九年级数学中考模拟
2024年广东省湛江市赤坎区湛江市培才学校九年级中考数学模拟试卷

2024年广东省湛江市赤坎区湛江市培才学校九年级中考数学模拟试卷一、单选题1.下列图形中,是中心对称图形的是()A .B .C .D .2.已知O 的半径为5,点P 到圆心O 的距离为6,那么点P 与O 的位置关系是()A .点P 在O 上B .点P 在O 内C .点P 在O 外D .无法确定3.如图,四边形ABCD 是圆O 的内接四边形,110C ∠=︒,则A ∠的度数为()A .55︒B .60︒C .70︒D .80︒4.已知二次函数()2323y x =---,下列说法正确的是()A .对称轴为2x =-B .顶点坐标为()2,3C .函数的最大值是-3D .函数的最小值是-35.近年来,由于新能源汽车的崛起,燃油汽车的销量出现了不同程度的下滑,经销商纷纷开展降价促销活动.某款燃油汽车今年3月份售价为23万元,5月份售价为16万元.设该款汽车这两月售价的月均下降率是x ,则所列方程正确的是()A .()216123x +=B .()223116x -=C .()22323116x --=D .()2231216x -=6.如图,OAB △绕点O 逆时针旋转80︒得到OCD ,若110A ∠=︒,40D ∠=︒,则α∠的度数是()A .30︒B .40︒C .50︒D .60︒7.如图,AB 为O 的直径,点C ,D 在O 上.若38CAB ∠=︒,则D ∠的度数为()A .38°B .42°C .48°D .52°8.1x =是关于x 的一元二次方程220x ax b ++=的解,则24a +b =()A .2-B .3-C .4D .6-9.二次函数2(0)y ax bx c a =++≠的图象如图所示,则函数值0y >时,x 的取值范围是()A .1x <-B .3x >C .13x -<<D .1x <-或3x >10.如图,点P 是等边ABC V 内一点,若将BPC 绕点B 按逆时针方向旋转一个角度后得到BP A ''△,连接PP ',若2BP =,则PP '的长度为()A .1B .2CD二、填空题11.在平面直角坐标系中,点M (2-,4)关于原点对称的点的坐标是.12.已知m n ,是方程2320x x --=的两个实数根,则2mn =.13.若点()11,A y ,()22,B y 在抛物线233y x =-上,则1y 2y .(填“<”或“>”或“=”)14.如图,在正方形ABCD 中,4AB =,E 为AB 的中点,连接DE ,将DAE 绕点D 按逆时针方向旋转90︒得到DCF ,连接EF ,则EF 的长为.15.如图,在Rt AOB 中,AOB 90∠= ,3OA =,4OB =,O 的半径为2,点P 是AB 边上的动点,过点P 作O 的一条切线PC (点C 为切点),则线段PC 长的最小值为.三、解答题16.解方程:2650x x -+=.17.如图,在破残的圆形残片上,弦AB 的垂直平分线交弧AB 于点C ,交弦AB 于点D ,已知8cm AB =,2cm CD =.(1)求作此残片所在的圆的圆心O (不写作法,保留作图痕迹);(2)求出(1)中所作圆的半径.18.如图,把一个含有30︒角的直角三角尺ACB 绕着30︒角的顶点B 顺时针旋转,使得点A 与CB 延长线上的点E 重合,其中点C 的对应点为点D ,连接CD .(1)CBD △是_____三角形,DCB ∠的度数是_____(2)若4BC =,求CBD △的面积.19.如图,是二次函数2(1)4y a x =++的图象的一部分,根据图象回答下列问题:(1)确定a 的值(2)设抛物线的顶点是P ,B 是x 轴上的一个点,若PAB 的面积为6,求点B 的坐标.20.某超市以每件10元的价格购进一种文具,销售时该文具的销售单价不低于进价且不高于19元.经过市场调查发现,该文具的每天销售数量y (件)与销售单价x (元)之间满足一次函数关系:260y x =-+.(1)若该超市每天销售这种文具获利192元,则销售单价为多少元?(2)设销售这种文具每天获利w (元),求w 关于x 的函数关系式(写出自变量的取值范围),并求出当销售单价为多少元时,每天获利最大?最大利润是多少元?21.如图,在Rt ABC 中,90ACB ︒∠=,以AB 为直径作O ,过点C 作直线CD 交AB 的延长线于点D ,使BCD A ∠=∠.(1)求证:CD 为O 的切线;(2)若DE 平分ADC ∠,且分别交,AC BC 于点,E F ,当2CE =时,求EF 的长.22.【综合与实践】问题情境:数学课上,同学们利用两张全等的直角三角形纸片进行图形变换的操作探究,已知Rt Rt ABC DEF △≌△,90ACB DFE ∠=∠= ,60BAC EDF ∠∠== ,3AC DF ==.【操作探究1】(1)小颖将Rt ABC △和Rt DEF △按如图1的方式在同一平面内放置,其中AC 与DF 重合,此时B ,C 、E 三点恰好共线.点B ,E 在点C 异侧,求线段BE 的长;【操作探究2】(2)小军在图1的基础上进行了如下操作:保持Rt ABC △不动,将Rt DEF △绕点A 按顺时针方向旋转角度(()0120αα<< ,射线FE 和CB 交于点G (如图2).①求证:BG EG =;②如图3,当30α= 时,延长AF 交BC 于点H ,求线段GH 的长.23.如图1,抛物线24y x x =-与x 轴相交于原点O 和点A ,直线y x =与抛物线在第一象限的交点为B 点,抛物线的顶点为C 点.(1)求点B 和点C 的坐标;(2)抛物线上是否存在点D ,使得DOB OBC ∠=∠?若存在,求出所有点D 的坐标;若不存在,请说明理由;(3)如图2,点E 是点B 关于抛物线对称轴的对称点,点F 是直线OB 下方的抛物线上的动点,EF 与直线OB 交于点G .设BFG 和BEG 的面积分别为1S 和2S ,求12S S 的最大值.。
湖北省名校联盟2024年九年级中考模拟考试数学试卷

湖北省名校联盟2024年中考模拟考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一项符合题目要求) 1.下列说法正确的个数是( )①-2024的相反数是2024;② -2024的绝对值是2024;③ -2024的倒数是-12024A.3个B.2个C.1个D.0个2.下列交通标识,既是中心对称图形,又是轴对称图形的是( )3.如图,直线l 1∥l 2,AB=AC,∠BAC=40°,则∠1+∠2的度数是( ) A.60° B.70° C.80° D.90°4.在下列计算中,正确的是( )A.5x+4x=9x 2B.a 0=1C.(m+n)2=m 2+n 2D.√8÷√2=2 5.下列说法正确的是( )A.为了解我国中小学生的睡眠情况,应采取全面调查的方式B.甲、乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定 C:“任意画一个三角形,其内角和是360°”这一事件是必然事件 D.抛掷一枚硬币200次,一定有100次“正面向上”6.一个多边形的内角和等于它外角和的2倍,则此多边形的边数是( ) A.4 B.5 C.6 D.77.如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处规测旗杆顶部A的仰角为60°,观测旗杆底部B的仰角为45°,则旗杆AB的高度是( )A.40√3B.40C.40√3+40D.40√3-408.我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直菜十斗,醋酒一斗直菜三斗.今持粟三斛,得酒五斗,问清、醋酒各几何?“意思是:现在一斗清酒价值10斗谷子,一斗醋酒价值3斗谷子.现在拿30斗谷子,共换了5斗酒,问清、醋酒各几斗?如果设清酒x斗,那么可列方程为( ) A.3x+10(5-x)=30 B.10x+3(5-x)=30 C.x 10+30−x 3=5 D x 3+30-x 10=59.若关于x的一元一次不等式组{6−3(x +1)<x −5x −m >−1的解集是x>2,则m的取值范围是( )A.m>3B.m≥3C.m<3D.m≤310.如图,已知二次函数y=ax 2+bx+c(a、b、c 为常数,且a<0)的图象顶点为 P(1, m),经过点 A(2,1).有以下结论:①2a+b=0;②4a+2b+c=1;③对于任意实数,总有at 2+bt ≤a+b;④直线y=ax-2a+1与此二次函数的图象一定有两个交点;其中正确的有( ) A.1个 B.2个 C.3个 D.4个 二、填空题(本大题共有5小题,每小题3分,共15分)11.从2名男生和2名女生中任选2名学生参加志愿者服务,那么选出的2名学生中至少有1名女生的概率是______. 12.计算:4x-2-x-2x-2=________.13.已知点A,B,C在⊙O上,若∠AOC=100°,则∠ABC的度数为_______.14.如图,在平面直角坐标系中,点A,B分别在x轴负半轴和y轴正半轴上,点C在线段OB上,OC:BC=1:2,连接AC,过点O作OP∥AB交AC 的延长线于P.若P(1,2),则tan∠OAP的值是________.15.如图,点M,N分别是矩形ABCD边AD,BC上的点,将矩形ABCD沿直线MN折叠,点C恰好落在AB上的点F处,点D落在点E处,MB交NF于点G.若AB=AM,AF=3cm,FB=12cm,则BG MG=_________.三、解答题(本大题共9题,共75分,解答应写出文字说明,证明过程或演算步骤) 16.(本题满分6分)计算:√83−√16+(14)−1+ tan45°17.(本题满分6分)如图,在□ABCD 中,对角线BD 的垂直平分线,交BD 于点O,交边AD 于点E,交边BC 于点F,连接BE,DF 求证:四边形BEDF 是菱形.18.(本题满分6分)某项工程,若由甲队单独施工,刚好如期完成;若由乙队单独施工,则要超期3天、甲、乙两队同时施工2天后,剩下的工程由乙队单独做,刚好如期完成、求规定的工期是多少天?19.