直接写出点E 的坐标;若不存在,说明理由.【答案】(1)y =x 2+2x -3(2)当N 的坐标为-32,-154 ,MN 有最大值94(3)K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12(4)存在,点E 的坐标为0,32 或0,-72或0,-1 或0,-3【分析】(1)由OA =OC =3求得A -3,0 ,C 0,-3 ,再分别代入抛物线解析式y =x 2+bx +c ,得到以b ,c 为未知数的二元一次方程组,求出b ,c 的值即可;(2)求出直线AC 的解析式,再设出M 、N 的坐标,把MN 表示成二次函数,配方即可;(3)根据平行四边形的性质,以AB 为边,以AB 为对角线,分类讨论即可;(4)设出E 的坐标,分别表示出△ADE 的平分,再分每一条都可能为斜边,分类讨论即可.【详解】(1)∵抛物线y =x 2+bx +c 经过点A ,点C ,且OA =OC =3,∴A -3,0 ,C 0,-3 ,∴将其分别代入抛物线解析式,得c =-39-3b +c =0,解得b =2c =-3 .故此抛物线的函数表达式为:y =x 2+2x -3;(2)设直线AC 的解析式为y =kx +t ,将A -3,0 ,C 0,-3 代入,得t =-3-3k +t =0 ,解得k =-1t =-3 ,∴直线AC 的解析式为y =-x -3,设N 的坐标为n ,n 2+2n -3 ,则M n ,-n -3 ,∴MN =-n -3-n 2+2n -3 =-n 2-3n =-n +32 +94,∵-1<0,∴当n =-32时,MN 有最大值,为94,把n =-32代入抛物线得,N 的坐标为-32,-154,当N 的坐标为-32,-154 ,MN 有最大值94;(3)①当以AB 为对角线时,根据平行四边形对角线互相平分,∴KL 必过-1,0 ,∴L 必在抛物线上的顶点D 处,∵y =x 2+2x -3=x +1 2-4,∴K -1,4 ,L -1,-4②当以AB 为边时,AB =KL =4,∵K 在对称轴上x =-1,∴L 的横坐标为3或-5,代入抛物线得L -5,12 或L 3,12 ,此时K 都为-1,12 ,综上,K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12 ;(4)存在,由y =x 2+2x -3=x +1 2-4,得抛物线顶点坐标为D -1,-4 ∵A -3,0 ,∴AD 2=-3+1 2+0+4 2=20,设E 0,m ,则AE 2=-3-0 2+0-m 2=9+m 2,DE 2=-1-0 2+-4-m 2=17+m 2+8m ,①AE 为斜边,由AE 2=AD 2+DE 2得:9+m 2=20+17+m 2+8m ,解得:m =-72,②DE 为斜边,由DE 2=AD 2+AE 2得:9+m 2+20=17+m 2+8m ,解得:m =32,③AD 为斜边,由AD 2=ED 2+AE 2得:20=17+m 2+8m +9+m 2,解得:m =-1或-3,∴点E 的坐标为0,32 或0,-72或0,-1 或0,-3 .【点睛】本题主要考查待定系数法求二次函数解析式,二次函数图象与性质,平行四边形的判定与性质以及勾股定理等知识,会运用待定系数法列方程组,两点间距离公式求MN 的长,由平行四边形的性质判定边相等,运用勾股定理列方程.2(2023·河南南阳·统考一模)如图,抛物线与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴的交于点C 0,-4 ,点P 是第三象限内抛物线上的一个动点,设点P 的横坐标为m ,过点P 作直线PD ⊥x 轴于点D ,作直线AC 交PD 于点E .已知抛物线的顶点P 坐标为-3,-254.(1)求抛物线的解析式;(2)求点A 、B 的坐标和直线AC 的解析式;(3)求当线段CP =CE 时m 的值;(4)连接BC ,过点P 作直线l ∥BC 交y 轴于点F ,试探究:在点P 运动过程中是否存在m ,使得CE =DF ,若存在直接写出m 的值;若不存在,请说明理由.【答案】(1)y =14x 2+32x -4(2)A -8,0 ,B 2,0 ,y =-12x -4(3)-4(4)存在,m =2-25或m =-4【分析】(1)运用待定系数法即可求得抛物线的解析式;(2)令y =0,解方程即可求得点A 、B 的坐标,再运用待定系数法即可求得直线AC 的解析式;(3)过点C 作CF ⊥PE 于点F ,根据等腰三角形的性质可得点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,可得F m ,18m 2+12m -4 ,再由点F 与点C 的纵坐标相同建立方程求解即可;(4)过C 作CH ⊥PD 于H ,设P m ,14m 2+32m -4 ,由PF ∥BC ,可得直线PF 解析式为y =2x +14m 2-12m -4,进而可得OF =14m 2-12m -4 ,再证得Rt △CHE ≅Rt △DOF HL ,得出∠HCE =∠FDO ,进而推出∠FDO =∠CAO ,即tan ∠FDO =tan ∠CAO ,据此建立方程求解即可.【详解】(1)解:∵抛物线的顶点坐标为-3,-254∴设抛物线的解析式为y =a x +3 2-254,把点C 0,-4 代入,得:-4=9a -254,解得:a =14,∴y =14x +3 2-254=14x 2+32x -4,∴该抛物线的解析式为y =14x 2+32x -4.(2)解:令y =0,得14x 2+32x -4=0,解得:x 1=-8,x 2=2,∴A -8,0 ,B 2,0 ,,设直线AC 的解析式为y =kx +b ,则-8k +b =0b =-4 ,解得:k =-12b =-4 ,∴直线AC 的解析式为y =-12x -4.(3)解:如图,过点C 作CF ⊥PE 于点F ,∵CP =CE ,∴EF =PF ,即点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,∴F m ,18m 2+12m -4 ,∵PE ∥y 轴,CF ⊥PE ,∴CF ∥x 轴,∴18m 2+12m -4=-4,解得:m =-4或m =0(不符合题意,舍去),∴m =-4.(4)解:存在m ,使得CE =DF ,理由如下:如图:过C 作CH ⊥PD 于H ,设P m,14m2+32m-4,由B2,0,C0,-4,由待定系数法可得直线BC解析式为y=2x-4,根据PF∥BC,设直线PF解析式为y=2x+c,将P m,14m2+32m-4代入得:1 4m2+32m-4=2m+c,∴c=14m2-12m-4,∴直线PF解析式为y=2x+14m2-12m-4,令x=0得y=14m2-12m-4,∴F0,14m2-12m-4,∴OF=14m2-12m-4,∵∠CHD=∠PDO=∠COD=90°,∴四边形CODH是矩形,∴CH=OD,∵CE=DF,∴Rt△CHE≅Rt△DOF HL,∴∠HCE=∠FDO,∵∠HCE=∠CAO,∴∠FDO=∠CAO,∴tan∠FDO=tan∠CAO,∴OF OD =OCOA,即14m2-12m-4-m=48=12,∴1 4m2-12m-4=-12m或14m2-12m-4=12m,解得:m=-4或m=4或m=2-25或m=2+25,∵P在第三象限,∴m=2-25或m=-4.【点睛】本题属于二次函数综合题,主要考查了待定系数法求函数解析式、二次函数综合应用、等腰三角形性质、矩形判定及性质、相似三角形判定及性质、解直角三角形等知识点,解题的关键是用含m的代数式表示相关点坐标和相关线段的长度.3(2023·山东聊城·统考三模)抛物线y=-x2+bx+c与x轴交于点A3,0,与y轴交于点C0,3,点P 为抛物线上的动点.(2)若P 为直线AC 上方抛物线上的动点,作PH ∥x 轴交直线AC 于点H ,求PH 的最大值;(3)点N 为抛物线对称轴上的动点,是否存在点N ,使直线AC 垂直平分线段PN ?若存在,请直接写出点N 的纵坐标;若不存在,请说明理由.【答案】(1)b =2,c =3(2)PH 取得最大值为94(3)存在,2-2或2+2【分析】(1)将坐标代入解析式,构建方程求解;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,则PM =m ;待定系数法确定直线AC 的解析式为y =-x +3,从而确定PH =m -m 2-2m =-m 2+3m =-m -32 2+94,解得PH 最大值为94;(3)如图,设PN 与AC 交于点G ,可设直线PN 的解析式为y =x +p ,设点N (1,n ),求得y =x +(n -1);联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1,所以点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n2+1 -n =2,由二次函数解析式构建方程-(-n +3)2+2(-n +3)+3=2,解得n =2±2;【详解】(1)∵抛物线y =-x 2+bx +c 与x 轴交于点A 3,0 ,与y 轴交于点C 0,3 ,∴-9+3b +c =0c =3,解得:b =2c =3 ,∴b =2,c =3;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,∴PM =m ,∵PH ∥x 轴,∴点H 的纵坐标为-m 2+2m +3,设直线AC 的解析式为y =kx +n ,∴3k +n =0n =3 ,解得:k =-1n =3 ,∴直线AC 的解析式为y =-x +3.∴-m 2+2m +3=-x +3,∴x =m 2-2m ,∴H m 2-2m ,-m 2+2m +3 ,∴PH =m -m 2-2m =-m 2+3m =-m -322+94,∴当m =32时,PH 取得最大值为94(3)存在点N ,使直线AC 垂直平分线段PN ,点N 的纵坐标为2-2或2+2如图,设PN 与AC 交于点G ,∵AC 垂直平分PN ,直线AC 的解析式为y =-x +3∴可设直线PN 的解析式为y =x +p 设点N (1,n ),则n =1+p ∴p =n -1,∴y =x +(n -1)联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1∴点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n 2+1 -n =2∴-(-n +3)2+2(-n +3)+3=2,解得n =2±2∴点N 的纵坐标为2-2或2+2.【点睛】本题考查利用二次函数解析式及点坐标求待定参数、待定系数法确定函数解析式、二次函数极值及其它二次函数综合问题,利用直线间的位置关系、点线间的位置关系,融合方程的知识求解坐标是解题的关键.题型02抛物线上的点到某一直线的距离问题1(2023·广东梅州·统考二模)探究求新:已知抛物线G 1:y =14x 2+3x -2,将抛物线G 1平移可得到抛物线G 2:y =14x 2.(1)求抛物线G 1平移得到抛物线G 2的平移路径;(2)设T 0,t ,直线l :y =-t ,是否存在这样的t ,使得抛物线G 2上任意一点到T 的距离等于到直线l 的距离?若存在,求出t 的值;若不存在,试说明理由;(3)设H 0,1 ,Q 1,8 ,M 为抛物线G 2上一动点,试求QM +MH 的最小值.参考公式:若点M x 1,y 1 ,N x 2,y 2 为平面上两点,则有MN =x 1-x 22+y 1-y 2 2.【答案】(1)将G 1向左平移-6个单位,向上平移11个单位(2)存在,1(3)9【分析】(1)设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,列方程组即可求解;(2)设P x 0,x 204为抛物线G 2上的一点,根据题意列方程即可;(3)点H 坐标与(2)中t =1时的T 点重合,过点M 作MA ⊥l ,垂足为A ,如图所示,则有MH =MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值.【详解】(1).解:设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,由平移法则可知14(x +a )2+3(x +a )-2+b =14x 2,整理可得14x 2+3+12a x +14a 2+3a -2+b =14x 2,可得方程组3+12a =014a 2+3a -2+b =0,解得a =-6b =11 ;∴平移路径为将G 1向左平移-6个单位,向上平移11个单位;(2)解:存在这样的t ,且t =1时满足条件,设P x 0,x 204为抛物线G 2上的一点,则点P 到直线l 的距离为x 204+t ,点P 到点T 距离为(x 0-0)2+x 204-t2,联立可得:x 204+t =(x 0-0)2+x 204-t2,两边同时平方合并同类项后可得x 20-x 20t =0解得:t =1;(3)解:点H 坐标与(2)中t =1时的T 点重合,作直线l :y =-1,过点M 作MA ⊥直线l ,垂足为A ,如图所示,则有MH =MA ,此时QM +MH =QM +MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值即QM +MA =QA =8-(-1)=9∴QM +MH 的最小值为9;【点睛】本题考查二次函数综合题,涉及到线段最小值、平移性质等,灵活运用所学知识是关键.2(2023·湖北宜昌·统考一模)如图,已知:点P 是直线l :y =x -2上的一动点,其横坐标为m (m 是常数),点M 是抛物线C :y =x 2+2mx -2m +2的顶点.(1)求点M 的坐标;(用含m 的式子表示)(2)当点P 在直线l 运动时,抛物线C 始终经过一个定点N ,求点N 的坐标,并判断点N 是否是点M 的最高位置?(3)当点P 在直线l 运动时,点M 也随之运动,此时直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),A ,B 两点到y 轴的距离之和为d .①求m 的取值范围;②求d 的最小值.【答案】(1)M -m ,-m 2-2m +2(2)N (1,3),点N 是点M 的最高位置(3)①m ≤-52或m ≥32;②d 取得最小值为2【分析】(1)将抛物线解析式写成顶点式即可求解;(2)根据解析式含有m 项的系数为0,得出当x =1时,y =3,即N (1,3),根据二次函数的性质得出-m 2-2m +2=-m +1 2+3的最大值为3,即可得出点N 是点M 的最高位置;(3)①根据直线与抛物线有交点,联立方程,根据一元二次方程根的判别式大于等于0,求得m 的范围,即可求解;②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,根据x 1+x 2=-2m +1,分情况讨论,求得d 是m 的一次函数,进而根据一次函数的性质即可求解.【详解】(1)解:y =x 2+2mx -2m +2=x +m 2-m 2-2m +2,∴顶点M -m ,-m 2-2m +2 ,(2)解:∵y =x 2+2mx -2m +2=x 2+2+2m x -1 ,∴当x =1时,y =3,抛物线C 始终经过一个定点1,3 ,即N (1,3);∵M -m ,-m 2-2m +2 ,-m 2-2m +2=-m +1 2+3,∴M 的纵坐标最大值为3,∴点N 是点M 的最高位置;(3)解:①联立y =x -2y =x 2+2mx -2m +2 ,得x 2+2mx -x -2m +4=0,∵直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),∴Δ=b 2-4ac =2m -1 2-4-2m +4 ,=4m 2+4m -15≥0,∵4m 2+4m -15=0,解得m 1=-52,m 2=32,∴当4m 2+4m -15≥0时,m ≤-52或m ≥32,②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,∴x1+x 2=-2m +1,当m =-3时,如图所示,y A =0,当-3≤m ≤-52时,y 1≥0,y 2≥0,则d =x 1+x 2 =-2m +1 ,∵-2<0,∴当m =-52时,d 取得最小值为-2×-52 +1=5+1=6,当m ≥32时,d =-x 1+x 2 =--2m +1 =2m -1,∴当m =32时,d 取得最小值为2×32-1=2,综上所述,d 取得最小值为2.【点睛】本题考查了二次函数的性质,一元二次方程与二次函数的关系,熟练掌握二次函数的性质是解题的关键.3(2023·云南楚雄·统考一模)抛物线y =x 2-2x -3交x 轴于A ,B 两点(A 在B 的左边),C 是第一象限抛物线上一点,直线AC 交y 轴于点P .(1)直接写出A ,B 两点的坐标;(2)如图①,当OP =OA 时,在抛物线上存在点D (异于点B ),使B ,D 两点到AC 的距离相等,求出所有满足条件的点D 的横坐标;(3)如图②,直线BP 交抛物线于另一点E ,连接CE 交y 轴于点F ,点C 的横坐标为m ,求FP OP 的值(用含m 的式子表示).【答案】(1)A (-1,0),B (3,0)(2)0或3-41或3+41(3)13m 【分析】(1)令y =0,解方程可得结论;(2)分两种情形:①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线交抛物线于点D 2,D 3,D 2,D 3符合条件.构建方程组分别求解即可;(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3 ,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,推出x A ⋅x C =x B ⋅x E =-3-b 可得n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q 推出q =-mn -3,推出q =-(3+b )-1-b 3 -3=13b 2+2b ,推出OF =13b 2+b ,可得结论.【详解】(1)解:令y =0,得x 2-2x -3=0,解得:x =3或-1,∴A (-1,0),B (3,0);(2)∵OP =OA =1,∴P (0,1),∴直线AC 的解析式为y =x +1.①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.∵B (3,0),BD 1∥AC ,∴直线BD 1的解析式为y =x -3,由y =x -3y =x 2-2x -3,解得x =3y =0 或x =0y =-3 ,∴D 1(0,-3),∴D 1的横坐标为0.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线l 交抛物线于点D 2,D 3,D 2,D 3符合条件.直线l 的解析式为y =x +5,由y =x +5y =x 2-2x -3 ,可得x 2-3x -8=0,解得:x =3-412或3+412,∴D 2,D 3的横坐标为3-412,3+412,综上所述,满足条件的点D 的横坐标为0,3-412,3+412.(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,∴x A ⋅x C =x B ⋅x E =-3-b∵x A =-1,∴x C =3+b ,∴m =3+b ,∵x B =3,∴x E =-1-b 3,∴n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q∴q =-mn -3,∴q =-(3+b )-1-b 3 -3=13b 2+2b ,∴OF =13b 2+2b ,∴FP OP=13b +1=13(m -3)+1=13m .【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,一元二次方程的根与系数的关系等知识,解题的关键是学会构建一次函数,构建方程组确定交点坐标,学会利用参数解决问题,属于中考压轴题.题型03已知点关于直线对称点问题1(2023·辽宁阜新·统考中考真题)如图,在平面直角坐标系中,二次函数y =-x 2+bx -c 的图象与x 轴交于点A (-3,0)和点B (1,0),与y 轴交于点C .(1)求这个二次函数的表达式.(2)如图1,二次函数图象的对称轴与直线AC :y =x +3交于点D ,若点M 是直线AC 上方抛物线上的一个动点,求△MCD 面积的最大值.(3)如图2,点P 是直线AC 上的一个动点,过点P 的直线l 与BC 平行,则在直线l 上是否存在点Q ,使点B 与点P 关于直线CQ 对称?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)y =-x 2-2x +3;(2)S △MCD 最大=98;(3)Q 1-5,-5 或1+5,5 .【分析】(1)根据抛物线的交点式直接得出结果;(2)作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,先求出抛物线的对称轴,进而求得C ,D 坐标及CD 的长,从而得出过M 的直线y =x +m 与抛物线相切时,△MCD 的面积最大,根据x +m =-x 2-2x +3的△=0求得m 的值,进而求得M 的坐标,进一步求得CD 上的高MQ 的值,进一步得出结果;(3)分两种情形:当点P 在线段AC 上时,连接BP ,交CQ 于R ,设P (t ,t +3),根据CP =CB 求得t 的值,可推出四边形BCPQ 是平行四边形,进而求得Q 点坐标;当点P 在AC 的延长线上时,同样方法得出结果.【详解】(1)解:由题意得,y =-(x +3)(x -1)=-x 2-2x +3;(2)解:如图1,作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,∵OA =OC =3,∠AOC =90°,∴∠CAO =∠ACO =45°,∴∠MEQ =∠AEF =90°-∠CAO =45°,抛物线的对称轴是直线:x =-3+12=-1,∴y =x +3=-1+3=2,∴D (1,2),∵C (0,3),∴CD =2,故只需△MCD 的边CD 上的高最大时,△MCD 的面积最大,设过点M 与AC 平行的直线的解析式为:y =x +m ,当直线y =x +m 与抛物线相切时,△MCD 的面积最大,由x +m =-x 2-2x +3得,x 2+3x +(m -3)=0,由△=0得,32-4(m -3)=0得,m -3=94,∴x 2+3x +94=0,∴x 1=x 2=-32,∴y =--32 2-2×-32 +3=154,y =x +3=-32+3=32,∴ME =154-32=94,∴MQ =ME ⋅sin ∠MEQ =ME ⋅sin45°=94×22=928,∴S △MCD 最大=12×2×928=98;(3)解:如图2,当点P 在线段AC 上时,连接BP ,交CQ 于R ,∵点B 和点Q 关于CQ 对称,∴CP =CB ,设P (t ,t +3),由CP 2=CB 2得,2t 2=10,∴t 1=-5,t 2=5(舍去),∴P -5,3-5 ,∵PQ ∥BC ,∴CR =BR =1,∴CR =QR ,∴四边形BCPQ 是平行四边形,∵1+(-5)-0=1-5,0+(3-5)-3=-5,∴Q 1-5,-5 ;如图3,当点P 在AC 的延长线上时,由上可知:P 5,3+5 ,同理可得:Q 1+5,5 ,综上所述:Q 1-5,-5 或1+5,5 .【点睛】本题考查了二次函数及其图象的性质,一元二次方程的解法,平行四边形的判定和性质,轴对称的性质等知识,解决问题的关键是分类讨论.2(2023·四川甘孜·统考中考真题)已知抛物线y =x 2+bx +c 与x 轴相交于A -1,0 ,B 两点,与y 轴相交于点C 0,-3 .(1)求b ,c 的值;(2)P 为第一象限抛物线上一点,△PBC 的面积与△ABC 的面积相等,求直线AP 的解析式;(3)在(2)的条件下,设E 是直线BC 上一点,点P 关于AE 的对称点为点P ,试探究,是否存在满足条件的点E ,使得点P 恰好落在直线BC 上,如果存在,求出点P 的坐标;如果不存在,请说明理由.【答案】(1)b =-2,c =-3.(2)y =x +1(3)存在,点P 的坐标为1+21,-2+21 或1-21,-2-21【分析】(1)由待定系数法即可求解;(2)S △PBC =S △ABC 得到AP ∥BC ,即可求解;(3)由题意的:∠AEP =∠AEP ,P E =PE ,即可求解.【详解】(1)由题意,得1-b +c =0,c =-3.∴b =-2,c =-3.(2)由(1)得抛物线的解析式为y =x 2-2x -3.令y =0,则x 2-2x -3=0,得x 1=-1,x 2=3.∴B 点的坐标为3,0 .∵S △PBC =S △ABC ,∴AP ∥BC .∵B 3,0,C 0,-3 ,∵AP∥BC,∴可设直线AP的解析式为y=x+m.∵A(-1,0)在直线AP上,∴0=-1+m.∴m=1.∴直线AP的解析式为y=x+1.(3)设P点坐标为m,n.∵点P在直线y=x+1和抛物线y=x2-2x-3上,∴n=m+1,n=m2-2m-3.∴m+1=m2-2m-3.解得m1=4,m2=-1(舍去).∴点P的坐标为4,5.由翻折,得∠AEP=∠AEP ,P E=PE.∵AP∥BC,∴∠PAE=∠AEP '.∴∠PAE=∠PEA.∴PE=PA=4+12=52.2+5-0设点E的坐标为t,t-3,则PE2=t-42.2+t-3-52=52∴t=6±21.当t=6+21时,点E的坐标为6+21,3+21.设P (s,s-3),由P E=AP,P E=PE=52得:s-6-212,2=522+s-3-3-21解得:s=1+21,则点P 的坐标为1+21,-2+21.当t=6-21时,同理可得,点P 的坐标为1-21,-2-21.综上所述,点P 的坐标为1+21,-2+21.或1-21,-2-21【点睛】本题是二次函数的综合题,主要考查了用待定系数法求一次函数、二次函数的解析式,二次函数的性质,此题题型较好,综合性比较强,用的数学思想是分类讨论和数形结合的思想.3(2023·江苏连云港·连云港市新海实验中学校考二模)如图,“爱心”图案是由抛物线y=-x2+m的一部分及其关于直线y=-x的对称图形组成,点E、F是“爱心”图案与其对称轴的两个交点,点A、B、C、D是该图案与坐标轴的交点,且点D的坐标为6,0.(1)求m 的值及AC 的长;(2)求EF 的长;(3)若点P 是该图案上的一动点,点P 、点Q 关于直线y =-x 对称,连接PQ ,求PQ 的最大值及此时Q 点的坐标.【答案】(1)m =6,AC =6+6(2)52(3)2542,Q -234,-12【分析】(1)用待定系数法求得m 与抛物线的解析式,再求出抛物线与坐标轴的交点坐标,进而求得A 的坐标,根据对称性质求得B ,C 的坐标,即可求得结果;(2)将抛物线的解析式与直线EF 的解析式联立方程组进行求解,得到E ,F 的坐标,即可求得结果;(3)设P (m ,-m 2+6),则Q (m 2-6,-m ),可得PQ =2×m -12 2-252 ,即求m -12 2-252的最值,根据二次函数的最值,即可得到m 的值,即可求得.【详解】(1)把D 6,0 代入y =-x 2+m 得0=-6+m解得m =6∴抛物线的解析式为:y =-x 2+6∴A 0,6根据对称性可得B -6,0 ,C 0,-6∴AC =AO +OC =6+6(2)联立y =-x y =-x 2+6解得x =3y =-3 或x =-2y =2 ∴E -2,2 ,F 3,-3∴EF =-2-3 2+2+3 2=52(3)设P (m ,-m 2+6),则Q (m 2-6,-m )∴PQ =m -m 2-6 2+-m 2+6--m 2整理得PQ =2×m -12 2-254 ∵m -12 2≥0∴当m -12 2=0时,即m =12时,m -12 2-254 有最大值为254∴PQ 的最大值为2542∴12 2-6=-234故Q -234,-12【点睛】本题考查二次函数综合应用,涉及待定系数法求函数解析式,两点间的距离公式,求抛物线与一次函数的交点坐标,二次函数的最值等知识,解题的关键是掌握关于直线y =-x 对称的点坐标的关系.题型04特殊角度存在性问题1(2023·山西忻州·统考模拟预测)如图,抛物线y =18x 2+34x -2与x 轴交于A ,B 两点,与y 轴交于点C .P 是直线AC 下方抛物线上一个动点,过点P 作直线l ∥BC ,交AC 于点D ,过点P 作PE ⊥x 轴,垂足为E ,PE 交AC 于点F .(1)直接写出A ,B ,C 三点的坐标,并求出直线AC 的函数表达式;(2)当线段PF 取最大值时,求△DPF 的面积;(3)试探究在拋物线的对称轴上是否存在点Q ,使得∠CAQ =45°?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)A -8,0 ,B 2,0 ,C 0,-2 .y =-14x -2(2)85(3)存在,-3,3 或-3,-253【分析】(1)对于直线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 即求出三个点的坐标,设直线AC 的表达式为y =kx +b ,利用待定系数法求解即可;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,表示出PF =-18m 2-m ,求出PF max =2,再表示出点D 到直线PF 的距离d =85,利用S △DPF =12⋅PF ⋅d 进行求解即可;(3)由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,用解直角三角形的方法求出QH =174,即可求出Q 点坐标,当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,即可求解.【详解】(1)解:对于抛物线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 ,即点A ,B ,C 三点的坐标分别为-8,0 ,2,0 ,0,-2 ,设直线AC 的表达式为y =kx +b ,则-8k +b =0b =-2 ,解得k =-14b =-2 ,∴直线AC 的函数表达式为y =-14x -2;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,PF =-14m -2 -18m 2+34m -2 =-18m 2-m ,当m =--12×-18 =-4时,PF 最大,PF max =-18×(-4)2--4 =2,此时,P -4,-3 ,由B 2,0 ,C 0,-2 ,可得直线BC 的函数表达式为y =x -2,设直线l 的函数表达式为y =x +p ,将P -4,-3 代入可得p =1,∴直线l 的函数表达式为y =x +1,由y =-14x -2y =x +1 ,解得x =-125y =-75,∴D -125,-75 ,点D 到直线PF 的距离d =-125--4 =85,∴S △DPF =12⋅PF ⋅d =12×2×85=85.(3)存在,理由:由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,如下图:设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,则∠ACO =∠QHA ,则tan ∠ACO =tan ∠QHA =4,当x =3时,y =-14x -2=-54,则点H -3,-54 ,由点A ,H 的坐标得,AH =5174,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,设TH =x ,则QT =4x ,则QH =17x ,则AH =AT +TH =5x =5174,则x =174,则QH =17x =174,则174-54=3,则点Q -3,3 ;当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,则直线AQ 的表达式为y =-53x +8 ,当x =-3时,y =-5x +8 =-25,。
中考数学最值—阿氏圆问题(解析+例题)

中考数学最值——阿氏圆问题(点在圆上运动)(PA+k·PB型最值)【问题背景】与两个定点距离之比为一个不为0的常数的点的轨迹是一个圆,这个圆为阿氏圆。
这个定理叫阿波罗尼斯定理。
【知识储备】①三角形三边关系:两边之和大于第三边;两边之差小于第三边。
②两点之间线段最短。
③连接直线外一点和直线上各点的所有线段中,垂线段最短。
【模型分析】①条件:已知A、B为定点,P为 O上一动点,OPOB=k(0<k<1)。
②问题:P在何处时,PA+k·PB的值最小。
③方法:连接OP,OB,在OB上取点C,使OCOP =k,可得△POC∽△BOP,所以CPPB=OPOB=k,所以得CP=k·PB。
所以PA+k·PB=PA+CP≥AC,当P为AC与 O的交点时,PA+k·PB的最小值为AC。
总结:构造母子三角形相似若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k提到括号外边,将其中一条线段的系数化成,再构造△相似进行计算。
【经典例题】已知∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点.(1)求12AP BP+的最小值为。
(2)求13AP BP+的最小值为。
【巩固训练】练习1:如图,点A、B在⊙O 上,且OA=OB=6,且OA⊥OB,点C是OA的中点,点D在OB 上,且OD=4,动点P在⊙O 上,则2PC+PD的最小值为;练习2:如图,在Rt△ABC中,∠ACB=90°,D为AC的中点,M为BD的中点,将线段AD绕A点任意旋转(旋转过程中始终保持点M为BD的中点),若AC=4,BC=3,那么在旋转过程中,线段CM长度的取值范围是__________。
练习3:Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 为△ABC 内一动点,满足CD=2,则AD+32BD 的最小值为_______.练习4:如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则PB+23PD 的最小值为________.练习5:如图,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,P 为圆B 上一动点,则PD+21PC 的最小值为_________.练习6:如图,等边△ABC 的边长为6,内切圆记为⊙O ,P 是圆上动点,求2PB+PC 的最小值.值。
重难点 二次函数中的线段、周长与面积的最值问题及定值问题(解析版)--2024年中考数学