(本题满分8分)今年2月底,区教育部门想了解该区A 、B 两所学校九年级各400名学生的排球一分钟垫球个数情况,从这两所学校分别随机抽取50名九年级学生的一分钟排球垫球个数的数据(测试中,排球一分钟内垫球个数达到52个时,裁判叫停),整理分析过程如下:[收集数据]A学校抽取的50名学生中,排球一分钟内垫球个数在37.5≤x≤42.5组的具体数据如下:38,41,40,39,42,43,39,42,43,39,42,40,41,41,43,42,40,39,39,40[整理数据]两组数据不完整的频数分布表如下,不完整的A 学校的频数分布直方图如图所示:[分析数据]两组数据的平均数、众数、中位数、方差(1)统计表中,m=_______;n=_______;并补全频数分布直方图;(2)根据所给数据,估计A 、B 两校九年级学生(共800名)一分钟垫球不低于38个的学生人数共有多少名? (3)从平均数、中位数、众数、方差中任选一个统计量,解释A 学校、B 学校排球垫球水平情况.组别 27.5≤x<32.5 32.5≤x<37.5 37.5≤x<42.5 42.5≤x<47.5 47.5≤x<52.5 A 学校2 10 m 153 B 学校4 11 18 16 1特征数 平均数 众数 中位数 方差 A 学校 41 39 n 119.36 B 学校 41 40 40.5 121.4920.(本题满分8分)如图,已知一次函数y 1=mx+n(m ≠0)与反比例函数y 2= kx (k ≠0)的图象相交于点A(1,5),B(b,-1),连接AO,BO. (1)求出一次函数和反比例函数的解析式; (2)填空:① △ABO 的面积为_______;②当y 1≤y 2时,自变量x 的取值范围为_______________.21.(本题满分8分)如图,已知AB 是⊙O 的直径,弦CD 交AB 于M,过点C 的直线交BA 延长线于点P,若CP=PM.∠ACD=45°. (1)求证:PC 是⊙O 的切线.(2)若∠P=30°,AD=3√2,求阴影部分的面积.22.(本题满分10分)某商品在销售的30天中,第一天卖出14件,为了增加销量,采取了降价措施,以后每天比前一天多卖出2件.第x 天的售价为y 元/件,y 关于x 的函数解析式为{mx −84n(1≤x <20,x 为正整数)m(20≤x <30,x 为正整数),且第14天的售价为35元/件,第26天的售价为28元/件(20≤x ≤30,x 为正整数)/件,已知该商品的成本是20元/件,每天的利润是W 元. (利润=销售收入-成本).(1)填空:m=______元,n=_____;(2)求销售该商品第几天时,当天的利润最大?最大利润是多少? (3)在销售该商品的30天中,当天利润不低于576元的共有多少天?23.(本题满分11分)某校数学兴趣小组,做了如下研究:如图,点P 是△ABC 的BC 边上一点,以AP 为边在AP 右侧作△APQ,且BA=BC,PA=PQ, ∠ABC=∠APQ=αAB AC=AP AC=k,连接CQ.(1)如图1,若α=60°①求证:∠ABC=∠ACQ; ② 填空BP CD=________;(2)如图2,若α≠60°,判断BP 与CQ 的数量关系,并说明理由; (3)如图3,若k=2,AP ∥CQ,AD ⊥PQ 于D,且CQ=3,求AD 的长.24.(本题满分12分)已知抛物线L:y=ax 2+2ax-8a(a<0)与x 轴交于A,B 两点(点A 在点B 左侧),与y 轴交于点C,OC=2OB,抛物线顶点为D(1)求抛物线解析式以及点D 的坐标;(2)若抛物线上有两点P(x 1y 1),Q(4,y 2),当t ≤x 1≤t+1时,均有y 1≥y 2,求t 的取值范围; (3)将抛物线L 沿直线y=12x+5平移得到顶点为D '的抛物线G,设D 的横坐标为m,若抛物线G 与直线y=m 交于M 、N 两点,且90°≤∠MD 'N ≤120°,请直接写出m 的取值范围.。
河北省邯郸市馆陶县2023-2024学年九年级中考模拟数学试题(含详解)

2024 年河北省初中毕业生升学文化课模拟考试数 学试 卷注意事项:1.本试卷共8页,总分120分,考试时长120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡的相应位置.3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效.答题前,请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.4.答选择题时,用2B 铅笔将答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区域内答题.5.考试结束时,请将本试卷和答题卡一并交回.一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,是轴对称图形的是( )2.将算式 |14−13|可以变形为( )A.14−13B.13+14C.−14−13D.13−143.小李准备从A 处前往B 处游玩,根据图1所示,能够准确且唯一确定B 处位置的描述是( )A.点 B 在点 A 的南偏西 48°方向上B.点 B 在距点A4 km 处C.点 B 在点 A 的南偏西48°方向上4k m 处D.点 B 在点A 的北偏西48°方向上 4k m 处4.若 3ᵐ⁺²=9,则m=( )A.-1B.0C.1D.25.如图2,圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形).已知地面阴影(圆形)的直径为1.5米,桌面距地面1米.若灯泡距离桌面2米,则桌面的直径为( )A.0.25米B.0.5米C.0.75米D.1米6.实数 1200用科学记数法表示为n102.1⨯,则n2102.1⨯表示的原数为( )A.1 200 000 B.120 000C.14 400 000 D.1 440 0007.如图3,在正方形木框ABCD 中,AB=10cm,将其变形,使∠A=60°,则点 D,B 间的距离为( )A.102cmB.103cmC.10 cmD.20cm8.若m是关于x 的不等式-2x+3>7的一个解,则对于 m的值下列判断可能正确的是( )A.2<m<3B.-1<m<0C.-2≤m≤-1D.-6<m<-49.我国古代的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两……”意思是:“今有生丝30斤,干燥后损耗3斤 12 两(我国古代1斤等于 16 两)……”据此,若得到14斤干丝,需使用生丝x斤,则正确的是( )A.依题意,得3030−3+1216=x14B.依题意,得3030−3−1216=x14C.需使用生丝14037斤D.得到14斤干丝,需损耗生丝2021斤10.已知8−m12=2,则m=( )A.4B.2C.1D.1211.如图4,一根直的铁丝AB=20cm,欲将其弯折成一个三角形,在同一平面内操作如下:①量出AP=5cm;②在点 P 右侧取一点 Q,使点 Q 满足 PQ>5 cm;③将AP向右翻折,BQ向左翻折.若要使A,B 两点能在点M 处重合,则 PQ的长度可能是( )A.12 cmB.11 cmC.10 cmD.7 cm12.如图5-1,使用尺规经过直线l外的点 P 作已知直线l的平行线,作图痕迹如图5-2:下列关于图中的四条弧线①、②、③、④的半径长度的说法中,正确的是( )A.弧②、③的半径长度可以不相等B.弧①的半径长度不能大于 AP的长度C.弧④以 PA的长度为半径D.弧③的半径可以是任意长度13.对于分式M=m+2m+3,有下列结论:结论一:当m=-3时,M=0;结论二:当M=-1时,m=-2.5;结论三:若m>-3,则M>1.其中正确的结论是( )A.结论一B.结论二C.结论二、结论三D.结论一、结论二14.用相同尺寸的长方形纸板制作一个无盖的长方体纸盒.先在纸板上画出其表面展开图(需剪掉阴影部分),两种裁剪方案如图6-1和图6-2所示,图中A ,B ,C 均为正方形:下列说法正确的是( )A.方案 1中的 a=4B.方案2中的b=6C.方案1所得的长方体纸盒的容积小于方案 2所得的长方体纸盒的容积D.方案1所得的长方体纸盒的底面积与方案2所得的长方体纸盒的底面积相同15.有一段平直的公路AB ,A 与B 间的距离是50m.现要在该路段安装一个测速仪,当车辆经过A 和B 处时分别用光照射,并将这两次光照的时间差t(s)输入程序后,随即输出此车在AB 段的平均速度v(km/h),则v 与t 间的关系式为( ) A.v =50tB.v =180tC.v =1259tD.v =360t16.问题情境:如图7-1,在△ABC 中,AB=AC=8,BC=8 3,AD 是BC 边上的中线.如图7-2,将点C 沿EF 折叠后与点 D 重合,将顶点 B 沿GH 折叠,使得顶点 B 与点F 重合,GF 与DE 交于点K.若设△GHF 的面积为S ₁,四边形 GKEA 的面积为S ₂,则 S ₁和 S ₂ 的值分别为( )A.932,43 B.932,23 C.934,43 D.934,23二、填空题(本大题共3个小题,共10分.其中17,18小题各3分,19小题第 1个空2分,第2,3个空各1分)17.已知a,b 互为相反数,则. ab +a²的值为 .18.如图8,从家到公园有A ₁,A ₂ 两条路线可走,从公园到超市有 B ₁,B ₂ 两条路线可走,现让小明随机选择一条从家出发经过公园到达超市的行走路线,那么恰好选到经过路线 A ₁ 与 B ₂的概率是 .19.如图9,在正五边形 ABCDE中,.AB=2,点M是AB 的中点,连接DM,点 P 在边BC上(不与点 C 重合),将.△CDP沿PD 折叠得到△QDP.(1)∠DQP=(2)当点 Q落在 DM 上时,∠DPQ=___________;(3)AQ 的最小值为 .三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)若A+3x²−5x+3=−x²+3x−2.(1)求多项式 A;(2)判断多项式A的值是否是正数,并说明理由.21.(本小题满分9分)如图10,整数m,n,t在数轴上分别对应点M,N,T.