重难点二次函数中的线段、周长与面积的最值问题及定值问题目录题型01利用二次函数解决单线段的最值问题题型02利用二次函数解决两条线段之和的最值问题题型03利用二次函数解决两条线段之差的最值问题题型04利用二次函数解决三条线段之和的最值问题题型05利用二次函数解决三角形周长的最值问题题型06利用二次函数解决四边形周长的最值问题题型07利用二次函数解决图形面积的最值问题类型一利用割补、拼接法解决面积最值问题类型二利用用铅垂定理巧求斜三角形面积最值问题类型三构建平行线,利用同底等高解决面积最值问题题型08利用二次函数解决定值问题题型01利用二次函数解决单线段的最值问题【解题思路】抛物线中的线段最值问题有三种形式:1.平行于坐标轴的线段的最值问题:常通过线段两端点的坐标差表示线段长的函数关系式,运用二次函数性质求解.求最值时应注意:①当线段平行于y轴时,用上端点的纵坐标减去下端点的纵坐标;②当线段平行于x轴时,用右端点的横坐标减去左端点的横坐标.在确定最值时,函数自变量的取值范围应确定正确.1(2022·辽宁朝阳·统考中考真题)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,-3),连接BC.(1)求抛物线的解析式及点B 的坐标.(2)如图,点P 为线段BC 上的一个动点(点P 不与点B ,C 重合),过点P 作y 轴的平行线交抛物线于点Q ,求线段PQ 长度的最大值.(3)动点P 以每秒2个单位长度的速度在线段BC 上由点C 向点B 运动,同时动点M 以每秒1个单位长度的速度在线段BO 上由点B 向点O 运动,在平面内是否存在点N ,使得以点P ,M ,B ,N 为顶点的四边形是菱形?若存在,请直接写出符合条件的点N 的坐标;若不存在,请说明理由.【答案】(1)y =x 2+2x -3,(-3,0)(2)94(3)-3,-32或(-2,1)或0,3-32【分析】(1)将A ,C 两点坐标代入抛物线的解析式求得a ,c 的值,进而得出解析式,当y =0时,求出方程的解,进而求得B 点坐标;(2)由B ,C 两点求出BC 的解析式,进而设出点P 和点Q 坐标,表示出PQ 的长,进一步得出结果;(3)要使以点P ,M ,B ,N 为顶点的四边形是菱形,只需△PMB 是等腰三角形,所以分为PM =BM ,PM =PB 和BP =BM ,结合图象,进一步得出结果.【详解】(1)解:把点A (1,0),C (0,-3)代入y =ax 2+2x +c 得:c =-3a +2×1+c =0 ,解得:c =-3a =1 ,∴抛物线解析式为y =x 2+2x -3;令y =0,则x 2+2x -3=0,解得:x 1=1,x 2=-3,∴点B 的坐标为(-3,0);(2)解:设直线BC 的解析式为y =kx +b k ≠0 ,把点B (-3,0),C (0,-3)代入得:b =-3-3k +b =0 ,解得:k =-1b =-3 ,∴直线BC 的解析式为y =-x -3,设点P m ,-m +3 ,则Q m ,m 2+2m -3 ,∴PQ =-m -3 -m 2+2m -3 =-m 2-3m =-m +322+94,∴当m =-32时,PQ 最大,最大值为94;(3)解:存在,根据题意得:PC =2t ,BM =t ,则PB =32-2t ,如图,当BM =PM 时,∵B (-3,0),C (0,-3),∴OB =OC =3,∴∠OCB =∠OBC =45°,延长NP 交y 轴于点D ,∵点P ,M ,B ,N 为顶点的四边形是菱形,∴PN ∥x 轴,BN ∥PM ,即DN ⊥y 轴,∴△CDP 为等腰直角三角形,∴CD =PD =PC ⋅sin ∠OCB =2t ×22=t ,∵BM =PM ,∴∠MPB =∠OBC =45°,∴∠PMO =∠PDO =∠MOD =90°,∴四边形OMPD 是矩形,∴OM =PD =t ,MP ⊥x 轴,∴BN ⊥x 轴,∵BM +OM =OB ,∴t +t =3,解得t =32,∴P -32,-32,∴N -3,-32;如图,当PM =PB 时,作PD ⊥y 轴于D ,连接PN ,∵点P ,M ,B ,N 为顶点的四边形是菱形,∴PN ⊥BM ,NE =PE ,∴BM =2BE ,∴∠OEP =∠DOE =∠ODP =90°,∴四边形PDOE 是矩形,∴OE =PD =t ,∴BE =3-t ,∴t =2(3-t ),解得:t =2,∴P (-2,-1),∴N (-2,1);如图,当PB =MB 时,32-2t =t ,解得:t =6-32,∴PN =BP =BM =6-32,过点P 作PE ⊥x 轴于点E ,∴PE ⊥PM ,∴∠EON =∠OEP =∠EPN =90°,∴四边形OEPN 为矩形,∴PN =OE ,PN ⊥y 轴,∵∠OBC =45°,∴BE =PE =PB ⋅sin ∠OBC =6-32 ×22=32-3,∴OE =OB -BE =3-32-3 =6-32,∴点N 在y 轴上,∴N 0,3-32 ,综上所述,点N 的坐标为-3,-32或(-2,1)或0,3-32 .【点睛】本题考查了二次函数及其图象的性质,用待定系数法求一次函数的解析式,等腰三角形的分类和等腰三角形的性质,菱形的性质等知识,解决问题的关键是正确分类,画出符合条件的图形.2(2021·西藏·统考中考真题)在平面直角坐标系中,抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点.与y 轴交于点C .且点A 的坐标为(-1,0),点C 的坐标为(0,5).(1)求该抛物线的解析式;(2)如图(甲).若点P 是第一象限内抛物线上的一动点.当点P 到直线BC 的距离最大时,求点P 的坐标;(3)图(乙)中,若点M 是抛物线上一点,点N 是抛物线对称轴上一点,是否存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)y =-x 2+4x +5;(2)P 52,354;(3)存在,M 的坐标为:(3,8)或(-3,-16)或(7,-16).【分析】(1)将A 的坐标(-1,0),点C 的坐(0,5)代入y =-x 2+bx +c ,即可得抛物线的解析式为y =-x 2+4x +5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,由y =-x 2+4x +5可得B (5,0),故OB =OC ,△BOC 是等腰直角三角形,可证明△PHQ 是等腰直角三角形,即知PH =PQ2,当PQ 最大时,PH 最大,设直线BC 解析式为y =kx +5,将B (5,0)代入得直线BC 解析式为y =-x +5,设P (m ,-m 2+4m +5),(0<m <5),则Q (m ,-m +5),PQ =-m -52 2+254,故当m =52时,PH 最大,即点P 到直线BC的距离最大,此时P 52,354 ;(3)抛物线y =-x 2+4x +5对称轴为直线x =2,设M (s ,-s 2+4s +5),N (2,t ),而B (5,0),C (0,5),①以MN 、BC 为对角线,则MN 、BC 的中点重合,可列方程组s +22=5+02-s 2+4s +5+t 2=0+52,即可解得M (3,8),②以MB 、NC 为对角线,则MB 、NC 的中点重合,同理可得s +52=2+02-s 2+4s +4+02=t +52,解得M (-3,-16),③以MC 、NB 为对角线,则MC 、NB 中点重合,则s +02=2+52-s 2+4s +5+52=t +02,解得M (7,-16).【详解】解:(1)将A 的坐标(-1,0),点C 的坐(0,5)代入y =-x 2+bx +c 得:0=-1-b +c 5=c ,解得b =4c =5 ,∴抛物线的解析式为y =-x 2+4x +5;(2)过P 作PD ⊥x 轴于D ,交BC 于Q ,过P 作PH ⊥BC 于H ,如图:在y =-x 2+4x +5中,令y =0得-x 2+4x +5=0,解得x =5或x =-1,∴B (5,0),∴OB =OC ,△BOC 是等腰直角三角形,∴∠CBO =45°,∵PD ⊥x 轴,∴∠BQD =45°=∠PQH ,∴△PHQ 是等腰直角三角形,∴PH =PQ2,∴当PQ 最大时,PH 最大,设直线BC 解析式为y =kx +5,将B (5,0)代入得0=5k +5,∴k =-1,∴直线BC 解析式为y =-x +5,设P (m ,-m 2+4m +5),(0<m <5),则Q (m ,-m +5),∴PQ =(-m 2+4m +5)-(-m +5)=-m 2+5m =-m -52 2+254,∵a =-1<0,∴当m =52时,PQ 最大为254,∴m =52时,PH 最大,即点P 到直线BC 的距离最大,此时P 52,354;(3)存在,理由如下:抛物线y =-x 2+4x +5对称轴为直线x =2,设M (s ,-s 2+4s +5),N (2,t ),而B (5,0),C (0,5),①以MN 、BC 为对角线,则MN 、BC 的中点重合,如图:∴s +22=5+02-s 2+4s +5+t2=0+52,解得s =3t =-3 ,∴M (3,8),②以MB 、NC 为对角线,则MB 、NC 的中点重合,如图:∴s +52=2+02-s 2+4s +4+02=t +52,解得s=-3t =-21 ,∴M (-3,-16),③以MC 、NB 为对角线,则MC 、NB 中点重合,如图:s +02=2+52-s 2+4s +5+52=t +02,解得s =7t =-11 ,∴M (7,-16);综上所述,M 的坐标为:(3,8)或(-3,-16)或(7,-16).【点睛】本题考查二次函数综合应用,涉及待定系数法、函数图象上点坐标的特征、等腰直角三角形、平行四边形等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度.3(2021·山东泰安·统考中考真题)二次函数y =ax 2+bx +4(a ≠0)的图象经过点A (-4,0),B (1,0),与y 轴交于点C ,点P 为第二象限内抛物线上一点,连接BP 、AC ,交于点Q ,过点P 作PD ⊥x 轴于点D .(1)求二次函数的表达式;(2)连接BC ,当∠DPB =2∠BCO 时,求直线BP 的表达式;(3)请判断:PQQB是否有最大值,如有请求出有最大值时点P 的坐标,如没有请说明理由.【答案】(1)y =-x 2-3x +4;(2)y =-158x +158;(3)PQ QB有最大值为45,P 点坐标为(-2,6)【分析】(1)将A (-4,0),B (1,0)代入y =ax 2+bx +4(a ≠0)中,列出关于a 、b 的二元一次方程组,求出a 、b 的值即可;(2)设BP 与y 轴交于点E ,根据PD ⎳y 轴可知,∠DPB =∠OEB ,当∠DPB =2∠BCO ,即∠OEB =2∠BCO ,由此推断△OEB 为等腰三角形,设OE =a ,则CE =4-a ,所以BE =4-a ,由勾股定理得BE 2=OE 2+OB 2,解出点E 的坐标,用待定系数法确定出BP 的函数解析式即可;(3)设PD 与AC 交于点N ,过B 作y 轴的平行线与AC 相交于点M .由A 、C 两点坐标可得AC 所在直线表达式,求得M 点坐标,则BM =5,由BM ⎳PN ,可得△PNQ ∽△BMQ ,PQ QB=PN BM =PN5,设P (a 0,-a 20-3a 0+4)(-4<a 0<0),则N (a 0,a 0+4)PQ QB =-a 20-3a 0+4-(a 0+4)5=-a 20-4a 05=-(a 0+2)2+45,根据二次函数性质求解即可.【详解】解:(1)由题意可得:a ⋅(-4)2+b ⋅(-4)+4=0a +b +4=0解得:a =-1b =-3 ,∴二次函数的表达式为y =-x 2-3x +4;(2)设BP 与y 轴交于点E ,∵PD ⎳y 轴,∴∠DPB =∠OEB ,∵∠DPB =2∠BCO ,∴∠OEB =2∠BCO ,∴∠ECB =∠EBC ,∴BE =CE ,设OE =a ,则CE =4-a ,∴BE =4-a ,在Rt △BOE 中,由勾股定理得BE 2=OE 2+OB 2,∴(4-a )2=a 2+12解得a =158,∴E 0,158,设BE 所在直线表达式为y =kx +e (k ≠0)∴k ⋅0+e =158,k ⋅1+e =0.解得k =-158,e =158. ∴直线BP 的表达式为y =-158x +158.(3)设PD 与AC 交于点N .过B 作y 轴的平行线与AC 相交于点M .由A 、C 两点坐标分别为(-4,0),(0,4)可得AC 所在直线表达式为y =x +4∴M 点坐标为(1,5),BM =5由BM ⎳PN ,可得△PNQ ∽△BMQ ,∴PQ QB=PN BM =PN 5设P (a 0,-a 20-3a 0+4)(-4<a 0<0),则N (a 0,a 0+4)∴PQ QB=-a 20-3a 0+4-(a 0+4)5=-a 20-4a 05=-(a 0+2)2+45,∴当a 0=-2时,PQQB 有最大值0.8,此时P 点坐标为(-2,6).【点睛】本题主要考查二次函数以及一次函数解析式的确定,函数图像的性质,相似三角形,勾股定理等知识点,熟练运用待定系数法求函数解析式是解题关键,本题综合性强,涉及知识面广,难度较大,属于中考压轴题.4(2020·辽宁阜新·中考真题)如图,二次函数y =x 2+bx +c 的图象交x 轴于点A -3,0 ,B 1,0 ,交y 轴于点C .点P m ,0 是x 轴上的一动点,PM ⊥x 轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的表达式;(2)①若点P 仅在线段AO 上运动,如图1.求线段MN 的最大值;②若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M ,N ,C ,Q 为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.【答案】(1)y =x 2+2x -3;(2)①94,②存在,Q 1(0,-32-1),Q 2(0,32-1)【分析】(1)把A (-3,0),B (1,0)代入y =x 2+bx +c 中求出b ,c 的值即可;(2)①由点P m ,0 得M (m ,-m -3),N m ,m 2+2m -3 ,从而得MN =(-m -3)-m 2+2m -3 ,整理,化为顶点式即可得到结论;②分MN =MC 和MC =2MN 两种情况,根据菱形的性质得到关于m 的方程,求解即可.【详解】解:(1)把A (-3,0),B (1,0)代入y =x 2+bx +c 中,得0=9-3b +c ,0=1+x +c .解得b =2,c =-3. ∴y =x 2+2x -3.(2)设直线AC 的表达式为y =kx +b ,把A (-3,0),C (0,-3)代入y =kx +b .得,0=-3k +b ,-3=b . 解这个方程组,得k =-1,b =-3. ∴y =-x -3.∵点P m ,0 是x 轴上的一动点,且PM ⊥x 轴.∴M (m ,-m -3),N m ,m 2+2m -3 . ∴MN =(-m -3)-m 2+2m -3 =-m 2-3m=-m +32 2+94.∵a =-1<0,∴此函数有最大值.又∵点P 在线段OA 上运动,且-3<-32<0∴当m =-32时,MN 有最大值94. ②∵点P m ,0 是x 轴上的一动点,且PM ⊥x 轴.∴M (m ,-m -3),N m ,m 2+2m -3 . ∴MN =(-m -3)-m 2+2m -3 =-m 2-3m(i )当以M ,N ,C ,Q 为顶点的四边形为菱形,则有MN =MC ,如图,∵C (0,-3)∴MC =(m -0)2+(-m -3+3)2=2m 2∴-m 2-3m =2m 2整理得,m 4+6m 3+7m 2=0∵m 2≠0,∴m 2+6m +7=0,解得,m 1=-3+2,m 2=-3-2∴当m =-3+2时,CQ =MN =32-2,∴OQ =-3-(32-2)=-32-1∴Q (0,-32-1);当m =-3-2时,CQ =MN =-32-2,∴OQ =-3-(-32-2)=32-1∴Q (0,32-1);(ii )若MC =2MN ,如图,则有-m 2-3m =22×2m 2整理得,m 2+4m =0解得,m 1=-4,m 2=0(均不符合实际,舍去)综上所述,点Q 的坐标为Q 1(0,-32-1),Q 2(0,32-1)【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用线段的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用菱形的性质得出关于m 的方程,要分类讨论,以防遗漏.5(2020·天津·中考真题)已知点A (1,0)是抛物线y =ax 2+bx +m (a ,b ,m 为常数,a ≠0,m <0)与x 轴的一个交点.(1)当a =1,m =-3时,求该抛物线的顶点坐标;(2)若抛物线与x 轴的另一个交点为M (m ,0),与y 轴的交点为C ,过点C 作直线l 平行于x 轴,E 是直线l 上的动点,F 是y 轴上的动点,EF =22.①当点E 落在抛物线上(不与点C 重合),且AE =EF 时,求点F 的坐标;②取EF 的中点N ,当m 为何值时,MN 的最小值是22?【答案】(1)抛物线的顶点坐标为(-1,-4);(2)①点F 的坐标为(0,-2-7)或(0,-2+7);②当m 的值为-32或-12时,MN 的最小值是22.【分析】(1)根据a =1,m =-3,则抛物线的解析式为y =x 2+bx -3,再将点A (1,0)代入y =x 2+bx -3,求出b 的值,从而得到抛物线的解析式,进一步可求出抛物线的顶点坐标;(2)①首先用含有m 的代数式表示出抛物线的解析式,求出C (0,m ),点E (m +1,m ).过点A 作AH ⊥l 于点H ,在Rt △EAH 中,利用勾股定理求出AE 的值,再根据AE =EF ,EF =22,可求出m 的值,进一步求出F 的坐标;②首先用含m 的代数式表示出MC 的长,然后分情况讨论MN 什么时候有最值.【详解】解:(1)当a =1,m =-3时,抛物线的解析式为y =x 2+bx -3.∵抛物线经过点A (1,0),∴0=1+b-3.解得b=2.∴抛物线的解析式为y=x2+2x-3.∵y=x2+2x-3=(x+1)2-4,∴抛物线的顶点坐标为(-1,-4).(2)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=-m-1.∴抛物线的解析式为y=x2-(m+1)x+m.根据题意,得点C(0,m),点E(m+1,m).过点A作AH⊥l于点H.由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1-(m+1)=-m,HA=0-m=-m,∴AE=EH2+HA2=-2m.∵AE=EF=22,∴-2m=22.解得m=-2.此时,点E(-1,-2),点C(0,-2),有EC=1.∵点F在y轴上,∴在Rt△EFC中,CF=EF2-EC2=7.∴点F的坐标为(0,-2-7)或(0,-2+7).②由N是EF的中点,得CN=12EF=2.根据题意,点N在以点C为圆心、2为半径的圆上.由点M(m,0),点C(0,m),得MO=-m,CO=-m.∴在Rt△MCO中,MC=MO2+CO2=-2m.当MC≥2,即m≤-1时,满足条件的点N落在线段MC上,MN的最小值为MC-NC=-2m-2=22,解得m=-3 2;当MC<2,-1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC-MC=2-(-2m)=22,解得m=-1 2.∴当m的值为-32或-12时,MN的最小值是22.【点睛】本题考查了待定系数法求解析式,抛物线上的点的坐标满足抛物线方程等,解题的关键是学会利用参数解决问题,学会用转化的思想思考问题,属于中考常考题型..6(2023·重庆·统考中考真题)如图,在平面直角坐标系中,抛物线y=14x2+bx+c与x轴交于点A,B,与y轴交于点C,其中B3,0,C0,-3.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD ⊥AC 于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.写出所有使得以QF 为腰的△QEF 是等腰三角形的点Q 的坐标,并把求其中一个点Q 的坐标的过程写出来.【答案】(1)y =14x 2+14x -3(2)PD 取得最大值为45,P -2,-52 (3)Q 点的坐标为92,-1 或92,5 或92,74.【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为y =-34x -3,过点P 作PE ⊥x 轴于点E ,交AC 于点Q ,设P t ,14t 2+14t -3 ,则Q t ,-34t -3 ,则PD =45PQ ,进而根据二次函数的性质即可求解;(3)根据平移的性质得出y =14x -92 2-4916,对称轴为直线x =92,点P -2,-52 向右平移5个单位得到E 3,-52 ,F 0,2 ,勾股定理分别表示出EF 2,QE 2,QF 2,进而分类讨论即可求解.【详解】(1)解:将点B 3,0 ,C 0,-3 .代入y =14x 2+bx +c 得,14×32+3b +c =0c =-3解得:b =14c =-3 ,∴抛物线解析式为:y =14x 2+14x -3,(2)∵y =14x 2+14x -3与x 轴交于点A ,B ,当y =0时,14x 2+14x -3=0解得:x 1=-4,x 2=3,∴A -4,0 ,∵C 0,-3 .设直线AC 的解析式为y =kx -3,∴-4k -3=0解得:k =-34∴直线AC 的解析式为y =-34x -3,如图所示,过点P 作PE ⊥x 轴于点E ,交AC 于点Q ,设P t ,14t 2+14t -3 ,则Q t ,-34t -3 ,∴PQ =-34t -3-14t 2+14t -3 =-14t 2-t ,∵∠AQE =∠PQD ,∠AEQ =∠QDP =90°,∴∠OAC =∠QPD ,∵OA =4,OC =3,∴AC =5,∴cos ∠QPD =PD PQ =cos ∠OAC =AO AC=45,∴PD =45PQ =45-14t 2-t =-15t 2-45t =-15t +2 2+45,∴当t =-2时,PD 取得最大值为45,14t 2+14t -3=14×-2 2+14×-2 -3=-52,∴P -2,-52 ;(3)∵抛物线y =14x 2+14x -3=14x +12 2-4916将该抛物线向右平移5个单位,得到y =14x -92 2-4916,对称轴为直线x =92,点P -2,-52 向右平移5个单位得到E 3,-52 ∵平移后的抛物线与y 轴交于点F ,令x =0,则y =14×92 2-4916=2,∴F 0,2 ,∴EF 2=32+2+52 2=1174∵Q 为平移后的抛物线的对称轴上任意一点.则Q 点的横坐标为92,设Q 92,m ,∴QE 2=92-3 2+m +52 2,QF 2=92 2+m -2 2,当QF =EF 时,92 2+m -2 2=1174,解得:m =-1或m =5,当QE =QF 时,92-3 2+m +522=92 2+m -2 2,解得:m =74综上所述,Q 点的坐标为92,-1 或92,5 或92,74.【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.题型02利用二次函数解决两条线段之和的最值问题【解题思路】抛物线中的线段最值问题有三种形式:2. 两条线段和的最值问题:解决这类问题最基本的定理就是“两点之间线段最短”,解决这类问题的方法是:作其中一个定点关于已知直线的对称点,连接对称点与另一个定点,它们与已知直线的交点即为所求的点. 其变形问题有三角形周长最小或四边形周长最小等.【常见模型一】(两点在河的异侧):在直线L上找一点M,使PA+PB的值最小.方法:如右图,连接AB,与直线L交于点M,在M处渡河距离最短,最短距离为线段AB的长。
函数的实际应用-- 利润最值问题(专题训练)(解析版)-中考数学重难点题型专题汇总

函数的实际应用-中考数学重难点题型专题汇总利润最值问题(专题训练)1.某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y 是销售价格x (单位:元)的一次函数.(1)求y 关于x 的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.【答案】(1)()y 309601032x x =-+≤≤(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元【分析】(1)设()0y kx b k =+≠,把20x =,360y =和30x =,60y =代入求出k 、b 的值,从而得出答案;(2)根据总利润=每件利润×每月销售量列出函数解析式,配方成顶点式,利用二次函数的性质求解可得答案.(1)解:设()0y kx b k =+≠,把20x =,360y =和30x =,60y =代入可得203603060k b k b +⎧⎨+⎩==,解得30960k b =-⎧⎨=⎩,则()y 309601032x x =-+≤≤;(2)解:每月获得利润()()3096010P x x =-+-()()303210x x =-+-()23042320x x =-+-()230213630x =--+.∵300-<,∴当21x =时,P 有最大值,最大值为3630.答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元.【点睛】本题主要考查了一次函数解析式的求法和二次函数的应用,解题的关键是理解题意找到其中蕴含的相等关系,并据此得出函数解析式及二次函数的性质,然后再利用二次函数求最值.2.某服装店以每件30元的价格购进一批T 恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T 恤的销售单价提高x 元.(1)服装店希望一个月内销售该种T 恤能获得利润3360元,并且尽可能减少库存,问T 恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T 恤获得的利润最大?最大利润是多少元?【答案】(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M 元,结合题意,根据二次函数的性质,计算得利润最大值对应的x 的值,从而得到答案.【详解】(1)由题意列方程得:(x +40-30)(300-10x )=3360解得:x 1=2,x 2=18∵要尽可能减少库存,∴x 2=18不合题意,故舍去∴T 恤的销售单价应提高2元;(2)设利润为M 元,由题意可得:M =(x +40-30)(300-10x )=-10x 2+200x +3000=()210104000x --+∴当x =10时,M 最大值=4000元∴销售单价:40+10=50元∴当服装店将销售单价50元时,得到最大利润是4000元.【点睛】本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解.3.某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y (万件)与售价x (元/件)之间满足函数关系式y =24-x ,第一年除60万元外其他成本为8元/件.(1)求该产品第一年的利润w (万元)与售价x 之间的函数关系式;(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?【答案】(1)232252w x x =-+-(2)①第一年的售价为每件16元,②第二年的最低利润为61万元.【分析】(1)由总利润等于每件产品的利润乘以销售的数量,再减去投资成本,从而可得答案;(2)①把4w =代入(1)的函数解析式,再解方程即可,②由总利润等于每件产品的利润乘以销售的数量,再减去投资成本,列函数关系式,再利用二次函数的性质求解利润范围即可得到答案.(1)解:由题意得:()860w x y =--()()82460x x =---232252,x x =-+-(2)①由(1)得:当4w =时,则2322524,x x -+-=即2322560,x x -+=解得:1216,x x ==即第一年的售价为每件16元,② 第二年售价不高于第一年,销售量不超过13万件,16,2413x x ì£ï\í-£ïî解得:1116,x # 其他成本下降2元/件,∴()()2624430148,w x x x x =---=-+- 对称轴为()3015,21x =-=´-10,a =-<∴当15x =时,利润最高,为77万元,而1116,x #当11x =时,513461w =´-=(万元)当16x =时,108476w =´-=(万元)6177,w \#所以第二年的最低利润为61万元.【点睛】本题考查的是二次函数的实际应用,二次函数的性质,理解题意,列出函数关系式,再利用二次函数的性质解题是关键.4.某水果店将标价为10元/斤的某种水果.经过两次降价后,价格为8.1元/斤,并且两次降价的百分率相同.(1)求该水果每次降价的百分率;(2)从第二次降价的第1天算起,第x 天(x 为整数)的销量及储藏和损耗费用的相关信息如下表所示:时间(天)x 销量(斤)120﹣x 储藏和损耗费用(元)3x 2﹣64x+400已知该水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x <10)之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少?【答案】(1)10%;(2)y =﹣3x 2+60x+80,第9天时销售利润最大,最大利润是377元【解析】【分析】(1)根据题意,可以列出相应的方程,从而可以求得相应的百分率;(2)根据题意和表格中的数据,可以求得y 与x (1≤x <10)之间的函数解析式,然后利用二次函数的性质可以求出第几天时销售利润最大,最大利润是多少.【详解】解:(1)设该水果每次降价的百分率为x ,10(1﹣x )2=8.1,解得,x 1=0.1,x 2=1.9(舍去),答:该水果每次降价的百分率是10%;(2)由题意可得,y =(8.1﹣4.1)×(120﹣x )﹣(3x 2﹣64x+400)=﹣3x 2+60x+80=﹣3(x ﹣10)2+380,∵1≤x <10,∴当x =9时,y 取得最大值,此时y =377,由上可得,y 与x (1≤x <10)之间的函数解析式是y =﹣3x 2+60x+80,第9天时销售利润最大,最大利润是377元.【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和方程的知识解答.5.国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示:水果单价甲乙进价(元/千克)x 4x +售价(元/千克)2025已知用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同.(1)求x 的值;(2)若超市购进这两种水果共100千克,其中甲种水果的重量不低于乙种水果重量的3倍,则超市应如何进货才能获得最大利润,最大利润是多少?【答案】(1)16;(2)购进甲种水果75千克,则乙种水果25千克,获得最大利润425元【分析】(1)根据用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同列出分式方程,解之即可;(2)设购进甲种水果m 千克,则乙种水果100-m 千克,利润为y ,列出y 关于m 的表达式,根据甲种水果的重量不低于乙种水果重量的3倍,求出m 的范围,再利用一次函数的性质求出最大值.【详解】解:(1)由题意可知:120015004x x =+,解得:x=16,经检验:x=16是原方程的解;(2)设购进甲种水果m千克,则乙种水果100-m千克,利润为y,由题意可知:y=(20-16)m+(25-16-4)(100-m)=-m+500,∵甲种水果的重量不低于乙种水果重量的3倍,∴m≥3(100-m),解得:m≥75,即75≤m<100,在y=-m+500中,-1<0,则y随m的增大而减小,∴当m=75时,y最大,且为-75+500=425元,∴购进甲种水果75千克,则乙种水果25千克,获得最大利润425元.【点睛】本题考查了分式方程和一次函数的实际应用,解题的关键是读懂题意,列出方程和函数表达式.6.某公司生产的一种营养品信息如下表.已知甲食材每千克的进价是乙食材的2倍,用80元购买的甲食材比用20元购买的乙食材多1千克.(1)问甲、乙两种食材每千克进价分别是多少元?(2)该公司每日用18000元购进甲、乙两种食材并恰好全部用完.①问每日购进甲、乙两种食材各多少千克?②已知每日其他费用为2000元,且生产的营养品当日全部售出.若A 的数量不低于B 的数量,则A 为多少包时,每日所获总利润最大?最大总利润为多少元?【答案】(1)甲、乙两种食材每千克进价分别为40元、20元;(2)①每日购进甲食材400千克,乙食材100千克;②当A 为400包时,总利润最大.最大总利润为2800元【分析】(1)设乙食材每千克进价为a 元,根据用80元购买的甲食材比用20元购买的乙食材多1千克列分式方程即可求解;(2)①设每日购进甲食材x 千克,乙食材y 千克.根据每日用18000元购进甲、乙两种食材并恰好全部用完,利用进货总金额为180000元,含铁量一定列出二元一次方程组即可求解;②设A 为m 包,根据题意,可以得到每日所获总利润与m 的函数关系式,再根据A 的数量不低于B 的数量,可以得到m 的取值范围,从而可以求得总利润的最大值.【详解】解:(1)设乙食材每千克进价为a 元,则甲食材每千克进价为2a 元,由题意得802012a a-=,解得20a =.经检验,20a =是所列方程的根,且符合题意.∴240a =(元).答:甲、乙两种食材每千克进价分别为40元、20元.(2)①设每日购进甲食材x 千克,乙食材y 千克.由题意得()402018000501042x y x y x y +=⎧⎨+=+⎩,解得400100x y =⎧⎨=⎩答:每日购进甲食材400千克,乙食材100千克.②设A 为m 包,则B 为()500200040.25m m -=-包.记总利润为W 元,则()45122000418000200034000W m m m =+---=-+.A 的数量不低于B 的数量,∴20004m m ≥-,400m ≥.30k =-<,∴W 随m 的增大而减小。
几何最值问题-2023年中考数学压轴题专项训练(全国通用)(解析版)

12023年中考数学压轴题专项训练1.几何最值问题一、压轴题速练1一、单选题1(2023·山东烟台·模拟预测)如图,在矩形ABCD 中,AB =8,AD =4,点E 是矩形ABCD 内部一动点,且∠BEC =90°,点P 是AB 边上一动点,连接PD 、PE ,则PD +PE 的最小值为()A.8 B.45 C.10 D.45-2【答案】A【分析】根据∠BEC =90°得到点的运动轨迹,利用“将军饮马”模型将PE 进行转化即可求解.【详解】解:如图,设点O 为BC 的中点,由题意可知,点E 在以BC 为直径的半圆O 上运动,作半圆O 关于AB 的对称图形(半圆O '),点E 的对称点为E 1,连接O 'E 1,则PE =PE 1,∴当点D 、P 、E 1、O '共线时,PD +PE 的值最小,最小值为DE 1的长,如图所示,在Rt △DCO '中,CD =8,CO '=6,∴DO '=82+62=10,又∵O 'E 1=2,∴DE 1=DO '-O 'E 1=8,即PD +PE 的最小值为8,故选:A .【点睛】本题考查线段和最短问题、轴对称的性质、勾股定理及圆周角定理,利用“将军饮马”模型将PE 进行转化时解题的关键.2(2023·安徽黄山·校考模拟预测)如图,在平面直角坐标系中,二次函数y =32x 2-32x -3的图象与x 轴交于点A ,C 两点,与y 轴交于点B ,对称轴与x 轴交于点D ,若P 为y 轴上的一个动点,连接PD ,则12PB +PD 的最小值为()2A.334B.32C.3D.543【答案】A【分析】作射线BA ,作PE ⊥BA 于E ,作DF ⊥BA 于F ,交y 轴于P ,可求得∠ABO =30°,从而得出PE =12PB ,进而得出PD +12PB =PD +EP ,进一步得出结果.【详解】解:如图,作射线BA ,作PE ⊥BA 于E ,作DF ⊥BA 于F ,交y 轴于P ,抛物线的对称轴为直线x =--322×32=12,∴OD =12,当x =0时,y =-3,∴OB =3,当y =0时,32x 2-32x -3=0,∴x 1=-1,x 2=2,∴A (-1,0),∴OA =1,∵tan ∠ABO =OA OB =13=33,∴∠ABO =30°,∴PE =12PB ,∴12PB +PD =PD +PE ≥DF ,当点P 在P 时,PD +PE 最小,最大值等于DF ,在Rt △ADF 中,∠DAF =90°-∠ABO =60°,AD =OD +PA =12+1=32,∴DF =AD ⋅sin ∠DAE =32×32-334,∴12PB +PD 最小=DF =334,故选:A .【点睛】本题以二次函数为背景,考查了二次函数与一元二次方程之间的关系,解直角三角形等知识,解决问题的关键是用三角函数构造12PB .3(2023秋·浙江金华·九年级统考期末)如图,正方形ABCD 的边长为4,点E 是正方形ABCD 内的动点,点P 是BC 边上的动点,且∠EAB =∠EBC .连结AE ,BE ,PD ,PE ,则PD +PE 的最小值为()3A.213-2B.45-2C.43-2D.215-2【答案】A【分析】先证明∠AEB =90°,即可得点E 在以AB 为直径的半圆上移动,设AB 的中点为O ,作正方形ABCD 关于直线BC 对称的正方形CFGB ,则点D 的对应点是F ,连接FO 交BC 于P ,交半圆O 于E ,根据对称性有:PD =PF ,则有:PE +PD =PE +PF ,则线段EF 的长即为PE +PD 的长度最小值,问题随之得解.【详解】解:∵四边形ABCD 是正方形,∴∠ABC =90°,∴∠ABE +∠EBC =90°,∵∠EAB =∠EBC ,∴∠EAB +∠EBA =90°,∴∠AEB =90°,∴点E 在以AB 为直径的半圆上移动,如图,设AB 的中点为O ,作正方形ABCD 关于直线BC 对称的正方形CFGB ,则点D 的对应点是F ,连接FO 交BC 于P ,交半圆O 于E ,根据对称性有:PD =PF ,则有:PE +PD =PE +PF ,则线段EF 的长即为PE +PD 的长度最小值,E∵∠G =90°,FG =BG =AB =4,∴OG =6,OA =OB =OE =2,∴OF =FG 2+OG 2=213,∴EF =OF -OE =213-2,故PE +PD 的长度最小值为213-2,故选:A .【点睛】本题考查了轴对称-最短路线问题,正方形的性质,勾股定理,正确的作出辅助线,得出点E 的运动路线是解题的关键.4(2022秋·安徽池州·九年级统考期末)如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点P 为AC 边上的动点,过点P 作PD ⊥AB 于点D ,则PB +PD 的最小值为()4 A.154 B.245 C.5 D.203【答案】B【分析】作点B 关于AC 的对称点B ,过点B 作B D ⊥AB 于点D ,交AC 于点P ,点P 即为所求作的点,此时PB +PD 有最小值,连接AB ,根据对称性的性质,可知:BP =B P ,△ABC ≅△AB C ,根据S △ABB =S △ABC +S △AB C =2S △ABC ,即可求出PB +PD 的最小值.【详解】解:如下图,作点B 关于AC 的对称点B ,过点B 作B D ⊥AB 于点D ,交AC 于点P ,连接AB ,点P 即为所求作的点,此时PB +PD 有最小值,根据对称性的性质,可知:BP =B P ,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,∴AB =AC 2+BC 2=5,根据对称性的性质,可知:△ABC ≅△AB C ,∴S △ABB =S △ABC +S △ABC =2S △ABC ,即12×AB ⋅B D =2×12BC ⋅AC ,∴5B D =24,∴B D =245,故选:B .【点睛】本题考查了轴对称一最短路线问题,解题的关键是掌握轴对称的性质.5(2023秋·甘肃定西·八年级校考期末)如图所示,在△ABC 中,∠ABC =68°,BD 平分∠ABC ,P 为线段BD 上一动点,Q 为 边AB 上一动点,当AP +PQ 的值最小时,∠APB 的度数是()A.118°B.125°C.136°D.124°【答案】D【分析】先在BC 上截取BE =BQ ,连接PE ,证明△PBQ ≌△PBE SAS ,得出PE =PQ ,说明AP +PQ =AP +PE ,找出当A 、P 、E 在同一直线上,且AE ⊥BC 时,AP +PE 最小,即AP +PQ 最小,过点A 作AE ⊥BC 于点E ,交BD 于点P ,根据三角形外角的性质可得答案.【详解】解:在BC 上截取BE =BQ ,连接PE ,如图:∵BD 平分∠ABC ,∠ABC =68°,∴∠ABD =∠CBD =12∠ABC =34°,∵BP =BP ,∴△PBQ ≌△PBE SAS ,∴PE =PQ ,∴AP +PQ =AP +PE ,∴当A 、P 、E 在同一直线上,且AE ⊥BC 时,AP +PE 最小,即AP +PQ最小,过点A作AE ⊥BC 于点E ,交BD 于点P ,如图:∵∠AEB =90°,∠CBD =34°,∴∠APB =∠AEB +∠CBD =124°.故选:D .5【点睛】本题主要考查了角平分线的定义,三角形全等的判定和性质,垂线段最短,三角形内角和定理与三角形的外角的性质,解题的关键是找出使AP +PQ 最小时点P 的位置.6(2022秋·重庆沙坪坝·八年级重庆市凤鸣山中学校联考期末)如图,E 为正方形ABCD 边AD 上一点,AE =1,DE =3,P 为对角线BD 上一个动点,则PA +PE 的最小值为()A.5B.42C.210D.10【答案】A【分析】连接EC 交BD 于P 点,根据“两点之间线段最短”,可知PA +PE 的最小值即为线段EC 的长,求出EC 的长即可.【详解】连接EC ,交BD 于P 点∵四边形ABCD 为正方形∴A 点和C 点关于BD 对称∴PA =PC∴PA +PE =PC +PE =EC根据“两点之间线段最短”,可知PA +PE 的最小值即为线段EC 的长.∵AE =1,DE =3∴AD =4∴DC =4∴CE =DE 2+CD 2=32+42=5∴PA +PE 的最小值为5故选:A【点睛】本题主要考查了正方形的性质和两点之间线段最短,这是一个将军饮马模型.熟练掌握正方形的性质并且能够识别出将军饮马模型是解题的关键.7(2023春·湖南张家界·八年级统考期中)如图,正方形ABCD 的边长为4,点M 在DC 上,且DM =1,N 是AC 上一动点,则DN +MN 的最小值为()A.4B.42C.25D.5【答案】D【分析】由正方形的对称性可知点B 与D 关于直线AC 对称,连接BM 交AC 于N ′,N ′即为所求在Rt △BCM 中利用勾股定理即可求出BM 的长即可.【详解】∵四边形ABCD 是正方形,∴点B 与D 关于直线AC 对称,6连接BD ,BM 交AC 于N ′,连接DN ′,∴当B 、N 、M 共线时,DN +MN 有最小值,则BM 的长即为DN +MN 的最小值,∴AC 是线段BD 的垂直平分线,又∵CD =4,DM =1∴CM =CD -DM =4-1=3,在Rt △BCM 中,BM =CM 2+BC 2=32+42=5故DN +MN 的最小值是5.故选:D .【点睛】本题考查的是轴对称-最短路线问题及正方形的性质,先作出D 关于直线AC 的对称点,由轴对称及正方形的性质判断出D 的对称点是点B 是解答此题的关键.8(2022秋·浙江杭州·九年级杭州外国语学校校考开学考试)如图,在平面直角坐标系中,二次函数y =-x 2+bx +3的图像与x 轴交于A 、C 两点,与x 轴交于点C (3,0),若P 是x 轴上一动点,点D 的坐标为(0,-1),连接PD ,则2PD +PC 的最小值是()A.4B.2+22C.22D.32+232【答案】A【分析】过点P 作PJ ⊥BC 于J ,过点D 作DH ⊥BC 于H ,根据2PD +PC =2PD +22PC =2PD +PJ ,求出DP +PJ 的最小值即可解决问题.【详解】解:连接BC ,过点P 作PJ ⊥BC 于J ,过点D 作DH ⊥BC 于H .∵二次函数y =-x 2+bx +3的图像与x 轴交于点C (3,0),∴b =2,∴二次函数的解析式为y =-x 2+2x +3,令y =0,-x 2+2x +3=0,解得x =-1或3,∴A (-1,0),令x =0,y =3,∴B (0,3),∴OB =OC =3,∵∠BOC =90°,∴∠OBC =∠OCB =45°,∵D(0,-1),∴OD =1,BD =4,∵DH ⊥BC ,∴∠DHB =90°,设DH =x ,则BH =x ,∵DH 2+BH 2=BD 2,7∴x =22,∴DH =22,∵PJ ⊥CB ,∴∠PJC =90°,∴PJ =22PC ,∴2PD +PC =2PD +22PC =2PD +PJ ,∵DP +PJ ≥DH ,∴DP +PJ ≥22,∴DP +PJ 的最小值为22,∴2PD +PC 的最小值为4.故选:A .【点睛】本题考查了二次函数的相关性质,以及等腰直角三角形的判定和性质,垂线段最短等知识,得到∠OBC =∠OCB =45°,PJ =22PC 是解题的关键.9(2022·山东泰安·统考中考真题)如图,四边形ABCD 为矩形,AB =3,BC =4.点P 是线段BC 上一动点,点M 为线段AP 上一点.∠ADM =∠BAP ,则BM 的最小值为()A.52 B.125 C.13-32 D.13-2【答案】D【分析】证明∠AMD =90°,得出点M 在O 点为圆心,以AO 为半径的圆上,从而计算出答案.【详解】设AD 的中点为O ,以O 点为圆心,AO 为半径画圆∵四边形ABCD 为矩形∴∠BAP +∠MAD =90°∵∠ADM =∠BAP∴∠MAD +∠ADM =90°∴∠AMD =90°∴点M 在O 点为圆心,以AO 为半径的圆上连接OB 交圆O 与点N∵点B 为圆O 外一点∴当直线BM 过圆心O 时,BM 最短∵BO 2=AB 2+AO 2,AO =12AD =2∴BO 2=9+4=13∴BO =13∵BN =BO -AO =13-2故选:D .【点睛】本题考查直角三角形、圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识.810(2022·河南·校联考三模)如图1,正方形ABCD 中,点E 是BC 的中点,点P 是对角线AC 上的一个动点,设AP =x ,PB +PE =y ,当点P 从A 向点C 运动时,y 与x 的函数关系如图2所示,其中点M 是函数图象的最低点,则点M 的坐标是()A.42,35B.22,35C.35,22D.35,42【答案】A【分析】根据图像,当P 与C 重合时,PB +PE =9即CB +CE =9,从而确定正方形的边长为6,根据将军饮马河原理,连接DE 交AC 于点G ,当点P 与点G 重合时,PE +PB 最小,且为DE 的长即点M 的纵坐标,利用相似三角形,计算AG 的长即为横坐标.【详解】如图,根据图像,当P 与C 重合时,PB +PE =9即CB +CE =9,∵点E 是BC 的中点,∴BC =6,连接DE 交AC 于点G ,当点P 与点G 重合时,PE +PB 最小,且为DE 的长即点M 的纵坐标,∵四边形ABCD 是正方形,AB =6,∴CE ∥AD ,AC =62+62=62,DE =62+32=35,∴△CGE ∽△AGD ,∴CG AG =CE AD =12,∴AC AG=32,∴AG =42,故点M 的坐标为(42,35),故A 正确.故选:A .【点睛】本题考查了正方形的性质,三角形相似的判定和性质,函数图像信息的获取,将军饮马河原理,熟练掌握正方形的性质,灵活运用三角形相似,构造将军饮马河模型求解是解题的关键.2二、填空题11(2023春·江苏宿迁·九年级校联考阶段练习)如图,矩形ABCD ,AB =4,BC =8,E 为AB 中点,F 为直线BC 上动点,B 、G 关于EF 对称,连接AG ,点P 为平面上的动点,满足∠APB =12∠AGB ,则DP 的最小值.【答案】210-22【分析】由题意可知,∠AGB =90°,可得∠APB =12∠AGB =45°,可知点P 在以AB 为弦,圆周角∠APB =45°的9圆上,(要使DP 最小,则点P 要靠近蒂点D ,即点P 在AB 的右侧),设圆心为O ,连接OA ,OB ,OE ,OP ,OD ,过点O 作OQ ⊥AD ,可知△AOB 为等腰直角三角形,求得OA =22AB =22=OP ,AQ =OQ =22OA =2,QD =AD -AQ =6,OD =OQ 2+QD 2=210,再由三角形三边关系可得:DP ≥OD -OP =210-22,当点P 在线段OD 上时去等号,即可求得DP 的最小值.【详解】解:∵B 、G 关于EF 对称,∴BH =GH ,且EF ⊥BG∵E 为AB 中点,则EH 为△ABG 的中位线,∴EH ∥AG ,∴∠AGB =90°,∵∠APB =12∠AGB ,即∠APB =12∠AGB =45°,∴点P 在以AB 为弦,圆周角∠APB =45°的圆上,(要使DP 最小,则点P 要靠近蒂点D ,即点P 在AB 的右侧)设圆心为O ,连接OA ,OB ,OE ,OP ,OD ,过点O 作OQ ⊥AD ,则OA =OB =OP ,∵∠APB =45°,∴∠AOB =90°,则△AOB 为等腰直角三角形,∴OA =22AB =22=OP ,又∵E 为AB 中点,∴OE ⊥AB ,OE =12AB =AE =BE ,又∵四边形ABCD 是矩形,∴∠BAD =90°,AD =BC =8,∴四边形AEOQ 是正方形,∴AQ =OQ =22OA =2,QD =AD -AQ =6,∴OD =OQ 2+QD 2=210,由三角形三边关系可得:DP ≥OD-OP =210-22,当点P 在线段OD 上时去等号,∴DP 的最小值为210-22,故答案为:210-22.【点睛】本题考查轴对称的性质,矩形的性质,隐形圆,三角形三边关系,正方形的判定及性质,等腰直角三角形的判定及性质,根据∠APB =12∠AGB =45°得知点P 在以AB 为弦,圆周角∠APB =45°的圆上是解决问题的关键.12(2023春·江苏连云港·八年级期中)如图,在边长为8的正方形ABCD 中,点G 是BC 边的中点,E 、F 分别是AD 和CD 边上的点,则四边形BEFG 周长的最小值为.【答案】2410【分析】作点G 关于CD 的对称点G ,作点B 关于AD 的对称点B ,连接B G ,根据两点之间线段最短即可解决问题.【详解】作点G 关于CD 的对称点G ,作点B 关于AD 的对称点B ,连接B G∵EB =EB ,FG =FG ,∴BE +EF +FG +BG =B E +EF +FG +BG ,∵EB +EF +FG ≥B G ,∴四边形BEFG 的周长的最小值=BG +B G ,∵正方形ABCD 的边长为8∴BG =4,BB =16,BG =12,∴B G =162+122=20,∴四边形BEFG 的周长的最小值为=4+20=24.故答案为:24.【点睛】本题考查轴对称求线段和的最短问题,正方形的性质,勾股定理,解题的关键是学会利用轴对称解决最短问题.13(2022·湖南湘潭·校考模拟预测)如图,菱形草地ABCD 中,沿对角线修建60米和80米两条道路AC <BD ,M 、N 分别是草地边BC 、CD 的中点,在线段BD 上有一个流动饮水点P ,若要使PM +PN 的距离最短,则最短距离是米.【答案】50【分析】作M 关于BD 的对称点Q ,连接NQ ,交BD 于P ,连接MP ,当P 点与P 重合时,MP +NP =MP +NP =NQ 的值最小,根据菱形的性质和勾股定理求出BC 长,即可得出答案.【详解】解:作M 关于BD 的对称点Q ,连接NQ ,交BD 于P ,连接MP ,当P 点与P 重合时,MP +NP =MP +NP =NQ 的值最小,∵四边形ABCD 是菱形,∴AC ⊥BD ,∠QBP =∠MBP ,即Q 在AB 上,∵MQ ⊥BD ,∴AC ∥MQ ,∴M 为BC 中点,∴Q 为AB 中点,∵N 为CD 中点,四边形ABCD 是菱形,∴BQ ∥CD ,BQ =CN ,∴四边形BQNC 是平行四边形,∴NQ =BC ,设AC 与BD 的交点为点O ,∵四边形ABCD 是菱形,∴AC ⊥BD,OC =12AC =30米,OB =12BD =40米,∴BC =OB 2+OC 2=50米,∴PM +PN 的最小值是50米.故答案为:50.11【点睛】本题考查了轴对称-最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P 的位置.14(2023春·江苏·九年级校考阶段练习)如图,正方形ABCD 的边长为4,⊙B 的半径为2,P 为⊙B 上的动点,则2PC -PD 的最大值是.【答案】2【分析】解法1,如图:以PD 为斜边构造等腰直角三角形△PDM ,连接MC ,BD ,连接PM 、DM ,推得2PC -PD=2PC -22PD =2PC -PM ,因为PC -PM ≤MC ,求出MC 即可求出答案.解法2:如图:连接BD 、BP 、PC ,在BD 上做点M ,使BM BP =24,连接MP ,证明△BMP ∼△BPD ,在BC 上做点N ,使BN BP=12,连接NP ,证明△BNP ∼△BPC ,接着推导出2PC -PD =22MN ,最后证明△BMN ∼△BCD ,即可求解.【详解】解法1如图:以PD 为斜边构造等腰直角三角形△PDM ,连接MC ,BD ,∴∠PDM =45,DM =PM =22PD ,∵四边形ABCD 正方形∴∠BDC =45°,DB DC=2又∵∠PDM =∠PDB +MDB ,∠BDC =∠MDB +MDC∴∠PDB =∠MDC在△BPD 与△MPC 中∠PDB =∠MDC ,DB DC=DP DM =2∴△BPD ∼△MPC∴PB MC=2∵BP =2∴MC =2∵2PC -PD =2PC-22PD =2PC -PM ∵PC -PM ≤MC ∴2PC -PD =2PC -PM ≤2MC =2故答案为:2.解法2如图:连接BD 、BP 、PC根据题意正方形ABCD 的边长为4,⊙B 的半径为2∴BP =2,BD =BC 2+CD 2=42+42=42∵BP BD =242=2412在BD 上做点M ,使BM BP=24,则BM =22,连接MP 在△BMP 与△BPD 中∠MBP =∠PBD ,BP BD =BM BP∴△BMP ∼△BPD∴PM PD =24,则PD =22PM ∵BP BC =24=12在BC 上做点N ,使BN BP=12,则BN =1,连接NP 在△BNP 与△BPC 中∠NBP =∠PBC ,BN BP =BP PC∴△BNP ∼△BPC∴PN PC=12,则PC =2PN ∴如图所示连接NM ∴2PC -PD =2×2PN -22PM =22PN -PM ∵PN -PM ≤NM ∴2PC -PD =22PN -PM ≤22NM在△BMN 与△BCD 中∠NBM=∠DBC ,BM BC =224=28,BN BD =142=28∴BM BC=BN BD ∴△BMN ∼△BCD∴MN CD=28∵CD =4∴MN =22∴22MN =22×22=2∴2PC -PD ≤22NM =2故答案为:2.【点睛】本题考查正方形的性质,相似三角形,勾股定理等知识,难度较大,熟悉以上知识点运用是解题关键.15(2023秋·广东广州·九年级统考期末)如图,四边形ABCD 中,AB ∥CD ,AC ⊥BC ,∠DAB =60°,AD =CD =4,点M 是四边形ABCD 内的一个动点,满足∠AMD =90°,则△MBC 面积的最小值为.【答案】63-4【分析】取AD 的中点O ,连接OM ,过点M 作ME ⊥BC 交BC 的延长线于点E ,过点O 作OF ⊥BC 于F ,交CD 于G ,则OM +ME ≥OF ,通过计算得出当O ,M ,E 三点共线时,ME 有最小值,求出最小值即可.【详解】解:如图,取AD 的中点O ,连接OM ,过点M 作ME ⊥BC 交BC 的延长线于点E ,过点O 作OF ⊥BC 于F ,交CD 于G ,则13OM +ME ≥OF ,∵AB ∥CD ,∠DAB =60°,AD =CD =4,∴∠ADC =120°,∵AD =CD ,∴∠DAC =30°,∴∠CAB =30°,∵AC ⊥BC ,∴∠ACB =90°∴∠B =90°-30°=60°,∴∠B =∠DAB ,∴四边形ABCD 为等腰梯形,∴BC =AD =4,∵∠AMD =90°,AD =4,OA =OD ,∴OM =12AD =2,∴点M 在以点O 为圆心,2为半径的圆上,∵AB ∥CD ,∴∠GCF =∠B =60°,∴∠DGO =∠CGF =30°,∵OF ⊥BC ,AC ⊥BC ,∴∠DOG =∠DAC =30°=∠DGO ,∴DG =DO =2,∴OG =2OD ⋅cos30°=23,GF =3,OF =33,∴ME ≥OF -OM =33-2,∴当O ,M ,E 三点共线时,ME 有最小值33-2,∴△MBC 面积的最小值为=12×4×33-2 =63-4.【点睛】本题考查了解直角三角形、隐圆、直角三角形的性质等知识点,点M 位置的确定是解题关键.16(2023春·全国·八年级专题练习)如图,在等边△ABC 中,BD ⊥AC 于D ,AD =3cm .点P ,Q 分别为AB,AD 上的两个定点且BP =AQ =1cm ,点M 为线段BD 上一动点,连接PM ,QM ,则PM +QM 的最小值为cm .【答案】5【分析】如图所示,作点P 关于BD 的对称点P ,且点P 在BC 上,则PM +QM =P M+QM ,当P ,M ,Q 在同一条直线上时,有最小值,证明四边形PP QA 是平行四边形,P Q =AP =AB -BP ,由此即可求解.【详解】解:如图所示,作点P 关于BD 的对称点P ,∵△ABC 是等边三角形,BD ⊥AC ,∴∠ABD =∠DBC =12∠ABC =12×60°=30°,14∴点P 在BC 上,∴P M =PM ,则PM +QM =P M +QM ,当P ,M ,Q 在同一条直线上时,有最小值,∵点P 关于BD 的对称点P ,∠ABD =∠DBC =30°,∴PP ⊥BM ,BP =BP =1cm ,∴∠BP P =60°,∴△BPP 是等边三角形,即∠BP P =∠C =60°,∴PP ∥AC ,且PP =AQ =1cm ,∴四边形PP QA 是平行四边形,∴P Q =AP =AB -BP ,在Rt △ABD 中,∠ABD =30°,AD =3,∴AB =2AD =2×3=6,∴AP =P Q =P M +QM =PM +QM =AB -BP =6-1=5,故答案为:5.【点睛】本题主要考查动点与等边三角形,对称-最短路径,平行四边形的判定和性质的综合,理解并掌握等边三角形得性质,对称-最短路径的计算方法,平行四边形的判定和性质是解题的关键.17(2022秋·山东菏泽·九年级校考阶段练习)如图,在周长为12的菱形ABCD 中,DE =1,DF =2,若P 为对角线AC 上一动点,则EP +FP 的最小值为.【答案】3【分析】作F 点关于BD 的对称点F ,连接EF 交BD 于点P ,则PF =PF ,由两点之间线段最短可知当E 、P 、F 在一条直线上时,EP +FP 有最小值,然后求得EF 的长度即可.【详解】解:作F 点关于BD 的对称点F ,则PF =PF ,连接EF '交BD 于点P .∴EP +FP =EP +F P .由两点之间线段最短可知:当E 、P 、F '在一条直线上时,EP +FP 的值最小,此时EP +FP =EP +F P =EF .∵四边形ABCD 为菱形,周长为12,∴AB =BC =CD =DA =3,AB ∥CD ,∵AF =2,AE =1,∴DF =AE =1,∴四边形AEF D 是平行四边形,∴EF =AD =3.∴EP +FP 的最小值为3.故答案为:3.【点睛】本题主要考查的是菱形的性质、轴对称--路径最短问题,明确当E 、P 、F 在一条直线上时EP +FP 有最小值是解题的关键.18(2023春·上海·八年级专题练习)如图,直线y =x +4与x 轴,y 轴分别交于A和B ,点C 、D 分别为线段AB 、OB 的中点,P 为OA 上一动点,当PC +PD 的值最小时,点P 的坐标为.15【答案】(-1,0)【分析】直线y =x +4与x 轴,y 轴分别交于A 和B ,可求出点A ,B 的坐标,点C 、D 分别为线段AB 、OB 的中点,可求出点C 、D 的坐标,作点C 关于x 轴的对称点C ,连接C D 与x 轴的交点就是所求点P 的坐标.【详解】解:直线y =x +4与x 轴,y 轴分别交于A 和B ,∴当y =0,x =-4,即A (-4,0);当x =0,y =4,即B (0,4),∵点C 、D 分别为线段AB 、OB 的中点,∴C (-2,2),D (0,2),如图所示,过点C 关于x 轴的对称点C,∴C (-2,-2),∴直线C D 的解析式为:y =2x +2,当y =0,x =-1,即P (-1,0),故答案为:(-1,0).【点睛】本题主要考查一次函数与最短线段的综合,掌握对称中最短线段的解题方法是解题的关键.19(2023秋·黑龙江鸡西·九年级统考期末)如图,抛物线y =x 2-4x +3与x 轴分别交于A ,B两点(点A 在点B 的左侧),与y 轴交于点C ,在其对称轴上有一动点M ,连接MA ,MC ,AC ,则△MAC 周长的最小值是.【答案】32+10【分析】根据“将军饮马”模型,先求出A 1,0 ,B 3,0 ,C 0,3 ,由二次函数对称性,A ,B 关于对称轴对称,从而C △MAC =CA +CM +MA =CA +CM +MB ,AC =OA 2+OC 2=10,则△MAC 周长的最小值就是CM +MB 的最小值,根据两点之间线段最短即可得到CM +MB 的最小值为C ,M ,B 三点共线时线段CB 长,从而得到CB =OC 2+OB 2=32,即可得到答案.【详解】解:∵抛物线y =x 2-4x +3与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,16∴当y =0时,0=x 2-4x +3解得x =1或x =3,即A 1,0 ,B 3,0 ;当x =0时,y =3,即C 0,3 ,由二次函数对称性,A ,B 关于对称轴对称,即MA =MB ,∴C △MAC =CA +CM +MA =CA +CM +MB ,∵AC =OA 2+OC 2=10,∴△MAC 周长的最小值就是CM +MB 的最小值,根据两点之间线段最短即可得到CM +MB 的最小值为C ,M ,B 三点共线时线段CB 长,∵CB =OC 2+OB 2=32,∴△MAC 周长的最小值为CA +CB =32+10,故答案为:32+10.【点睛】本题考查动点最值问题与二次函数综合,涉及“将军饮马”模型求最值、二次函数图像与性质、解一元二次方程、勾股定理求线段长等知识,熟练掌握动点最值的常见模型是解决问题的关键.20(2023秋·浙江温州·九年级校考期末)如图所示,∠ACB =60°,半径为2的圆O 内切于∠ACB.P 为圆O 上一动点,过点P 作PM 、PN 分别垂直于∠ACB 的两边,垂足为M 、N ,则PM +2PN 的取值范围为.【答案】6-23≤PM +2PN ≤6+23【分析】根据题意,本题属于动点最值问题-“阿氏圆”模型,首先作MH ⊥NP 于H ,作MF ⊥BC 于F ,如图所示,通过代换,将PM +2PN 转化为PN +12PM =PN +HP =NH ,得到当MP 与⊙O 相切时,MF 取得最大值和最小值,分两种情况,作出图形,数形结合解直角三角形即可得到相应最值,进而得到取值范围.【详解】解:作MH ⊥NP 于H ,作MF ⊥BC 于F ,如图所示:∵PM ⊥AC ,PN ⊥CB ,∴∠PMC =∠PNC =90°,∴∠MPN =360°-∠PMC -∠PNC -∠C =120°,∴∠MPH =180°-∠MPN =60°,∴HP =PM ⋅cos ∠MPH =PM ⋅cos60°=12PM ,∴PN +12PM =PN +HP =NH ,∵MF =NH ,∴当MP 与⊙O 相切时,MF 取得最大和最小,①连接OP ,OG ,OC ,如图1所示:可得:四边形OPMG 是正方形,∴MG =OP =2,在Rt △COG 中,CG =OG ⋅tan60°=23,∴CM =CG +GM =2+23,在Rt △CMF 中,MF =CM ⋅sin60°=3+3,∴HN =MF =3+3,即PM +2PN =212PM +PN =2HN =6+23;②连接OP ,OG ,OC ,如图2所示:可得:四边形OPMG 是正方形,17∴MG =OP =2,由上同理可知:在Rt △COG 中,CG =OG ⋅tan60°=23,∴CM =CG -GM =23-2,在Rt △CMF 中,MF =CM ⋅sin60°=3-3,∴HN =MF =3-3,即PM +2PN =212PM +PN =2HN =6-23,∴6-23≤PM +2PN ≤6+23.故答案为:6-23≤PM +2PN ≤6+23.【点睛】本题考查动点最值模型-“阿氏圆”,难度较大,掌握解决动点最值问题的方法,熟记相关几何知识,尤其是圆的相关知识是解决问题的关键.3三、解答题21(2022春·江苏·九年级专题练习)综合与探究如图,已知抛物线y =ax 2+bx +4经过A -1,0 ,B 4,0 两点,交y 轴于点C .(1)求抛物线的解析式,连接BC ,并求出直线BC 的解析式;(2)请在抛物线的对称轴上找一点P ,使AP +PC 的值最小,此时点P 的坐标是;(3)点Q 在第一象限的抛物线上,连接CQ ,BQ ,求出△BCQ 面积的最大值.【答案】(1)y =-x 2+3x +4;y =-x +4(2)32,52(3)8【分析】(1)将A -1,0 ,B 4,0 两点,代入抛物线解析式,可得到抛物线解析式,从而得到C 0,4 ,再设直线BC 的解析式为y =kx +b k ≠0 ,把点B 、C 的坐标代入,即可求解;(2)连接BC ,PB ,根据题意可得A 、B 关于抛物线的对称轴直线x =32对称,从而得到当P 在直线AB 上三点共线时,AP +CP 的值最小,把x =32代入直线BC 的解析式,即可求解;(3)过Q 作QD ⊥x 轴,交BC 于D ,设Q d ,-d 2+3d +4 ,其中0≤d ≤4,则D d ,-d +4 ,可得QD =-d 2+4d ,从而得到S ΔBCQ =12OB ×QD =-2d -2 2+8,即可求解;【详解】(1)解:(1)∵抛物线y =ax 2+bx +4经过A -1,0 ,B 4,0 两点,∴a -b +4=016a +4b +4=0,解得:a =-1b =3 ,18∴抛物线的解析式为y =-x 2+3x +4;∵抛物线与y 轴的交点为C ,∴C 0,4 ,设直线BC 的解析式为y =kx +b k ≠0 ,把点B 、C 的坐标代入得:4k +b =0b =4 ,解得:k =-1b =4 ,∴直线BC 的解析式为y =-x +4;(2)如图,连接BC ,PB ,∵y =-x 2+3x +4=-x -32 2+74,∴抛物线的对称轴为直线x =32,根据题意得:A 、B 关于抛物线的对称轴直线x =32对称,∴AP =BP ,∴AP +CP =BP +CP ≥BC ,即当P 在直线AB 上时,AP +CP 的值最小,∴当x =32时,y =-32+4=52,∴P 32,52 ,故答案是:32,52 ;(3)过Q 作QD ⊥x 轴,交BC 于D ,设Q d ,-d 2+3d +4 ,其中0≤d ≤4,则D d ,-d +4 ,∴QD =-d 2+3d +4 --d +4 =-d 2+4d ,∵B 4,0 ,∴OB =4,∴S ΔBCQ =12OB ×QD =-2d 2+8d =-2d -2 2+8,当d =2时,S ΔBCQ 取最大值,最大值为8,∴△BCQ 的最大面积为8;【点睛】本题主要考查了二次函数的图像和性质,利用数形结合思想和分类讨论思想是解题的关键.22(2023秋·江苏淮安·八年级统考期末)如图1,直线AB :y =-x +6分别与x ,y 轴交于A ,B 两点,过点B 的直线交x 轴负半轴于点C -3,0 .(1)请直接写出直线BC 的关系式:(2)在直线BC 上是否存在点D,使得S △ABD =S △AOD 若存在,求出点D 坐标:若不存请说明理由;(3)如图2,D 11,0 ,P 为x 轴正半轴上的一动点,以P 为直角顶点、BP 为腰在第一象限内作等腰直角三角形△BPQ ,连接QA ,QD .请直接写出QB -QD 的最大值:.19【答案】(1)y =2x +6(2)当D 185,665 或D -185,-65时,S △ABD =S △AOD (3)37【分析】(1)根据直线AB 与y 轴的交点,可求出点B 的坐标,再用待定系数法即可求解;(2)设D (a ,2a +6),分别用含a 的式子表示出出S △AOD ,S △ABD ,由此即可求解;(3)△BPQ 是等腰直角三角形,设P (m ,0)(m >0),可表示出QB ,再证Rt △BOP ≌Rt △PTQ (AAS ),如图所示,当点B ,R ,Q 在一条直线上时,QB -QD 的值最大,最大值为BR 的值,可求得点R 的坐标,根据勾股定理即可求解.【详解】(1)解:∵直线AB :y =-x +6分别与x ,y 轴交于A ,B 两点,令x =0,则y =6,∴B (0,6),且C -3,0 ,设直线BC 的解析式为y =kx +b ,∴b =6-3k +b =0,解得,k =2b =6 ,∴直线BC 的解析式为y =2x +6,故答案为:y =2x +6.(2)解:由(1)可知直线BC 的解析式为y =2x +6,直线AB 的解析式为y =-x +6,∴A (6,0),B (0,6),C (-3,0),∴OA =6,BO =6,OC =3,如图所示,点D 在直线BC 上,过点D 作DE ⊥x 轴于E ,∴设D (a ,2a +6),E (a ,0),∴S △ABC =12AC ·OB =12×(6+3)×6=27,S △ADC =12AC ·DE =12×(6+3)×a =92a ,S △AOD =12OA ·DE =12×6×a =3a ,∴S △ABD =S △ABC -S △ADC =27-92a ,若S △ABD =S △AOD ,则27-92a =3a ,当a >0时,27-92a =3a ,解得,a =185,即D 185,665 ;当a <0时,27+92a =-3a ,解得,a =-185,即D -185,-65 ;综上所述,当D 185,665 或D -185,-65时,S △ABD =S △AOD .(3)解:已知A (6,0),B (0,6),D (11,0),设P (m ,0)(m >0),∴在Rt △BOP 中,OB =6,OP =m ,∵△BPQ 是等腰直角三角形,∠BPQ =90°,∴BP =QP ;如图所示,过点Q 作QT ⊥x 轴于T ,20在Rt △BOP ,Rt △PTQ 中,∠BOP =∠PTQ =90°,∠BPO +∠QPA =∠QPA +∠PQT =90°,∴∠BPO =∠PQT ,∴∠BPO =∠PQT∠BOP =∠PTQ BP =QP,∴Rt △BOP ≌Rt △PTQ (AAS ),∴OP =TQ =m ,OB =PT =6,∴AT =OP +PT -OA =m +6-6=m ,∴AT =QT ,且QT ⊥x 轴,∴△ATQ 是等腰直角三角形,∠QAT =45°,则点Q 的轨迹在射线AQ 上,如图所示,作点D 关于直线AQ 的对称点R,连接QR ,BR ,AR ,A (6,0),B (0,6),D (11,0),∵△ATQ 是等腰直角三角形,即∠QAT =45°,根据对称性质,∴∠QAR =45°,∴RA ⊥x 轴,且△DQA ≌△RQA ,∴AR =AD =11-6=5,则R (6,5),如图所示,当点B ,R ,Q 在一条直线上时,QB -QD 的值最大,最大值为BR 的值;∴由勾股定理得:BR =62+(6-5)2=37,故答案为:37.【点睛】本题主要考查一次函数,几何的综合,掌握待定系数法求解析式,将军饮马问题,等腰直角三角形的性质,勾股定理是解题的关键.23(2023春·重庆沙坪坝·九年级重庆八中校考阶段练习)△ABC 中,∠B =60°.(1)如图1,若AC >BC ,CD 平分∠ACB 交AB 于点D ,且AD =3BD .证明:∠A =30°;(2)如图2,若AC <BC ,取AC 中点E ,将CE 绕点C 逆时针旋转60°至CF ,连接BF 并延长至G ,使BF =FG ,猜想线段AB 、BC 、CG 之间存在的数量关系,并证明你的猜想;(3)如图3,若AC =BC ,P 为平面内一点,将△ABP 沿直线AB 翻折至△ABQ ,当3AQ +2BQ +13CQ 取得最小值时,直接写出BPCQ的值.【答案】(1)见解析(2)BC =AB +CG ,理由见解析(3)213+33913【分析】(1)过点D 分别作BC ,AC 的垂线,垂足为E ,F ,易得DE =DF ,由∠B =60°,可得DE =DF =32BD ,由AD =3BD ,求得sin A =DE AD=12,可证得∠A =30°;(2)延长BA ,使得BH =BC ,连接EH ,CH ,易证△BCH 为等边三角形,进而可证△BCF ≌△HCE SAS ,可得BF =HE ,∠BFC =∠HEC ,可知∠AEH =∠CFG ,易证得△AEH ≌△CFG SAS ,可得AH =CG ,由BC =BH =AB +AH =AB +CG 可得结论;(3)由题意可知△ABC 是等边三角形,如图,作CM ⊥CA ,且CM =32CA ,作CN ⊥CQ ,且CN =32CQ ,可得CM CA=CN CQ =32,QN =CQ 2+CN 2=132CQ ,可知△ACQ ∽△MCN ,可得MN =32AQ ,由3AQ +2BQ +13CQ =232AQ +BQ +132CQ =2MN +BQ +QN ≥2BM 可知点Q ,N 都在线段BM 上时,3AQ +2BQ+13CQ 有最小值,过点C 作CR ⊥BM ,过点M 作MT ⊥BC 交BC 延长线于T ,可得CR =CQ ⋅sin ∠CQN =313CQ ,QR =CQ ⋅cos ∠CQN =213CQ ,可证△CBR ∽△MBT ,得BR CR =BT MT ,设BC =a 由等边三角形的性质,可得CM =32a ,进而可得CT =CM ⋅cos30°=334a ,MT =CM ⋅sin30°=34a ,结合BR CR=BTMT 可得:BQ +213CQ 313CQ =a +334a 34a ,可得BQ CQ =213+33913,由翻折可知,BP =BQ ,可求得BP CQ的值.【详解】(1)证明:过点D 分别作BC ,AC 的垂线,垂足为E ,F ,∵CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC ,∴DE =DF ,又∵∠B =60°,∴DE =BD ⋅sin60°=32BD ,则DE =DF =32BD ,又∵AD =3BD ,∴sin A =DE AD =32BD3BD=12,∴∠A =30°;(2)BC =AB +CG ,理由如下:延长BA ,使得BH =BC ,连接EH ,CH ,∵∠ABC =60°,BH =BC ,∴△BCH 为等边三角形,∴CB =CH ,∠BCH =60°,∵CE 绕点C 逆时针旋转60°至CF ,∴CE =CF ,∠ECF =60°,则∠BCH -∠ACB =∠ECF -∠ACB ,∴∠ECH =∠FCB ,∴△BCF ≌△HCE SAS ,∴BF =HE ,∠BFC =∠HEC ,则∠AEH =∠CFG ,∵BF =FG ,∴BF =HE =FG ,又∵E 为AC 中点,∴AE =CE =CF ,∴△AEH ≌△CFG SAS ,∴AH =CG ,∴BC =BH =AB +AH =AB +CG ;(3)∵∠ABC =60°,AC =BC ,∴△ABC 是等边三角形,如图,作CM ⊥CA ,且CM =32CA ,作CN ⊥CQ ,且CN =32CQ ,则CM CA=CN CQ =32,QN =CQ 2+CN 2=132CQ ,∴sin ∠CQN =CN QN =313,cos ∠CQN =CQ QN =213,则∠ACM =∠QCN =90°,∴∠ACM -∠ACN =∠QCN -∠ACN ,则∠ACQ =∠MCN∴△ACQ ∽△MCN ,∴MN AQ =CM CA=32,即:MN =32AQ ,∴3AQ +2BQ +13CQ =232AQ +BQ +132CQ =2MN +BQ +QN ≥2BM即:点Q ,N 都在线段BM 上时,3AQ +2BQ +13CQ 有最小值,如下图,过点C 作CR ⊥BM ,过点M 作MT ⊥BC 交BC 延长线于T ,则∠BRC =∠BTM =90°,CR =CQ ⋅sin ∠CQN =313CQ ,QR =CQ ⋅cos ∠CQN =213CQ ,又∵∠CBR =∠MBT ,∴△CBR ∽△MBT ,∴BR CR=BT MT ,∵△ABC 是等边三角形,设BC =a ∴∠ACB =60°,AC =BC =a ,则CM =32a ,∵∠ACM =90°,∴∠MCT =30°,则CT =CM ⋅cos30°=334a ,MT =CM ⋅sin30°=34a ,则由BR CR=BT MT 可得:BQ +213CQ 313CQ =a +334a34a ,整理得:133BQ CQ +23=4+333,得BQ CQ=213+33913,由翻折可知,BP =BQ ,∴BP CQ =BQ CQ=213+33913.【点睛】本题属于几何综合,考查了解直角三角形,等边三角形的判定及性质,全等三角形的判定及性质,相似三角形的判定及性质,旋转的性质以及费马点问题,掌握费马点问题的解决方法,添加辅助线构造全等三角形和相似三角形是解决问题的关键.24(2023春·江苏·八年级专题练习)定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D 、E 分别在边AB 、AC 上,AD =AE ,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .(1)观察猜想线段PM 与PN 填(“是”或“不是”)“等垂线段”.(2)△ADE 绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.(3)拓展延伸把△ADE 绕点A 在平面内自由旋转,若DE =2,BC =4,请直接写出PM 与PN 的积的最大值.。
2023年九年级中考数学专题练习 二次函数的最值问题(含解析)

2023年中考数学专题练习--二次函数的最值问题1.如图,抛物线 212y x bx c =-++ 与 x 轴交于 A 、 B 两点,与 y 轴交于点 C ,且 2OA = , 3OC = .(1)求抛物线的解析式;(2)已知抛物线上点 D 的横坐标为 2 ,在抛物线的对称轴上是否存在点P ,使得 BDP ∆ 的周长最小?若存在,求出点 P 的坐标;若不存在,请说明理由.2.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y 与x 之间的函数关系式;(2)写出每天的利润W 与销售单价x 之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?3.阿静家在新建的楼房旁围成一个矩形花圃,花圃的一边利用20米长的院墙,另三边用总长为32米的离笆恰好围成.如图,设AB 边的长为x 米,矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)当x为何值时,S有最大值?并求出最大值.4.在环境创优活动中,某居民小区要在一块靠墙(墙长25米)的空地上修建一个矩形养鸡场,养鸡场的一边靠墙,如果用60m长的篱笆围成中间有一道篱笆的养鸡场,设养鸡场平行于墙的一边BC的长为x(m),养鸡场的面积为y(m2)(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)养鸡场的面积能达到300m2吗?若能,求出此时x的值,若不能,说明理由;(3)根据(1)中求得的函数关系式,判断当x取何值时,养鸡场的面积最大?最大面积是多少?5.市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=40时,y=120;x =50时,y=100.在销售过程中,每天还要支付其他费用500元.(1)求出y与x的函数关系式,并写出自变量x的取值范围;(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;(3)当销售单价为多少元时,该公司日获利最大.最大获利是多少元.6.抛物线y1=x2+bx+c与直线y2=2x+m相交于A(1,4)、B(﹣1,n)两点.(1)求y1和y2的解析式;(2)直接写出y1﹣y2的最小值.7.某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种新型商品成本为20元/件,第x天销售量为p件,销售单价为q元.经跟踪调查发现,这40 p-与x成正比,前20天(包含第20天),q与x的关系满足关系式天中50=+;从第21天到第40天中,q是基础价与浮动价的和,其中基础价保持q ax30不变,浮动价与x成反比,且得到了表中的数据:的值为;直接写出这天中p与x的关系式为;(2)从第21天到第40天中,求q与x满足的关系式;(3)求这40天里该网店第几天获得的利润最大?最大为多少?8.如图,一次函数y=kx+2的图象分别交y轴,x轴于A,B两点,且tan∠ABO=1,抛物线y=-x2+bx+c经过A,B两点.2(1)求k的值及抛物线的解析式.(2)直线x=t在第一象限交直线AB于点M,交抛物线于点N,当t取何值时,线段MN的长有最大值?最大值是多少?(3)在(2)的情况下,以A,M,N,D为顶点作平行四边形,求第四个顶点D 的坐标,并直接写出所有平行四边形的面积,判断面积是否都相等.9.如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为15米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S.(1)求S与x的函数关系式;(2)并求出当AB的长为多少时,花圃的面积最大,最大值是多少?10.如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH∠AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,∠AEF的面积最大?11.2021年春节,不少市民响应国家号召原地过年.为保障市民节日消费需求,某商家宣布“今年春节不打烊”,该商家以每件80元的价格购进一批商品,规定每件商品的售价不低于进价且不高于100元,经市场调查发现,该批商品的日销售量y (件)与每件售价x(元)满足一次函数关系,其部分对应数据如下表所示:(2)当每件商品的售价定为多少元时,该批商品的日销售利润最大?日销售最大利润是多少?12.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y箱与销售价x元/箱之间的函数关系式.(2)当每箱苹果的销售价x为多少元时,可以使获得的销售利润w最大?最大利润是多少?13.某环保器材公司销售一种市场需求较大的新型产品,已知每件产品的进价为40元,经销过程中测出销售量y(万件)与销售单价x(元)存在如图所示的一次函数关系,每年销售该种产品的总开支z(万元)(不含进价)与年销量y(万件)存在函数关系z=10y+42.5.(1)求y关于x的函数关系式;(2)写出该公司销售该种产品年获利w(万元)关于销售单价x(元)的函数关系式;(年获利=年销售总金额一年销售产品的总进价一年总开支金额)当销售单价x为何值时,年获利最大最大值是多少?(3)若公司希望该产品一年的销售获利不低于57.5万元,请你利用(2)小题中的函数图象帮助该公司确定这种产品的销售单价的范围.在此条件下要使产品的销售量最大,你认为销售单价应定为多少元?14.我市某工艺厂设计了一款成本为10元 / 件的工艺品投放市场进行试销,经过调查,得到如下数据:(2)若用 W( 元 ) 表示工艺厂试销该工艺品每天获得的利润,试求 W( 元 ) 与 x( 元 / 件 ) 之间的函数关系式.(3)若该工艺品的每天的总成本不能超过2500元,那么销售单价定为多少元时,工艺厂试销工艺品每天获得的利润最大,最大是多少元?15.已知抛物线y =x 2﹣bx +c (b ,c 为常数)的顶点坐标为(2,﹣1).(1)求该抛物线的解析式;(2)点M (t ﹣1,y 1),N (t ,y 2)在该抛物线上,当t <1时,比较y 1与y 2的大小;(3)若点P (m ,n )在该抛物线上,求m ﹣n 的最大值.16.地摊经济开放以来,小王以每个40元的价格购进一种玩具,计划以每个60元的价格销售,后来为了尽快回本决定降价销售.已知这种玩具销售量 y (个)与每个降价 x (元)( 020x << )之间满足一次函数关系,其图象如图所示.(1)求y 与x 之间的函数解析式.(2)该玩具每个降价多少元时,小王获利最大?最大利润是多少元?17.如图,抛物线y=23 x 2+bx+c 经过点B (3,0),C (0,﹣2),直线l :y=﹣ 23x ﹣23交y 轴于点E ,且与抛物线交于A ,D 两点,P 为抛物线上一动点(不与A ,D 重合).(1)求抛物线的解析式;(2)当点P 在直线l 下方时,过点P 作PM∠x 轴交l 于点M ,PN∠y 轴交l 于点N ,求PM+PN 的最大值.(3)设F 为直线l 上的点,以E ,C ,P ,F 为顶点的四边形能否构成平行四边形?若能,求出点F 的坐标;若不能,请说明理由.18.如图,抛物线 2y ax bx c =++ 的图象过点 (10)(30)(03)A B C ﹣,、,、, .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得∠PAC 的周长最小,若存在,请求出点P 的坐标及∠PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得 PAM PAC S S ∆∆= ?若存在,请求出点M 的坐标;若不存在,请说明理由.19.如图,抛物线y =12 x 2+bx+c 与直线y = 12x+3分别相交于A,B 两点,且此抛物线与x 轴的一个交点为C ,连接AC,BC.已知A(0,3),C(-3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MB-MC|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ∠PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与∠ABC相似?若存在,请求出所有符合条件的点P的坐标;若还在存在,请说明理由.20.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S∠AOP=4S BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ∠x轴,交抛物线于点D,求线段DQ长度的最大值.答案解析部分1.【答案】(1)解:2OA = ,∴ 点 A 的坐标为 (2,0)- .3OC = ,∴ 点 C 的坐标为 ()0,3 .把 ()2,0- , ()0,3 代入 212y x bx c =-++ ,得0223b cc =--+⎧⎨=⎩, 解得 123b c ⎧=⎪⎨⎪=⎩ . ∴ 抛物线的解析式为 211322y x x =-++ .(2)解:存在. 把 0y = 代入 211322y x x =-++ , 解得 12x =- , 23x = ,∴ 点 B 的坐标为 ()3,0 .点 D 的横线坐标为 2211223222∴-⨯+⨯+= .故点 D 的坐标为 ()2,2 .如图,设 P 是抛物线对称轴上的一点,连接 PA 、 PB 、 PD 、 BD ,PA PB = ,BDP ∴∆ 的周长等于 BD PA PD ++ ,又BD 的长是定值,∴ 点 A 、 P 、 D 在同一直线上时, BDP ∆ 的周长最小,由 ()2,0A - 、 ()2,0A - 可得直线 AD 的解析式为 112y x =+ , 抛物线的对称轴是 12x =, ∴ 点 P 的坐标为 15,24⎛⎫⎪⎝⎭,∴ 在抛物线的对称轴上存在点 15,24P ⎛⎫⎪⎝⎭,使得 BDP ∆ 的周长最小.【解析】【分析】(1)由题意先求出A 、C 的坐标,直接利用待定系数法即可求得抛物线的解析式;(2)根据题意转化 PA PB = ,BD 的长是定值,要使 BDP ∆ 的周长最小则有点A 、 P 、 D 在同一直线上,据此进行分析求解.2.【答案】(1)解:设y 与x 之间的函数关系式为y=kx+b (k≠0),由所给函数图象可知,{130k +b =50150k +b =30, ,解得 {k =−1b =180,.故y 与x 的函数关系式为y=﹣x+180 (2) 解:∵y=﹣x+180,∴W=(x ﹣100)y=(x ﹣100)(﹣x+180) =﹣x 2+280x ﹣18000 =﹣(x ﹣140)2+1600, ∵a=﹣1<0,∴当x=140时,W 最大=1600,∴售价定为140元/件时,每天最大利润W=1600元【解析】【分析】(1)由图像可知 销售单价x(元/件)与每天销售量y(件)之间满足 一次函数关系,设出该函数的一般式,再将(130,50)与(150,30)代入即可得出关于k,b 的二元一次方程组,求解得出k,b 的值,从而得出函数解析式;(2)每件商品的利润为(x-100)元,根据总利润等于单件的利润乘以销售的数量即可得出 W=(x ﹣100)y ,再将(1)整体代入,然后配成顶点式即可得出答案。