(1)若m,n互为相反数,描出原点O的位置并求t 的值;(2)当点 T为原点,且:m−n+□=−3时,求“□”所表示的数.22.(本小题满分9分)某校为了解学生对“党史知识”的掌握情况,进行“学党史”知识竞赛(满分100分),并随机抽取5 0名学生的测试成绩作为样本进行研究,将成绩分组为A:50≤x<60,B:60≤x<70,C:70≤x<80,D:80≤x<90,E:90≤x≤100,进行整理,得到不完整的频数分布直方图,如图11所示,且C组成绩从小到大排列如下:70,71,72,72,74,77,78,78,,79,79,79.(1)通过计算,补全频数分布直方图;(2)在这个样本中,中位数是78.5分,设被“”盖住的成绩为a分,求a的值;(3)已知这个样本的平均数是78分,若又加入一名学生的成绩为78分,将这名学生的成绩计入样本后,判断新的样本平均数和方差与原样本相比是否发生改变.23.(本小题满分 10分)图 12 是小李同学设计的一个动画示意图,光点从点 P(2,1)发出,其经过的路径为抛物线G: y=a(x−ℎ)²+k的一部分,并落在水平台子上的点Q(4,1)处,其达到的最大高度为2,光点在点Q处被反弹后继续向前沿抛物线L:y=−2x²+bx+c的一部分运行,已知台子的长.AB=4,AQ=1,点 M 是AB 的中点.(1)求抛物线G的对称轴及函数表达式;(2)若光点被弹起后,落在台子上的BM之间(不含端点),求 b所有的整数值.李阿姨正在练习扇子舞,如图13-1,她握住扇子的端点 Q,将扇子绕点 Q在平面内逆时针旋转一周.佳佳认真观察扇子的运动,画出示意图(图 13-2),研究其中的数学问题.经测量可得 OQ=36cm,∠POQ=120°,扇形 QO'M 从O'M 与OP 重合的状态开始绕点Q 逆时针旋转,点 P 的对应点为点M.(1)当点O'落在弧 PQ 上时,求∠O'QO的度数,并判断点 O 是否在直线MO′上;(2)当O'Q 所在直线与扇形POQ第一次相切时,求点 O'经过的路径的长;(3)连接OM,当扇形 QO'M 转动一周时,求 OM 的取值范围.25.(本小题满分 12分)如图14,在平面直角坐标系中,点 N(n-1,n+3),M(2,0),A(-10,-1),B(4,6),连接AB,在线段AB上的整数点(横、纵坐标都为整数的点)处设置感应灯,当有点落在整点处,或从点 M发出光线(射线 MN)照射到线段AB上的整数点时,该处的感应灯会亮.(1)求线段 AB所在直线的函数解析式;(2)当点 N在线段AB 上时,请通过计算说明点 N(n-1,n+3)是否会使感应灯亮;(3)若线段上的感应灯被射线 MN分为两部分,并且两部分感应灯的个数相同(不包括边界上的点),求n的取值范围.如图15-1,在四边形ABCD中,AB‖CD,∠CBA=2∠A,点 P 从点 C 开始以每秒1个单位长度的速度在射线CD上运动,连接PB 并延长,将射线PB 绕点P 逆时针旋转,旋转角总与∠C相等,当旋转后的=k,DM=y,点 P 的运动时间为ts.射线与射线 DA 相交时,设交点为 M.令CBCD(1)当点 P 在线段CD 上(点 P 不与端点重合)时,求证:∠PBC=∠DPM.(2)如图15-2,当k=1,且点 P 在线段CD 上(点 P 不与端点重合)时,在线段CB上截取CG=CP,连接PG,求证:GP=DM.,且点 P 在 CD 的延长线上时,已知tan C=22,BC=3,①求出 y与t的函(3)如图15-3,当k=34数关系式;②若BP,AD交于点H,已知△HMPO△BPC,,直接写出t的值.数学模拟试题参考答案说明:1.在阅卷过程中,如考生还有其他正确解法,可参照评分标准按步骤酌情给分.2.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分.3.解答右端所注分数,表示正确做到这一步应得的累加分数.只给整数分数.一、选择题(本大题共16 个小题,共38分.1~6小题各 3分,7~16小题各2分)题号12345678答案A D C B D A C D 题号910111213141516答案BBDcBCBA1.A解:由轴对称图形的概念知,选 A.2.D解:: 14<13,∴|14−13|==13−14.3.C解:准确且唯一确定位置的描述是点 B 在点 A 的南偏西48°方向上4k m 处,故选 C.4.B解:由: 3ᵐ⁺²=9,得 3ᵐ×3²=3²,∴3ⁿ=3²÷3²=3⁰,故m=0.5.D解:构造几何模型如图:依题意知BC=1.5米,AF=2米,AG=3米,由△DAE∽△BAC 得 DE BC =AF ΛG ,即 DE 1.5=23,得 DE=1 米,即桌面的直径为1 米.6.A解:: ∴1200=1.2×10³,∴n =3,∴1,2×10²ⁿ=1,2×10⁶=1200000.7.C解:如图,连接DB,∵AD=AB=10cm,∠A=60°,∴△ABD 为等边三角形,∴BD=AB=10cm.8.D解:-2x+3>7的解集为x<-2,只有-6<m<-4可能正确,故选D.9.B解:依题意,得 3030−3−1216=x14,解得x=16,16-14=2(斤),∴若得到14斤干丝,则需使用生丝16斤,损耗生丝2斤.10.B解: ∵m 12=8−2=2,∴m =2÷12=2.11.D解:设 PQ=x cm,则BQ=(15-x) cm,根据三角形三边关系可得 x−5<15−x,x +5>15−x,解得5<x<10.故选 D.12.C解:该作图过程中,弧①的半径长度为任意长;弧②、③的半径长度相等,且大于 12EF 的长;弧④以 PA 的长度为半径.只有 C 选项正确.13.B解: |M−1=m +2m +3−1=−1m +3.∵m >−3时, −1m +3<0,故M<1,结论三不正确;m=-3,分式无意义;M=-1时,m=-2.5,故选 B.14.C解:方案1:a=12÷4=3,所折成的无盖长方体的底面积为3×3=9.容积为5×9=45.方案2:b=4,所折成的无盖长方体的底面积为4×2=8.容积为6×8=48.故选 C.15.B解:∵速度=路程/时间, 1m/s =3.6km/ℎ,∴v =180t.16.A解:∵AB=AC=8,BC=8 3,AD 是BC 边上的中线,F 为 DC 的中点,∴FC =14 :BC =23,BD =43, :AD =AB 2−BD 2=4.∵BH =HF,∴2BH +23=83∴BH =33.易知 1BG;HωBAD,∴+BHBD =CHAD ,∴3343=GH4,GH =3,∴∴S 1=12HF ×GH =932.由折叠易知∠EDC=∠C,∠GFB=∠B.∵AB=AC,∴∠B=∠C,∴∠EDC=∠B,∠GFB=∠C,∴DE∥AB,GF∥AC,∴四边形GKEA 为平行四边形.易得 BD =CD =12BC =43,DF =CF =23,DE =AE =12AB =4,∴EF =42−(23)2=2.过点 F 作 FM⊥CE 于点M.∵S EFC =12FE ⋅FC =12CE ⋅FM, ∴CE ⋅FM =2×23=43. ∵S 2=AE ⋅FM,AE =CE,∴S 2=43.二、填空题(本大题共3个小题,共10分.其中17,18小题各3分,19小题第1个空 2分,第2,3个空各1分)17.0解: ab +a²=a (b +a )."a ,b 互为相反数,∴b+a=0,∴原式=0.18. 14解:从家到公园,再到超市的路线有 A ₁与B ₁,A ₁ 与 B ₂,A ₂与 B ₁,A ₂ 与 B ₂共四种,则恰好选到经过路线 A ₁ 与 B ₂ 的概率是 14.19.(1)108 (2)45 (3)5−1解:(1)∵五边形的内角和为( (5−2)×180°=540°,∴∠C=∠DQP=∠CDE=108°.(2)如图1,由图形的轴对称可知,∠CDM =∠EDM =12∠CDE =54∘,∠CDP =∠QDP =12∠CDM =27∘,∴∠DPQ=180°-∠DQP-∠QDP=180°-108°-27°=45°.(3)∵CD=QD,∴点Q 在以D 为圆心,2 为半径的圆上,如图2. 连接AD,交圆D 于点Q,此时AQ 最短,此时点 B,P 重合,∠CPD=∠DPQ=∠QBA=36°,∴∠DBA=∠BQA=72°,∴△ABQ∽△ADB, ∴ABDA =AQAB ,∴22+AQ =AQ 2,∴AQ =5−1.三、解答题(本大题共7个小题,共72分)20.解: (1)A =−x²+3x−2−(3x²−5x +3)=−4x²+8x−5.……………………………………………………………5分(2)多项式A 的值不会是正数,………………………………………………6分理由如下:A= =−4x²+8x−5=−4(x²−2x )−5=−4(x²−2x +1−1)−5=−4(x−1)²−-1. ∵−4(x−1)²≤0, ∴−4(x−1)²−1<0,∴多项式A 的值不会是正数.…………………………………………………………………9分21.解:(1)∵m,n 互为相反数,∴m+n=0,即点 M,N 到原点的距离相等,∴ 原点的位置如图所示:……………………………………4分则t=-1.…………………………………………………………………………………………5分(2)∵点 T 为原点,则m=-2,n=4.∵m-n+□=-3,∴--2-4+□=-3,∴□=3.……………………………………………………………………………………9分22.解:(1)∵50-7-9-12-6=16.补全统计图如下:…………………………………………3分(2)∵样本容量为50,7+9+12=28,∴中位数落在C组.将样本数据从小到大排列,则中位数是第25,26 个数的平均数,a+792=78.5.解得a=78.即a的值为78.……………………………………………………………………………………7分(3)平均数不变,方差改变………………………………………………9分23.解:(1)点 P(2,1),点 Q(4,1)是抛物线上的一对对称点,∴对称轴为直线x=3.…………………………………………………………………………2分∵抛物线G 达到的最大高度为2,所以y=a(x−3)²+2,将点 P(2,1)代入,得1=a×(2−3)²+2,解得a=-1,∴抛物线G的函数表达式为y=−(x−3)²+2.