求最值中的几何模型-2024年中考数学答题技巧与模板构建(解析版)

求最值中的几何模型题型解读|模型构建|通关试练模型01 将军饮马模型将军饮马模型在考试中主要考查转化与化归等的数学思想,该题型综合考查学生的理解和数形结合能力具有一定的难度,也是学生感觉有难度的题型.在解决几何最值问题主要依据是:①将军饮马作对称点;②两点之间,线段最短;③垂线段最短,涉及的基本知识点还有:利用轴对称变换化归到“三角形两边之和大于第三边”、“三角形两边之差小于第三边”等;希望通过本专题的讲解让大家对这类问题有比较清晰的认识. 模型02 建桥选址模型建桥选址模型,即沿一个方向平移的定长线段两端到两个定点距离和最小,解题时需要理清楚是否含有定长平移线段,且利用平移求出最短路径位置.求解长度时若有特殊角,通常采用构造直角三角形利用勾股定理求解的方法.该题型主要考查了在最短路径问题中的应用,涉及到的主要知识点有矩形的性质、平行四边形的性质、等腰直角三角形的性质、勾股定理,解题的关键在于如何利用轴对称找到最短路径.模型03 胡不归模型胡不归PA+k·PB”型的最值问题:当k等于1时,即为“PA+PB”之和最短问题,可用我们常见的“将军饮马”问题模型来处理,即可以转化为轴对称问题来处理.当k不等于1时,若再以常规的轴对称思想来解决问题,则无法进行,因此必须转换思路.此类问题的处理通常以动点P所在图象的不同来分类,一般分为两类研究.即点P在直线上运动和点P在圆上运动.其中点P在直线上运动的类型通常为“胡不归”问题.模型01将军饮马模型考|向|预|测将军饮马模型问题该题型主要以选择、填空形式出现,综合性大题中的其中一问,难度系数较大,在各类考试中都以中高档题为主.本题考查的是轴对称--最短路线问题、勾股定理、等边三角形的判定和性质、含30°角的直角三角形的性质、垂线段最短,解这类问题的关键是将所给问题抽象或转化为数学模型,把两条线段的和转化为一条线段,属于中考选择或填空题中的压轴题.答|题|技|巧 第一步: 观察所求为横向还是纵向的线段长度(定长),将线段按照长度方向平移第二步: 同侧做对称点变异侧,异侧直接连线第三步: 结合两点之间,线段最短;垂线段最短;三角形两边之和大于第三边等常考知识点 第四步: 利用数学的转化思想,将复杂模型变成基本模型(1)点A 、B 在直线m 两侧两点连线,线段最短例1.(2023·四川)如图,等边三角形ABC 的边BC 上的高为6,AD 是BC 边上的中线,M 是线段AD 上的-一个动点,E 是AC 中点,则EM CM +的最小值为 .【答案】6【详解】解:连接BE ,与AD 交于点M .∵AB=AC ,AD 是BC 边上的中线,mA B P m AB∴B 、C 关于AD 对称,则EM+CM=EM+BM ,则BE 就是EM+CM 的最小值.∵E 是等边△ABC 的边AC 的中点,AD 是中线∴BE=AD=6,∴EM+CM 的最小值为6,故答案为:6.(2)点A 、B 在直线同侧例2.(2022·安徽)如图,在锐角△ABC 中,AB =6,∠ABC =60°,∠ABC 的平分线交AC 于点D ,点P ,Q 分别是BD ,AB 上的动点,则AP +PQ 的最小值为( )A .6B .C .3D .【答案】D 【详解】解:如图,在BC 上取E ,使BE =BQ ,连接PE ,过A 作AH ⊥BC 于H ,∵BD 是∠ABC 的平分线,∴∠ABD =∠CBD ,∵BP =BP ,BE =BQ ,∴△BPQ ≌△BPE (SAS ),m ABm∴PE =PQ ,∴AP +PQ 的最小即是AP +PE 最小,当AP +PE =AH 时最小,在Rt △ABH 中,AB =6,∠ABC =60°,∴AH =33,∴AP +PQ 的最小为33, 故选:D .模型02 建桥选址模型考|向|预|测建桥选址模型该题型也主要以选择、填空的形式出现,一般较为靠后,有一定难度,该题型主要考查轴对称---最短路径问题、勾股定理、三角形及平行四边形的判定与性质,要利用“两点之间线段最短”等,但许多实际问题没这么简单,需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成两点之间线段最短的问题.目前,往往利用对称性、平行四边形的相关知识进行转化.答|题|技|巧 第一步: 观察点或图形的变化规律,根据图形的变化规律求出已知关键点的坐标;第二步: 分析变化规律得到一般的规律看是否具有周期性(如点变的循环规律或点运动的循环规律,点的横、纵坐标的变化规律等)第三步: 周期性的求最小周期看余数,不是周期性的可以罗列求解几组以便发现规律,根据最后的变化次数或者运动时间登,确定要求的点与哪个点重合或在同一象限,或与哪个关键点的横纵坐标相等;第四步: 利用有理数的运算解题(1)两个点都在直线外侧:辅助线:连接AB 交直线m 、n 于点P 、Q ,则PA +PQ +QB 的最小值为AB .例1.(2022·湖北)如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,AC =2,以BC 为边向左作等边△BCE ,点D 为AB 中点,连接CD ,点P 、Q 分别为CE 、CD 上的动点.求PD +PQ +QE 的最小值为 .n QP n mAP'Q'【答案】4.【详解】如图,连接,PA QB ,BCE QV 和ADC 都是等边三角形,60BCE ∴∠=︒,60ACD ∠=︒,1302ACE ACB BCE ACD ∴∠=∠−∠=︒=∠,CE ∴垂直平分AD ,PA PD ∴=, 同理可得:CD 垂直平分BE ,QB QE ∴=,PD PQ QE PA PQ QB ∴++=++,由两点之间线段最短可知,当点,,,A P Q B 共线时,PA PQ QB ++取得最小值AB ,故PD PQ QE ++的最小值为4.(2)一个点在内侧,一个点在外侧:辅助线:过点B 作关于定直线n 的对称点B’,连接AB’交直线m 、n 于点P 、Q ,则PA +PQ +QB 的最小值为AB ’.例2.(2023·山东)如图,在ABC 中,6AB =,7BC =,4AC =,直线m 是ABC 中BC 边的垂直平分线,P 是直线m 上的一动点,则APC △的周长的最小值为_________.n mn【答案】10【详解】解:∵直线m 垂直平分BC ,∴B 、C 关于直线m 对称,设直线m 交AB 于D ,∴当P 和D 重合时,AP +CP 的值最小,最小值等于AB 的长,∴△APC 周长的最小值是6+4=10.故答案为:10.(3)如图3,两个点都在内侧:辅助线:过点A 、B 作关于定直线m 、n 的对称点A’ 、B’ ,连接A’B’ 交直线m 、n 于点P 、Q ,则PA +PQ +QA 的最小值为A ’B’.例3.(2023.浙江)如图所示,∠AOB =50°,∠BOC =30°,OM =12,ON =4.点P 、Q 分别是OA 、OB 上动点,则MQ +PQ +NP 的最小值是 .【答案】4【详解】解:如图,作点N 关于OA 的对称点N ′,则NP =N ′P ,nmn作点M关于OB的对称点M′,则MQ=M′Q,∴MQ+PQ+NP=M′Q+PQ+N′P,当N′M′在同一条直线上时取最小值,连接ON′,OM′,∵∠AOB=50°,∠BOC=30°则∠N′OA=∠AOC=∠AOB﹣∠BOC=20°,∠BOM′=∠BOA=50°,∴∠N′OM′=2×20°+30°+50°=120°,∵ON′=ON=4,OM′=OM=12,∴∠AON=∠AOB﹣∠BOC=50°﹣30°=20°,先作射线ON'与射线ON关于OA对称,由对称的性质可知∠AON'=20°,PN=PN',同理作射线OM'与射线OM关于OB对称,同理∠BOM'=50°,QM=QM′,当N'、P、Q、M'四点共线时,MQ+PQ+NP最小,则∠N′OM′=∠N′OP+∠AOB+∠BPM′=20°+50°+50°=120°,作N'垂直OM'的延长线交于点E,∴∠EON'=60°,∴ON'=ON=4,在Rt△N'OE中,∠EN'O=30°,根据30°角所对的直角边是斜边的一半可知OE=2,则EN'=2,OM=OM'=12,∴EM′=OE+OM′=12+2=14,则N′M===4.故答案为:4.模型03胡不归模型考|向|预|测胡不归模型可看作将军饮马衍生,主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟考中常以压轴题的形式考查,学生不易把握.本专题就最值模型中的胡不归问题进行梳理及对应试题分析,方便掌握.在解决胡不归问题主要依据是:点到线的距离垂线段最短.答|题|技|巧第一步:构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型;第二步:借助三角函数,构造锐角α,将另一个系数也化为1;第三步:利用“垂线段最短”原理构造最短距离;第四步:数形结合解题【答案】42【详解】解:如图,过点P 作PE ⊥AD ,交AD 的延长线于点E ,∵AB CD ∥,∴∠EDP=∠DAB=45°,∴sin EP EDP DP ∠==,∴EP PD =,∴2PB PD PB PE +=+, ∴当点B ,点P ,点E 三点共线且BE ⊥AD 时,PB+PE 有最小值,即最小值为BE ,∵sin BE A AB ∠=,∴BE AB =故答案为:1.(2023·江苏扬州)如图所示,军官从军营C 出发先到河边(河流用AB 表示)饮马,再去同侧的D 地开会,应该怎样走才能使路程最短?你能解决这个著名的“将军饮马”问题吗?下列给出了四个图形,你认为符合要求的图形是( )A .B .C .D .【答案】D【详解】解:由选项D 中图可知:作D 点关于直线AB 的对称点D ¢,连接CD '交AB 于点N ,由对称性可知,DN D N '=,CN DN CN D N CD ∴+=≥''+,当C 、N 、D ¢三点共线时,CN DN +的距离最短,故选:D2.(2023.浙江)如图,等边△ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若AE =2,当EF +CF 取得最小值时,则∠ECF= .【答案】∠ECF =30º【详解】过E 作EM ∥BC ,交AD 于N ,如图所示:∵AC =4,AE =2,∴EC =2=AE ,∴AM =BM =2,∴AM =AE ,∵AD 是BC 边上的中线,△ABC 是等边三角形,∴AD ⊥BC ,∵EM ∥BC ,∴AD ⊥EM ,∵AM =AE ,∴E 和M 关于AD 对称,连接CM 交AD 于F ,连接EF ,则此时EF +CF 的值最小, ∵△ABC 是等边三角形,∴∠ACB =60º,AC =BC ,∵AM =BM ,∴∠ECF =∠ACB =30º.故答案为30°3.(2022·安徽)如图,在平面直角坐标系中,∠AOB =30°,P (5,0),在OB 上找一点M ,在OA 上找一点N ,使△PMN 周长最小,则此时△PMN 的周长为 .【答案】5【详解】作点P 关于OB 的对称点C ,作P 点关于AO 的对称点D ,连接CD 交OA 于N ,交OB 于M ,连接MP ,NP ,OC ,OD ,∴CM =MP ,NP =DN ,∴PM+PN+MN =CM+MN+DN≥CD ,∴当C 、M 、N 、D 点共线时,△PMN 的周长最小,∵∠BOA =30°,OP =OC =OB ,∴∠COD =60°,∴△OCD 是等边三角形,∴CD =OP ,∵P (5,0),∴OP =5,∴CD =5,∴△PMN 的周长最小值为5,故答案为:5.4.(2023·广东)如图,在Rt ABC 中,ACB 90∠=︒,AC 9=,BC 12=,15AB =,AD 是BAC ∠的平分线,若点P 、Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是 .【答案】365【详解】解:如图,作Q 关于AP 的对称点O ,则PQ=PO ,所以O 、P 、C 三点共线时,CO=PC+PO=PC+PQ ,此时PC+PQ 有可能取得最小值,∵当CO 垂直于AB 即CO 移到CM 位置时,CO 的长度最小,∴PC+PQ 的最小值即为CM 的长度, ∵111591222ABC S AB CM AC CB CM =⨯=⨯∴=⨯,,∴CM=91236155⨯=,即PC+PQ 的最小值为 365, 故答案为365.5.(2023·江苏)如图,高速公路的同一侧有A ,B 两城镇,它们到高速公路所在直线MN 的距离分别为2km AC =,4km BD =,8km CD =.要在高速公路上C ,D 之间建一个出口P ,使A ,B 两城镇到P 的距离之和最小,则这个最短距离为 .【答案】10km【详解】解:如图所示:作A 点关于直线MN 的对称点A ',再连接A B ',交直线MN 于点P ,则此时AP PB +最小,过点B 作BE CA ⊥交延长线于点E ,∵2km AC =,4km BD =,8km CD =.∴m 422k AE =−=,4km AA '=,∴6km A E '=,km 8BE CD ==,在Rt A EB '△中,10km A B '==,则AP PB +的最小值为10km .故答案为:10km .【答案】B【详解】解:如图:等腰Rt △DEF 中,过点D 作DM ⊥EF 于点M ,过E 、F 分别作∠MEP=∠MFP=30°,则EM=DM=1,故cos30°=EM EP ,解得:,则PM=,故DP=1﹣,则PD+PE+PF=2×+1﹣1. 故选B .A .42B .33 【答案】A 【详解】解:延长AD ,过点B 作BE AD ⊥交CD 于点P ,∵四边形ABCD 为平行四边形,∴AB CD ∥,∴45DEP DAB ∠=∠=︒,∵BE AD ⊥,∴DE PE =,则22222DE PE DE PD +==,则2DE PD =,同理可得:BE AB =,∴2PB PD PB PE +=+,∴当点E 、P 、B 在同一条直线上时,PB PD 的值最小,∵8AB =,∴22P E BE A B PD B P B P +===+=故选:A .8.(2023·四川)如图,在ABC 中,90,60,4BAC B AB ∠=︒∠=︒=,若D 是BC 边上的动点,则2AD DC +的最小值是( )A .6B .8C .10D .12【答案】D 【详解】解:过点C 作射线CE ,使30BCE ∠=︒,再过动点D 作DF CE ⊥,垂足为点F ,连接AD ,如图所示:在t R DFC △中,30DCF ∠=︒,∴12DF DC =,∵122()2AD DC AD DC +=+=2()AD DF +,∴当A ,D ,F 在同一直线上,即AF CE ⊥时,AD DF +的值最小,最小值等于垂线段AF 的长, 此时,60B ADB ︒∠=∠=,∴ABD △是等边三角形,∴4===AD BD AB ,在t R ABC 中,90,60,4A B AB ∠=∠=︒=︒,∴8BC =,∴4DC =,∴12,2DF DC ==,∴426AF AD DF =+=+=,∴2()212AD DF AF +==,∴2()AD DC +的最小值为12,故选:D .9.(2023·湖南)某班级在探究“将军饮马问题”时抽象出数学模型:直线l 同旁有两个定点A 、B ,在直线l 上存在点P ,使得PA PB +的值最小.解法:如图1,作A 点关于直线l 的对称点A ',连接A B ',则A B '与直线l 的交点即为P ,且PA PB +的最小值为A B '.请利用上述模型解决下列问题:(1)几何应用:如图2,ABC 中,90C ∠=︒,2AC BC ==,E 是AB 的中点,P 是BC 边上的一动点,则PA PE+的最小值为 ;(2)几何拓展:如图3,ABC 中,2AC =,30A ∠=︒,若在AB 、AC 上各取一点M 、N 使CM MN +的值最小,画出图形,求最小值并简要说明理由.【答案】【详解】(1)解:如图2所示,作点A 关于BC 的对称点A ',连接A E '交BC 于P ,此时PA PE +的值最小.连接BA ',由勾股定理得, BA BA '==∵E 是AB 的中点,∴12BE BA ===∵90C ∠=︒,2AC BC ==,∴45A BC ABC '∠=∠=︒,∴90A BA '∠=︒,∴PA PE +的最小值A E '===;(2)解:如图3,作点C 关于直线AB 的对称点C ',作C N AC '⊥于N ,交AB 于M ,连接AC ',则2C A CA '==,30C AB CAB '∠=∠=︒,60C AC '∴∠=︒∴C AC '△为等边三角形,∴30AC N '∠=︒,∴112AN C A '==,∴CM MN +的最小值为C N '=10.(2023·陕西)在学习对称的知识点时,我们认识了如下图所示的“将军饮马”模型求最短距离. 问题提出:(1)如图1所示,已知A ,B 是直线l 同旁的两个定点.在直线l 上确定一点P ,并连接AP 与BP ,使PA PB +的值最小.问题探究:(2)如图2所示,正方形ABCD 的边长为2,E 为AB 的中点,P 是AC 上一动点.连接EP 和BP ,则PB PE +的最小值是___________;问题解决:(3)某地有一如图3所示的三角形空地AOB ,已知45AOB ∠=︒,P 是AOB 内一点,连接PO 后测得10PO =米,现当地政府欲在三角形空地AOB 中修一个三角形花坛PQR ,点Q R ,分别是OA OB ,边上的任意一点(不与各边顶点重合),求PQR 周长的最小值.【答案】(1)见解析(3)【详解】(1)解:如图所示,当P 点在如图所示的位置时,PA PB +的值最小;(2)解:如下图所示,∵四边形ABCD 是正方形,∴AC 垂直平分BD ,∴PB PD =,由题意易得:PB PE PD PE DE +=+≥,当D 、P 、E 共线时,在ADE V 中,根据勾股定理得,DE =(3)解:如下图所示,分别作点P 关于OA ,OB 的对称点M N ,,连接OM ON MN ,,,MN 交OA ,OB 于点Q R ,,连接PR PQ ,,此时PQR 周长的最小值等于MN .由轴对称性质可得,10OM ON OP MOA POA NOB POB ===∠=∠∠=∠,,,∴224590MON AOB ∠=∠=⨯︒=︒,在Rt MON △中,MN ===即PQR 周长的最小值等于上一动点,则ACBD【答案】A【详解】解:连接CD ,设,CD AB 交于点G ,如图所示,∵四边形ABCD 是平行四边形,∴CG GD =,AG GB =,∵()0,8A ,()0,2B −∴()0,3G ,∴当CG 取得最小值时,CD 取得最小值,∴当CG EF ⊥时,CG 取得最小值,∵()05E ,,()5,0F −,∴OE OF =,2EG =,∴OEF 是等腰直角三角形,∴此时CGE 是直角三角形,且EG 是斜边,∵2EG =,∴CG =ACBD 的对角线CD 的最小值是,故选:A .2.(2023·上虞市)如图,点P 是∠AOB 内任意一点,OP =6cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,若△PMN 周长的最小值是6 cm ,则∠AOB 的度数是( )A .15B .30C .45D .60【答案】B 【详解】分别作点P 关于OA 、OB 的对称点C 、D ,连接CD ,分别交OA 、OB 于点M 、N ,连接OC 、OD 、PM 、PN 、MN ,如图所示:∵点P 关于OA 的对称点为D ,关于OB 的对称点为C ,∴PM=DM ,OP=OD ,∠DOA=∠POA ; ∵点P 关于OB 的对称点为C ,∴PN=CN ,OP=OC ,∠COB=∠POB ,∴OC=OP=OD ,∠AOB=12∠COD , ∵△PMN 周长的最小值是6cm ,∴PM+PN+MN=6,∴DM+CN+MN=6,即CD=6=OP ,∴OC=OD=CD ,即△OCD 是等边三角形,∴∠COD=60°,∴∠AOB=30°,故选:B .【答案】B 【详解】解:如图,过点G 作GH ⊥AB 于H ,过点G 作MN ∥AB ,∵四边形ABCD 是矩形,AB =112,BC =3,∴∠B =90°,CD =112,AD =3,∵AE =1,∴BE =92,∵∠GHE =∠A =∠GEF =90°,∴∠GEH +∠EGH =90°,∠GEH +∠FEA =90°,∴∠EGH =∠FEA ,又∵GE =EF ,∴△GEH ≌△EFA (AAS ),∴GH =AE =1,∴点G 在平行AB 且到AB 距离为1的直线MN 上运动,∴当F 与D 重合时,CG 有最小值,此时AF =EH =3,∴CG52, 故选B .【答案】B 【详解】解:连接AM 、AC ,AM 交BD 于P ,此时PM+PC 最小,连接CP ,∵四边形ABCD 是菱形,∴OA=OC ,AC ⊥BD ,∴C 和A 关于BD 对称,∴AP=PC ,∵∠A=120°,∴∠ABC=60°,∴△ABC 是等边三角形,∴AC=AB=2,∵M 是BC 的中点,∴AM ⊥BC ,∴∠BAM=30°,∴BM=1,∴故选B .5.(2023·湖北)如图,将△ABC 沿AD 折叠使得顶点C 恰好落在AB 边上的点M 处,D 在BC 上,点P 在线段AD 上移动,若AC =6,CD =3,BD =7,则△PMB 周长的最小值为 .【答案】18【详解】解:由翻折的性质可知,AM =AC ,PM =PC ,∴M 点为AB 上一个固定点,则BM 长度固定, ∵△PMB 周长=PM +PB +BM ,∴要使得△PMB 周长最小,即使得PM +PB 最小,∵PM =PC ,∴满足PC +PB 最小即可,显然,当P 、B 、C 三点共线时,满足PC +PB 最小,如图所示, 此时,P 点与D 点重合,PC +PB =BC ,∴△PMB 周长最小值即为BC +BM ,此时,作DS ⊥AB 于S 点,DT ⊥AC 延长线于T 点,AQ ⊥BC 延长线于Q 点,由题意,AD 为∠BAC 的角平分线,∴DS =DT ,∵1122ACD S AC DT CD AQ ==,1122ABD S AB DS BD AQ ==, ∴11221122ABDACD AB DS BD AQ S S AC DT CD AQ ==,即:AB BD AC CD =,∴763AB =,解得:AB =14, ∵AM =AC =6,∴BM =14-6=8,∴△PMB 周长最小值为BC +BM =3+7+8=18,故答案为:18.6.(2023·北京)如图,P 是AOB ∠内一定点,点M ,N 分别在边OA ,OB 上运动,若30AOB ∠=︒,3OP =,则PMN 的周长的最小值为 .【答案】3【详解】如图,作P 关于OA ,OB 的对称点C ,D .连接OC ,OD .则当M ,N 是CD 与OA ,OB 的交点时,△PMN 的周长最短,最短的值是CD 的长.∵点P 关于OA 的对称点为C ,∴PM=CM ,OP=OC ,∠COA=∠POA ;∵点P 关于OB 的对称点为D ,∴PN=DN ,OP=OD ,∠DOB=∠POB ,∴OC=OD=OP=3,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD 是等边三角形,∴CD=OC=OD=3.∴△PMN 的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=3.【答案】【详解】解:如图,过点P 作PE ⊥AB 于点E ,过点D 作DF ⊥AB 于点F,∵四边形ABCD 是菱形,且∠B =120°,∴∠DAC =∠CAB =30°,∴PE =12AP;∵∠DAF =60°,∴∠ADF =30°,∴AF =12AD =12×6=3;∴DF = ∵12AP+PD =PE+PD,∴当点D ,P ,E 三点共线且DE ⊥AB 时,PE+DP 的值最小,最小值为DF 的长,∴12AP+PD 的最小值为故答案为: 8.(2023·广东)如图,在Rt ABC △中,90BAC ∠=︒,2AB =,4AC =.D ,E 分别是边AB ,AC 上的动点,且2CE AD =,则2BE CD +的最小值为 .【答案】【详解】如图,作Rt CEF ADC ∽,连接BF ,过B 点作BG AC ⊥的延长线与G 点,Rt Rt CEF ADC ∽,且2CE AD =,21CF EF EC AC DC AD ∴===,282,CF AC EF DC ∴===,2BE CD BE EF ∴+=+.BE EF BF +≥,∴当B 、E 、F 三点共线时,BE EF BF +=,此时2BE CD +的值最小,为BF .90FCA ∠=︒,90ACG ∴∠=︒.又90A ∠=︒,90BGC ∠=︒,∴四边形ABGC 是矩形,4BG AC ∴==,2GC AB ==,8210FG FC CG ∴=+=+=,BF ∴==故答案为:9.(2023·内蒙古)如图,已知菱形ABCD的边长为8,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是________.【答案】【详解】解:如图,过点D作DE⊥AB于点E,连接BD,∵菱形ABCD中,∠ABC=120°,∠MAE=30°,∴∠DAB=60°,AD=AB=DC=BC,MD=MB,∴△ADB是等边三角形,∵∠MAE=30°,∴AM=2ME,∵MD=MB,∴MA+MB+MD=2ME+2DM=2DE,根据垂线段最短,此时DE MA+MB+MD最小,∵菱形ABCD的边长为8,∴=∴MA+MB+MD的最小值是故答案为:10.(2023·浙江)如图,河的两岸有A,B两个水文观测点,为方便联络,要在河上修一座木桥MN(河的两岸互相平行,MN垂直于河岸),现测得A,B两点到河岸的距离分别是5米,4米,河宽3米,且A,++的最小值是米.B两点之间的水平距离为12米,则AM MN NB【答案】18【详解】作BB '垂直于河岸,使BB '等于河宽,连接AB ',与靠近A 的河岸相交于M ,作MN 垂直于另一条河岸, 过点A 作'⊥AC BB 交BB '的延长线于点C ,则MN BB '∥且MN BB '=,于是MNBB '为平行四边形,故MB BN '=,当AM MB AB '+=时,AM BN +最小,也就是AM MN NB ++最短,∵12AC =(米),54312BC =++=(米),1239B C '=−=(米)∴在Rt AB C '△中,15AB '(米),∴AM MN NB ++的最小值为:15318+=(米)故答案为:18 .11.(2023·广东)如图所示,已知O 为坐标原点,矩形ABCD (点A 与坐标原点重合)的顶点D 、B 分别在x 轴、y 轴上,且点C 的坐标为()4,8−,连接BD ,将ABD △沿直线BD 翻折至A BD ',交CD 于点E .(1)求点A '坐标.(2)试在x 轴上找点P ,使A P PB '+的长度最短,请求出这个最短距离.【答案】(1)3216,55A ⎛⎫'− ⎪⎝⎭;(2)A P PB '+的长度的最短距离为.【详解】(1)点C 的坐标为(4,8)−,4OD BC ∴==,8CD OB ==,连接AA ',与BD 交于点G ,过A '作A F OB '⊥于点F ,由折叠知,8A B OA '==,OG A G '=,OA BD '⊥, ∴11··22OBD S BD OG OD OB ==,∴·OD OB OG BD ==,∴2OA OG '==, 设OF x =,则8BF x =−,22222OA OF A F A B BF '''−==−,即()222288x x −=−−⎝⎭, 解得,165x =,即165OF =,∴325A F '==, 3216,55A ⎛⎫∴− ⎪⎝⎭';(2)作A '点关于x 轴的对称点A ',连接BA '',与x 轴交于点P ,则A P PB A P PB A B '''''+=+=的值最小,3216,55A ⎛⎫∴−−' ⎝'⎪⎭, (0,8)B ,∴A B =='' 故A P PB '+的长度的最短距离为.吉林)数学兴趣活动课上,小致将等腰的底边,在中,,在中,作在中,,得到线段ABC ABC 120︒ABP ABC 60【答案】(1)2;(2;(3)3.【详解】(1)如图,过点A 作,此时AP 的值最小.∵,,,故答案为:2.(2)根据小致的思路作出图形,可知当时的值最小,如图:∵,,∴,∵,∴(3)如图3中,在上取一点,使得,连接,.,,,,,,,,,时,的值最小,最小值为3,的最小值为3.13.(2023·河南)唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——将军饮马问题:如图1所示,诗中将军在观望烽火之后从山脚下的A 点出发,走到河旁边的P 点饮马后再到B 点宿营.请问怎样走才能使总的路程最短?作法如下:如图1,从B 出发向河岸引垂线,垂足为D ,在BD 的延长线上,取B 关于河岸的对称点B ',连接AB ',与河岸线相交于P ,则P 点就是饮马的地方,将军只要从A 出发,沿直线走到P ,饮马之后,再由P 沿直线走到B ,所走的路程就是最短的.⊥AP BC 4,120AB AC BAC ==∠=︒30ABC ∴∠=︒122AP AB ∴==PN AB ⊥PE EF +30ABC ∠=︒122AP AB ==BP =1122BP AP AB PN ⋅=⋅PN =AB K AK AC =CK DK 90ACB ∠=︒30B ∠=︒60CAK ∴∠=︒PAD CAK ∴∠=∠PAC DAK ∴∠=∠PA DA =CA KA =()PAC DAK SAS ∴△≌△PC DK ∴=KD BC ⊥KD PC ∴(1)观察发现如图2,在等腰梯形ABCD 中,2,120AB CD AD D ===∠=︒,点E 、F 是底边AD 与BC 的中点,连接EF ,在线段EF 上找一点P ,使BP AP +最短.作点B 关于EF 的对称点,恰好与点C 重合,连接AC 交EF 于一点,则这点就是所求的点P ,故BP AP +的最小值为_______.(2)实践运用如图3,已知O 的直径1MN =,点A 在圆上,且AMN ∠的度数为30︒,点B 是弧AN 的中点,点P 在直径MN 上运动,求BP AP +的最小值.(3)拓展迁移如图,已知抛物线()20y ax bx c a =++≠的对称轴为1x =,且抛物线经过()()1,00,3A C −−、两点,与x 轴交于另一点B .①求这条抛物线所对应的函数关系式;②在抛物线的对称轴直线1x =上找到一点M ,使ACM △周长最小,请求出此时点M 的坐标与ACM △周长最小值.【答案】(1)(2)PA PB +的最小值为(3)①2=23y x x −−;②点M 的坐标为()12−,;ACM △【详解】(1)解:过点A 作AM BC ⊥于点M ,作DN BC ⊥于点N ,如图所示:则AM DN ∥,∵四边形ABCD 为等腰梯形,∴AD BC ∥,120BAD ADC ∠=∠=︒,∴18060ABM BAD ∠=︒−∠=︒,18060DCN ADC ∠=︒−∠=︒,∴1cos 60212BM AB =⨯︒=⨯=,sin 602AM AB =⨯︒== 1cos 60212CN CD =⨯︒=⨯=,∵AD BC ∥,AM DN ∥,∴四边形AMND 为平行四边形,∴2MN AD ==,∴123CM CN MN =+=+=,∴AC ==即BP AP +的最小值为故答案为:(2)解:取点A 关于MN 的对称点A ',连接OA '、OB 、OA 、MB 、A B ',MN 与A B '交于点P ',当点P 在点P '时,PA PB +最小,且最小值为A B ',如图所示:∵A 关于MN 的对称点A ',MN 为直径,∴点A '在O 上,∵30AMN ∠=︒,∴260AON AMN ∠=∠=︒,∵点A 关于MN 的对称点A ',∴60A ON AON '∠=∠=︒,∵点B 是弧AN 的中点, ∴1152BMN AMN ∠=∠=︒, ∴230BON BMN ∠=∠=︒,∴603090BOA '∠=︒+︒=︒,∵直径1MN =, ∴12OA OB '==,∴A B ==', 即PA PB +的最小值为2.(3)解:①∵抛物线()20y ax bx c a =++≠的对称轴为1x =,且抛物线经过()1,0A −, ∴抛物线与x 轴的另外一个交点B 的坐标为:()3,0, ∴抛物线的解析式为:()()13y a x x =+−, 把()0,3C −代入得:()()30103a −=+−,解得:1a =,∴抛物线的解析式为:()()21323y x x x x =+−=−−.②连接CB 交直线1x =于一点,该点即为点M ,连接AM ,AC ,如图所示:∵点A 、B 关于直线1x =对称,∴AM BM =,∴AM CM CM BM +=+,∵两点之间线段最短,∴CM BM +最小,即AM CM +最小,∵AC 为定值,∴此时ACM △的周长最小,∵AC =BC = ∴ACM △;设直线BC 的解析式为()0y kx b k =+≠,把()0,3C −,()3,0B 代入得:330b k b =−⎧⎨+=⎩,解得:13k b =⎧⎨=−⎩,∴直线BC 的解析式为3y x =−,把1x =代入得:132y =−=−,∴点M 的坐标为()12−,.。
专题52 中考数学最值问题(解析版)

专题52 中考数学最值问题在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。
一、解决几何最值问题的要领(1)两点之间线段最短;(2)直线外一点与直线上所有点的连线段中,垂线段最短;(3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。
二、解决代数最值问题的方法要领1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a=-2时,y 有最小值。
y ac b a min =-442; ②若a <0当x b a=-2时,y 有最大值。
y ac b a max =-442。
2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。
4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。
5. 利用非负数的性质.在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。
6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。
7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。
二次函数与面积最值定值问题(六大类型)-2023年中考数学压轴题(解析版)