…………………………………5分(2)∵AB=4,AQ=1,∴BQ=3.又 Q(4,1),∴点B(7,1),点M(5,1),………………………………………………………………………7分∴当点 Q(4,1)与点 M(5,1)是抛物线上的一对对称点时,−b2×(−2)=4+52=92,∴b=18.…8分当点 Q(4,1)与点 B(7,1)是抛物线上的一对对称点时,−b2×(−2)=4+72=112,∴b=22,…9分∴18<b<22,∴b所有的整数值为19,20,21.………………………………………………10分24.解:(1)如图1,连接OO',∵OO′=QO′=QO,∴△OQO′为等边三角形,∴∠OQO′=∠OO′Q=60°.………………………………………3分∵∠POQ=∠MO′Q=120°,∴∠MO′O=∠MO′Q+∠OOQ=120°+60°=180°,∴点O在直线MO'上.…………………………………………………………………………5分(2)当扇形 QO'M 的半径(O′Q所在直线与扇形POQ 第一次相切时,如图2,则∠OQO′=90°,∴l(x)=18π(cm).………………………………………………………………………8分=90×36π180(3)根据题意可知旋转中心为点 Q,MQ 为定值,∴当扇形 QO'M 旋转一周时,点 M的轨迹是以点Q 为圆心,MQ 的长为半径的一个圆.如图3,向两侧延长QO,分别交大圆Q于点 A,B,∴OA,OB的长分别为 MQ 的最小值和最大值.连接PQ,如图4,过点 O 作OE⊥PQ 于点 D,交PQ 于点E,∴PD =12PQ,∠POE =12∠POQ =60∘,∴PD =OP sin60∘=36×32=183(cm ),∴PQ =2×183=363(cm ),∴OA =(363−36)cm,OB =(363+36)cm,∴OM 的取值范围为(363−36)cm ≤OM ≤(363+36)cm.…10分25.解:(1)设线段AB 所在直线的解析式为y=kx+b.∵经过点A(-10,-1),B(4,6), ∴−1=−10k +b,6=4k +b,解得 k =12,b =4,∴线段 AB 所在直线的函数解析式为 y =12x +4.……………………4分(2)当点 N(n-1,n+3)在直线 AB 上时,n +3=12(n−1)+4,解得n=1,∴点 N(0,4),∴点 N(0,4)为线段 AB 上的整数点,∴当点N 在线段AB 上时,点N(n-1,n+3)会使感应灯亮.…………………………………8分(3)直线AB 的函数表达式为y= 12x+4,A(-10,-1),B(4,6),∴线段AB 上的整数点有(-10,-1),(-8,0),(-6,1),(-4,2),(-2,3),(0,4),(2,5),(4,6)共8个,其中(-4,2),(-2,3)为中间两个整数点,为临界点.当射线MN 经过(-4,2),(2,0)时,直线MN 的函数表达式为 y =−13x +23,将点 N(n-1,n+3)代入得 n +3=−13(n−1)+23,解得 n =−32.同理可得,当射线MN 经过(-2,3),(2,0)时,直线 MN 的函数表达式为 y =−34x +32,将点 N(n-1,n+3)代入得 n +3=−34(n−1)+32,解得 n =−37,∴符合条件的n 的取值范围为 −32<n <−37. …12分26.(1)证明:∵∠DPB=∠C+∠PBC,∴∠DPM+∠BPM=∠C+∠PBC.∵∠BPM=∠C,∴∠PBC=∠DPM.………………………………………………2分(2)当k=1,且点 P 在线段CD 上时,CB=CD,CG=CP,∴∠CGP =12(180∘−∠C ),CB−CG =CD−CP,即GB=PD.∵AB∥CD,∴∠C+∠CBA =180°.∴∠CBA =2∠A,∴∠A =12(180∘−∠C ),∴∠CGP =∠A.∵AB∥CD,∴∠A+∠ADC =180°.∵∠CGP+∠BGP=180°,∴∠BGP=∠ADC.又∵∠PBC=∠DPM,∴△BGP≌△PDM,∴GP=DM.………………………………………8分(3)①如图,在射线CB 上截取( CG =CP,连接PG,过点 G 作( GE ⊥CP,,垂足为点 E.由(1)的推理可知 ∠PBC =∠KPM,∴∠GBP =∠DPM.由(2)的推理可知 ∠CGP =∠A.∵AB‖CD,∴∠PDM=∠A,∴∠CGP =∠PDM,∴△BGP △PDM,∴BG PD =PG DM .∵在 Rt△ECG 中, tan C =22,CG =CP =t,∴CE =13t,EG =223t,∴PE =23t,∴PG =233t.由题意得,BC=3,CD=4,DM=y,∴t−3t−4=233ty ,∴y =23t 2−83t3t−9. ………………………………………………11分circle223+3.…………………………………………………13分解:记 PG 与AB 相交于点 N.∵△HMP∽△BPC,∴∠CPB=∠PMD.∵△BGP∽△PDM,∴∠BPG=∠PMD,∴∠CPB=∠BPG.∵AB∥CD,∴∠CPB=∠PBA,∴∠BPG=∠PBA,∴PN=BN.易得∠BGN=∠BNG,∴BN=PN=BG=t-3.∵ABCD,∴BC CG =PN PG ,∴3t =t−323t 3,∴t =23+3.。
2024年吉林省松原市吉林油田第十二中学九年级第三次中考模拟考试数学试题(含答案)

吉林油田第十二中学初三第三次模拟考试数学试卷*试卷满分120分,时间120分钟*一、选择题(每题2分,共12分)1. 在3,0,-2,四个数中,最小的数是()A. 3 B. 0C. -2D. 2. 下列计算正确的是()A. B. C. D. 3. 某种零件模型如图所示,该几何体(空心圆柱)的俯视图是()A. B. C. D.4. 关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图像经过点;乙:函数图像经过第四象限;丙:当时,y 随x 的增大而增大.则这个函数表达式可能是()A. B. C. D. 5. 如图,PA ,PB 是切线,A ,B 为切点,点C 在优弧ACB 上,且,则等于( )(第5题图)A. B. C. D. 6. 如图,平行四边形ABCD 中,分别以点B ,D为圆心,大于的长为半径画弧,两弧交于点M ,223a a a +=()236a a -=()222a b a b =--3=±()1,1-0x >y x =-1y x =2y x =1y x=-O 70APB ∠=︒ACB ∠55︒110︒70︒125︒12BDN ,直线MN 分别交AD ,BC 于点E ,F ,连接BD 、EF ,若,,,则线段BF 的长是( )(第6题图)A. B. C. 3 D. 二、填空题(每题3分,共24分)7. 分解因式:______.8. 原子很小,1个氧原子的直径大约为0.000000000148m ,将0.000000000148用科学记数法表示为______.9. 如图所示,第四套人民币中菊花1角硬币.则该硬币边缘镌刻的正九边形的一个外角的度数为______.(第9题图)10. 已知一元二次方程有两个相等的实数根,则m 的值为______.11. 综合实践课上,小宇设计用光学原理来测量公园假山的高度,把一面镜子放在与假山AC 距离为21米的B 处,然后沿着射线CB 退后到点E ,这时恰好在镜子里看到山头A ,利用皮尺测量米,若小宇的身高是1.6米,则假山AC 的高度为______米.(结果保留整数)(第11题图)12. 若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是______.13. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,H 为BC 中点,,,则线段OH 的长为______.(第13题图)120BAD ∠=︒1AE =2AB=1++3222a a b ab -+=260x x m ++= 2.4BE =︒3AC =4BD =14. 如图,在扇形AOB 中,,半径.将扇形AOB 沿过点B 的直线折叠,点O 恰好落在弧AB 上点C 处,折痕交OA 于点D ,则图中阴影部分的面积为______.(第14题图)三、解答题(每题5分,共20分)15. 先化简,再求值:,其中16. 如图,小妍同学做了一个可以自由转动的均匀转盘,转盘均分为三等份,分别标有1,2,3三个数字,她邀请小嘉同学一起玩游戏,规则如下:转动转盘,转盘停止后,指针指向一个数字所在的扇形得到对应的数字(若指针恰好指在分隔线上,则重转一次,直到指针指向某一个数字为止).(1)小妍转动一次转盘转到数字2的概率是______;(2)小妍同学先转动一次,然后小嘉同学同样转动转盘,再将两人转动的数字相加,如果两个数字的和是奇数则小妍同学胜,否则小嘉同学胜.请利用画树状图或者列表格的方法判断这个游戏对两人公平么?17. 《九章算术》是我国古代经典数学著作,奠定了中国传统数学的基本框架,书中记载:“今有大器五、小器一容三斛;大器一、小器五容二斛,问大、小器各容几何?”译文“今有大容器5个,小容器1个,总容量为3斛;大容器1个、小容器5个,总容量为2斛,问大、小容器的容积各是多少斛?”18. 如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:.四、解答题(每题7分,共28分)19. 如图,在的方格纸中,线段AB 的端点在格点上,请按要求画图.图① 图② 图③90AOB ∠=︒4OA =22424412x x x x x x x -+-÷+-++-2x =OE OF =55⨯(1)如图①,画出一条线段AC ,使,C 在格点上;(2)如图②,画出一条线段EF 使EF 、AB 互相平分,E 、F 均在格点上;(3)如图③,以A 、B 为顶点画出一个四边形,使其是中心对称图形而不是轴对称图形,且顶点均在格点上.20. 2024年3月22日是第32届世界水日,学校开展了节约和保护水资源的知识竞赛,从全校2000名学生中随机抽取部分学生的竞赛成绩进行调查分析,并将成绩(满分:100分)制成如图所示的扇形统计图和条形统计图.