二次函数与面积最值定值问题(六大类型)1.考向分析题型一:二次函数与三角形面积最值问题1如图,已知抛物线y =12x 2+bx 过点A (-4,0)、顶点为B ,一次函数y =12x +2的图象交y 轴于M ,对称轴与x 轴交于点H .(1)求抛物线的表达式;(2)已知P 是抛物线上一动点,点M 关于AP 的对称点为N .①若点N 恰好落在抛物线的对称轴上,求点N 的坐标;②请直接写出△MHN 面积的最大值.【解析】解:(1)∵抛物线y =12x 2+bx 过点A (-4,0),∴12×(-4)2-4b =0,解得:b =2,∴该抛物线的表达式为y =12x 2+2x ;(2)①∵y =12x 2+2x ,∴抛物线对称轴为直线x =-22×12=-2,∵对称轴与x 轴交于点H ,∴H (-2,0),∵A (-4,0),∴AH =2,∵直线y =12x +2交y 轴于M ,∴M (0,2),∴AM 2=OA 2+OM 2=42+22=20,设N (-2,n ),则NH =|n |,如图1、图2,∵M 、N 关于直线AP 对称,∴AN =AM ,即AN 2=AM 2,∴22+n 2=20,∴n =±4,∴点N 的坐标为(-2,-4)或(-2,4);②如图,连接MH ,以点A 为圆心,AM 为半径作⊙A ,过点A 作AN ⊥MH 于点F ,交⊙A 于点N ,则AN =AM ,在Rt △AMO 中,OM =2,OA =4,∴AM =OA 2+OM 2=42+22=25,∴AN =25,∵OH =OM =2,∠HOM =90°,∴△HOM 是等腰直角三角形,∠MHO =45°,MH =22,∴∠AHF =∠MHO =45°,在Rt △AFH 中,AH =OA -OH =4-2=2,∴AF =AH ×sin45°=2×22=2,∴NF =AN +AF =25+2,∴S △MHN =12MH •NF =12×22×(25+2)=210+2,故△MHN 面积的最大值为210+2.题型二:二次函数与三角形面积等积问题2如图,等腰直角三角形OAB 的直角顶点O 在坐标原点,直角边OA ,OB 分别在y 轴和x 轴上,点C 的坐标为(3,4),且AC 平行于x 轴.(1)求直线AB 的解析式;(2)求过B ,C 两点的抛物线y =-x 2+bx +c 的解析式;(3)抛物线y =-x 2+bx +c 与x 轴的另一个交点为D ,试判定OC 与BD 的大小关系;(4)若点M 是抛物线上的动点,当△ABM 的面积与△ABC 的面积相等时,求点M 的坐标.【解析】解:(1)∵点C 的坐标为(3,4),且AC 平行于x 轴,∴点A 的坐标为(0,4)且OA =4,∵△OAB 是等腰直角三角形,∠AOB =90°,∴OB =OA =4,∵点B 的坐标为(4,0),设直线AB的解析式为:y=mx+n,由题意得4m+n=0n=4,解得:m=-1n=4,∴直线AB的解析式为:y=-x+4;(2)∵抛物线y=-x2+bx+c过B,C两点,∴-16+4b+c=0-9+3b+c=4,解得:b=3c=4,∴抛物线的解析式为:y=-x2+3x+4;(3)BD=OC;理由:∵抛物线的解析式为y=-x2+3x+4=-x-322+52,∴抛物线的对称轴直线为x=32,∵点B的坐标为(4,0),点B与点D关于对称轴对称,∴点D的坐标为(-1,0),∴BD=4-(-1)=5,∵点C的坐标为(3,4),∴OC=32+42=5,∴BD=OC;(4)∵点C的坐标为(3,4),且AC平行于x轴,∴AC=3,∴S△ABC=12AC•y C=12×3×4=6,当点M在直线AB的上方时,如图所示,过点M作MN∥y轴,交直线AB于点N,设M的坐标为(t,-t2+3t+4),则N的坐标为(t,-t+4),∴MN=-t2+3t+4-(-t+4)=-t2+4t,∴S△AMB=12MN•x B=12×(-t2+4t)×4=-2t2+8t,∵△ABM的面积与△ABC的面积相等,∴-2t2+8t=6,解得:t=1或t=3(舍,该点为点C),此时M的坐标为(1,6)或(3,4);当点M在直线AB的下方时,如图所示,过点M作MN∥x轴,交直线AB于点N,设M的坐标为(t,-t2+3t+4),则N的坐标为(t2-3t,-t2+3t+4),∴MN=t2-3t-t=t2-4t,∴S△ABM=12MN•y A=12×(t2-4t)×4=2t2-8t,∵△ABM的面积与△ABC的面积相等,∴2t2-8t=6,解得:t=2±7,此时M的坐标为(2+7,-1-7)或(2-7,7-1);综上可得,M的坐标为(2+7,-1-7)或(2-7,7-1)或(1,6).题型三:二次函数与四边形面积最值问题3如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C.已知A(3,0),该抛物线的对称轴为直线x=1.(1)求该抛物线的函数表达式;(2)求点B、C的坐标;(3)将线段BC平移,使得平移后线段的一个端点在这条抛物线上,另一个端点在x轴上,若将点B、C平移后的对应点分别记为点D、E,求以B、C、D、E为顶点的四边形面积的最大值.【解析】解:(1)∵抛物线对称轴为直线x=-b-2=1,∴b=2,∴y=-x2+2x+c,将(3,0)代入y=-x2+2x+c得0=-9+6+c,解得c=3,∴y=-x2+2x+3.(2)∵抛物线对称轴为直线x=1,点A坐标为(3,0),∴由抛物线对称性可得点B坐标为(-1,0),将x=0代入y=-x2+2x+3得y=3,∴点C坐标为(0,3).(3)如图,可得图2中四边形面积最大,∵BC∥DE且BC=DE,图1图2图3∵y C-y B=y E-y D,∴y D=-3,将y=-3代入y=-x2+2x+3得-3=-x2+2x+3,解得x1=1-7(舍),x2=1+7,∴点E横坐标为1+7+1=2+7,∴BE=2+7+1=3+7,∴S四边形BDEC =12BE•y C+12BE•|y D|=12×(3+7)×3+12×(3+7)×3=9+37.题型四:二次函数与面积分割问题4已知抛物线y=x2+4mx+4m2-4m-3的顶点C在定直线l上.(1)求C点的坐标(用含m的式子表示);(2)求证:不论m为何值,抛物线与定直线l的两交点间的距离d恒为定值;(3)当抛物线的顶点C在y轴上,且与x轴交于A,B两点(点A在点B的左侧)时,是否存在直线n满足以下三个条件:①n与抛物线相交于点M,N(点M在点N的左侧),且与线段AC交于点P;②∠APN=2∠ACO;③n将△ABC的面积分成1:2的两部分.若存在,求出直线n的解析式;若不存在,请说明理由.【解析】(1)解:∵y=x2+4mx+4m2-4m-3=(x+2m)2-4m-3,∴顶点C(-2m,-4m-3);(2)证明:∵C(-2m,-4m-3),∴C点在直线y=2x-3上,∴定直线l为y=2x-3,联立方程组y=2x-3y=x2+4mx+4m2-4m-3 ,解得x=-2my=-4m-3或x=2-2my=-4m+1,∴两个交点分别为(-2m,-4m-3),(2-2m,-4m+1),∴d=(2-2m+2m)2+(-4m+1+4m+3)2=25,∴抛物线与定直线l的两交点间的距离d恒为定值;(3)解:存在直线n,理由如下:∵顶点C在y轴上,∴m=0,∴y=x2-3,令y=0,则x2-3=0,解得x=3或x=-3,∴A(-3,0),B(3,0),∴AB=23,∵抛物线关于y轴对称,∴∠ACO=∠BCO,∵∠APN=2∠ACO,∴∠APN=∠ACB,∴MN ∥BC ,设直线BC 的解析式为y =kx +b ,∴b =-33k +b =0 ,解得k =3b =-3 ,∴y =3x -3,设直线MN 的解析式为y =3x +t ,直线MN 与x 轴的交点为H ,∵直线MN 将△ABC 的面积分成1:2,∴S △PAH =13S △ACB 或S △PAH =23S △ACB ,∴AH AB2=13或AH AB 2=23,∴AH 23=33或AH 23=63,解得AH =2或AH =22,∴H (2-3,0)或(22-3,0),∴直线MN 的解析式为y =3x +3-23或y =3x +3-26.题型五:二次函数与面积比问题5如图,在平面直角坐标系xOy 中,二次函数y =23x 2+bx -2的图象与x 轴交于点A (3,0),B (点B 在点A 左侧),与y 轴交于点C ,点D 与点C 关于x 轴对称,作直线AD .(1)填空:b = -43 ;(2)将△AOC 平移到△EFG (点E ,F ,G 依次与A ,O ,C 对应),若点E 落在抛物线上且点G 落在直线AD 上,求点E 的坐标;(3)设点P 是第四象限抛物线上一点,过点P 作x 轴的垂线,垂足为H ,交AC 于点T .若∠CPT +∠DAC =180°,求△AHT 与△CPT 的面积之比.【解析】解:(1)把A (3,0)代入y =23x 2+bx -2,得23×9+3b -2=0,解得b =-43;故答案为:-43;(2)如图所示:由(1)得y =23x 2-43x -2,令x =0,y =-2,∴C (0,-2),∵点D 与点C 关于x 轴对称,∴D (0,2),设直线AD :y =kx +2,把A (3,0)代入y =kx +2,得3k +2=0,解得k =-23,∴直线AD 解析式:y =-23x +2,∵将△AOC 平移到△EFG ,∴OA =EF =3,FG =OC =2,设E m ,23m 2-43m -2 ,则G m -3,-23(m -3)+2 ,F m -3,-23(m -3)+4 ,∵EF ∥x 轴,∴23m 2-43m -2=-23(m -3)2+4,解得m =-3或m =4,∴E (-3,8)或4,103;(3)如图所示:过C 作CK ⊥AD ,CQ ⊥HP ,∵OD =2,OA =3∴AD =13,∵CK ⊥AD∴CD •AO =AD •CK ,∴CK =121313,DK =81313,AK =51313,∴tan ∠CAK =CK AK=125,∵CQ ⊥HP ,∴∠CPQ +∠CPT =180°,∵∠CPT +∠DAC =180°,∴∠CPQ =∠CAK ,∴tan ∠CPQ =tan ∠CAK =125,∴CQ PQ =125,设P n ,23n 2-43n -2 ,∴PQ =23n 2-43n ,CQ =n ,∴n 23n 2-43n =125,解得n =218,∴P 218,-2932,∴CQ =218,AH =3-218=38,∵tan ∠OAC =TH AH =OC OA =23,∴TH =23AH =23×38=14,∴TP =2132,∴S △ATH S △CPT =12×AH ×TH 12×TP ×CQ =8147,即△AHT 与△CPT 的面积之比为8:147.题型六:函数关系与面积问题6平面直角坐标系中,已知抛物线y =-x 2+(1+m )x -m (m 为常数,m ≠±1)与轴交于定点A 及另一点B ,与y 轴交于点C .(1)当点(2,2)在抛物线上时,求抛物线解析式及点A ,B ,C 的坐标;(2)如图1,在(1)的条件下,D 为抛物线x 轴上方一点,连接BD ,若∠DBA +∠ACB =90°,求点D 的坐标;(3)若点P 是抛物线的顶点,令△ACP 的面积为S ,①直接写出S 关于m 的解析式及m 的取值范围;②当58≤S ≤158时,直接写出m 的取值范围.【解析】(1)将点(2,2)代入y =-x 2+(1+m )x -m ,求出m 即可确定函数的解析式;(2)过D 点作DE ⊥x 轴交于E ,过A 点作AF ⊥BC 交于F ,由题意可知∠ACB =∠BDE ,求出tan ∠ACF =tan ∠BDE =BE DE=35,设D (t ,-t 2+5t -4)(0<t <4),求出t 的值即可求D 点坐标;(3)①求出P 1+m 2,(1-m )24,C (0,-m ),定点A (1,0),B (m ,0),AC 的解析式为y =kx +b ,y =mx -m ,再画出函数图象结合函数图象分类讨即可;②对①中求出的解析式分别进行求解即可.【解答】解:(1)将点(2,2)代入y =-x 2+(1+m )x -m ,∴m =4,∴y =-x 2+5x -4,令x =0,则y =-4,∴C (0,-4),令y =0,则-x 2+5x -4=0,∴x =1或x =4,∴A (1,0),B (4,0);(2)如图1,过D 点作DE ⊥x 轴交于E ,过A 点作AF ⊥BC 交于F ,∵∠DBA +∠ACB =90°,∠DBA +∠BDE =90°,∴∠ACB =∠BDE ,∵B (4,0),C (0,-4),∴OB =OC =4,∴∠OBC =45°,∵BA =3,∴AF =322,∵A (1,0),∴AC =17,∴CF =522,∴tan ∠ACF =AF CF =35,∴tan ∠BDE =BE DE=35,设D (t ,-t 2+5t -4)(0<t <4),∴4-t -t 2+5t -4=35,解得x =4(舍)或x =83,∴D 83,209;(3)①∵y =-x 2+(1+m )x -m =-x -1+m 2 2+(1-m )24,∴P 1+m 2,(1-m )24,令x =0,则y =-m ,∴C (0,-m ),令y =0,则-x 2+(1+m )x -m =0,解得x =1或x =m ,∴定点A (1,0),B (m ,0),设AC 的解析式为y =kx +b ,∴k +b =0b =-m,解得k =m b =-m ,∴y =mx -m ,如图2,当m <-1时,S =S 梯形PNOC +S △OCA -S △PAN =12×(1-m )24-m×1+m 2+12×1×(-m )-12×1-1+m 2 ×(1-m )24=18m 2-18;如图3,当-1<m <0时,S =S 梯形PNOC +S △PNA -S △AOC =12×(1-m )24-m ×1+m 2+12×1-1+m 2 ×(1-m )24-12×1×(-m )=-18m 2+18;如图4,当0≤m <1时,设对称轴与直线AC 交于点M ,∴M 1+m 2,m 2-m 2,∴PM =-14m 2+14,∴S =12×-14m 2+14 ×1=-18m 2+18;如图5,当m >1时,过点C 作CM ⊥PN 交于点M ,∴M 1+m 2,-m ,∴S =S 矩形OCMN +S △APN -S △OCA -S △CMP =1+m 2×m +12×1+m 2-1 ×(1-m )24-12×1×m -12×1+m 2×(1-m )24+m =18m 2-18;综上所述:当m <-1时,S =18m 2-18;当-1<m <1,S =-18m 2+18;当m >1时,S =18m 2-18;②当m <-1时,58≤18m 2-18≤158,解得-4≤m ≤-6;当-1<m <0,58≤-18m 2+18≤158,此时m 无解;当0≤m <1时,58≤-18m 2+18≤158,此时m 无解;当m >1时,58≤18m 2-18≤158,解得6≤m ≤4;综上所述:当58≤S ≤158时,-4≤m ≤-6或6≤m ≤4.2.压轴题速练1一、解答题1(2023春·全国·九年级专题练习)已知:如图,抛物线y =ax 2+bx +c (a ≠0)与坐标轴分别交于点A (0,6),B (6,0),C (-2,0),点P 是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,△PAB 的面积有最大值,面积最大值是多少?【答案】(1)y =-12x 2+2x +6(2)当P 3,152 时,△PAB 的面积有最大值,最大值是272.【解析】(1)由题意得:36a +6b +c =04a -2b +c =0c =6,解得:a =-12b =2c =6,∴抛物线的表达式为:y =-12x 2+2x +6;(2)∵A (0,6)∴直线AB 的表达式为:y =kx +6,将点B 的坐标代入上式得:0=6k +6,解得:k =-1,∴直线AB 的表达式为:y =-x +6,点P 的横坐标为m ,则P m ,-12m 2+2m +6 ,过点P 作x 轴的垂线,交线段AB 于点D ,则D (m ,-m +6),∴S =12×OB ×PD =12×6×-12m 2+2m +6+m -6 =-32(m -3)2+272,∴当m =3时,S 的值取最大,此时P 3,152;2(2023春·全国·九年级专题练习)如图,抛物线y =ax 2+bx +6(a ≠0)与x 轴交于A (-1,0),B (6,0),与y 轴交于点C ,点P 为第一象限内抛物线上一动点,过点P 作x 轴的垂线,交直线BC 于点D ,交x 轴于点E ,连接 PB .(1)求该抛物线的解析式;(2)当△PBD 与△BDE 的面积之比为1:2时,求点P 的坐标;【答案】【答案】(1)y =-x 2+5x +6(2)P 12,334【解析】(1)∵抛物线y =ax 2+bx +6(a ≠0)与x 轴交于A -1,0 ,B 6,0∴a -b +6=036a +6b +6=0,∴a =-1b =5 ,∴抛物线的解析式为y =-x 2+5x +6;(2)∵抛物线y =-x 2+5x +6过点C ,∴C (0,6),设直线BC 的解析式为 y =kx +n ,∴6k +n =0n =6,∴k =-1n =6 ,∴直线BC 的解析式为y =-x +6,设P m ,-m 2+5m +6 ,则D m ,-m +6 ,∴PE =-m 2+5m +6,DE =-m +6,∵△PBD 与△BDE 的面积之比为1:2,∴PD :DE =1:2,∴PE :DE =3:2,∴3-m +6 =2-m 2+5m +6 ,解得m 1=12,m 2=6(舍去),∴P 12,334;3(2023春·全国·九年级专题练习)如图,抛物线y =-x 2+bx +c 过点A 、B ,抛物线的对称轴交x 轴于点D ,直线y =-x +3与x 轴交于点B ,与y 轴交于点C ,且OA =13OB .(1)求抛物线的解析式;(2)点M t ,0 是x 轴上的一个动点,点N 是抛物线对称轴上的一个动点,当DN =2t ,△MNB 的面积为154时,求出点M 与点N 的坐标;【答案】【答案】(1)y =-x 2+2x +3(2)3+262,0 ,1,3+26 【解析】(1)解:对于直线y =-x +3,令y =0,即-x +3=0,解得:x =3,令x =0,得y =3,∴B 3,0 ,C 0,3 ,∵A 为x 轴负半轴上一点,且OA =13OB ,∴A -1,0 .将点A 、B 的坐标分别代入y =-x 2+bx +c 中,得-1-b +c =0-9+3b +c =0 ,解得b =2c =3 ,∴抛物线的解析式为y =-x 2+2x +3;(2)解:由(1)知:A -1,0 ,B 3,0 ,抛物线解析式为y =-x 2+2x +3,∴对称轴x =-b 2a =-22×-1=1,∴D 点坐标为D 1,0 ,∵M t ,0∴BM =3-t ,∵S △MNB =12×BM ×DN =154,即12×3-t ×2t =154,当t <3时,12×3-t ×2t =154,化简得:4t 2-12t +15=0,∵Δ=b 2-4ac <0,∴方程无解;当t >3时,12×t -3 ×2t =154,解得t1=3+262,t2=3-262(舍),∴DN=2t=3+26,∴点M的坐标为3+262,0,点N的坐标为1,3+262;4(2023·广西贵港·统考一模)在平面直角坐标系中,已知抛物线y=ax2+bx经过A(4,0),B(1,3)两点.P是抛物线上一点,且在直线AB的上方.(1)求抛物线的表达式;(2)若△OAB面积是△PAB面积的2倍,求点P的坐标;(3)如图,OP交AB于点C,PD∥BO交AB于点D.记△CPB,△BCO的面积分别为S1,S2,判断S1S2是否存在最大值.若存在,求出最大值;若不存在,请说明理由.【答案】【答案】(1)y=-x2+4x(2)P(2,4)或(3,3)(3)见解析【解析】(1)解:将A(4,0),B(1,3)代入y=ax2+bx得16a+4b=0a+b=3,解得:a=-1b=4,∴抛物线的解析式为:y=-x2+4x;(2)解:设直线AB的解析式为:y=kx+t,将A4,0,B1,3代入y=kx+t得4k+t=0 k+t=3 ,解得:k=-1 t=4,∴直线AB的解析式为:y=-x+4,∵A4,0,B1,3,∴S△OAB=12×4×3=6,∴S△OAB=2S△PAB=6,即S△PAB=3,过点P作PM⊥x轴于点M,PM与AB交于点N,过点B作BE⊥PM于点E,如图,∴S△PAB=S△PNB+S△PNA=12PN×BE+12PN×AM=32PN=3,∴PN=2,设点P 的横坐标为m ,∴P (m ,-m 2+4m )(1<m <4),N (m ,-m +4),∴PN =-m 2+4m -(-m +4)=2,解得:m =2或m =3;∴P (2,4)或(3,3);(3)解:S 1S 2存在最大值.理由如下:∵PD ∥OB ,∴∠DPC =∠BOC ,∠PDC =∠OBC ,∴△DPC ∽△BOC ,∴CP :CO =CD :CB =PD :OB ,∵S 1S 2=CD CB =PD OB,设直线AB 交y 轴于点F ,则F (0,4),过点P 作PH ⊥x 轴,垂足为H ,PH 交AB 于点G ,如图,∵∠PDC =∠OBC ,∴∠PDG =∠OBF ,∵PG ∥OF ,∴∠PGD =∠OFB ,∴PD :OB =PG :OF ,∴△PDG ∽△OBF ,∴PD :OB =PG :OF ,设P (n ,-n 2+4n )1<n <4 由(2)可知,PG =-n 2+4n --n +4 =-n 2+5n -4,∴S 1S 2=PD BO =PG OF=14PG =-14n -52 2+916,∵1<n <4,∴当n =52时,S 1S 2的最大值为916.5(2023·新疆克孜勒苏·统考一模)如图所示,抛物线y =-x 2+2x +3的图像与x 轴交于A ,B 两点,与y 轴交于点C ,连结BC .(1)求抛物线顶点D 的坐标;(2)在直线BC 上方的抛物线上有一点M ,使得四边形ABMC 的面积最大,求点M 的坐标及四边形ABMC 面积的最大值;(3)点E 在抛物线上,当∠EBC =∠ACO 时,直接写出点E 的坐标.【答案】【答案】(1)(1,4)(2)当点M 32,154 时,四边形ABMC 面积最大,最大值为758(3)(1,4)或-12,74【解析】(1)∵y =-x 2+2x +3=-x -1 2+4.∴抛物线顶点D 的坐标为(1,4);(2)令y =0,则x 2-2x -3=0,解得x 1=-1,x 2=3,∴点A -1,0 ,B 3,0 ,令x =0,则y =-3,∴点C 的坐标为(0,3)∴AB =3--1 =4,OC =3,∴S ΔABC =12AB ⋅OC =6∴△BCM 的面积最大时四边形ABMC 面积最大.设直线BC 的解析式为y =kx +b ,则3k +b =0b =3,∴b =3k =-1 ,∴y =-x +3.设过点M 与y 轴平行的直线交BC 于点N ,M x ,-x 2+2x +3 ,N x ,-x +3 ,则MN =-x 2+2x +3 --x +3 =-x 2+3x ,S △BCM =12-x 2+3x ×3=-12x -32 2+278,∴当x =32时,△BCM 的面积最大,最大值为278,此时,y =-32 2+2×32+3=154,所以,当点M 32,154 时,四边形ABMC 面积最大,最大值为6+278=758(3)①连接CD ,BD ,作DM ⊥OC 于点M .∵C (0,3),D (1,4),∴CM =DM =1,∴△CDM 是等腰直角三角形,∴∠DCE =45°.∵B (3,0),C (0,3),∴△BOC 是等腰直角三角形,∴∠BCO =45°,∴∠BCD =90°,∵BC =32+32=32,CD =12+(-3+4)2=2,∴.tan ∠CBD =232=13,∴∠DBC =∠ACO ,∴点E 与点D 重合,∴点E 的坐标为(1,-4),②作点D 关于BC 的对称点D ,作DN ⊥OC 于点N ,∵∠DMC =∠D NC =90°,∠DCM =D CN ,DC =D C ,∴△DCM ≌△D CN ,∴D N =DM =1,CM =CN =1,∴ON =3-1=2,∴D (-1,2),设直线BD 的解析式为y =mx +n ,,则3m +n =0-m +n =2,解得m =-12n =32,所以,直线BD ′的解析式为y =-12x +32,联立y =-x 2+2x +3y =-12x +32,解得x 1=3y 1=0 (为点B 坐标,舍去),x 2=-12y 2=74,所以,点H 的坐标为-12,74 ,综上所述,点E 的坐标为1,4 或-12,74时,∠EBC =∠ACO .6(2023·广东珠海·统考一模)如图,抛物线与x 轴交于点A -1,0 、B 4,0 ,与y 轴交于点C 0,2 .点D 为抛物线第四象限一动点,连接AC 、BC 、BD 、AD .(1)求抛物线的解析式;(2)当S △BCD =S △ABC 时,求此时点D 的坐标;(3)在第(2)问的条件下,延长线段AC 、DB 交于点E .请判断△ADE 的形状,并说明理由.【答案】(1)y =-x 2+32x +2(2)D 5,-3(3)△ADE 是等腰直角三角形,理由见详解【解析】(1)设抛物线的解析式为y =ax 2+bx +c ,∵抛物线与x 轴交于点A -1,0 、B 4,0 ,与y 轴交于点C 0,2 ,∴a -b +c =016a +4b +c =0c =2,解得:a =-12b =32c =2 ,∴抛物线的解析式为y =-x 2+32x +2;(2)连接OD ,,∵A -1,0 ,B 4,0 ,C 0,2 ,∴AB =5,OC =2,∴S △ABC =12AB ⋅OC =5,设D m ,-12m 2+32m +2 m >4 ,∵S △BCD =S △OBD +S △OBC -S △OCD =S △ABC ,∴12×4×12m 2-32m -2 +12×4×2-12×2×m =5,整理,得m 2-4m -5=0,解得:m 1=5,m 2=-1(舍去),∴D 5,-3 ;(3)△ADE 是等腰直角三角形,理由如下:设直线AC 的解析式为y =k 1x +b 1,把A -1,0 ,C 0,2 代入,得-k 1+b 1=0b 1=2 ,解得:k 1=2b 1=2∴y =2x +2,设直线BD 的解析式为y =k 2x +b 2,把B 4,0 ,D 5,-3 代入,得4k 2+b 2=05k 2+b 2=-3 ,解得:k 2=-3b 2=12∴y =-3x +12,联立y =2x +2和y =-3x +12得,y =2x +2y =-3x +12 ,解得:x =2y =6 ,∴E 2,6 ,又∵A -1,0 ,D 5,-3 ,∴AE =-1-2 2+0-6 2=35,AD =-1-5 2+0+3 2=35,DE =5-2 2+-3-6 2=310,∴AE =AD ,AE 2+AD 2=DE 2,∴△ADE 是等腰直角三角形.7(2023春·上海·八年级专题练习)在边长为4的正方形ABCD 中,点O 是对角线AC 的中点,P 是对角线AC 上一动点,过点P 作PF ⊥CD 于点F ,作PE ⊥PB 交直线CD 于点E ,设PA =x ,S △PCE =y .(1)求证:DF =EF ;(2)当点P 在线段AO 上时,求y 关于x 的函数关系式及自变量x 的取值范围;(3)点P 在运动过程中能否使△PEC 为等腰三角形?如果能,请直接写出PA 的长;如果不能,请简单说明理由.【答案】(1)证明见解析(2)y =12x 2-32x +8,0≤x ≤22 (3)能使△PEC 为等腰三角形,PA =0或PA =4【解析】(1)证明:延长FP 交AB 于点G ,∵正方形ABCD 中,PF ⊥CD 于点F ,∴四边形AGFD 是矩形,∴DF =AG ,∠AGF =90°,∵正方形ABCD ,∴∠BAC =45°,∵∠AGF =90°,∴AG =GP ,∴DF =GP ,同理可得:CF =PF =BG ,∵PE ⊥PB ,∠AGF =90°,∴∠GBP +∠GPB =∠FPE +∠GPB =90°,∴∠GBP =∠FPE ,在△GBP 和△FPE 中,∵∠GBP =∠FPEPF =BG ∠BGP =∠PFE,∴△GBP ≌△FPE (ASA ),∴GP =EF ,∵DF =GP ,∴DF =EF ;(2)∵PA =x ,∴AG =GP =22x ,DF =EF =22x ,则DE =2x ,∴CE =4-2x ,∵PF =4-22x ,∴y =124-2x 4-22x =12x 2-32x +80≤x ≤22 ;(3)点P 在运动过程中能使△PEC 为等腰三角形;当点E 在CD 边上时,∵∠CEP ≥90°,若△PEC 为等腰三角形,只能是∠CPE =∠ECP =45°,则PE ⊥CE ,∵PE ⊥PB ,∴PB ∥CD ,∴PB ∥AB ,于是点P 在AB 上,又∵点P 在AC 上,∴A 与P 重合,此时PA =0;当点E 在DC 延长线上时,如图,若△PEC 为等腰三角形,只能是PC =CE ,设PA =x ,则PC =42-x ,EF =DF =AG =GP =22x ,PF =CF =BG =4-22x ,∴CE =EF -CF =22x -4-22x=2x -4,∵PC =CE ,∴42-x =2x -4,∴x =4,∴即PA =4;综上所述,当PA =0或PA =4时,△PEC 为等腰三角形.【点睛】本题主要考查正方形的性质的综合运用,等腰三角形的性质和判定,全等三角形的判定和性质,三角形的面积等知识,综合运用这些性质进行推理,同时注意对等腰的分类讨论是解题的关键.8(2023春·江苏无锡·九年级统考期中)在平面直角坐标系中xOy 中,二次函数y =ax 2+bx +2a <0 的图像与x 轴交于点A (-1,0)、B (2,0),与y 轴交于点C .(1)求二次函数的表达式;(2)若点P 是二次函数图像上位于线段BC 上方的一个动点.①如图,连接AC ,CP ,AP ,AP 交BC 于点E ,过点P 作AC 的平行线交BC 于点Q ,将△PEQ 与△PCE的面积比S △PEQ S △PCE 记为a ,将△PCE 与△ACE 的面积比S △PCE S △ACE记为b ,当a +22b 有最大值时,求点P 的坐标;②已知点N 是y 轴上一点,若点N 、P 关于直线AC 对称,求CN 的长.【答案】(1)y =-x 2+x +2(2)①当点P 的坐标为1,1 时,a +22b 有最大值;②CN =516【解析】(1)解:将A (-1,0)、B (2,0),代入y =ax 2+bx +2中可得:a -b +2=04a +2b +2=0 ,解得:a =-1b =1 ,∴二次函数的表达式为:y =-x 2+x +2;(2)①当x =0时,y =2,则C 0,2 ,设BC 的解析式为:y =kx +b ,将B (2,0),C 0,2 ,代入可得:2k +b =0b =2 ,解得:k =-1b =2 ,∴BC 的解析式为:y =-x +2,由题意可知,OB =OC =2,则△BOC 是等腰直角三角形,∴∠BCO =45°,∵A (-1,0),则OA =1,∴AC =OA 2+OC 2=5,∴sin ∠ACO =55,cos ∠ACO =255,过点P 作PN ∥y 轴,QM ⊥PN ,设AP 与y 轴交于点D ,则∠ADO =∠APN ,∠QNM =∠BCO =45°,即:△MQN 为等腰直角三角形,∴QM =MN ,∵AC ∥PQ ,∴∠CAP =∠APQ ,△AEC ∽△PEQ ,则EQ CE =EP AE =PQ AC,又∵∠ADO =∠ACP +∠ACO ,∠APN =∠APQ +∠QPM ,∴∠ACO =∠QPM ,则:PM =PQ ⋅cos ∠QPN =PQ ⋅cos ∠ACO =255PQ ,QM =MN =PQ ⋅sin ∠QPN =PQ ⋅sin ∠ACO =55PQ ,则PN =PM +MN =355PQ ,即:PQ =53PN ,∵S △PEQ S △PCE =EQ CE ,S △PCE S △ACE =EP AE ,EQ CE =EP AE =PQ AC,∴a =b =EQ CE =EP AE =PQ AC =PQ 5=13PN ,∴a +22b =1+22 ×13PN ,则当PN 取最大值时,a +22b 有最大值,设P t ,-t 2+t +2 ,0<t <2,则N t ,-t +2 ,∴PN =-t 2+t +2 --t +2 =-t 2+2t =-t -1 2+1,即:当t =1时,PN 取最大值,此时点P 的纵坐标为1,即:当点P 的坐标为1,1 时,a +22b 有最大值;②由题意可知,点N 在点C 下方时,点N 关于直线AC 的对称点在AC 的左侧,不符合题意,点N 在点C 上方时,连接PN ,交AC 于H ,作PF ⊥y 轴,由对称可知,NH =PH =12PN ,CH ⊥PN ,则∠NHC =∠PFN =90°,∴∠NCH +∠CNP =∠CNP +∠FPN ,∴∠NCH =∠FPN∵∠ACO =∠NCH ,sin ∠ACO =55,cos ∠ACO =255,∴∠ACO =∠NCH =∠FPN ,设CN =m ,则NH =CN ⋅sin ∠NCH =55m ,∴PN =2NH =255m ,则PF =PN ⋅cos ∠FPN =45m ,NF =PN ⋅sin ∠FPN =25m ∴CF =CN -NF =35m ,则OF =OC +CF =2+35m ,∴点P 的坐标为:45m ,2+35m ,0<45m <2,即0<m <52,∵点P 在二次函数图象上,∴-45m 2+45m +2=2+35m ,解得:m 1=0(舍去),m 2=516,∴CN =516.9(2023·黑龙江哈尔滨·统考一模)如图,在平面直角坐标系中,直线BC 的解析式为y =-x +6,直线BC 交x 轴和y 轴分别于点B 和点C ,抛物线y =-29x 2+bx +c 交x 轴于点A 和点B ,交y 轴于点C .(1)求抛物线的解析式;(2)点P 是第二象限抛物线上的点,连接PB 、PC ,设点P 的横坐标为t ,△PBC 的面积为S .求S 与t 的函数关系式(不要求写出t 的取值范围);(3)在(2)的条件下,点D 在线段OB 上,连接PD 、CD ,∠PDC =45°,点F 在线段BC 上,EF ⊥BC ,FE 的延长线交x 轴于点G ,交PD 于点E ,连接CE ,若∠GED +∠DCE =180°,DC >DE ,S △CDE =15,求点P 的横出标.【答案】(1)y =-29x 2+13x +6(2)S =23t 2-4t (3)3-3112【解析】(1)解:直线y=-x+6交x轴和y轴于点B和点C 令x=0时,y=6,即C0,6,令y=0时,x=6,即B6,0,∵点B、C在抛物线上,∴代入解析式可得:c=6-29×62+13×6+6=0,解得:c=6b=-13,∴解析式为y=-29x2+13x+6;(2)过点P作x轴的垂线交BC延长线于点M,交x轴于点N,过点C作CR⊥MN于R ∵P在抛物线上,P横坐标为t∴P t,-29t2+13t+6,∵M在直线BC上,∴M t,-t+6,∴MP=-t+6--29t2+13t+6=29t2-43t,S△PBC=S△MPB-S△MPC=12MP⋅OB=1229t2-43t×6=23t2-4t,即S=23t2-4t;(3)由(1)得,OB=OC=6,∴∠OBC=∠OCB=45°又EF⊥BC交x轴于点G,∴∠GFB=90°∴∠FGB=90°-∠FBG=45°即∠FGB=∠FBG=45°∴FG=FB又∠PDC=45°设∠PDA=α,∴∠CDA=45°+α=∠CBD+∠BCD=45°+∠BCD∴∠BCD=α=∠PDA又∠GED+∠DCE=180°(已知)∠GED+∠FED=180°(平角定义)∴∠DCE=∠FED,又∠FED=∠FGE+∠PDG=45°+a∴∠FED=∠CDA,∴∠DCE=∠CDA,过点D作DR⊥CE于R,如图所示∴在Rt△CRD中,∠CDR=90°-∠RCD=45°-α,∴∠RDE=∠CDE-∠CDR=α,,∴∠RDE=∠EDA=α,∵∠CRD=∠DOC=90°,∠DCE=∠CDA,CD=CD,∴△RCD≌△ODC(AAS),∴RD=CO=6,CR=OD,∠CDR=∠DCO,又∵S△DCE=15,∴12CE×DR=15∴CE=5作EM⊥x轴于M,CN⊥EM于N,DT⊥CN于T,如图所示∵∠RDE=∠EDA,∠ERD=∠EMD=90°,DE=DE,∴△RED ≌△MED (AAS ),∴RE =EM ,RD =MD ,∵EM ⊥x ,CN ⊥EM ,DT ⊥CN ,∴四边形NTDM 为矩形,∴∠MDT =90°,∴∠CDT =∠MDT -∠CDE -∠EDA =45°-α=∠CDR ,∴△DCR ≌△DCT (AAS ),∴DR =DT ,∴DM =DT ,∴四边形NMDT 是正方形∴DM =MN =NT =DT =OC =6,设EM =ER =m ,则CR =5-m =CT ,如图所示:∴NE =6-m ,NC =NT -TC =m +1在Rt △NEC 中,6-m 2+m +1 2=52解得:m 1=2,m 2=3,∵CD >DE ,∴m <5-m ,即m <2.5,∴m =3不符合题意,应舍去;当m =2时,CT =OD =3=MO ,∴E -3,2 ,又点D 3,0 ,设直线ED 的解析式为y =kx +b ,则-3k +b =23k +b =0 ,解得:k =-13b =1 ,∴直线ED 的解析式为:y =-13x +1,y =-13x +1y =-29x 2+13x +6 ,∴x =3-3112或3+3112(舍),∴P 的横坐标是3-311210(2023春·江苏宿迁·九年级统考阶段练习)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c a <0 与x 轴交于A -2,0 、B 4,0 两点,与y 轴交于点C ,且OC =2OA .(1)试求抛物线的解析式;(2)直线y =kx +1k >0 与y 轴交于点D ,与抛物线在第一象限交于点P ,与直线BC 交于点M ,记m =S △CPM S △CDM,试求m 的最大值及此时点P 的坐标;(3)在(2)的条件下,m 取最大值时,点Q 是x 轴上的一个动点,点N 是坐标平面内的一点,是否存在这样的点Q 、N ,使得以P 、D 、Q 、N 四点组成的四边形是矩形?请直接写出满足条件的N 点的坐标.【答案】(1)y =-12x 2+x +4(2)m 取得最大值23,此时点P 的坐标为2,4 (3)存在,满足条件的N 的坐标为72,3 或6,-3 【解析】(1)解:∵A -2,0 ,∴OA =2,∵OC =2OA ,∴OC =4,∴C 0,4 ,∵抛物线y =ax 2+bx +c 经过点A -2,0 ,B 4,0 ,C 0,4 ,∴4a -2b +c =016a +4b +c =0c =4,解得:a =-12b =1c =4,∴该抛物线的解析式为y =-12x 2+x +4;(2)解:如图1,过点P 作PE ∥y 轴交直线BC 于E ,连接CP ,设直线BC 的解析式为y =kx +d ,∵B 4,0 ,C 0,4 ,∴4k +d =0d =4 ,解得:k =-1d =4 ,∴直线BC 的解析式为y =-x +4,设P t ,-12t 2+t +4 ,则E t ,-t +4 ,∴PE =-12t 2+t +4-(-t +4)=-12t 2+2t ,∵直线y =kx +1k >0 与y 轴交于点D ,∴D 0,1 ,∴CD =4-1=3,∵PE ∥y 轴,即PE ∥CD ,∴△EMP ∽△CMD ,∴PM DM =PE CD =-12t 2+2t 3=-16t 2+23t ,∵m =S △CPM S △CDM =PM DM,∴m =-16t 2+23t =-16t -2 2+23,∵-16<0,∴当t =2时,m 取得最大值23,此时点P 的坐标为2,4 ;(3)解:存在这样的点Q 、N ,使得以P 、D 、Q 、N 四点组成的四边形是矩形.①当DP 是矩形的边时,有两种情形,a 、如图2-1中,四边形DQNP 是矩形时,由(2)可知P 2,4 ,代入y =kx +1中,得到k =32,∴直线DP 的解析式为y =32x +1,可得D 0,1 ,E -23,0 ,由△DOE ∽△QOD 可得OD OQ =OE OD,∴OD 2=OE ⋅OQ ,∴1=23⋅OQ ,∴OQ =32,∴Q 32,0 .根据矩形的性质,将点P 向右平移32个单位,向下平移1个单位得到点N ,∴N 2+32,4-1 ,即N 72,3 ,b 、如图2-2中,四边形PDNQ 是矩形时,∵直线PD 的解析式为y =32x +1,PQ ⊥PD ,∴直线PQ 的解析式为y =-23x +163,∴Q 8,0 ,根据矩形的性质可知,将点D 向右平移6个单位,向下平移4个单位得到点N ,∴N 0+6,1-4 ,即N 6,-3 .②当DP 是对角线时,设Q x ,0 ,则QD 2=x 2+1,QP 2=x -2 2+42,PD 2=13,∵Q 是直角顶点,∴QD 2+QP 2=PD 2,∴x 2+1+x -2 2+42=13,整理得x 2-2x +4=0,方程无解,此种情形不存在,综上所述,满足条件的N 的坐标为72,3 或6,-3 .11(2023·山东济宁·统考一模)如图,抛物线y =ax 2+bx +3与坐标轴分别交于A ,B ,C 三点,其中A (-4,0)、B (1,0),M 是第二象限内抛物线上的一动点且横坐标为m ,(1)求抛物线的解析式;(2)连接BM ,交线段AC 于点D ,求S ΔADM S ΔADB的最大值(其中符号S 表示面积);(3)连接CM ,是否存在点M ,使得∠ACO +2∠ACM =90°,若存在,求m 的值,若不存在,请说明理由.【答案】(1)y =-34x 2-94x +3(2)S ΔADM S ΔADB 的最大值为45(3)存在,m =-319【解析】(1)解:(1)分别代入A (-4,0)、B (1,0)到抛物线解析式,解得:y =-34x 2-94x +3;故答案为:y =-34x 2-94x +3.(2)设直线AC 的解析式为y =kx +b ,将点A (-4,0)和点C (0,3)代入y =kx +b 中,-4k +b =0b =3 ,解得:k =34b =3,∴直线AC 的解析式为y =34x +3,如图所示,过点M 作MG ∥x 轴交于AC 于点G ,过点A 作AF ⊥MB 交MB 与点F ,∴G 点的纵坐标与M 点的纵坐标相同,∵M 为抛物线y =-34x 2-94x +3上的一点,设M m ,-34m 2-94m +3 ,又∵G 点在直线AC 上,直线AC 的解析式为y =34x +3,∴G -m 2-3m ,-34m 2-94m +3 ,∴MG =-m 2-4m ,又∵MG ∥AB ,∴MD DB =MG AB =-m 2-4m 5,∵S ΔADM =12MD ⋅AF ,S ΔADB =12DB ⋅AF ,∴S ΔADM S ΔADB =DM DB,∴S ΔADB S ΔADB =DM DB =MG AB=-m 2-4m 5=-m 2+4m 5=-15m +2 2+45,∴S ΔADM S ΔADB 的最大值为45.故答案为:45.(3)过点C 作CP ∥x 轴,延长CM 交x 轴于点T .∴∠MCO =90°,∠MCP =∠MTA ,∵∠ACO +2∠ACM =90°∠ACO +∠PCM +∠MCA =90°,∴∠MCP =∠MCA ,∴∠MCA =∠MTA ,∴△ACT 为等腰三角形,∴AC =AT .在Rt △ACO 中,AC =AO 2+OC 2=42+32=5,∴AC =AT =5,∴OT =AT +OA =5+4=9,∴T (-9,0),设直线CT 的解析式为y =kx +b ,将点T (-9,0)和点C (0,3)代入y =kx +b 中,解得:k =13b =3 ,∴直线CT 的解析式为y =13x +3,∵M 是直线CT 和抛物线y =-34x 2-94x +3的交点,-4<m <0,∴令-34m 2-94m +3=13m +3,∴9m 2+27m +4m =0,∴9m 2+31m =0,∴m 9m +31 =0,解得m =0(舍去)或m =-319故答案为:m =-319.12(2023·海南海口·海口市第九中学校考二模)如图①,已知抛物线L :y =x 2+bx +c 的图象经过点A 0,3 ,B 1,0 .过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,连结OE .(1)求抛物线的关系式并写出点E的坐标;(2)若动点P在x轴下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出此时P点横坐标;(3)若将抛物线向上平移h个单位,且其顶点始终落在△OAE的内部或边上,写出h的取值范围;(4)如图②,F是抛物线的对称轴上l的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)y=x2-4x+3;E(3,3)(2)P的横坐标为52;(3)3≤h≤4;(4)存在,点P的坐标是:5-52,1-52或3-52,5+12或3+52,1-52或5+5 2,5+12【解析】(1)解:∵抛物线L:y=x2+bx+c的图象经过点A(0,3),B(1,0),∴1+b+c=0c=3,解得b=-4c=3,∴抛物线的解析式为:y=x2-4x+3;∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),(2)如图1,过P作PG∥y轴,交OE于点G,设P(m,m2-4m+3),设直线OE的解析式为y=kx,把点E(3,3)代入得,3=3k,解得k=1,∴直线OE的解析式为:y=x,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S△OPE=S△OPG+S△EPG=12PG×AE=12×3×(-m 2+5m -3)=-32(m 2-5m +3)=-32m -52 2+398,∵-32<0,∴当m =52时,△OPE 面积最大,∴P 的横坐标为52(3)由y =x 2-4x +3=(x -2)2-1,得抛物线l 的对称轴为直线x =2,顶点为(2,-1),抛物线L 向上平移h 个单位长度后顶点为F (2,-1+h ).设直线x =2交OE 于点M ,交AE 于点N ,则N (2,3),如图2,∵直线OE 的解析式为:y =x ,∴M (2,2),∵点F 在△OAE 内(包括△OAE 的边界),∴2≤-1+h ≤3,解得3≤h ≤4;(4)设P (m ,m 2-4m +3),分四种情况:①当P 在对称轴的左边,且在x 轴下方时,如图3,过P 作MN ⊥y 轴,交y轴于M ,交l 于N ,∴∠OMP =∠PNF =90°,∵△OPF 是等腰直角三角形,∴OP =PF ,∠OPF =90°,∴∠OPM +∠NPF =∠PFN +∠NPF =90°,∴∠OPM =∠PFN ,∴△OMP ≌△PNF (AAS ),∴OM =PN ,∵P (m ,m 2-4m +3),则-m 2+4m -3=2-m ,解得:m =5+52或5-52,∵m =5+52>2,不合题意,舍去,∴m =5-52,此时m 2-4m +3=1-52,∴P 的坐标为5-52,1-52;②当P 在对称轴的左边,且在x 轴上方时,同理得:2-m =m 2-4m +3,解得:m 1=3+52或m 2=3-52,∵3+52>2,不合题意,舍去,∴m =3-52,此时m 2-4m +3=5+12,∴P 的坐标为3-52,5+12;③当P 在对称轴的右边,且在x 轴下方时,如图4,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF ,∴PN =FM ,则-m 2+4m -3=m -2,解得:m 1=3+52或m 2=3-52,∵3-52<2,不合题意,舍去,∴m =3+52,此时m 2-4m +3=1-52,P 的坐标为3+52,1-52;④当P 在对称轴的右边,且在x 轴上方时,如图5,同理得m 2-4m +3=m -2,解得:m =5+52或5-52(舍),P 的坐标为:5+52,5+12;综上所述,点P 的坐标是:5-52,1-52 或3-52,5+12或3+52,1-52 或5+52,5+12.13(2023·广东珠海·校考一模)如图,在平面直角坐标系中,抛物线y =-12x 2+bx +c 与x 轴交于点A ,B ,其中点B 的坐标为(4,0),与y 轴交于点C (0,2).(1)求抛物线y =-12x 2+bx +c 和直线BC 的函数表达式;(2)点P 是直线BC 上方的抛物线上一个动点,当△PBC 面积最大时,求点P 的坐标;(3)连接B 和(2)中求出点P ,点Q 为抛物线上的一点,直线BP 下方是否存在点Q 使得∠PBQ =45°?若存在,求出点Q 的坐标.【答案】(1)y =-12x 2+32x +2,y =-12x +2(2)(2,3)(3)存在,-35,2325【解析】(1)把B (4,0),C (0,2)代入y =-12x 2+bx +c 得:-8+4b +c =0c =2 ,解得b =32c =2,∴抛物线的函数表达式为y =-12x 2+32x +2;设直线BC 的函数表达式为y =mx +2,把B (4,0)代入得:4m +2=0,解得m =-12,∴直线BC 的函数表达式为y =-12x +2;(2)过P 作PH ∥y 轴交BC 于H ,如图:设P t ,-12t 2+32t +2 ,则H t ,-12t +2 ,∴PH =-12t 2+32t +2--12t +2 =-12t 2+2t ,∴S ΔPBC =12PH ⋅OB =12×-12t 2+2t ×4=-t 2+4t =-(t -2)2+4,∵-1<0,∴当t =2时,S ΔPBC 取最大值4,此时P 的坐标为(2,3);(3)直线BP 下方存在点Q ,使得∠PBQ =45°,理由如下:过P 作PM ⊥PB 交BQ 的延长线于M ,过P 作TK ∥x 轴,过B 作BK ⊥TK 于K ,过M 作MT ⊥TK 于T ,如图:由(2)知P (2,3),∵B (4,0),∴PK =2,BK =3,∵∠PBQ =45°,∴ΔPBM 是等腰直角三角形,∴∠MPB =90°,PB =PM ,∴∠KPB =90°-∠TPM =∠TMP ,∵∠K =∠T =90°,∴ΔBPK ≅ΔPMT (AAS ),∴PK =MT =2,BK =PT =3,∴M (-1,1),由M (-1,1),B (4,0)得直线BM 函数表达式为y =-15x +45,联立y =-15x +45y =-12x 2+32x +2 ,解得x =4y =0 或x =-35y =2325,∴Q 的坐标为-35,2325 .14(2023·广西梧州·统考一模)如图1,在平面直角坐标系中,△ABC 的顶点A -6,0 ,B 0,8 ,C 8,0,点P 为线段AC 上的一动点(点P 与点A ,C 不重合),过点P 作PQ ∥BC 交AB 于点Q ,将△APQ 沿PQ 翻折,点A 的对应点为点D ,连接PD ,QD ,BD .设点P 的坐标为t ,0(1)当点D 恰好落在BC 上时,求点P 的坐标;(2)若△PDQ 与△ABC 重叠部分面积S 与点P 横坐标t 之间的函数解析式为S =a (t +6)2(-6<t ≤1)-67t 2+bt +647(1<t <8) ,其图象如图2所示,求a 、b 的值;(3)是否存在点P ,使得∠BDQ 为直角?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)1,0(2)a =27,b =247(3)67,0【解析】(1)解:∵A -6,0 ,B 0,8 ,C 8,0 ,∴OB =OC =8,∴∠C =45°.∵PQ ∥BC ,∴∠APQ =∠C =45°.由折叠的性质可得AP =PD ,∠APQ =∠DPQ =45°,∴∠DPA =90°.∵B 0,8 ,C 8,0 ,∴直线BC 的解析式为y =-x +8,∵P t ,0 ,∴PA =t --6 =t +6.∵点D 恰好落在BC 上,∴D (t ,-t +8),∴PD =-t +8,∴t +6=-t +8,解得:t =1,∴点P 的坐标为1,0 ;(2)解:∵PQ ∥BC ,∴可设直线PQ 的解析式为y =-x +m ,∴0=-t +m ,解得:t =m ,直线PQ 的解析式为y =-x +t .∵A -6,0 ,B 0,8 ,∴直线AB 的解析式为:y =43x +8. 联立y =-x +t y =43x +8 ,解得:x =3t -247y =4t +247,∴Q 3t -247,4t +247.当-6<t ≤1时,点D 在△ABC 内部,此时重叠部分面积为△PDQ 的面积,由折叠可知S △PDQ =S △APQ =12AP ⋅y Q =12×t +6 ×4t +247=27t +6 2,∴a =27;当1<t <8时,点D 在△ABC 外部,由图象可得当t =4时,S =1287,∴-67×42+4b +647=1287,解得:b =247;(3)解:如图,过点Q 和点B 分别作PD 的垂线,交PD 于点M 和PD 延长线于点N ,∵∠BDQ 为直角,∴∠BDN +∠MDQ =90°∵∠BDN +∠DBN =90°,∴∠MDQ =∠DBN ,∴tan ∠MDQ =tan ∠DBN ,即QM DM =DN BN .∵Q 3t -247,4t +247 ,M t ,4t +247,D t ,t +6 ,N t ,8 ,B 0,8 ,∴QM =t -3t -247=4t +247,DM =t +6-4t +247=3t +187,DN =8-(t +6)=2-t ,BN =t ,∴4t +2473t +187=2-t t,解得:t 1=67,t 2=-6(舍).∴存在,点P 的坐标为67,0 .15(2023·吉林长春·统考一模)在平面直角坐标系中,抛物线y =-x 2+ax +1(a 为常数),经过点P 2,-7 ,点Q 在抛物线上,其横坐标为m ,将此抛物线上P 、Q 两点间的部分(包括P 、Q 两点)记为图像G .。
2023年安徽中考数学总复习专题:最值问题(PDF版,有答案)

2023年安徽中考物理总复习专题:最值问题类型一单动点求两线段和的最小值将军饮马问题:两点在一直线同侧时,作一个点的对称点与另一个点连接,所得线段的长即为所求。
典例1如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,点P是边BC上一动点,点D在边AB上,且BD=14AB,则PA+PD的最小值为( )A.8B.43C.213D.833【思路】作D关于BC的对称点E,连接AE交BC于P,则PA+PD的值最小,过E作EF⊥AC交AC的延长线于F,过D作DH⊥AC于H,则DH=EF,DH∥BC,根据勾股定理即可得到结论.解:作D关于BC的对称点E,连接AE交BC于P,则PA+PD的值最小,过E作EF⊥AC 交AC的延长线于F,过D作DH⊥AC于H,则DH=EF,DH∥BC,∵∠ACB=90°,∠B=30°,AB=8,∴AC=12AB=4,∠ADH=∠B=30°,∵BD=14AB=2,∴AD=6,CF=12DE=12BD=1,∴AF=5,∴DH=AD2―AH2=33,∴EF=33,∴AE=AF2+EF2=213,∴PA+PD的最小值为213.【总结】本题考查了轴对称﹣最短路线问题,含30°角的直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键.针对训练1如图,在△ABC中,AB=AC,AD,BE是△ABC的两条中线,AD=5,BE=6,P是AD上的一个动点,连接PE,PC,则PC+PE的最小值是( )A.5B.6C.7D.8类型二求一条线段的最小值垂线段最短典例2如图,OP平分∠AOB,PD⊥OA于点D,点E是射线OB上的一个动点,若PD=3,则PE的最小值是 .【思路】过P作PE⊥OB于E,根据垂线段最短得出此时PE的长最小,根据角平分线的性质得出PE=PD,再求出答案即可.解:过P作PE⊥OB于E,此时PE的长最小,∵OP平分∠AOB,PD⊥OA,PE⊥OB,∴PE=PD,∵PD=3,∴PE=3,即PE的最小值是3.【总结】本题考查了垂线段最短和角平分线的性质,能找出当PE最小时点E的位置是解此题的关键.针对训练2如图,在△ABC中,∠C=90°,BD为△ABC的角平分线,过点D作直线l∥AB,点P为直线l上的一个动点,若△BCD的面积为16,BC=8,则AP最小值为 .类型三双动点求两线段和的最小值将军饮马问题与垂线段最短的综合典例2如图,在Rt△ABC中,∠ABC=90°,AB=6,∠BAC=30°,∠BAC的平分线交BC 于点D,E,F分别是线段AD和AB上的动点,则BE+EF的最小值是 .【思路】根据对称性,过点F作FG⊥AC交AD于点Q,连接BG交AD于点E,此时BG=BE+EF,当BG垂直于AC30°直角三角形的边的性质即可求解.解:方法一:如图1所示:在AC边上截取AB′=AB,作B′F⊥AB于点F,交AD于点E,∵AD平分∠BAC,∴∠BAE=∠B′AE,AE=AE,∴△ABE≌△AB′E(SAS).∴BE=B′E,∴B′F=B′E+EF=BE+EF,∵垂线段最短,∴此时BE+EF最短.∵AB=AB′=6,∠BAC=30°,∴B′F=12AB′=3.方法二:如图2所示:在AC边上截取AG=AF,连接BG交AD于点E,作BH⊥AC于点H,同方法一:得△AEG≌△AFG(SAS)∴EG=EF,∴BG=BE+EG=BE+EF,当BG垂直于AC时最短,即BH的长最短,∵AB=6,∠BAC=30°,∴BH=3.【总结】本题考查了最短路线问题、角分线的性质、含30度角的直角三角形,解决本题的关键是作对称点.针对训练3 已知,等腰△ABC中,AB=AC,E是高AD上任一点,F是腰AB上任一点,腰AC=5,BD=3,AD=4,那么线段BE+EF的最小值是( )A.5B.3C.245D.72针对训练4 在四边形ABCD中,∠ABC=60°,∠BCD=45°,BC=23+2,BD平分∠ABC,若P,Q分别是BD,BC上的动点,则CP+PQ的最小值是( )A.23+2B.3+3C.22+2D.2+4类型四一点两线求周长最小值根据轴对称的性质,结合三角形三边关系定理典例4 如图,∠AOB=30°,∠AOB内有一定点P,且OP=15,若在OA、OB上分别有动点M、N,则△PMN周长的最小值是( )A.5B.15C.20D.30【思路】根据题意画出符合条件的图形,求出OD=OE=OP,∠DOE=60°,得出等边三角形DOE,求出DE=15,求出△PMN的周长=DE,即可求出答案.解:作P关于OA的对称点D,作P关于OB的对称点E,连接DE交OA于M,交OB 于N,连接PM,PN,则此时△PMN的周长最小,连接OD,OE,∵P、D关于OA对称,∴OD=OP,PM=DM,同理OE=OP,PN=EN,∴OD=OE=OP=15,∵P、D关于OA对称,∴OA⊥PD,∵OD=OP,∴∠DOA=∠POA,同理∠POB=∠EOB,∴∠DOE=2∠AOB=2×30°=60°,∵OD=OE=15,∴△DOE是等边三角形,∴DE=15,即△PMN的周长是PM+MN+PN=DM+MN+EN=DE=15.【总结】本题考查了轴对称﹣最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.针对训练5 如图,在四边形ABCD中,∠B=∠D=90°,∠BAD=140°,点E,F分别为BC和CD上的动点,连接AE,AF.当△AEF的周长最小时,∠EAF的度数为( )A.60°B.90°C.100°D.120°类型五求两条线段差的最大值两点在一直线两侧时,作一个点的对称点,再将对称点与另一点连接所得线段的长。
专题52 四边形面积有关的最值问题(原卷版)-2021年中考数学二轮复习经典问题专题训练

专题52 四边形面积有关的最值问题【规律总结】特殊四边形用公式,普通四边形转化成三角形球面积(铅垂法);结合二次函数;【典例分析】例1.(2020·湖北武汉市·九年级期中)如图,四边形ABCD 的两条对角线,AC BD 所成的锐角为60,10AC BD +=,则四边形ABCD 的面积最大值为_______________________.【答案】4【分析】根据四边形面积公式,S =12AC×BD×sin60°,根据sin60°S =12x (10−x )再利用二次函数最值求出即可.【详解】解:∵AC 与BD 所成的锐角为60°,∵根据四边形面积公式,得四边形ABCD 的面积S =12AC×BD×sin60°,设AC =x ,则BD =10−x ,所以S =12x (10−x )x−5)2所以当x =5,S【点睛】此题主要考查了四边形面积公式以及二次函数最值,利用二次函数最值求出四边形的面积最大值是解决问题的关键.例2.(2018·山东济南市·九年级一模)(探索发现)如图①,是一张直角三角形纸片,60C ∠=°,小明想从中剪出一个以B 为内角且面积最大的矩形,经过多次操作发现,当沿着中位线,DE EF 剪下时,矩形的面积最大,经证明发现:矩形的最大面积与原三角形面积的比值为__________.(拓展应用)如图②,在ABC 中,BC a =,BC 边上的高AD h =,矩形PQMN 的顶点,P N 分别在边,AB AC 上,顶点,Q M 在边BC 上,则矩形PQMN 面积的最大值为__________.(用含,a h 的代数式表示)(灵活应用)如图③,有一块“缺角矩形”,32,40,20,16ABCDE AB BC AE CD ====,小明从中剪出了一个面积最大的矩形(B 为所剪出矩形的内角),求该矩形的面积.(实际应用)如图④,现有一块四边形的木板余料ABCD ,经测量50cm,108cm,60cm AB BC CD ===,且4tan tan 3==B C ,木匠徐师傅从这块余料中裁出了顶点,M N 在边BC 上且面积最大的矩形PQMN ,求该矩形的面积.【答案】【探索发现】12;【拓展应用】4ah ;【灵活应用】720;【实际应用】21944cm 【分析】 探索发现:由中位线知12EF BC =,12ED AB =,由12FEDB ABC S EF DE S AB BC ⋅=⋅可得; 拓展应用:由APN ABC 知PN AE BC AD=,得a PN a PQ h =-,设PQ x =,表示出矩形PQMN 的面积,求出最值即可;灵活应用:延长BA 、DE 交于点F ,延长BC 、ED 交于点G ,延长AE 、CD 交于点H ,取BF的中点I ,FG 的中点K ,证明AEF HED ≅和CDG HED ≅,得AF=DH=16,CG=HE=20,再利用【探索发现】的结论即可求出结果;实际应用:延长BA 、CD 交于点E ,过点E 作EH BC ⊥于点H ,根据4tan tan 3==B C ,求出BH 和EH 的长,再证明中位线PQ 的两端点在线段AB 、CD 上,即可用【拓展应用】的结论算出结果.【详解】探索发现:∵EF 、ED 是ABC 的中位线,∵//ED AB ,//EF BC ,12ED AB =,12EF BC =,∵90B ∠=︒,∵四边形FEDB 是矩形, ∵1112211222FEDBABC BC AB S EF DE S AB BC AB BC ⋅⋅===⋅⋅, 故答案是:12; 拓展应用:∵//PN BC ,∵APN ABC , ∵PN AE BC AD=,即PN h PQ a h -=, ∵a PN a PQ h =-, 设PQ x =, ∵2224PQMN a a a h ah S PQ PN x a x x ax x h h h ⎛⎫⎛⎫=⋅=-=-+=--+ ⎪ ⎪⎝⎭⎝⎭, ∵当2h PQ =时,PQMN S 有最大值,最大值是4ah , 故答案是:4ah ; 灵活应用:如图,延长BA 、DE 交于点F ,延长BC 、ED 交于点G ,延长AE 、CD 交于点H ,取BF 的中点I ,FG 的中点K ,由题意知四边形ABCH 是矩形,∵32AB =,40BC =,20AE =,16CD =,∵20EH =,16DH =,∵AE EH =,CD DH =,在AEF 和HED △中,FAE DHE AE AHAEF HED ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∵()AEF HED ASA ≅,∵16AF DH ==,同理CDG HED ≅,∵20CG HE ==, ∵242AB AF BI +==, ∵2432BI =<,∵中位线IK 的两端点在线段AB 和DE 上,过点K 作KL BC ⊥于点L , 由【探索发现】知矩形的最大面积为()()114020321672022BG BF ⋅=⨯+⨯+=;实际应用:如图,延长BA 、CD 交于点E ,过点E 作EH BC ⊥于点H ,∵4tan tan 3==B C , ∵B C ∠=∠,∵EB EC =, ∵108BC cm =,且EH BC ⊥, ∵1542BH CH BC cm ===, ∵4tan 3EH B BH ==, ∵4723EH BH cm ==,在Rt BHE 中,90BE cm ==,∵50AB cm =,∵40AE cm =, ∵BE 的中点Q 在线段AB 上,∵60CD cm =,∵30ED cm =,∵CE 的中点P 在线段CD 上,∵中位线PQ 的两端点在线段AB 、CD 上,由【拓展应用】知,矩形PQMN 的最大面积为2119444BC EH cm ⋅=.【点睛】 本题考查四边形的综合问题,解题的关键是熟练掌握中位线定理,相似三角形的性质和判定,等腰三角形的性质.【好题演练】一、填空题1.(2019·陕西九年级一模)如图,以AB 为直径的O 的圆心O 到直线l 的距离3OE =,O 的半径2r ,,直线AB 不垂直于直线l ,过点A 、B 分别作直线l 的垂线,垂足分别为点D 、C ,则四边形ABCD 的面积的最大值为___________.2.(2020·贵州遵义市·九年级三模)如图,⊙O 是等边⊙ABC 的外接圆,已知D 是⊙O 上一动点,连接AD 、CD ,若圆的半径r =2,则以A 、B 、C 、D 为顶点的四边形的最大面积为_____.3.(2020·江苏宿迁市·九年级其他模拟)如图,O 的半径为1,点(),4P a a -为O 外一点,过点P 作O 的两条切线,切点分别为点A 和点B ,则四边形PBOA 面积的最小值是___________.二、解答题4.(2019·陕西西安市·交大附中分校九年级期中)[问题提出](1)如图①,在ABC 中,6,BC D =为BC 上一点,4,AD =则ABC 面积的最大值是(2)如图②,已知矩形ABCD 的周长为12,求矩形ABCD 面积的最大值[实际应用](3)如图③,现有一块四边形的木板余料ABCD ,经测量60.80,70,AB cm BC cm CD cm ===且60,B C ∠=∠=︒木匠师傅从这块余料中裁出了顶点,M N 在边BC 上且面积最大的矩形,PQMN 求该矩形的面积5.(2020·内蒙古赤峰市·中考真题)如图,矩形ABCD中,点P为对角线AC所在直线上的一个动点,连接PD,过点P作PE⊙PD,交直线AB于点E,过点P作MN⊙AB,交直线CD于点M,交直线AB于点N.AB AD =4.(1)如图1,①当点P在线段AC上时,⊙PDM和⊙EPN的数关系为:⊙PDM___ ⊙EPN;②DPPE的值是;(2)如图2,当点P在CA延长线上时,(1)中的结论②是否成立?若成立,请证明;若不成立,说明理由;(3)如图3,以线段PD,PE为邻边作矩形PEFD.设PM的长为x,矩形PEFD的面积为y.请直接写出y与x之间的函数关系式及y的最小值.6.(2020·甘肃陇南市·九年级一模)如图1,抛物线2y x mx n =-++交x 轴于点()30A -,和点B ,交y 轴于点()0,3C .(1)求抛物线的函数表达式;(2)求一次函数y kx b =+(直线AC )的表达式和ABC 的面积;(3)如图2,设点N 是线段AC 上的一动点,作DN x ⊥轴,交抛物线于点D ,求四边形ABCD最大面积时D点的坐标和最大面积.7.(2020·广东深圳市·蛇口育才二中九年级一模)如图,点A、B分别在x轴和y轴的正半轴上,以线段AB为边在第一象限作等边⊙ABC,ABCS=CA⊙y轴.(1)若点C在反比例函数ky(k0)x=≠的图象上,求该反比例函数的解析式;(2)在(1)中的反比例函数图象上是否存在点N,使四边形ABCN是菱形,若存在请求出点N坐标,若不存在,请说明理由.(3)点P在第一象限的反比例函数图象上,当四边形OAPB的面积最小时,求出P点坐标.。
中考数学《几何中的最值问题》专项练习(附答案解析)

中考数学《几何中的最值问题》专项练习(附答案解析)一、单选题1.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A.12 B.24 C.36 D.482.将一张宽为4cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是()A.4cm2B.8cm2C.12cm2D.16cm23.如图,已知直线5-512y x与x轴、y轴分别交于B、C两点,点A是以D(0,2)为圆心,2为半径的⊙D上的一个动点,连接AC、AB,则△ABC面积的最小值是()A.30 B.29 C.28 D.274.如图,∠AOB=45°,点M、N分别在射线OA、OB上,MN=6,△OMN的面积为12,P是直线MN上的动点,点P关于OA对称的点为P1,点P关于OB对称点为P2,当点P在直线NM上运动时,△OP1P2的面积最小值为()A.6 B.8 C.12 D.185.如图,矩形ABCD中,AB=8,AD=4,E为边AD上一个动点,连接BE,取BE的中点G,点G 绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是()A.16 B.15 C.12 D.11二、填空题6.如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=6,则△BDE面积的最大值为_________.7.如图,⊙O的直径为5,在⊙O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4:3,点P在半圆弧AB上运动(不与A,B重合),过C作CP的垂线CD交PB的延长线于D点.则△PCD的面积最大为______________.8.已知AB为半圆的直径,AB=2,DA⊥AB,CB⊥AB,AD=1,BC=3,点P为半圆上的动点,则AD,AB,BC,CP,PD围成的图形的面积的最大值是_____.9.如图,在矩形ABCD中,∠ACB=30°,,点E是边BC上一动点(点E不与B,C重合),连接AE,AE的中垂线FG分别交AE于点F,交AC于点G,连接DG,GE.设AG=a,则点G到BC边的距离为_____(用含a的代数式表示),ADG的面积的最小值为_____.10.如图,直线AB交坐标轴于A(-2,0),B(0,-4),点P在抛物线1(2)(4)2y x x=--上,则△ABP面积的最小值为__________.三、解答题11.如图,已知抛物线23y ax bx =++与x 轴交于A 、B 两点,过点A 的直线l 与抛物线交于点C ,其中A 点的坐标是(1,0),C 点坐标是(4,3).(1)求抛物线的解析式;(2)抛物线的对称轴上是否存在点D ,使△BCD 的周长最小?若存在,求出点D 的坐标,若不存在,请说明理由;(3)点P 是抛物线上AC 下方的一个动点,是否存在点p ,使△PAC 的面积最大?若存在,求出点P 的坐标,若不存在,请说明理由.12.已知,如图,矩形ABCD 中,AD =6,DC =7,菱形EFGH 的三个顶点E ,G ,H 分别在矩形ABCD 的边AB ,CD ,AD 上,AH =2,连接CF .(1)当四边形EFGH 为正方形时,求DG 的长;(2)当DG =6时,求△FCG 的面积;(3)求△FCG 的面积的最小值.13.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点.(1)求抛物线的解析式;(2)当点P 在直线OD 下方时,求POD ∆面积的最大值.(3)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.14.已知抛物线y =a (x ﹣1)2过点(3,4),D 为抛物线的顶点.(1)求抛物线的解析式;(2)若点B 、C 均在抛物线上,其中点B (0,1),且∠BDC =90°,求点C 的坐标:(3)如图,直线y =kx +1﹣k 与抛物线交于P 、Q 两点,∠PDQ =90°,求△PDQ 面积的最小值.15.如图,已知二次函数213222y x x =-++的图象交x 轴于A (-1,0),B (4,0),交y 轴于点C ,点P 是直线BC 上方抛物线上一动点(不与B ,C 重合),过点P 作PE ⊥BC ,PF ∥y 轴交BC 与F ,则△PEF 面积的最大值是___________.16.如图,已知点P 是∠AOB 内一点,过点P 的直线MN 分别交射线OA ,OB 于点M ,N ,将直线MN 绕点P 旋转,△MON 的形状与面积都随之变化.(1)请在图1中用尺规作出△MON ,使得△MON 是以OM 为斜边的直角三角形;(2)如图2,在OP 的延长线上截取PC =OP ,过点C 作CM ∥OB 交射线OA 于点M ,连接MP 并延长交OB 于点N .求证:OP 平分△MON 的面积;(3)小亮发现:在直线MN 旋转过程中,(2)中所作的△MON 的面积最小.请利用图2帮助小亮说明理由.17.如图,已知A ,B 是线段MN 上的两点,4MN =,1MA =,1MB >,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M ,N 两点重合成一点C ,构成ABC ,设AB x =.(1)求x 的取值范围;(2)求ABC 面积的最大值.18.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.19.问题提出(1)如图①,在Rt△ABC中,∠ABC=90°,AB=12,BC=16,则AC=;问题探究(2)如图②,在Rt△ABC中,∠ABC=90°,AC=10,点D是AC边上一点,且满足DA=DB,则CD=;问题解决(3)如图③,在Rt△ABC中,过点B作射线BP,将∠C折叠,折痕为EF,其中E为BC中点,点F在AC边上,点C的对应点落在BP上的点D处,连接ED、FD,若BC=8,求△BCD面积的最大值,及面积最大时∠BCD的度数.20.如图,已知边长为6的菱形ABCD 中,∠ABC =60°,点E ,F 分别为AB ,AD 边上的动点,满足BE AF =,连接EF 交AC 于点G ,CE 、CF 分别交BD 于点M ,N ,给出下列结论:①△CEF 是等边三角形;②∠DFC =∠EGC ; ③若BE =3,则BM =MN =DN ;④222EF BE DF =+; ⑤△ECF .其中所有正确结论的序号是______21.如图,抛物线2y ax bx c =++与坐标轴交于点()()()0, 31,03,0A B E --、、,点P 为抛物线上动点,设点P 的横坐标为t .(1)若点C 与点A 关于抛物线的对称轴对称,求C 点的坐标及抛物线的解析式;(2)若点P 在第四象限,连接PA PE 、及AE ,当t 为何值时,PAE ∆的面积最大?最大面积是多少?(3)是否存在点P ,使PAE ∆为以AE 为直角边的直角三角形,若存在,直接写出点P 的坐标;若不存在,请说明理由.22.如图,在平面直角坐标系xOy 中,抛物线y =ax 2﹣2ax ﹣3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx+b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示);(2)点E 是直线l 上方的抛物线上的动点,若△ACE 的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,当以点A 、D 、P 、Q 为顶点的四边形为矩形时,请直接写出点P 的坐标.23.如图1,抛物线2y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,已知点B 坐标为(3,0),点C 坐标为(0,3).(1)求抛物线的表达式;(2)点P 为直线BC 上方抛物线上的一个动点,当PBC 的面积最大时,求点P 的坐标;(3)如图2,点M 为该抛物线的顶点,直线MD x ⊥轴于点D ,在直线MD 上是否存在点N ,使点N 到直线MC 的距离等于点N 到点A 的距离?若存在,求出点A 的坐标;若不存在,请说明理由.24.如图,已知边长为10的正方形ABCD E ,是BC 边上一动点(与B C 、不重合),连结AE G ,是BC 延长线上的点,过点E 作AE 的垂线交DCG ∠的角平分线于点F ,若FG BG ⊥.(1)求证:ABE EGF ∽△△; (2)若2EC =,求CEF △的面积;(3)请直接写出EC 为何值时,CEF △的面积最大.参考答案与解析一、单选题1.【答案】D【解答】由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),即可求解.【解答】解:由图2知,AB=BC=10,当BP⊥AC时,y的值最小,即△ABC中,BC边上的高为8(即此时BP=8),当y=8时,PC===6,△ABC的面积=×AC×BP=×8×12=48,故选:D.【点评】本题是运动型综合题,考查了动点问题的函数图象、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.2.【答案】B【分析】当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,面积为8cm2.【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=4cm,∴S△ABC =12×4×4=8cm2.故选:B.【点评】本题考查了折叠的性质,发现当AC⊥AB时,重叠三角形的面积最小是解决问题的关键.3.【答案】B【分析】过D作DM⊥BC于M,连接BD,则由三角形面积公式得,12BC×DM=12OB×CD,可得DM,可知圆D上点到直线5-512y x的最小距离,由此即可解决问题.【解答】过D作DM⊥BC于M,连接BD,如图,令0y =,则12x =,令0x =,则5y =-,∴B (12,0),C (0,-5),∴OB=12,OC=5,=, 则由三角形面积公式得,12BC ×DM=12OB ×CD , ∴DM=8413, ∴圆D 上点到直线5-512y x =的最小距离是845821313-=, ∴△ABC 面积的最小值是1581329213⨯⨯=. 故选:B .【点评】本题考查了一次函数的应用、勾股定理的应用、圆的有关性质,解此题的关键是求出圆上的点到直线BC 的最大距离以及最小距离.4.【答案】B【分析】连接OP ,过点O 作OH ⊥NM 交NM 的延长线于H .首先利用三角形的面积公式求出OH ,再证明△OP 1P 2是等腰直角三角形,OP 最小时,△OP 1P 2的面积最小.【解答】解:连接OP ,过点O 作OH ⊥NM 交NM 的延长线于H .∵S △OMN =12•MN •OH =12,MN =6,∴OH =4,∵点P 关于OA 对称的点为P 1,点P 关于OB 对称点为P 2,∴∠AOP =∠AOP 1,∠POB =∠P 2OB ,OP =OP 1=OP 2∵∠AOB =45°,∴∠P 1OP 2=2(∠POA+∠POB )=90°,∴△OP 1P 2是等腰直角三角形,∴OP =OP 1最小时,△OP 1P 2的面积最小,根据垂线段最短可知,OP 的最小值为4,∴△OP 1P 2的面积的最小值=12×4×4=8, 故选:B .【点评】本题考查轴对称,三角形的面积,垂线段最短等知识,解题的关键是证明△OP 1P 2是等腰直角三角形,属于中考常考题型.5.【答案】B【分析】过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【解答】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA ,∴△FEH ∽△EBA ,∴ ,HF HE EF AE AB BE == G 为BE 的中点,1,2FE GE BE ∴==∴ 1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴==CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+= 故选:B .