请根据统计图回答下列问题:(1)本次调查共抽取了______名学生,这些学生成绩的中位数是______;(2)补全上面不完整的条形统计图;(3)根据比赛规则,98分及以上(含98分)的学生有资格进入第二轮知识竞赛环节,请你估计全校2000名学生进入第二轮知识竞赛环节的人数.21. 在一次课外活动中,某数学兴趣小组测量一棵树CD 的高度.如图所示,测得斜坡BE 的坡度,坡底AE 的长为8米,在B 处测得树CD 顶部D 的仰角为,在E 处测得树CD 顶部D 的仰角为,求树高CD .(结果保留根号)22. 如图,在平面直角坐标系xOy 中,正比例函数与反比例函数的图象交于A ,B 两点,A 点的横坐标为2,轴于点C ,连接BC .(1)求反比例函数的解析式;(2)结合图象,直接写出时x 的取值范围;AC AB =1:4i =30︒60︒2y x =k y x=AC x ⊥2k x x>(3)若点P 是反比例函数图象上的一点,且满足与的面积相等,求出点P 的坐标.五、解答题(每题8分,共16分)23. 已知A 、B 两地之间有一条长300千米的公路,甲车从A 地出发匀速开往B 地,甲车出发两小时后,乙车从B 地出发匀速开往A 地,两车同时到达各自的目的地两车行驶的路程之和y (千米)与甲车行驶的时间x (小时)之间的函数关系如图所示.(1)a 的值为______;(2)求乙车出发后,y 与x 之间的函数关系式;(3)当甲、乙两车相距150千米时,直接写出甲车行驶的时间.24.【推理】如图1,在边长为10的正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连接BE ,CF ,延长CF 交AD 于点G ,BE 与CG 交于点M .图1图2 图3(1)求证:.【运用】(2)如图2,在【推理】条件下,延长BF 交AD 于点H ,若,求线段DH 的长.【拓展】(3)如图3,在【推理】条件下,连接AM ,则线段AM 的最小值为______.六、解答题(每题10分,共20分)25. 如图,在中,,,动点P 从点A的速度沿AB 向终点B 运动,过点P 作交折线于点Q ,将点P 绕点Q 顺时针旋转至点D ,连结DQ 、PD .设点P 运动的时间为x (s ),与重叠部分图形的面积为.(1)AQ 长为______cm (用含x 的代数式表示);k y x=OPC △ABC △CE DG =6CE =ABC △90ACB ∠=︒4cm AC BC ==PQ AB ⊥AC CB -90︒PQD △ABC △()2cm y(2)当点D落在边BC上时,求x的值;(3)求y关于x的解析式,并写出自变量x的取值范围.26. 在平面直角坐标系xOy中,已知抛物线与x轴交于点,.(1)求抛物线的表达式.(2)若抛物线,当时,y有最大值12,求m的值.(3)若将抛物线平移得到新抛物线,当时,新抛物线与直线有且只有一个公共点,直接写出n的取值范围.参考答案1. C2. B3. C4. D5. A6. D7. 8. 1.48×10−109. 40° 10. 911. 14 12. 120 13. 14.15.解:原式=﹣=﹣+=……………………………………………………………………3分当x=2分16.解:(1);……………………………………………………………………1分(2)根据题意画树状图如下:……………………………………………………………………3分共有9种等可能的情况数,两个数字和是奇数的有4种,则小妍同学胜的概率是;∴小嘉同学胜的概率是,2y x bx c=++()1,0A-()5,0B22y x bx c mx=++-2123m x m-≤≤+2y x bx c=++2y x bx c n=+++23x-<< 1y=()2a a b-544π-2(2)(2)1(2)22x x x xx x x+-+⋅+-+-12xx+-2xx-12x--134959∵,∴这个游戏对两人不公平.……………………………………………………………………5分17.解:设大容器的容积是斛,小容器的容积是斛…………………………………………………1分依题意,得:……………………………………………………………………3分解得:,答:大容器的容积是斛,小容器的容积是斛.……………………………………………………5分18.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,OA =OC ……………………………………………………………………1分∴∠BAO =∠ACD ,即∠EAO =∠FCO ………………………………………………………2分又∵∠AOE =∠COF ,∴△AOE ≌△COF (ASA )……………………………………………………………………4分∴OE =OF .……………………………………………………………………5分19.【答案】如图所示:图① 图② 图③20.(1)故答案为:60,96分;……………………………………………………………………2分(2)解:补全统计图:;………………………………………………5分(3)解:2000×=900(名).答:估计全校2000名学生进入第二轮知识竞赛环节的人数是900名.……………………7分21.解:作于点,设米………………………………………………1分4599<x y 5352x y x y +=⎧⎨+=⎩1324724x y ⎧=⎪⎪⎨⎪=⎪⎩132472418960+BF CD ⊥F DF x =在中,,则(米………………………………………………2分∵,且AE =8∴∴………………………………………………3分在直角中,米,在直角中,,米.………………………………………………4分.解得:, (5)分则米.答:的高度是米.………………………………………………7分22.(1)………………………………………………2分(2)或………………………………………………4分(3)或……………………………………………7分23.(1)600;………………………………………………2分(2)设与之间的函数关系式为,………………………………………………3分由图可知,函数图象经过,,,解得,………………………………………………5分与之间的函数关系式为;………………………………………………6分Rt DBF ∆tan DF DBF BF ∠=tan 30DF BF ==︒)14AB AE =2AB =2CF AB ==DCE ∆(2)DC x CF x =+=+DCE ∆tan DC DEC EC ∠=22)tan 60x EC x +∴==+︒BF CE AE -= 2)8x +=1x =+123)CD =+=CD 3)+8y x=20x -<<2x >()1,8()1,8--y x y kx b =+(2,100)(6,600)∴21006600k b k b +=⎧⎨+=⎩125150k b =⎧⎨=-⎩y ∴x 125150(26)y x x =-≤≤(3)小时或小时.………………………………………………8分24.(1)………………………………………………3分(2)………………………………………………6分(3)………………………………………………7分25.(1)∵AC =BC ,∠ACB =90°∴∠A =45°∵PQ ⊥AB ,∴,∴,故答案为(2)当点D 落在BC 上时,如图①AP =QD =,AQ =,∵AB ⊥PQ ,DQ ⊥PQ ,∴PA ∥DQ ,∴∠DQC =∠BAC =45°,∴△DCQ 为等腰直角三角形∴,QC =x ∵AQ +QC =AC ∴∴图①(3)当时,如图②,PQ =DQ =∴即图②当时,如图③,∵PA =DQ ,PA ∥DQ ,∴四边形PAQD 是平行四边形,1252451435AP =cos AP A AQ ∠=2cos AQ AQ x A ===∠x2x 2x 222)2(2x QC =42=+x x 34=x 403x <≤x 22222121x x x DQ PQ y =⋅=⋅=2x y =234≤<x∴PE ∥AC ,PD =AQ =∴∵∴,∴∴整理得:图③当时,如图④,PB =PQ =∴sin ∠EPQ =,∴∴即图④26.(1)解:把点,代入抛物线得,,解得,x2ABBP AC PE =24442222=+=+=BC AC AB 242244x PE -=x PE -=443)4(2-=--==x x x EF ED 22)43(212121--=⋅-⋅=-=∆∆x x EF ED DQ PQ S S y DEF PQD 81242-+-=x x y 42≤<x x224-PQEQ x x EQ -=-⨯=4)224(45sin 08421)4(212122+-=-=⋅=x x x EP EQ y 84212+-=x x y ()1,0A -()5,0B y 2x bx c =++102550b c b c -+=⎧⎨++=⎩45b c =-⎧⎨=-⎩抛物线表达式为;(2)解:由()知,抛物线,∴抛物线的对称轴为直线,开口向上,∵时,有最大值,最大值只能在或时取得,当时,即,此时,有最大值,即,解得,符合题意;当时,即,此时,有最大值,即,解得,不合,舍去;当,即,当时,有最大值,即,解得,不合,舍去;当,有最大值,即,解得,不合,舍去;综上,的值为;(3)解:由题意得,新抛物线为是把抛物线平移个单位得到的,如图所示:当时,新抛物线与直线相交且有一个交点时,则∴245y x x =--1()22452425y x x mx x m x =---=-+-2x m =+2123m x m -≤≤+y 12∴21x m =-23x m =+232m m +≤+1m ≤-21x m =-y 12()()()2122142215m m m =--+--65m =-221m m +<-3m >23x m =+y 12()()()2122342235m m m =+-++-10m =-21223m m m -≤+≤+13m -≤≤21x m =-y 12()()()2122142215m m m =--+--65m =-23x m =+y 12()()()2122342235m m m =+-++-10m =-m 65-245y x x n =--+245y x x =--||n ①23x -<<1y =485191251n n +-+≥⎧⎨--+≤⎩解得;当抛物线与直线相切时,就是把抛物线,向上平移10个单位,即,的取值范围为或.69n -≤≤②245y x x =--1y =2245(2)9y x x x =--=--10n =n ∴69n -≤≤10n =。
2024年河南省漯河市临颍县九年级中考第一次模拟考试数学试题

2024年河南省漯河市临颍县九年级中考第一次模拟考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.四个有理数2-,1-,0,1,其中最小的是( )A .2-B .1-C .0D .12.少年的一根头发的直径大约为0.00000412米,将数据“0.00000412”用科学记数法表示为( )A .40.41210-⨯B .44.1210-⨯C .54.1210-⨯D .64.1210-⨯ 3.餐桌对于我们中国人有着非同一般的意义,它承载着家庭团圆的欢声笑语,如图为一张圆形木质餐桌,则其俯视图为( )A .B .C .D . 4.下列说法正确的是( )A .“打开电视机,正在播放《新闻联播》”是必然事件B .天气预报“明天降水概率50%,是指明天有一半的时间会下雨”C .甲、乙两人在相同的条件下各跳远8次,他们成绩的平均数相同,方差分别是20.32s =甲,20.41s =乙,则甲的成绩更稳定 D .了解一批冰箱的使用寿命,采用普查的方式5.下列计算结果正确的是( )A .752a a -=B .933a a a ÷=C .532a a a ÷=D .()32639a a = 6.下列方程有两个相等的实数根的是( )A .2102x x ++=B .2210x x -+-=C .2210x x --=D .21024x x -=7.小高有三件运动上衣,分别为蓝色、白色和红色,有两条运动裤,分别是黑色和红色,一天他准备去运动场锻炼,随手拿出一件运动上衣和一条运动裤,则恰好都是红色的概率为( )A .16B .35C .13D .258.某市为了方便市民绿色出行,推出了共享单车服务,图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB ,CD 都与地面l 平行,62BCD ∠=︒,54BAC ∠=︒,当MAC ∠为( )度时,AM 与CB 平行.A .54B .64C .74D .1149.如图,直线1:4l y x =+与直线2:l y mx n =+交于点()1,A b -,则关于x ,y 的方程组4y x y mx n -=⎧⎨-=⎩的解是( )A .31x y =⎧⎨=⎩B .13x y =-⎧⎨=-⎩C .13x y =-⎧⎨=⎩D .31x y =⎧⎨=-⎩ 10.如图,正方形ABCD 中,AB =8cm ,对角线AC ,BD 相交于点O ,点E ,F 分别从B ,C 两点同时出发,以1cm/s 的速度沿BC ,CD 运动,到点C ,D 时停止运动,设运动时间为t(s ),△OEF 的面积为s (cm 2),则s (cm 2)与t (s )的函数关系可用图象表示为( )A .B .C .D .二、填空题11x 可以是 (写出一个x 的值即可).12.不等式组4024x x x +≥⎧⎨-<⎩的所有整数解的和是 . 13.如图,O e 是ABC V 的外接圆,AC 是O e 的直径,点P 在O e 上,若40ACB ∠=︒,则BPC ∠的度数是 .14.如图,长方形纸片ABCD 中,点E 是CD 的中点,连接AE .按以下步骤作图:①分别以点A 和点E 为圆心,以大于12AE 的长为半径作弧,两弧相交于点M 和点N ;②作直线MN ,且直线MN 刚好经过点B .若3DE =,则BC 的长度是 .15.如图,在ABC V 和ADE V 中,AB BC ==2AD DE ==,90ABC ADE ∠=∠=︒,连接CE ,CD ,点O 为CE 的中点,连接OD .将A D E V 绕点A 在平面内旋转,当90CDE ∠=︒时,OD 的长为 .三、解答题16.(1)计算:()101 3.1412sin453π-⎛⎫+-+︒ ⎪⎝⎭; (2)化简:2212112x x x x x x +⎛⎫-÷ ⎪--+⎝⎭. 17.为倡导绿色健康节约的生活方式,郑州市博物院社区开展“共建节约型社区”之减少塑料袋活动,鼓励居民自觉减少塑料袋的使用量,以促进环保.志愿者随机抽取了社区内100名居民,对其2023年2月5日(元宵节)当天购物塑料袋使用次数进行了调查,并对数据进行了统计整理,以下是部分数据和不完整的统计图表:信息甲:使用塑料袋情况分布表信息信息乙:使用塑料袋个数占比统计图信息丙:C 组包含的数据:14,14,13,13,13,13,13,13,12,12,12,12,12,11,11,11,11,10,10,10,10,10.请结合以上信息完成下列问题:(1)统计表中的m = ,n = ;(2)统计图中A 组对应扇形的圆心角为 度;(3)C 组数据的众数是 ,抽取的100名居民2023年2月5日(元宵节)当天购物塑料袋使用次数的中位数是 ;(4)根据调查结果,请你估计该社区3000名购物居民中2023年2月5日(元宵节)当天购物塑料袋使用次数不少于15次的人数.18.如图,一次函数()0y kx b k =+≠的图象与反比例函数()0m y m x=≠的图象相交于点()()121A B a -,,,.(1)求反比例函数和一次函数的解析式;(2)请直接写出不等式0m kx b x+-<的解集. (3)若直线()0y kx b k =+≠与x 轴交于点C x ,轴上是否存在一点P ,使4APC S =△?若存在,请求出点P 坐标;若不存在,说明理由.19.如图,小敏在观察大风车时,想测一下风叶的长度(风叶完全相同).她首先通过C 处的铭牌筒介得知风车杆BC 的高度为98米,然后沿水平方向走到D 处,沿着斜坡DE 走了35米到达E 处观察风叶,风叶AB 在如图所示的铅垂方向,测得点A 的仰角为68︒,风叶A B '在如图所示的水平方向,测得点A '的仰角为45︒,若斜坡DE 的坡度1:0.75i =,小敏身高忽略不计.(结果精确到1米.参考数据:sin 680.93︒≈,cos680.37︒≈,tan 68 2.48︒≈)(1)求小敏从D 到E 的过程中上升的竖直高度;(2)求风叶的长度.20.如图,在Rt ABC V 中,90ACB ∠=︒,以AC 为直径的O e 与AB 边交于点D ,过点D 作O e 的切线交BC 于点E .(1)求证:BE EC =(2)填空:①若30B ∠=︒,AC =DE = ;②当B ∠= 度时,以O ,D ,E ,C 为顶点的四边形是正方形.21.“双减”政策颁布后,各校重视了延时服务,并在延时服务中加大了体育活动的力度.某体育用品商店抓住商机,计划购进乒乓球拍和羽毛球拍共300套进行销售,它们的进价和售价如下表:已知购进2套乒乓球拍和1套羽毛球拍需花费120元,购进4套乒乓球拍和3套羽毛球拍需花费270元.(1)求出a ,b 的值;(2)该体育用品商店根据以往销售经验,决定购进乒乓球拍套数不少于羽毛球拍套数的13,若这批体育用品能够全部售完,则如何购货才能获利最大?最大利润是多少?22.掷实心球是某市中考体育考试的选考项目,如图①是一名男生投实心球,实心球行进路线是一条抛物线,行进高度y (米)与水平距离 x (米)之间的函数关系如图②所示,掷出时起点处高度为2米,当水平距离92米时,实心球行进至最高点:258米处.(1)求y 关于x 的函数表达式;(2)根据该市2023年中考体育考试评分标准(男生) ,投掷过程中,实心球从起点到落地点的水平距离大于等于12.4米,此项考试得分为满分17分,按此评分标准,该生在此项考试中是否得满分,请说明理由.23.综合与实践数学活动课上,老师让同学们根据下面情境提出问题并解答.问题情境:在ABCD Y 中(A D C D A B ∠>∠),点P 是边AD 上一点.将PDC △沿直线PC 折叠,点D 的对应点为E .数学思考:(1)“兴趣小组”提出的问题是:如图1,若点P 与点A 重合,过点E 作EF AD ∥,与PC 交于点F ,连接DF ,则四边形AEFD 的形状一定是 (选填“菱形”“矩形”或“正方形”); 拓展探究:(2)“智慧小组”提出的问题是:如图2,当点P 为AD 的中点时,延长CE 交AB 于点F ,连接PF .试判断PF 与PC 的位置关系,并说明理由;问题解决:(3)“创新小组”在前两个小组的启发下,提出的问题是:如图3,当点E 恰好落在ABCD Y 的边AB 上时,3AP =,7AD =,10CD =,直接写出BE 的长.。
2024年浙江省绍兴市诸暨市九年级中考模拟数学试卷