【点评】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.二、填空题6.【答案】818【分析】作CM ⊥AB 于M ,EN ⊥AB 于N ,根据AAS证得EDN ≌DCM ,得出EN =DM ,然后解直角三角形求得AM =3,得到BM =9,设BD =x ,则EN =DM =9﹣x ,根据三角形面积公式得到S △BDE =12BD EN ⋅=12x (9﹣x )=﹣12(x ﹣4.5)2+818,根据二次函数的性质即可求得. 【解答】解:作CM ⊥AB 于M ,EN ⊥AB 于N ,∴∠EDN +∠DEN =90°,∵∠EDC =90°,∴∠EDN +∠CDM =90°,∴∠DEN =∠CDM , 在EDN 和DCM 中DEN CDM END DMC 90ED DC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩∴EDN ≌DCM (AAS ),∴EN =DM ,∵∠BAC =120°,∴∠MAC =60°,∴∠ACM =30°,∴AM =12AC =12⨯6=3, ∴BM =AB +AM =6+3=9,设BD =x ,则EN =DM =9﹣x ,∴S △BDE =12BD EN ⋅=12x (9﹣x )=﹣12(x ﹣4.5)2+818, ∴当BD =4.5时,S △BDE 有最大值为818, 故答案为:818. 【点评】此题主要考查旋转综合题、全等三角形的判定及性质、直角三角形的性质和求最值,解题的关键是熟知全等三角形的判定与性质和利用二次函数求最值.7.【答案】503【分析】由圆周角定理可知A P ∠=∠,再由90ACB PCD ∠=∠=︒可证明~ACB PDC ,最后根据相似三角形对应边成比例,及已知条件BC :CA =4:3,结合三角形面积公式解题即可.【解答】AB 为直径,90ACB ∴∠=︒PC CD ⊥,90PCD ∴∠=︒又CAB CPD ∠=∠~ACB PDC ∴AC BC CP CD∴= BC :CA =4:3,43CD PC ∴= 当点P 在弧AB 上运动时,12PCD S PC CD =⋅△ 2142233PCD S PC PC PC ∴=⨯⋅= 当PC 最大时,PCD S 取得最大值而当PC 为直径时最大,22505=33PCD S ∴=⨯. 【点评】本题考查圆周角定理、三角形面积、相似三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.8.【答案】【分析】五边形ABCDP 的面积=四边形ABCD 的面积﹣△CPD 的面积只要求出△CDP 面积的最小值,作EF//CD ,且与⊙O 相切于点P ,连接OP 延长OP 交AD 于H ,易知此时点P 到CD 的距离最小,此时△CDP 的面积最小.【解答】解:∵五边形ABCDP 的面积=四边形ABCD 的面积﹣△CPD 的面积,∴只要求出△CDP 面积的最小值,作EF//CD ,且与⊙O 相切于点P ,连接OP 延长OP 交AD 于H ,易知此时点P 到CD 的距离最小,此时△CDP 的面积最小,易知AD =,∵四边形ABCD 的面积=12(1+3)×2=4=12×1×1+12•AD •OH+12•1•3,∴OH ,∴PH ﹣11,∴△CAD 的面积最小值为2,∴五边形ABCDP 面积的最大值是4﹣(2)=.故答案为.【点评】本题主要考查了求解多边形的面积知识点,结合圆的切线的性质进行求解是解题的重要步骤.9.【答案】42a - 【分析】先根据直角三角形含30度角的性质和勾股定理得AB=2,AC=4,从而得CG 的长,作辅助线,构建矩形ABHM 和高线GM ,如图2,通过画图发现:当GE ⊥BC 时,AG 最小,即a 最小,可计算a 的值,从而得结论.【解答】∵四边形ABCD 是矩形,∴∠B=90°,∵∠ACB=30°,,∴AB=2,AC=4,∵AG=a ,∴CG=4a -,如图1,过G 作MH ⊥BC 于H ,交AD 于M ,Rt△CGH中,∠ACB=30°,∴GH=12CG=42a-,则点G到BC边的距离为42a-,∵HM⊥BC,AD∥BC,∴HM⊥AD,∴∠AMG=90°,∵∠B=∠BHM=90°,∴四边形ABHM是矩形,∴HM=AB=2,∴GM=2﹣GH=422a--=2a,∴S△ADG11222a AD MG=⋅=⨯=当a最小时,△ADG的面积最小,如图2,当GE⊥BC时,AG最小,即a最小,∵FG是AE的垂直平分线,∴AG=EG,∴42aa -=,∴43a =,∴△ADG 的面积的最小值为4233=,故答案为:42a -. 【点评】本题主要考查了垂直平分线的性质、矩形的判定和性质、含30度角的直角三角形的性质以及勾股定理,确定△ADG 的面积最小时点G 的位置是解答此题的关键.10.【答案】152【分析】根据直线AB 交坐标轴于A(-2,0),B(0,-4),计算得直线AB 解析式;平移直线AB 到直线CD ,直线CD 当抛物线相交并只有一个交点P 时,△ABP 面积为最小值,通过一元二次方程和抛物线的性质求得点P 坐标;再利用勾股定理逆定理,证明ABP △为直角三角形,从而计算得到△ABP 面积的最小值.【解答】设直线AB 为y kx b =+∵直线AB 交坐标轴于A(-2,0),B(0,-4)∴024k b b=-+⎧⎨-=⎩ ∴24k b =-⎧⎨=-⎩∴直线AB 为24y x =--如图,平移直线AB 到直线CD ,直线CD 为2y x p =-+当2y x p =-+与抛物线1(2)(4)2y x x =--相交并只有一个交点P 时,△ABP 面积为最小值∴()()21242y x p y x x =-+⎧⎪⎨=--⎪⎩∴22820x x p -+-= ∴()44820p ∆=--=∴72p =∴2210x x -+= ∴1x =将1x =代入1(2)(4)2y x x =--,得32y =∴31,2P ⎛⎫⎪⎝⎭∴()2223451224AP ⎛⎫=++= ⎪⎝⎭2231251424BP ⎛⎫=++=⎪⎝⎭2222420AB∴222AB AP BP +=∴ABP △为直角三角形,90BAP ∠=∴1115=2222ABP AB A S P ⨯=⨯=△ 即△ABP 面积的最小值为152故答案为:152. 【点评】本题考查了二次函数、一次函数、平移、一元二次方程、勾股定理逆定理的知识;解题的关键是熟练掌握二次函数、一次函数、平移、一元二次方程、勾股定理逆定理的性质,从而完成求解.三、解答题11.【答案】(1)抛物线y =x 2-4x +3;(2)D(2,1);(3)点P 的坐标为5(2,3)4- 【分析】(1)(1) 将A 、C 坐标代入即可;(2)由于BC 长度不变, 要周长最小, 就是让DB DC 最小, 而A 、B 关于对称轴对称, 所以AC 就是DB DC 的最小值, 此时D 点就是AC 与抛物线对称轴的交点; 【解答】解:(1)抛物线23y ax bx =++经过点(1,0)A ,点(4,3)C ,∴3016433a bab,解得14a b ==-⎧⎨⎩,所以,抛物线的解析式为243y x x =-+;(2)243(1)(3)yx xx x ,(3,0)∴B ,抛物线的对称轴为2x =;BC 长度不变,BDDC 最小时,BCD ∆的周长最小,A 、B 是关于抛物线对称轴对称的,∴当D 点为对称轴与AC 的交点时,BD DC +最小, 即BCD ∆的周长最小, 如图,∴21x yx ,解得:21x y =⎧⎨=⎩,(2,1)D ∴,∴抛物线对称轴上存在点(2,1)D ,使BCD ∆的周长最小;(3)存在,如图,设过点P 与直线AC 平行线的直线为y x m =+,联立243y x m yx x,消掉y 得,2530x x m ,2(5)41(3)0m ,解得:134m =-, 即134m =-时,点P 到AC 的距离最大,ACP ∆的面积最大, 此时52x =,5133244y , ∴点P 的坐标为5(2,3)4-,设过点P 的直线与x 轴交点为F ,则13(4F ,0), 139144AF, 直线AC 的解析式为1y x =-,45CAB ∴∠=︒,∴点F 到AC 的距离为9292sin 45428AF , 又223(41)32AC ,∴∆的最大面积127ACE=⨯=.28【点评】本题考查了二次函数综合题型,主要考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,利用轴对称确定最短路线问题,联立两函数解析式求交点坐标,利用平行线确定点到直线的最大距离问题,熟悉相关性质是解题的关键.12.【答案】(1)2‘(2)1;(3)(.【分析】(1)当四边形EFGH为正方形时,则易证AHE≌△DGH,则DG=AH=2;(2)过F作FM⊥DC,交DC延长线于M,连接GE,由于AB∥CD,可得∠AEG=∠MGE,同理有∠HEG=∠FGE,利用等式性质有∠AEH=∠MGF,再结合∠A=∠M=90°,HE=FG,可证△AHE≌△MFG,从而有FM=HA=2(即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2),进而可求三角形面积;=7-x,在△AHE中,AE≤AB=7,利用勾股定理可得HE2(3)先设DG=x,由第(2)小题得,S△FCG≤53,在Rt△DHG中,再利用勾股定理可得x2+16≤53,进而可求x,从而可得当时,△GCF的面积最小.【解答】解:(1)∵四边形EFGH为正方形,∴HG=HE,∠EAH=∠D=90°,∵∠DHG+∠AHE=90°,∠DHG+∠DGH=90°,∴∠DGH=∠AHE,∴△AHE≌△DGH(AAS),∴DG=AH=2;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE , ∴∠AEH=∠MGF ,在△AHE 和△MFG 中,∠A=∠M=90°,HE=FG , ∴△AHE ≌△MFG (AAS ), ∴FM=HA=2,即无论菱形EFGH 如何变化,点F 到直线CD 的距离始终为定值2, 因此S △FCG =12×FM ×GC=12×2×(7-6)=1; (3)设DG=x ,则由(2)得,S △FCG =7-x , 在△AHE 中,AE ≤AB=7, ∴HE 2≤53, ∴x 2+16≤53,∴x∴S △FCG 的最小值为,此时,∴当时,△FCG 的面积最小为(.【点评】本题属于四边形综合题,考查了矩形、菱形的性质、全等三角形的判定和性质、勾股定理.解题的关键是学会添加常用辅助线,构造全等三角形解决问题. 13.【答案】(1)抛物线的表达式为:223y x x =--;(2)POD S ∆有最大值,当14m =时,其最大值为4916;(3) Q -或(或1122⎛⎫-+- ⎪ ⎪⎝⎭或1322⎛⎫-+ ⎪ ⎪⎝⎭. 【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解;(2)设点()2,23P m m m --,求出32OG m =+,根据()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++,利用二次函数的性质即可求解;(3)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角的关系,确定直线OQ 倾斜角,进而求解.【解答】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =,故抛物线的表达式为:223y x x =--…①;(2)设直线PD 与y 轴交于点G ,设点()2,23P m m m --,将点P 、D 的坐标代入一次函数表达式:y sx t =+并解得,直线PD 的表达式为:32y mx m =--,则32OG m =+,()12POD D P S OG x x ∆=⨯-1(32)(2)2m m =+-2132m m =-++, ∵10-<,故POD S ∆有最大值,当14m =时,其最大值为4916; (3)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况:①当ACB BOQ ∠=∠时,4AB =,BC =,AC =, 过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:AH =, ∴CH则tan 2ACB ∠=,则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:x =故点Q -或(; ②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠, 则直线OQ 的表达式为: 3 y x =-…③,联立①③并解得:12x -±=,故点1322Q ⎛-- ⎝⎭或⎝⎭;综上,点Q -或(或⎝⎭或⎝⎭. 【点评】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.14.【答案】(1)y =(x ﹣1)2;(2)点C 的坐标为(2,1);(3)1 【分析】(1)将点(3,4)代入解析式求得a 的值即可;(2)设点C 的坐标为(x 0,y 0),其中y 0=(x 0﹣1)2,作CF ⊥x 轴,证△BDO ∽△DCF 得BO DFDO CF=,即1=00x 1y -=()01x 1-,据此求得x 0的值即可得;(3)过点D 作x 轴的垂线交直线PQ 于点G ,则DG =4,根据S △PDQ =12DG •MN 列出关于k 的等式求解可得.【解答】解:(1)将点(3,4)代入解析式,得:4a =4,解得:a =1,所以抛物线解析式为y =(x ﹣1)2; (2)由(1)知点D 坐标为(1,0), 设点C 的坐标为(x 0,y 0),(x 0>1、y 0>0), 则y 0=(x 0﹣1)2,如图1,过点C 作CF ⊥x 轴,∴∠BOD =∠DFC =90°,∠DCF+∠CDF =90°, ∵∠BDC =90°, ∴∠BDO+∠CDF =90°, ∴∠BDO =∠DCF , ∴△BDO ∽△DCF , ∴BO DFDO CF=, ∴1=00x 1y -=()01x 1-,解得:x 0=2,此时y 0=1, ∴点C 的坐标为(2,1).(3)设点P 的坐标为(x 1,y 1),点Q 为(x 2,y 2),(其中x 1<1<x 2,y 1>0,y 2>0), 如图2,分别过点P 、Q 作x 轴的垂线,垂足分别为M 、N , 由y=(x-1)2 ,y=kx+1-k ,得x 2﹣(2+k )x+k =0. ∴x 1+x 2=2+k ,x 1•x 2=k . ∴MN =|x 1﹣x 2|=|2﹣k|.则过点D 作x 轴的垂线交直线PQ 于点G ,则点G 的坐标为(1,1), 所以DG =1,∴S △PDQ =12DG •MN =12×1×|x 1﹣x 2|12|2﹣k|, ∴当k =0时,S △PDQ 取得最小值1.【点评】本题主要考查二次函数的综合问题,解题的关键是熟练掌握待定系数法求函数解析式、相似三角形的判定与性质及一元二次方程根与系数的关系等知识点.15.【答案】45【分析】先证明△PEF ∽△BOC,得出PE EF PF BO OC BC ==,再根据122y x =-+,得出关于x 的二次函数方程,根据顶点坐标公式,求得则△PEF 面积最大值.【解答】解:设213,222P x x x ⎛⎫-++⎪⎝⎭(0<x<4), 抛物线213222y x x =-++与y 轴交于C 点,故C(0,2),∵PF ∥y 轴,PE ⊥BC , ∴∠PFE=∠BCO, 又∵∠PEF=∠BOC=90°, ∴△PEF ∽△BOC, ∴PE EF PF BO OC BC== ,把B(4,0),C(0,2)代入直线BC 的解析式为122y x =-+, 点1,22F x x ⎛⎫-+ ⎪⎝⎭,∴221312(2)22222P F x PF y y x x x x =-=-++--+=-+,∴PE=BO ·PF BC =42212x x -+== , EF=OC ·PFBC=222211122(2)x x x x x x -+-+-== , ∴221(2)1225PEFx x SPE EF -=⋅= =2221(2)(2)42520x x x ⎡⎤-⎢⎥⎡⎤--+⎣⎦⎣⎦=, 当2x =时,PEF S △取值最大,∴PEF S △的最大值为244205=, 故答案为45. 【点评】本题考查了三角形的面积及相似三角形的判定与性质.熟练掌握相似三角形的判定与性质及用含x 的代数式表示出三角形的面积是解题的关键.16.【答案】(1)见解析;(2)见解析;(3)当点P 是MN 的中点时S △MON 最小.理由见解析. 【分析】(1)根据尺规作图,过P 点作PN ⊥OB 于N ,交OA 于点M ; (2)证明三角形全等得P 为MN 的中点,便可得到结论;(3)过点P 作另一条直线EF 交OA 、OB 于点E 、F ,设PF <PE ,与MC 交于于G ,证明△PGM ≌△PFN ,得△PGM 与△PFN 的面积相等,进而得S 四边形MOFG =S △MON . 便可得S △MON <S △EOF ,问题得以解决.【解答】(1)①在OB 下方取一点K ,②以P 为圆心,PK 长为半径画弧,与OB 交于C 、D 两点,③分别以C 、D 为圆心,大于12CD 长为半径画弧,两弧交于E 点, ④作直线PE ,分别与OA 、OB 交于点M 、N ,故△OMN 就是所求作的三角形;(2)∵CM ∥OB ,∴∠C =∠PON ,在△PCM 和△PON 中,C PON PC POCPH OPN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PCM ≌△PON (ASA ),∴PM =PN ,∴OP 平分△MON 的面积;(3)过点P 作另一条直线EF 交OA 、OB 于点E 、F ,设PF <PE ,与MC 交于于G ,∵CM ∥OB ,∴∠GMP =∠FNP ,在△PGM 和△PFM 中,PMG PNF PM PNMPG NPF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PGM ≌△PFN (ASA ),∴S △PGM =S △PFN∴S 四边形MOFG =S △MON .∵S 四边形MOFG <S △EOF ,∴S △MON <S △EOF ,∴当点P 是MN 的中点时S △MON 最小.【点评】本题主要考查了图形的旋转性质,全等三角形的性质与判定,三角形的中线性质,关键证明三角形全等.17.【答案】(1)12x <<;(2)2. 【分析】(1)由旋转可得到AC=MA=x ,BC=BN=3-x ,利用三角形三边关系可求得x 的取值范围;(2)过点C 作CD ⊥AB 于D ,设CD=h ,利用勾股定理表示出AD 、BD ,再根据BD=AB-AD 列方程求出h 2,然后求出△ABC 的面积的平方,再根据二次函数的最值问题解答.【解答】解:(1)∵4MN =,1MA =,AB x =,∴413BN x x =--=-.由旋转的性质,得1MA AC ==,3BN BC x ==-,由三角形的三边关系,得31,31,x x x x --<⎧⎨-+>⎩①② 解不等式①得1x >,解不等式②得2x <,∴x 的取值范围是12x <<.(2)如图,过点C 作CD AB ⊥于点D ,设CD h =,由勾股定理,得AD =,BD ==, ∵BD AB AD =-,x =-34=-x ,两边平方整理,得()222832=x x h x -+-.∵ABC 的面积为1122AB CD xh ⋅=, ∴()2222113183222422S xh x x x ⎛⎫⎛⎫==-⨯-+=--+ ⎪ ⎪⎝⎭⎝⎭, ∴当32x =时,ABC 面积最大值的平方为12,∴ABC . 【点评】本题考查了旋转的性质,三角形的三边关系,勾股定理,二次函数的最值问题,(1)难点在于考虑利用三角形的三边关系列出不等式组,(2)难点在于求解利用勾股定理列出的无理方程.18.【答案】(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【解答】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点,//PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =,PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,AM ∴=在Rt ABC ∆中,10AB AC ==,AN =MN ∴=最大,22211114922242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点评】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.19.【答案】(1)20;(2)5;(3)S △BCD =16;∠BCD =45°【分析】(1)由勾股定理可求解;(2)由等腰三角形的性质可得∠A =∠DBA ,由余角的性质可得∠DBC =∠C ,可得DB =DC =AD =12AC =5; (3)由中点的性质和折叠的性质可得DE =EC =4,则当DE ⊥BC 时,S △BCD 有最大值,由三角形面积公式和等腰直角三角形的性质可求解.【解答】解:(1)∵∠ABC =90°,AB =12,BC =16,∴20AC ==,故答案为:20;(2)∵DA =DB ,∴∠A =∠DBA ,∵∠ABC =90°∴∠A +∠C =90°,∠ABD +∠DBC =90°,∴∠DBC =∠C ,∴DB=DC,∴DB=DC=AD=12AC=5,故答案为:5;(3)∵E为BC中点,BC=8,∴BE=EC=4,∵将∠C折叠,折痕为EF,∴DE=EC=4,当DE⊥BC时,S△BCD有最大值,S△BCD=12×BC×DE=12×8×4=16,此时∵DE⊥BC,DE=EC,∴∠BCD=45°.故答案为:S△BCD=16;∠BCD=45°.【点评】本题主要考查了勾股定理、直角三角形斜边中线问题以及三角形中的折叠问题;题目较为综合,其中熟练掌握定义定理是解题的关键.20.【答案】①②③⑤【分析】由“SAS”可证△BEC≌△AFC,可得CF=CE,∠BCE=∠ACF,可证△EFC是等边三角形,由三角形内角和定理可证∠DFC=∠EGC;由等边三角形的性质和菱形的性质可求MN=DN=BM=由勾股定理即可求解EF2=BE2+DF2不成立;由等边三角形的性质可得△ECF面积2,则当EC⊥AB时,△ECF【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD=6,∵AC=BC,∴AB=BC=CD=AD=AC,∴△ABC,△ACD是等边三角形,∴∠ABC=∠BAC=∠ACB=∠DAC=60°,∵AC=BC,∠ABC=∠DAC,AF=BE,∴△BEC≌△AFC(SAS)∴CF=CE,∠BCE=∠ACF,∴∠ECF =∠BCA =60°,∴△EFC 是等边三角形,故①正确;∵∠ECF =∠ACD =60°,∴∠ECG =∠FCD ,∵∠FEC =∠ADC =60°,∴∠DFC =∠EGC ,故②正确;若BE =3,菱形ABCD 的边长为6,∴点E 为AB 中点,点F 为AD 中点,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =CO ,BO =DO ,∠ABO =12∠ABC =30°,∴AO =12AB =3,BO =∴BD =,∵△ABC 是等边三角形,BE =AE =3,∴CE ⊥AB ,且∠ABO =30°,∴BE EM =3,BM =2EM ,∴BM =同理可得DN =∴MN =BD −BM −DN =∴BM =MN =DN ,故③正确;∵△BEC ≌△AFC ,∴AF =BE ,同理△ACE ≌△DCF ,∴AE =DF ,∵∠BAD ≠90°,∴EF 2=AE 2+AF 2不成立,∴EF 2=BE 2+DF 2不成立,故④错误,∵△ECF 是等边三角形,∴△ECF 2, ∴当EC ⊥AB 时,△ECF 面积有最小值,此时,EC =ECF 面积的最小值为4,故⑤正确; 故答案为:①②③⑤.【点评】本题是四边形综合题,考查菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,勾股定理等知识,熟练掌握性质定理是解题的关键.21.【答案】(1)223;y x x =--(2)当32t =时,S 有最大值278;(3)()()2,5,1,4-- 【分析】(1)根据抛物线上的对称点B 和E ,求出对称轴从而可求出C 点坐标.然后设出抛物线的交点式,再把点A 代入求出a 值即可求出抛物线的解析式;(2)过点P 作y 轴的平行线交AE 于点H ,分别根据抛物线和直线AE 的解析式表示出点P 和点H 的坐标,从而求出线段PH 的长,最后用含t 的式子表示∆APE 的面积,利用二次函数的性质求解;(3)根据两直线垂直时,它们的斜率之积为-1,可求得与直线AE 垂直的直线方程,最后联立方程组可求点P 的坐标.【解答】解:(1)抛物线2y ax bx c =++经过点()()1,03,0,B E -、∴抛物线的对称轴为1,x =点()0,3A -,点()2,3C -抛物线表达式为()()()23123,.y a x x a x x =-+=--33a ∴-=-,解得1,a =∴抛物线的表达式为223;y x x =--()2如图,过点P 作y 轴的平行线交AE 于点H由点,A E 的坐标得直线AE 的表达式为3,y x =-设点()2,23P t t t --,则(),3H t t -()()22213333273233222228PAES PH OE t t t t t t ∆⎛⎫∴=•=--++=-+=--+ ⎪⎝⎭ 当32t =时,S 有最大值278()3直线AE 表达式中的k 值为1,则与之垂直的直线表达式中的k 值为1-① 当90PEA ︒∠=时,直线PE 的表达式为1,y x b =-+将点E 的坐标代人并解得13b =,直线PE 的表达式为3,y x =-+联立得2233y x x y x ⎧=--⎨=-+⎩解得2x =-或3(不合题意,舍去)故点P 的坐标为()2,5-② 当90PAE ︒∠=时,直线PA 的表达式为2,y x b =-+将点A 的坐标代人并解得23b =,直线PE 的表达式为3,y x =--联立得2233y x x y x ⎧=--⎨=--⎩ 解得1x =或0(不合题意,舍去)故点()1,4P -综上,点P 的坐标为()2,5-或(1,-4)【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质;会利用待定系数法求二次函数解析式;会解一元二次方程;理解坐标与图形性质,记住两直线垂直时它们的斜率之积为-1;会利用分类讨论的思想解决数学问题.。
中考数学经典几何模型之胡不归最值模型(解析版)

中考数学经典几何模型之胡不归最值模型(解析版)在数学中,经典几何模型是考试中经常出现的题型之一。
其中,胡不归最值模型是一种常见的最值问题。
这类问题通常涉及到形如“PA+kP”的式子,可以分为两类问题:胡不归问题和阿氏圆问题。
胡不归问题的故事源于一个少年外出求学,得知父亲病危后,他立即赶回家。
虽然他所在的位置到家的路上有一片砂石地,但他仍然义无反顾地走了这条路。
当他到家时,父亲已经去世了,他深感悔恨并痛哭流涕。
邻居告诉他,父亲在临终前一直念叨着“胡不归?胡不归?……”(“胡”同“何”)。
这个故事启发我们思考如何求解“PA+kP”型问题中的最值。
以胡不归问题为例,我们需要求解一个动点P在直线MN 外的运动速度为V1,在直线MN上运动的速度为V2,且V1<V2,A、B为定点,点C在直线MN上,确定点C的位置使得AC+BC的值最小,即求BC+kAC的最小值。
为了解决这个问题,我们可以构造射线AD使得sin∠DAN=k,即CH=kAC。
这样,我们可以将问题转化为求BC+CH最小值,过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小。
在解决“PA+kP”型问题时,关键是构造与kP相等的线段,将“PA+kP”型问题转化为“PA+PC”型。
而这里的P必须是一条方向不变的线段,方能构造定角利用三角函数得到kP的等线段。
举个例子,如图所示,在△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值为5.这个问题的关键在于处理“CD+BD”的式子,考虑tanA=2,△ABE三边之比为1:2:5,sin ABE⊥AB交AB于H点,则DH=BD/5.通过构造HD,我们可以将问题转化为求CD+CH的最小值,其中CH=kAC,k=sin∠DAN=BD/5.过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即CD+BD的最小值为5.综上所述,胡不归最值模型是一类常见的最值问题。
最值问题之将军饮马-2023年中考数学重难点专题(解析版)

最值问题之将军饮马一、模型精讲最小?基础模型:如图,在直线上找一点P使得PA+PB模型解析:作点A关于直线的对称点A',连接PA',则PA'=PA,所以PA+PB=PA'+模型变式:1.两定一动之点点周长最小.在OA、OB上分别取点M、N,使得△PMN2.两定两动之点点的周长最小。
在OA、OB上分别取点M、N使得四边形PMNQ3.一定两动之点线12在OA 、OB 上分别取M 、N 使得PM +MN最小。
此处M 点为折点,作点P 关于OA 对称的点P ',将折线段PM +MN 转化为P 'M +MN ,即过点P '作OB 垂线分别交OA 、OB 于点M 、N ,得PM +MN 最小值(点到直线的连线中,垂线段最短)二、针对训练一、单选题1如图,正方形ABCD 的边长为4,点M 在DC 上,且DM =1,N 是AC 上一动点,则DN +MN 的最小值为()A.4B.42C.25D.5【答案】D【详解】∵四边形ABCD 是正方形,∴点B 与D 关于直线AC 对称,∴DN =BN ,连接BD ,BM 交AC 于N ′,连接DN ′,∴当B 、N 、M 共线时,DN +MN 有最小值,则BM 的长即为DN +MN 的最小值,∴AC 是线段BD 的垂直平分线,又∵CD =4,DM =1∴CM =CD -DM =4-1=3,在Rt △BCM 中,BM =CM 2+BC 2=32+42=5故DN +MN 的最小值是5.故选:D .2如图所示,在△ABC 中,∠ABC =68°,BD 平分∠ABC ,P 为线段BD 上一动点,Q 为 边AB 上一动点,当AP +PQ 的值最小时,∠APB 的度数是()A.118°B.125° C.136° D.124°3【答案】D【详解】解:在BC 上截取BE =BQ ,连接PE ,如图:∵BD 平分∠ABC ,∠ABC =68°,∴∠ABD =∠CBD =12∠ABC =34°,∵BP =BP ,∴△PBQ ≌△PBE SAS ,∴PE =PQ ,∴AP +PQ =AP +PE ,∴当A 、P 、E 在同一直线上,且AE ⊥BC 时,AP +PE 最小,即AP +PQ 最小,过点A 作AE ⊥BC 于点E ,交BD 于点P ,如图:∵∠AEB =90°,∠CBD =34°,∴∠APB =∠AEB +∠CBD =124°.故选:D .3如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点P 为AC 边上的动点,过点P 作PD ⊥AB 于点D ,则PB +PD 的最小值为()A.154B.245C.5D.203【答案】B【详解】解:如下图,作点B 关于AC 的对称点B ,过点B 作B D ⊥AB 于点D ,交AC 于点P ,连接AB ,点P 即为所求作的点,此时PB +PD 有最小值,根据对称性的性质,可知:BP =B P ,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,∴AB =AC 2+BC 2=5,根据对称性的性质,可知:△ABC ≅△AB C ,∴S △ABB =S △ABC +S △ABC=2S △ABC ,即12×AB ⋅B D =2×12BC ⋅AC ,∴5B D =24,∴B D =245,故选:B .44如图所示,已知A (1,y 1),B (2,y 2)为反比例函数y =2x图象上的两点,动点P (x ,0)在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大值时,点P 的坐标是()A.(3,0) B.72,0 C.53,0 D.52,0【答案】A 【详解】∵把A (1,y 1),B (2,y 2)代入反比例函数y =2x得:y 1=2,y 2=1,∴A (1,2),B (2,1),∵在△ABP 中,由三角形的三边关系定理得:|AP -BP |<AB ,∴延长AB 交x 轴于P ′,当P 在P ′点时,PA -PB =AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y =kx +b ,把A 、B 的坐标代入得:k +b =22k +b =1 ,解得:k =-1,b =3,∴直线AB 的解析式是y =-x +3,当y =0时,x =3,即P (3,0).故选:A .5如图,如图,⊙M 的半径为2,圆心M 的坐标为(3,4),点P 是⊙M 上的任意一点,PA ⊥PB ,PA,PB 与x 轴分别交于A ,B 两点,若点A 、点B 关于原点O 对称,则AB 的最小值为()A.3B.4C.5D.6【答案】D 【详解】解:连接OP ,∵PA ⊥PB ,∴∠APB =90°,∵AO =BO ,5∴AB =2PO ,若要使AB 取得最小值,则PO 需取得最小值,连接OM ,交⊙M 于点P ′,当点P 位于P ′位置时,OP ′取得最小值,过点M 作MQ ⊥x 轴于点Q ,则OQ =3、MQ =4,∴OM =5,又∵MP ′=2,∴OP ′=3,∴AB =2OP ′=6,故选:D .6如图,等边△ABC 的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是边AC 上一点,若AE =2,则EM +CM 的最小值为()A.26B.33C.27D.42【答案】C【详解】解:连接BE ,交AD 于点M ,过点E 作EF ⊥BC 交于点F ,∵△ABC 是等边三角形,AD 是BC 边上的中线,∴B 点与C 点关于AD 对称,∴BM =CM ,∴EM +CM =EM +BM =BE ,此时EM +CM 的值最小,∵AC =6,AE =2,∴EC =4,在Rt △EFC 中,∠ECF =60°,∴FC =2,EF =23,在Rt △BEF 中,BF =4,∴BE =27,故选:C .7如图,点M 是菱形ABCD 的边BC 的中点,P 为对角线BD 上的动点,若AB =2,∠A =120°,则PM +PC的最小值为()A.2B.3C.2D.1【答案】B【详解】解:连接AM 、AC ,AM 交BD 于P ,此时PM +PC 最小,连接CP ,6∵四边形ABCD 是菱形,∴OA =OC ,AC ⊥BD ,∴C 和A 关于BD 对称,∴AP =PC ,∵∠A =120°,∴∠ABC =60°,∴△ABC 是等边三角形,∴AC =AB =2,∵M 是BC 的中点,∴AM ⊥BC ,∴∠BAM =30°,∴BM =1,∴AM =AB 2-BM 2=3,∴PM +PC =AM =3.故选B .8如图1,正方形ABCD 中,点E 是BC 的中点,点P 是对角线AC 上的一个动点,设AP =x ,PB +PE =y ,当点P 从A 向点C 运动时,y 与x 的函数关系如图2所示,其中点M 是函数图象的最低点,则点M 的坐标是()A.42,35B.22,35C.35,22D.35,42【答案】A【详解】如图,根据图像,当P 与C 重合时,PB +PE =9即CB +CE =9,∵点E 是BC 的中点,∴BC =6,连接DE 交AC 于点G ,当点P 与点G 重合时,PE +PB 最小,且为DE 的长即点M 的纵坐标,∵四边形ABCD 是正方形,AB =6,∴CE ∥AD ,AC =62+62=62,DE =62+32=35,∴△CGE ∽△AGD ,∴CG AG =CE AD=12,7∴AC AG=32,∴AG =42,故点M 的坐标为(42,35),故A 正确.故选:A.9如图,E 为正方形ABCD 边AD 上一点,AE =1,DE =3,P 为对角线BD 上一个动点,则PA +PE 的最小值为()A.5B.42C.210D.10【答案】A【详解】连接EC ,交BD 于P 点∵四边形ABCD 为正方形∴A 点和C 点关于BD 对称∴PA =PC∴PA +PE =PC +PE =EC根据“两点之间线段最短”,可知PA +PE 的最小值即为线段EC 的长.∵AE =1,DE =3∴AD =4∴DC =4∴CE =DE 2+CD 2=32+42=5∴PA +PE 的最小值为5故选:A10如图,在矩形ABCD 中,AB =8,AD =4,点E 是矩形ABCD 内部一动点,且∠BEC =90°,点P 是AB 边上一动点,连接PD 、PE ,则PD +PE 的最小值为()A.8 B.45 C.10 D.45-2【答案】A【详解】解:如图,设点O 为BC 的中点,由题意可知,8点E 在以BC 为直径的半圆O 上运动,作半圆O 关于AB 的对称图形(半圆O '),点E 的对称点为E 1,连接O 'E 1,则PE =PE 1,∴当点D 、P 、E 1、O '共线时,PD +PE 的值最小,最小值为DE 1的长,如图所示,在Rt △DCO '中,CD =8,CO '=6,∴DO '=82+62=10,又∵O 'E 1=2,∴DE 1=DO '-O 'E 1=8,即PD +PE 的最小值为8,故选:A .二、填空题11如图,在△ABC 中,∠BAC =90°,AB =3,AC =4,EF 垂直平分BC ,点P 为直线EF 上任意一点,则AP +BP 的最小值是.【答案】4【详解】解:连接PC .∵EF 是BC 的垂直平分线,∴BP =PC ,∴PA +BP =AP +PC ,∴当点A ,P ,C 在一条直线上时,PA +BP 有最小值,最小值为AC =4.故答案为:4.12如图,在等边△ABC 中,BD ⊥AC 于D ,AD =3cm .点P ,Q 分别为AB ,AD 上的两个定点且BP =AQ =1cm,点M为线段BD上一动点,连接PM,QM,则PM+QM的最小值为cm.【答案】5【详解】解:如图所示,作点P关于BD的对称点P ,∵△ABC是等边三角形,BD⊥AC,∴∠ABD=∠DBC=12∠ABC=12×600=300,∴点P 在BC上,∴P M=PM,则PM+QM=P M+QM,当P ,M,Q在同一条直线上时,有最小值,∵点P关于BD的对称点P ,∠ABD=∠DBC=30°,∴PP ⊥BM,BP=BP =1cm,∴∠BP P=60°,∴△BPP 是等边三角形,即∠BP P=∠C=60°,∴PP ∥AC,且PP =AQ=1cm,∴四边形PP QA是平行四边形,∴P Q=AP=AB-BP,在Rt△ABD中,∠ABD=30°,AD=3,∴AB=2AD=2×3=6,∴AP=P Q=P M+QM=PM+QM=AB-BP=6-1=5,故答案为:5.13如图,牧童在A处,A、B处相距河岸的距离AC,BD的长分别为700m和500m,且C,D两地距离为500m,天黑前牧童从A处将牛牵到河边饮水,再赶回家,那么牧童最少要走.9【答案】1300m【详解】解:作点A关于CD的对称点A ,连接A B,则A B的长即为AP+BP的最小值,过点B作BE⊥AC,垂足为E,∵CD=500m,BD=500m,AC=700m,∴A′C=AC=700m,CE=BD=500m,CD=BE=500m∴A′E=A′C+CE=700+500=1200(m),在Rt△A′EB中,A B=12002+5002=1300(m).即牧童最少要走1300m .故答案为:1300m.14如图,菱形草地ABCD中,沿对角线修建60米和80米两条道路AC<BD,M、N分别是草地边BC、CD的中点,在线段BD上有一个流动饮水点P,若要使PM+PN的距离最短,则最短距离是米.