2024年浙江省绍兴市诸暨市九年级中考模拟数学试卷一、单选题(★★) 1. 2024的相反数是()A.B.C.2024D.(★) 2. 据报道,浙江省举全省之力筹办杭州亚运会,共有名志愿者参加.其中用科学记数法可表示为()A.B.C.D.(★★) 3. 青溪龙砚起源于宋代,已有一千余年的历史,是浙江一项传统的石雕工艺,被列入浙江省级非物质文化遗产项目.如图是一款龙砚的示意图,其俯视图是()A.B.C.D.(★★) 4. 下列计算正确的是()A.B.C.D.(★★) 5. 将一副直角三角板按图中所示的位置摆放,,,若两条斜边,则()A.B.C.D.(★) 6. 某珍珠直播间介绍了一批珍珠,从中随机抽取7颗珍珠,测得珍珠直径(单位:mm)分别是:,,,,,,.则这组数据的众数和中位数分别是()A.14,15B.14,14C.13,13D.13,14(★★) 7. 如图,为的直径,交于点,点是的中点,连接.若,,则阴影部分的面积是()A.B.C.D.(★★) 8. 根据图象,可得关于的不等式的解集是()A.B.C.D.(★★) 9. 如图,菱形的对角线,相交于点,过点作于,是边的中点,连接,若,菱形的面积96,则的值是()A.B.C.D.(★★★★) 10. 已知关于的函数的顶点为,坐标原点为,则长度不可能是()A.2B.1.5C.1D.0.5二、填空题(★) 11. 分解因式: _____ .(★) 12. 在一个不透明的袋子中装有2个红球和3个蓝球,每个球除颜色外都相同,任意摸出一个球,则摸出红球的概率是 ______ .(★★) 13. 如图,水暖管横截面是圆,当半径的水暖管有积水(阴影部分),水面的宽度为,则积水的最大深度是 ______ .(★★★) 14. 已知实数,满足,当 ______ 时,代数式的值最大.(★★★) 15. 如图,一次函数与反比例函数的图像相交于,两点,其交点的横坐标分别为3和6,则实数的值是 ______ .(★★★) 16. 已知点为线段上一点.如果的比值为关于的方程的解,那么点为的阶黄金分割点.已知阶黄金分割点作法如下:步骤一:如图,过点作的垂线,在垂线上取,连接;步骤二:以点为圆心,为半径作弧交于点;步骤三:以点为圆心,为半径作弧交于点;结论:点为线段的阶黄金分割点.(1)作法步骤一中,当时,点为线段的 ______ 阶黄金分割点;(2)作法步骤一中,当 ______ (结果用的代数式表示)时,点为线段的阶黄金分割点.三、解答题(★★★) 17. (1)计算:;(2)解不等式组.(★★★)18. 如图,方格纸上每个小正方形的边长均为1个单位长度,点,,,在格点(两条网格线的交点叫格点)上,以点为原点建立直角坐标系.(1)过,,三点的圆的圆心坐标为______;(2)请通过计算判断点与的位置关系.(★★) 19. 2024年,中国空间站工程将陆续实施天舟七号货运飞船、神舟十八号载人飞船、天舟八号货运飞船、神舟十九号载人飞船等4次飞行任务,为了解学生对“航空航天知识”的掌握情况,某中学随机抽取学生进行测试,并对测试结果进行整理和分析,将成绩划分为,,,四个等级,并绘制了如下统计图(不完整).根据以上信息,回答下列问题.(1)求出本次调查抽取的总人数,并补全条形统计图;(2)在扇形统计图中,求等级为的学生人数所对应的扇形圆心角的度数;(3)若该中学共有3000名学生,且全部参加这次测试,利用题中信息,估计学生的测试成绩等的总人数.(★★★) 20. 某船以每小时36海里的速度向正东方向航行,在点测得某岛在北偏东方向上,航行小时后到达点,测得该岛在北偏东方向上.(1)求长度(单位:海里);(2)若继续向东航行,该船与岛的最近距离是多少海里?(★★★) 21. 如图,在中,,点在边上,以为直径作交的延长线于点,.(1)求证:是的切线;(2)若,,求的半径长.(★★★)22. 某水果店购进甲,乙两种苹果,这两种苹果的销售额(单位:元)与销售量(单位:千克)之间的关系如图所示.(1)求乙种苹果销售额(单位:元)与销售量(单位:千克)之间的函数解析式,并写出的取值范围;(2)若不计损耗等因素,甲,乙两种苹果的销售总量为100千克,销售总额为2100元,求乙苹果的销售量.(★★★★) 23. 如图,已知,在一边长固定的正方形中,点为中点,为线段上一动点,连接,作于点,为中点,作于点,交于点,作于点,交于点.(1)求证:;(2)若点从点移动到点,随着长度的增大,的长度将如何变化?判断并说明理由;(3)若,四边形的面积为,的面积为,求的值(用的代数式表示).(★★★★) 24. 已知关于的两个函数(为常数,,)与(为常数,,)的图像组成一个新图形.图形与轴交于A,两点(点A在点左边),交轴于点.(1)求点A,坐标;(2)若为直角三角形;①求实数的值;②若直线与图形有且只有两个交点,,满足,求实数满足条件.。
2024年安徽省九年级中考数学模拟试卷(含解析)

2024年安徽数学中考模拟试温馨提示:1试卷满分150分,考试时间120分钟。
2 本试卷共六页,共23题。
一、选择题(本题10小题,每小题4分,共40分)1.的倒数是( )A .B .C.D .2.天宫二号空间实验室的运行轨道距离地球约393000米,将393000用科学记数法表示应为( )A .B .C .D .3. 下列运算正确的是( )A .B .CD4.某物体如图所示,其俯视图是( )A .B .C .D .5.已知直线,将一块含角的直角三角板ABC 按如图方式放置,若,则的度数是( )A .B .C .D .6.如图,在Rt 中,4,点是斜边BC 的中点,以AM 为边作正方形AMEF.若S 正方形AMEF =16,则( )20232023-20231202312023-70.39310⨯53.9310⨯63.9310⨯339310⨯22a b ab +=()32528x x -=-4=-=a b 45︒124∠=︒2∠56︒66︒76︒86︒ABC AB =M ABC S =A .B .C .12D .167.已知(a+b )2=49,a 2+b 2=25,则ab =( )A .24B .48C .12D .28.将分别标有“大”、“美”、“织”、“金”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“织金”的概率是( )A.B .C .D .9.已知点,,在同一个函数图象上,这个函数图象可以是( )A .B .C .D .10.如图,在矩形 中, 、 分别是边 、 上的点, ,连接 、, 与对角线 交于点 ,且 , , ,则的长为( )18161412()21A a --,()1B a -,()1C a ,ABCD E F AB CD AE CF =EF BF EF AC O BE BF =2BEF BAC ∠=∠2FC =ABA .B .C .4D .6二、填空题(本题4小题,每小题5分,共20分)11.已知,则 .12.关于的方程的解是,则的值是 .13.如图,四边形为⊙O 的内接四边形,已知,则度数为 .14.如图,将一把矩形直尺和一块含角的三角板摆放在平面直角坐标系中,在轴上,点与点重合,点在上,三角板的直角边交于点,反比例函数的图象恰好经过点,若直尺的宽,三角板的斜边,则 .三、(本题2小题,每小题8分,共16分)15.先化简,再求值:,其中.16.如图,为了测量旗杆的高度,在离旗杆底部米的处,用高米的测角仪测得旗杆顶端处的仰角为求旗杆的高.精确到米参考数据:,,23(4)0x y ++-=x y -=x 323x k -=1-k ABCD 140BOD ∠=︒BCD ∠ABCD 30︒EFG AB x G A F AD EF BC M ky (x 0)x=>F M.CD 2=FG =k =236214422x x x x x x --÷-++++260430x tan sin =︒-︒BC 12A 1.5DA C α47.︒BC (0.1)[sin470.73︒≈cos470.68︒≈tan47 1.07]︒≈四(本题2小题,每小题8分,共16分)17.某水果商从批发市场用16000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.(1)大樱桃和小樱桃的进价分别是每千克多少元?(2)在运输过程中大樱桃损耗了,若大樱桃售价为每千克80元,要使此次销售获利不少于6700元,则小樱桃的售价最少应为每千克多少元?18.将连续奇数1,3,5,7,9,…排列成如下的数表:(1)设中间数为x ,用式子表示十字框中五个数之和.(2)十字框中的五个数之和能等于2024吗?若能,请写出这五个数;若不能,请说明理由.五、(本题2小题,每小题10分,共20分)19.如图所示,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABO的三个顶点分别为 A(-1,3),B(-4,3),O(0,0).(1)画出△ABO 关于原点对称的图形△A 1B 1O ,并写出点B 1的坐标;(2)画出△ABO 绕O 点顺时针旋转90°后得到的图形△A 2B 2O ,并写出点B 2的坐标.20.如图,内接于,,它的外角的平分线交于点D ,连接交于点F.15%ABC O 90ABC ∠>︒EAC ∠O DB DC DB ,,AC(1)若,求的度数.(2)求证:.(3)若,当,求的度数(用含的代数式表示).六、(本题2小题,每小题12分,共24分)21.我市教育局为深入贯彻落实立德树人根本任务,2022年在全市中小学部署开展“六个一”德育行动.某校为了更好地开展此项活动,随机抽取部分学生对学校前段时间开展活动的情况进行了满意度调查,满意度分为四个等级:A :非常满意;B :满意;C :一般;D :不满意.根据调查数据绘制了如下两幅不完整的统计图表:等级人数A 72B 108C 48Dm请你根据图表中的信息,解答下列问题:(1)本次被调查的学生人数是多少?(2)求以上图表中m ,n 的值及扇形统计图中A 等级对应的圆心角度数;(3)若该校共有学生1200人,估计满意度为A ,B 等级的学生共有多少人?75EAD ∠=︒ BCDB DC =DA DF =αABC ∠=DFC ∠α22.(1)问题如图1,在四边形中,点P 为上一点,当时,求证:.(2)探究若将角改为锐角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用如图3,在中,,,以点A 为直角顶点作等腰.点D 在上,点E 在上,点F 在上,且,若,求的长.七、(本题1小题,共14分)23.如图,已知抛物线经过、、三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当的值最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使为等腰三角形,若存在,请直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.答案解析ABCD AB 90DPC A B ∠=∠=∠=︒AD BC AP BP ⋅=⋅90︒ABCAB =45B ∠=︒Rt ADE BC AC BC 45EFD ∠=︒CE =CD 2y ax bx c =++(10)A -,(30)B ,(03)C ,PA PC +MAC【解析】【解答】解:由题意得的倒数是,故答案为:C【分析】根据有理数的倒数结合题意即可得到2023的倒数,进而即可求解。
2024年中考数学模拟测试试卷(带有答案)

【答案】A
【解析】
【分析】设大巴车的平均速度为x千米/时则老师自驾小车的平均速度为 千米/时根据时间的等量关系列出方程即可.