【答案】50【详解】解:作M关于BD的对称点Q,连接NQ,交BD于P ,连接MP ,当P点与P 重合时,MP+NP=MP +NP =NQ的值最小,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∴M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,10∴NQ =BC ,设AC 与BD 的交点为点O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,OC =12AC =30米,OB =12BD =40米,∴BC =OB 2+OC 2=50米,∴PM +PN 的最小值是50米.故答案为:50.15在平面直角坐标系中,点A 0,-3 ,点O 0,0 ,若有一点B 2a +1,-2a +2 ,当BA +BO 的值最小时,a =.【答案】12【详解】如下图所示:因为B 2a +1,-2a +2 的坐标满足关系:2a +1与-2a +2的和为3,即点B 在直线y =-x +3上,作点O 关于直线y =-x +3对称的点O ,得出点O 坐标为3,3 ,连接O A 交直线y =-x +3于点B ,此时BA +BO 最小,设直线O A 的解析式为y =kx -3,将O 3,3 代入y =kx -3,得:3=3k -3,解得k =2,即直线O A 的解析式为y =2x -3,联立两直线方程得:y =-x +3y =2x -3 ,解得:x =2y =1 ,即点B 坐标为2,1 ,即2a +1=2,-2a +2=1,解得a =12,故答案为:12.16如图,直线y =x +4与x 轴,y 轴分别交于A 和B ,点C 、D 分别为线段AB 、OB 的中点,P 为OA 上一动点,当PC +PD 的值最小时,点P 的坐标为.【答案】-1,0【详解】解:作点D 关于x 轴的对称点D ′,连接CD ′交x 轴于点P ,此时PC +PD 值最小,最小值为CD ′,如图.令y =x +4中x =0,则y =4,∴点B 的坐标为0,4 ;令y =x +4中y =0,则x +4=0,解得:x =-4,∴点A 的坐标为-4,0 .∵点C 、D 分别为线段AB 、OB 的中点,∴点C -2,2 ,点D 0,2 .∵点D ′和点D 关于x 轴对称,∴点D ′的坐标为0,-2 .设直线CD ′的解析式为y =kx +b ,∵直线CD ′过点C -2,2 ,D ′0,-2 ,∴-2k +b =2b =-2,解得k =-2b =-2 ,∴直线CD ′的解析式为y =-2x -2.令y =0,则0=-2x -2,解得:x =-1,∴点P 的坐标为-1,0 .故答案为:-1,0 .17如图,点P 是∠AOB 内任意一点,OP =3cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,∠AOB =30°,则△PMN 周长的最小值是.【答案】3cm【详解】解:分别作点P 关于OA 、OB 的对称点C 、D ,连接CD ,分别交OA 、OB 于点M 、N ,连接OP 、OC 、OD 、PM 、PN .∵点P 关于OA 的对称点为C ,关于OB 的对称点为D ,∴PM =CM ,OP =OC ,∠COA =∠POA ;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=3cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=3cm.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=3cm.故答案为:3cm.18如图,在周长为12的菱形ABCD中,DE=1,DF=2,若P为对角线AC上一动点,则EP+FP的最小值为.【答案】3【详解】解:作F点关于BD的对称点F ,则PF=PF ,连接EF'交BD于点P.∴EP+FP=EP+F P.由两点之间线段最短可知:当E、P、F'在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F P=EF .∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF D是平行四边形,∴EF =AD=3.∴EP+FP的最小值为3.故答案为:3.19如图,在Rt△ABC中,∠ACB=90°,AC=BC,点C在直线MN上,∠BCN=30°,点P为MN上一动点,连接AP,BP.当AP+BP的值最小时,∠CBP的度数为度.【答案】15【详解】如图,作B关于MN的对称点D,连接AD,BD,CD,∵AP+BP的值最小,则MN交AD于P,由轴对称可知:CB=CD,PB=PD,∴∠CBD=∠CDB,∠PBD=∠PDB,∴∠CBP=∠CDP,∵∠BCN=30°,∴∠BCD=2∠BCN=60°,∴△BCD是等边三角形,∵AC=BC,∴AC=CD,∴∠CAD=∠CDA,∵∠ACB=90°,∠BCD=60°,∴∠CAD=∠CDA=12180°-∠ACB-∠BCD=15°,∴∠CBP=∠CDP=15°,故答案为:15.20如图,抛物线y=x2-4x+3与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,在其对称轴上有一动点M,连接MA,MC,AC,则△MAC周长的最小值是.【答案】32+10【详解】解:∵抛物线y=x2-4x+3与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,∴当y=0时,0=x2-4x+3解得x=1或x=3,即A1,0,,B3,0;当x=0时,y=3,即C0,3由二次函数对称性,A,B关于对称轴对称,即MA=MB,∴C△MAC=CA+CM+MA=CA+CM+MB,∵AC=OA2+OC2=10,∴△MAC周长的最小值就是CM+MB的最小值,根据两点之间线段最短即可得到CM+MB的最小值为C,M,B三点共线时线段CB长,∵CB=OC2+OB2= 32,∴△MAC周长的最小值为CA+CB=32+10,故答案为:32+10.三、解答题21如图,抛物线y=x2+bx+c与x轴交于A-1,0两点.,B3,0(1)求该抛物线的解析式;(2)观察函数图象,直接写出当x取何值时,y>0?(3)设(1)题中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.【答案】(1)抛物线的解析式为y=x2-2x-3;(2)当x<-1或x>3时,y>0;(3)Q点坐标为1,-2.【详解】(1)解:∵抛物线y=x2+bx+c与x轴的两个交点分别为A-1,0,B3,0,∴1-b+c=09+3b+c=0,解得b=-2c=-3,∴所求抛物线的解析式为y=x2-2x-3;(2)解:观察函数图象,当x<-1或x>3时,y>0,故答案为x<-1或x>3;(3)解:在抛物线对称轴上存在点Q,使△QAC的周长最小.∵AC长为定值,∴要使△QAC的周长最小,只需QA+QC最小,∵点A关于对称轴直线x=-b2a=1的对称点是3,0,∴Q是直线BC与对称轴直线x=1的交点,设过点B,C的直线的解析式y=kx-3,把3,0代入,∴3k-3=0,∴k=1,∴直线BC的解析式为y=x-3,把x=1代入上式,∴y=-2,∴Q点坐标为1,-2.22教材呈现:下图是华师版八年级下册数学教材第111页的部分内容.(1)问题解决:请结合图①,写出例1的完整解答过程.(2)问题探究:在菱形ABCD中,对角线AC、BD相交于点O,AB=4,∠BAD=2∠ABC.过点D作DE⎳AC交BC 的延长线于点E.如图②,连结OE,则OE的长为.(3)如图③,若点P是对角线BD上的一个动点,连结PC、PE,则PC+PE的最小值为.【答案】(1)见解析;(2)27;(3)43【详解】(1)∵四边形ABCD是菱形,∴AD⎳BC,∴∠BAD+∠B=180°.∵∠BAD=2∠B,∴∠B=60°.∵四边形ABCD是菱形,∴AB=BC.∴△ABC是等边三角形.(2)∵四边形ABCD是菱形,∴AD⎳BC,又∵DE⎳AC,∴四边形ACED是平行四边形,由(1)可得,AB=AC=AD故四边形ACED是菱形;则∠ADE=120°,DE=AD=4,∠BDC=30°,OA=2,∴OD=AD2-OA2=42-22=23∠ODE=120°-30°=90°则OE=OD2+DE2=(23)2+42=27.(3)如图所示,过A作BE的垂线交BE于点F,连接AE,A点关于BD的对称点为点C,则PC+PE的最小值为AE;∵△ABC为等边三角形,∴∠BAF=30°,∴AF=23,CF=2,EF=6AE=AF2+EF2=(23)2+62=43则PC+PE的最小值为43.23在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,A (3,0),B (0,4),D 为边OB 的中点.(1)若E 为边OA 上的一个动点,求△CDE 的周长最小值;(2)若E 、F 为边OA 上的两个动点,且EF =1,当四边形CDEF 的周长最小时,求点E 、F 的坐标.【答案】(1)13+35;(2)23,0 ,53,0 【详解】(1)解:如图,作点D 关于x 轴的对称点D ,连接CD 与x 轴交于点E ,连接DE ,由模型可知△CDE 的周长最小,∵在矩形OACB 中,OA =3,OB =4,D 为OB 的中点,∴D (0,2),C (3,4),D (0,-2),设直线CD 为y =kx +b ,把C (3,4),D (0,-2)代入,得3k +b =4,b =-2,解得k =2,b =-2,∴直线CD 为y =2x -2,令y =0,得x =1,∴点E 的坐标为(1,0).∴OE =1,AE =2,利用勾股定理得CD =32+22=13,DE =12+22=5,CE =22+42=25,∴△CDE 周长的最小值为:13+5+25=13+35.(2)解:如图,将点D 向右平移1个单位得到D (1,2),作D 关于x 轴的对称点D (1,-2),连接CD 交x 轴于点F ,将点F 向左平移1个单位到点E ,此时点E 和点F 为所求作的点,连接D F ,此时四边形CDEF 周长最小,理由如下:∵四边形CDEF 的周长为CD +DE +EF +CF ,CD 与EF 是定值,∴DE +CF 最小时,四边形CDEF 周长最小,∵DD ∥EF ,且DD =EF ,∴四边形DD FE 为平行四边形,∴DE =D F ,根据轴对称可知,D F =D F ,∴DE +CF =D F +CF =FD +CF =CD ,设直线CD 的解析式为y =kx +b ,把C (3,4),D (1,-2)代入,得3k +b =4k +b =-2,解得k =3b =-5 ,∴直线CD 的解析式为y =3x -5,令y =0,得x =53,∴点F 坐标为53,0 ,∴点E 坐标为23,0 .24如图,在Rt △ABC 中,∠ACB =90°,斜边AB =8,AB 经过原点O ,点C 在y 轴的正半轴上,AC 交x 轴于点D ,且CD :AD =4:3,反比例函数y =k x的图象经过A 、B 两点.(1)求反比例函数的解析式.(2)点P 为直线AC 上一动点,求BP +OP 的最小值.【答案】(1)y =-37x;(2)42【详解】(1)解:如图①,过点A 作AE ⊥x 轴于点E ,∵AB 经过原点O ,∴A 、B 关于原点对称,∴O 为AB 的中点,∵∠ACB =90°,AB =8,∴AO =CO =BO =12AB =4,∵OD ∥EA ,∴CO OE =CD DA =43,∴4OE =43,∴OE =3,∴AE =AO 2-OE 2=42-32=7,∴点A 的坐标为7,-3 ,∴k =7×-3 =-37,∴反比例函数的解析式为y =-37x .(2)解:如图②,延长BC 至点F ,使得FC =BC ,连接OF 交直线AC 于点P ,连接BP ,∵BC ⊥AC ,FC =BC ,∴AC 垂直平分BF ,∴BP =FP ,∴BP +OP =FP +OP =OF ,由“两点间线段最短”可得BP +OP 的最小值为线段OF 的长,由(1)得A 、B 关于原点对称,∴B -7,3 ,∵C 为线段BF 的中点,∴x B +xF 2=x C ,yB +yF 2=y C ,即-7+xF 2=0,3+yF 2=4,解得x F =7,y F =5,∴点F 的坐标为7,5 ,∴OF =7 2+52=32=42,即BP +OP 的最小值为42.25如图,已知抛物线y =ax 2+bx -6与x 轴的交点A (-3,0),B (1,0),与y 轴的交点是点C .(1)求抛物线的解析式;(2)点P 是抛物线对称轴上一点,当PB +PC 的值最小时,求点P 的坐标;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M ,N ,使得∠CMN =90°且以点C ,M ,N 为顶点的三角形与△OAC 相似?若存在,求出点M 和点N 的坐标;若不存在,说明理由.【答案】(1)y =2x 2+4x -6;(2)P (-1,-4);(3)M (-1,-8),N 0,-172或M -74,-558 ,N 0,-838 .【详解】(1)解:将A (-3,0),B (1,0)代入y =ax 2+bx -6,得:0=a ×(-3)2+b ×(-3)-60=a ×12+b ×1-6,解得:a =2b =4 ,∴抛物线的解析式为y =2x 2+4x -6;(2)解:∵点P 是抛物线对称轴上一点,∴PA =PB ,∴PB +PC =PA +PC ≥AC ,∴连接AC ,AC 与对称轴的交点即为点P ,如图.∵对于y =2x 2+4x -6,令x =0,则y =-6,∴C (0,-6),设直线AC 的解析式为y =kx +b (k ≠0),∴0=-3k +b -6=b,解得:k =-2b =-6 ,∴直线AC 的解析式为y =-2x -6.∵抛物线对称轴为x =-42×2=-1,∴对于y =-2x -6,令x =-1,则y =-2×(-1)-6=-4,∴P (-1,-4);(3)解:设M点的坐标为(t,2t2+4t-6),当点M在点C下方时,过M点作MD⊥y轴于点D,当△CMN∽△COA时,∠MCD=∠OCA,∵∠CMN=∠MDN=90°,∴∠CMD+∠NMD=∠CMD+∠MCD=90°,∴∠NMD=∠MCD,∴△CMN∽△MDN,tan∠MCD=tan∠OCA=tan∠DMN=AOOC=1 2,即MDCD=DNMD=12,∴CD=2t ,DN=12t ,则OD=OC+CD=2t2+4t-6,即6+2t =2t2+4t-6,即6-2t=-2t2-4t+6,解得t=-1,点M和点N的坐标分别为M(-1,-8),N0,-17 2当△CMN∽△AOC时,可得CD=-12t,则-12t+6=-2t2-4t+6,解得t=-74,点M和点N的坐标分别为M-74,-558,N0,-838当t >0时,没有符合的点,存在点M ,N ,使得∠CMN =90°,点M 和点N 的坐标分别为M (-1,-8),N 0,-172 或M -74,-558 ,N 0,-838 .26如图,直线l 1经过A 92,0 、B 2,-5 两点,直线l 2:y =-x +3与直线l 1交于点C ,与x 轴交于点D .(1)求点C 的坐标;(2)点P 是y 轴上一点,当四边形PDCB 的周长最小时,求四边形PDCB 的面积;(3)把直线l 1沿y 轴向上平移9个单位长度,得到新直线l 3与直线l 2交于点E ,试探究在x 轴上是否存在点Q ,在平面内存在点F 使得以点D ,Q ,E ,F 为顶点的四边形是菱形(含正方形)?若存在,直接写出符合条件的点Q 的坐标;若不存在,说明理由.【答案】(1)点C 的坐标为4,-1 ;(2)S 四边形PDCB =9;(3)存在,点Q 的坐标为:1,0 ,3-22,0 ,3+22,0 ,-1,0 【详解】(1)解:设直线l 1的解析式为y =kx +b ,由直线l 1经过A 92,0、B 2,-5 两点可得:92k +b =02k +b =-5,解得k =2b =-9 ,∴直线l 1的解析式为y =2x -9,又∵直线l 2:y =-x +3与直线l 1交于点C ,∴-x +3=2x -9,解得x =4,当x =4时,则y =-1,∴点C的坐标为4,-1;(2)解:如图,作点D关于y轴的对称点D ,连接BD 交y轴于点P,连接DP,根据两点之间“线段最短”可知,当P、B、D 三点共线时,四边形PDCB的周长最小,直线l2:y=-x+3与x轴的交点为D3,0,又∵点D和点D 关于y轴对称,∴点D -3,0,∴DD =-3-3=6,设直线BD 的解析式为y=kx+b,可得-3k+b=02k+b=-5,解得k=-1b=-3,∴直线BD 的解析式为y=-x-3,令x=0,则y=-3,得点P0,-3,∴S△PDD=12DD ⋅y P =12×6×3=9,又∵AD =-3-9 2=152,AD=3-92=32,∴S△ABD=12AD ⋅y B =12×152×5=754,∴S△ACD=12AD⋅y C =12×32×1=34,∴S四边形PDCB =S△ABD-S△PDD-S△ACD=754-9-34=9;(3)解:由题意可得直线l3的解析式为y=2x,联立线l3与直线l2,即y=2xy=-x+3,解得x=1y=2,∴E(1,2),设Q(m,0),①当ED为菱形对角线时,QE=QD,即(m-1)2+(0-2)2=(3-m)2,解得m=1,∴Q(1,0);②当EQ为菱形对角线时,DE=DQ,∵DE=(3-1)2+(0-2)2=22,∴DQ=|3-m|=22,解得m=3-22或3+22,∴Q(3-22,0),Q(3+22,0);③当EF为菱形对角线时,EQ=ED,即(1-m)2+(2-0)2=(22)2,解得m=-1,∴Q(-1,0),综上:存在,点Q的坐标为:(1,0),(3-22,0),(3+22,0),(-1,0).27如图,已知一次函数y=kx+b的图像经过A(1,4),B(4,1)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的表达式;(2)若y 轴存在一点P 使PA +PB 的值最小,求此时点P 的坐标及PA +PB 的最小值;(3)在x 轴上是否存在一点M ,使△MOA 的面积等于△AOB 的面积;若存在请直接写出点M 的坐标,若不存在请说明理由.【答案】(1)y =-x +5;(2)P 0,175 ;34;(3)存在,-154,0 或154,0 【详解】(1)把A (1,4),B(4,1)代入y =kx +b 中,得4=k +b 1=4k +b ,解得k =-1b =5 ,∴一次函数的表达式为:y =-x +5;(2)作A (1,4)关于y 轴的对称点A ′(-1,4),连接A ′B 交y 轴于P 点,连接PA ,此时PA +PB 的值最小,且PA +PB =PA ′+PB =A ′B ,设A ′B 的表达式为y =mx +n ,则4=-m +n 1=4m +n ,解得m =-35n =175,∴直线A ′B 的表达式为y =-35x +175,当x =0时,y =175,∴P 0,175,且A B =(-1-4)2+(4-1)2=34,∴PA +PB 的最小值为34;(3)由y =-x +5得C (5,0),∴S △AOB =S △AOC -S △BOC=12×5×4-12×5×1=152,设M (xM ,yM ),∵S △MOA =S △AOB ,12x M ·y A =152,∴x M =154,∴x M =154或x M =-154,∴M 154,0 或-154,0 ,∴存在一点M ,使△MOA 的面积等于△AOB 的面积,且M 点的坐标为154,0或-154,0 .28如图,在平面直角坐标系中,直线AB 分别与x 轴的负半轴、y 轴的正半轴交于A 、B 两点,其中OA =2,S △ABC =12,点C 在x 轴的正半轴上,且OC =OB .(1)求直线AB 的解析式;(2)将直线AB 向下平移6个单位长度得到直线l 1,直线l 1与y 轴交于点E ,与直线CB 交于点D ,过点E 作y 轴的垂线l 2,若点P 为y 轴上一个动点,Q 为直线l 2上一个动点,求PD +PQ +DQ 的最小值;(3)若点M 为直线AB 上的一点,在y 轴上是否存在点N ,使以点A 、D 、M 、N 为顶点的四边形为平行四边形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.【答案】(1)y =2x +4;(2)45;(3)存在以点A 、D 、M 、N 为顶点的四边形为平行四边形,N 的坐标为(0,-2)或(0,10)【详解】(1)解:(1)设OB =OC =m ,∵OA =2,∴AC =m +2,A (-2,0),∵S △ABC =12,∴12AC •OB =12,即12m •(m +2)=12,解得m =4或m =-6(舍去),∴OB =OC =4,∴B (0,4),设直线AB 解析式为y =kx +b ,∴0=-2k +b 4=b,解得k =2b =4 ,∴直线AB 解析式为y =2x +4;(2)将直线ABy =2x +4向下平移6个单位,则直线l 1解析式为y =2x -2,令x =0得y =-2,∴E (0,-2),垂线l 2的解析式为y =-2,∵B (0,4),C (4,0),设直线BC 解析式为y =px +q ,∴0=4p +q 4=q,解得p =-1q =4 ,∴直线BC 解析式为y =-x +4,由y =-x +4y =2x -2得:x =2y =2 ,∴D (2,2),作D 关于y 轴的对称点D ',作D 关于直线y =-2对称点D '',连接D 'D ''交y 轴于P ,交直线y =-2于Q ,此时PD +PQ +DQ 的最小,如图:∴D '(-2,2),D ''(2,-6),设直线D 'D ''解析式为y =sx +t ,则2=-2s +t -6=2s +t,解得s =-2t =-2 ,∴直线D 'D '解析式为y =-2x -2,令x =0得y =-2,即P (0,-2),令y =-2得x =0,即Q (0,-2),∴此时PD =25,PQ =0,DQ =25,∴PD +PQ +DQ 的最小值为45.(3)存在,理由如下:设P (p ,2p +4),N (0,q ),而A (-2,0),D (2,2),①以AD 、MN 为对角线,如图:此时AD 中点即为MN 中点,∴-2+2=p +00+2=2p +4+q,解得p =0q =-2 ,∴N (0,-2);②以AM 、DN 为对角线,如图:同理可得:-2+p =2+00+2p +4=2+q ,解得p =4q =10 ,∴N (0,10);③以AN 、DM 为对角线,如图:同理可得-2+0=p +20+q =2+2p +4,解得p =-4q =-2 ,∴N (0,-2),综上所述,以点A 、D 、M 、N 为顶点的四边形为平行四边形,N 的坐标为(0,-2)或(0,10).29在Rt △ABC 中,AB =BC ,在Rt △CEH 中,∠CEH =45°,∠ECH =90°,连接AE .(1)如图1,若点E 在CB 延长线上,连接AH ,且AH =6,求AE 的长;(2)如图2,若点E 在AC 上,F 为AE 的中点,连接BF 、BH ,当BH =2BF ,∠EHB +12∠HBF =45°时,求证:AE =CE;(3)如图3,若点E在线段AC上运动,取AE的中点F,作FH'∥BC交AB于H,连接BE并延长到D,使得BE=DE,连接AD、CD;在线段BC上取一点G,使得CG=AF,并连接EG;若点E在线段AC上运动的过程中,当ACD的周长取得最小值时,△AED的面积为25,请直接写出GE+BH′的值.【答案】(1)AE=6;(2)见解析;(3)GE+BH′=15+5102【详解】(1)解:在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∵∠ECH=90°,∴∠ACH=45°,∴∠ACE=∠ACH,在Rt△CEH中,∠CEH=45°,∴∠CHE=45°,∴CE=CH,∵AC=AC,∴△ACE≌△ACH(SAS),∴AE=AH=6;(2)证明:如图1,连接BE,设BH与AC交于点G,∵∠BCE=∠CEH=45°,∴EH⎳BC,∴∠EHB=∠CBG,∵∠ABC=90°,∴12∠CBG+12∠HBF+12∠ABF=45°,∵∠EHB+12∠HBF= 45°,∴∠EHB=12∠CBG+12∠ABF,∴∠CBG=∠ABF,∵AB=AC,∠A=∠ACB=45°,∴△ABF≌△CBG(ASA),∴BG=BF,∵BH=2BF,∴BH=2BG,∵∠HEG=∠BCG=45°,∠EGH=∠CGB,∴△EGH≌△CGB(AAS),∴EG=CG,∴四边形EBCH是平行四边形,∴BE⎳CH,∴∠BEG=∠ECH=90°,∴AE=CE;(3)解:如图2,作DN∥AC,作点A关于直线DN′的对称点A′,连接A′C交DN于D′,连接BD′,交AC与E′,则当点D在D′处,点E在点E′处时,△ACD的周长最小,此时△ACD为等腰直角三角形,∵S△ADE=12AE2=25,∴AE′=52,∴AC=2AE′=102,∴AB=BC=22AC=10,∵AF=12AE=522,∴H′F=AH′=22AF=52,∴BH′=10-52=152,∵AF=CG,∠BAF=∠BCA=45°,AB=CE′,∴△ABF≌△CE′G(SAS),∴BF=E′G,∴E′G=BF=BH 2+FH 2=1522+52 2=5210,∴GE+BH′= 15+5102.。
中考数学几何专项练习:线段和最值问题(解析版)

中考数学几何专项练习:线段和最值问题【答案】855【分析】在Rt ABE 中,时,AP PQ A Q =的值最小,进而求得【详解】解:设BE x ,则【详解】【答案】3【分析】过点G 作GH 210GF BE ,推出【详解】解:如图,过点∵四边形ABCD 是正方形,∴AB BC ,A ABC【答案】32/132【分析】作点O关于CD的对称点F在同一直线上,且O F BD时,足为F,交CD于点G,OO 交CD 即可.则GO GO,∵四边形ABCD 为菱形,∴AC BD ,AO CO ,AB BC 1602BAC DAC BAD ,【答案】22【分析】如图,BC的下方作 ,推出AF()ADF TBE SAS【详解】解:如图,BC的下方作∵四边形ABCD 是菱形,ABC 60ADC ABC ,ADF AD BT ∵,30ADF TBE ()ADF TBE SAS ,AF ET ,6030ABT ABC CBT ∵2222222AT AB BT AE AF AE ET ,AE ET AT ∵,22AE AF ,AE AF 的最小值为22,【点睛】本题考查了矩形的性质、勾股定理、直角三角形的性质及最值问题,掌握它们的性质是解决此题关键.【答案】14237【分析】根据题意,将点B沿BC向右平移【点睛】本题主要考查了四边形周长的最小值问题,涉及到含掌握相关轴对称作图方法以及线段长的求解方法是解决本题的关键.12.如图,在菱形ABCD中,过点3【答案】23【分析】将DEF沿直线2l翻折得到是平行四边形,推出证明四边形E JMN,∵∥AB MN60,ABC NMC∵ACB MCD60,DCM NMD,∵∥DN CM,∴四边形CDNM是等腰梯形,【答案】29【分析】过C 作CF AC 于F ,使CF 2BE CD BE EF BF ,即最小值为【详解】方法一:过C 作CF AC 于F ∵2CE AD ,∴2CE CF AD AC,∵90DAC FAC ,∴DAC ECF ,∴2CE CF EF AD AC CD,即2EF CD ,∴2BE CD BE EF BF ,∴当B E F 、、三点共线时2BE CD 有最小值,最小值为BF 的长∴ 2222221BE AE AB x,CD 设22y BE CD ,∴ 2222211122y BE CD x x【答案】3【分析】如图,取AB的中点最小值,只要求出DT+BD的最小值即可,作点DT+DB=DT+DL≥LT=3,可得结论.∵∠CAB=30°,∠ACB=90°,∴∠ABC=60°,∵AT=TB,∴CT=AT=TB,∴△BCT是等边三角形,∴∠TBC=∠DBE=60°,【答案】2410 25【分析】如图所示,作点C关于直线时,EF+IE最小,此时点F与点J重合;连接ABC DCE ACB DCE【点睛】本题主要考查了轴对称最短路径问题,相似三角形的性质与判定,已知正切值求边长,勾股定理等等,解题的关键在于能够正确作出辅助线.19.如图,平行四边形ABCD ,AB AD ,4 AD ,60ADB ,点E 、F 为对角线连接AE 、CF ,则2AE CF 的最小值为.【详解】连接AD,CE,∵分别以A,B为旋转中心,把边AC,BA逆时针旋转60°,得到线段AE,BD,∴AB=BD,AE=AC,∠ABD=∠EAC=60°,∴△ABD和△ACE是等边三角形,∴∠DAC=∠EAB=90°+60°=150°,在△ADC和△ABE中∵AB BD DAC EABAE AC,∴△ADC≌△ABE(SAS)∴∠AEB=∠ACD,∵∠APB=120°,∴∠APF=60°,在PE上截取PF=PA,∴△APF是等边三角形,∴∠PAF=60°,∴∠EAF+∠BAP=150°-60°=90°,∠PAC+∠BAP=∠BAC=90°,∴∠EAF=∠PAC,∵AE=AC,∠AEB=∠ACD,∴△AFE≌△APC,∴PC=FE∴AP+BP+CP=PF+BP+FE=BE过点E作EG⊥BA,交BA的延长线于点G,∵∠GAE=180°-150°=30°,【答案】213.【分析】取D(2,-2),连接CD、DQ,作C得△OCP≌△DCQ,CP=CQ=C′Q,所以当且仅当【点睛】本题考查旋转的性质,含30 角的直角三角形的性质,等腰三角形的性质,两点之间线段最短以及勾股定理等知识,较难.能够想到利用旋转的性质作出复杂的辅助线是解答本题的关键.23.如图,在ABC 中,15A ,2AB ,P 为AC 边上的一个动点(不与22AP PB 的最小值是.【答案】3【分析】以A 为顶点,AC 为一边,在AC 下方作45CAM 是等腰直角三角形的22AD PD AP ,即22AP PB PD由作图可知:ADP △是等腰直角三角形,∴22AD PD AP,∴22AP PB PD PB ,2【答案】33【点睛】本题考查了轴对称-最短路线问题,25.如图,在边长为6的等边边形PCDQ面积的最大值为773【点睛】本题考查翻折变换,矩形的性质,轴对称最短问题等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题题型.试卷第41页,共41页资料整理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题52 中考数学最值问题在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。
一、解决几何最值问题的要领 (1)两点之间线段最短;(2)直线外一点与直线上所有点的连线段中,垂线段最短;(3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。
二、解决代数最值问题的方法要领 1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有①若a >0当x b a =-2时,y 有最小值。
y ac b a min =-442;②若a <0当x ba=-2时,y 有最大值。
y ac b a max =-442。
2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。
4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。
5. 利用非负数的性质.在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。
6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。
7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。
8. “夹逼法”求最值.在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。
【例题1】(2020•黑龙江)如图,在边长为1的菱形ABCD 中,∠ABC =60°,将△ABD 沿射线BD 方向平移,得到△EFG ,连接EC 、GC .求EC +GC 的最小值为 .【答案】√3.【解析】根据菱形的性质得到AB =1,∠ABD =30°,根据平移的性质得到EG =AB =1,EG ∥AB ,推出四边形EGCD 是平行四边形,得到ED =GC ,于是得到EC +GC 的最小值=EC +GD 的最小值,根据平移的性质得到点E 在过点A 且平行于BD 的定直线上,作点D 关于定直线的对称点M ,连接CM 交定直线于AE ,解直角三角形即可得到结论.∵在边长为1的菱形ABCD 中,∠ABC =60°, ∴AB =CD =1,∠ABD =30°,∵将△ABD 沿射线BD 的方向平移得到△EGF , ∴EG =AB =1,EG ∥AB , ∵四边形ABCD 是菱形, ∴AB =CD ,AB ∥CD , ∴∠BAD =120°, ∴EG =CD ,EG ∥CD ,∴四边形EGCD是平行四边形,∴ED=GC,∴EC+GC的最小值=EC+ED的最小值,∵点E在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点M,连接CM交定直线于E,则CM的长度即为EC+DE的最小值,∵∠EAD=∠ADB=30°,AD=1,∴∠ADM=60°,DH=MH=12AD=12,∴DM=1,∴DM=CD,∵∠CDM=∠MDG+∠CDB=90°+30°=120°,∴∠M=∠DCM=30°,∴CM=2×√32CD=√3.【对点练习】(2020•内江)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为.【答案】15.【解析】作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.首先证明△ABA′是等边三角形,求出A′H,根据垂线段最短解决问题即可.解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB=ADtan30°=10√3,∵A′H⊥AB,∴AH=HB=5√3,∴A′H=√3AH=15,∵AM+MN=A′M+MN≤A′H,∴AM+MN≤15,∴AM+MN的最小值为15.【例题2】(2020•襄阳)受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?(3)若甲,乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a千克水果获得的利润不少于1650元,求a的最小值.【分析】(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.(2)设购进甲种水果为a千克,则购进乙种水果(100﹣a)千克,根据实际意义可以确定a的范围,结合付款总金额(元)与种水果的购进量之间的函数关系可以分类讨论最少费用为多少.(3)根据(2)的结论列不等式解答即可.【解析】(1)当0≤x≤50是,设y=kx,根据题意得50k=1500,解得k=30;∴y=30x;当x>50时,设y=k1x+b,根据题意得,{50k+b=150070k+b=1980,解得{k=24b=300,∴y=24x+3000.∴y={30x(0≤x≤50) 24x+300(x>50),(2)设购进甲种水果为a千克,则购进乙种水果(100﹣a)千克,∴40≤a≤60,当40≤a≤50时,w1=30a+25(100﹣a)=5a+2500.当a=40 时.w min=2700 元,当50<a≤60时,w2=24a+25(100﹣a)=﹣a+2500.当a=60时,w min=2440 元,∵2440<2700,∴当a=60时,总费用最少,最少总费用为2440 元.此时乙种水果100﹣60=40(千克).答:购进甲种水果为60千克,购进乙种水果40千克,才能使经销商付款总金额w(元)最少.(3)由题意得:(40﹣24)×35a+(36﹣25)×25a≥1650,解得a≥1176 7,∵a为正整数,∴a≥118,∴a的最小值为118.【对点练习】(2020海南模拟)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?【答案】看解析。
【解析】(1)设该种水果每次降价的百分率为x,则第一次降价后的价格为10(1-x),第二次降价后的价格为10(1-x)2,进而可得方程;(2)分两种情况考虑,先利用“利润=(售价-进价)×销量-储存和损耗费用”,再分别求利润的最大值,比较大小确定结论;(3)设第15天在第14天的价格基础上降a元,利用不等关系“(2)中最大利润-[(8.1-a-4.1)×销量-储存和损耗费用]≤127.5”求解.解答:(1)设该种水果每次降价的百分率为x,依题意得:10(1-x)2=8.1.解方程得:x1=0.1=10%,x2=1.9(不合题意,舍去)答:该种水果每次降价的百分率为10%.(2)第一次降价后的销售价格为:10×(1-10%)=9(元/斤),当1≤x<9时,y=(9-4.1)(80-3x)-(40+3x)=-17.7x+352;当9≤x <15时,y =(8.1-4.1)(120-x )-(3x 2-64x +400)=-3x 2+60x +80,综上,y 与x 的函数关系式为:y =⎩⎨⎧-17.7x +352(1≤x <9,x 为整数),-3x 2+60x +80(9≤x <15,x 为整数).当1≤x <9时,y =-17.7x +352,∴当x =1时,y 最大=334.3(元);当9≤x <15时,y =-3x 2+60x +80=-3(x -10)2+380,∴当x =10时,y 最大=380(元); ∵334.3<380,∴在第10天时销售利润最大.(3)设第15天在第14天的价格上最多可降a 元,依题意得: 380-[(8.1-a -4.1)(120-15)-(3×152-64×15+400)]≤127.5, 解得:a ≤0.5,则第15天在第14天的价格上最多可降0.5元. 所以当x =35时,最大利润为1950元。
【例题3】(2020•乐山)如图,在平面直角坐标系中,直线y =﹣x 与双曲线y =kx 交于A 、B 两点,P 是以点C (2,2)为圆心,半径长1的圆上一动点,连结AP ,Q 为AP 的中点.若线段OQ 长度的最大值为2,则k 的值为( )A .−12 B .−32C .﹣2D .−14【答案】A【分析】确定OQ是△ABP的中位线,OQ的最大值为2,故BP的最大值为4,则BC=BP﹣PC=4﹣1=3,则(m﹣2)2+(﹣m﹣2)2=32,即可求解.【解析】点O是AB的中点,则OQ是△ABP的中位线,当B、C、P三点共线时,PB最大,则OQ=12BP最大,而OQ的最大值为2,故BP的最大值为4,则BC=BP﹣PC=4﹣1=3,设点B(m,﹣m),则(m﹣2)2+(﹣m﹣2)2=32,解得:m2=1 2,∴k=m(﹣m)=−1 2【对点练习】(2019云南)如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为.【答案】2.【解析】过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,由对称的性质可知=,再由圆周角定理可求出∠A′ON的度数,再由勾股定理即可求解.过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴=,∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=2,即PA+PB的最小值2.【例题4】(2020•衡阳)在平面直角坐标系xOy中,关于x的二次函数y=x2+px+q的图象过点(﹣1,0),(2,0).(1)求这个二次函数的表达式;(2)求当﹣2≤x≤1时,y的最大值与最小值的差;(3)一次函数y=(2﹣m)x+2﹣m的图象与二次函数y=x2+px+q的图象交点的横坐标分别是a和b,且a <3<b,求m的取值范围.【答案】见解析。