【详解】解:设大巴车 平均速度为x千米/时则老师自驾小车的平均速度为 千米/时
根据题意列方程为:
故答案为:A.
【点睛】本题考查了分式方程的应用,找到等量关系是解题的关键.
21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:
∴
∴ ,故D选项正确
∵ 是直角三角形, 是斜边,则 ,故C选项错误
故选:C.
【点睛】本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半,直径所对的圆周角是直角,切线的性质,熟练掌握以上知识是解题的关键.
12.如图,抛物线 与x轴交于点 ,则下列结论中正确的是()
A. B. C. D.
【答案】BD
【答案】2(答案不唯一)
【解析】
【分析】根据实数与数轴的对应关系,得出所求数的绝对值小于 ,且为整数,再利用无理数的估算即可求解.
【详解】解:设所求数为a,由于在数轴上到原点的距离小于 ,则 ,且为整数
则
∵ ,即
∴a可以是 或 或0.
故答案为:2(答案不唯一).
【点睛】本题考查了实数与数轴,无理数的估算,掌握数轴上的点到原点距离的意义是解题的关键.
15.如图,在 中 ,按以下步骤作图:①以点 为圆心,以小于 长为半径作弧,分别交 于点 ,N;②分别以 ,N为圆心,以大于 的长为半径作弧,在 内两弧交于点 ;③作射线 ,交 于点 .若点 到 的距离为 ,则 的长为__________.
2024年河南省九年级中考数学模拟试卷(六)

2024年河南省九年级中考数学模拟试卷(六)一、单选题1.实数3-,2,12024,02024,)A.-3 B.12024C.20240D2.生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是()A.B.C.D.3.下列说法中错误的是()A.将油滴入水中,油会浮出水面是一个必然事件B.1、2、3、4这组数据的中位数是2.5C.一组数据的方差越小,这组数据的稳定性越差D.要了解某种灯管的使用寿命,一般采用抽样调查4.不等式组2111313412x xxx+≥⎧⎪-⎨-<⎪⎩的解集在数轴上表示正确的是()A.B.C.D.5.如图,直线AB∥CD,∠M=90°,∠CEF=120°,则∠MPB=()A .30°B .60°C .120°D .150°6.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为( ) A .1( 4.5)12x x +=-B .1( 4.5)12x x +=+C .1(1) 4.52x x +=-D .1(1) 4.52x x -=+7.人体红细胞的直径约为0.0000077米,数据0.0000077用科学记数法表示为7.710n ⨯,则n 的值是( ) A .5B .5-C .6D .6-8.如图,在菱形ABCD 中,8AB =,120BAD ∠=︒,点O 是对角线BD 的中点,OE CD ⊥于点E ,则OE 的长为( )A .B C .4 D .29.已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:下列结论错误的是( ) A .该函数有最大值B .该函数图象的对称轴为直线1x =C .当2x >时,函数值y 随x 增大而减小D .方程20ax bx c ++=有一个根大于310.如图,A 是平面直角坐标系中y 轴上的一点,AO =AO 为底构造等腰ABO V ,且120ABO ∠=︒,将ABO V 沿着射线OB 方向平移,每次平移的距离都等于线段OB 的长,则第2024次平移结束时,点B 的对应点2024B 的坐标为( )A .()B .()C .(D .(二、填空题11.分解因式:34x x -=.12.已知关于x 的一元二次方程240x x a --=有两个不相等的实数根,则a 的取值范围是. 13.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89,方差分别是21.2S =甲,22.3S =乙,211.5S =丙,你认为适合选参加决赛.(填“甲”“乙”或“丙”)14.如图,B 、E 是以AD 为直接的半圆O 的三等分点,弧BE 的长为23π,作BC ⊥AE ,交AE 的延长线于点C ,则图中阴影部分的面积为.15.如图,在平行四边形ABCD 中,4AB =,6AD =,120A ∠=︒,点F ,N 分别为CD ,AB 的中点,点E 在边AD 上运动,将EDF V 沿EF 折叠,使得点D 落在D ¢处,连接BD ',点M 为BD '中点,则MN 的最小值是.三、解答题16.(1)计算:111245-⎛⎫⎛⎫÷--+ ⎪ ⎪⎝⎭⎝⎭;(2)化简: 11111a a a a ⎛⎫+÷ ⎪+--⎝⎭. 17.如图,一次函数y x b =+与反比例函数ky x=的图象相交于点A ,B 两点,点B 的坐标为()4,2--.(1)分别求出一次函数和反比例函数的解析式; (2)已知点C 坐标为()2,0,求ABC V 的面积.18.某校开展了以“不忘初心,牢记使命”为主题的知识竞赛,现从该校八、九年级各随机抽取10名学生的成绩进行整理、描述和分析(成绩用m 表示),共分成四个组:A . 8085m ≤<,B . 8590m ≤<, C . 9095m ≤<,D . 95100m ≤≤.另外给出了部分信息如下: 八年级10名学生的成绩: 99, 80,99,86, 99,96,90,100,89,82. 九年级10名学生的成绩在C 组的数据:94,90,94. 八、九年级抽取学生成绩统计表九年级抽取学生成绩扇形统计图根据以上信息,解答下列问题: (1)上面图表中的a =,b =, c =;(2)扇形统计图中“D 组”所对应的圆心角的度数为;(3)该校九年级共有840名学生参加了知识竞赛活动,估计九年级参加此次知识竞赛活动成绩为较好(90≤m <95)的学生有多少人?(4)现准备从九年级中D 组中的甲、乙、丙、丁四个学生中随机选取两个参加市区的比赛,请用树状图或列表法求出恰好选中甲和丁的概率.19.如图,某建筑物楼顶挂有广告牌BC ,张伟准备利用所学的三角函数知识估测该建筑CO的高度.由于场地有限,不便测量,所以张伟从点A 沿坡度为i =30米到达点P ,测得广告牌底部C 点的仰角为45︒,广告牌顶部B 点的仰角为53︒,张伟的身高忽略不计,已知广告牌12BC =米,求建筑物CO 的高度.(参考数据:sin530.8︒≈,cos530.6︒≈,tan53 1.3︒≈)20.重庆市涪陵区是中国规模最大、最集中的榨菜产区,享有中国“榨菜之乡”的美誉.已知3件鲜脆榨菜丝和4件麻辣萝卜干的进价共240元,5件鲜脆榨菜丝和2件麻辣萝卜干的进价共260元.(1)请分别求出每件鲜脆榨菜丝和麻辣萝卜干的进价.(2)某特产店计划用不超过5600元购进鲜脆榨菜丝和麻辣萝卜干共150件,且鲜脆榨菜丝的数量不少于麻辣萝卜干数量的32.在销售过程中,每件鲜脆榨菜丝的售价为50元,每件麻辣萝卜干的售价为42元.为了方便顾客选择喜欢的口味,特产店拿出一件鲜脆榨菜丝和一件麻辣萝卜干作为样品让顾客免费品尝(此样品不再销售给顾客).若剩下的特产全部都卖完,该特产店应如何进货,可使利润最大?最大利润为多少元? 21.阅读与思考下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.阿基米德折弦定理从圆上任意一点出发的两条弦所组成的折线,称为该圆的一条折弦,如图1.古希腊数学家阿基米德发现,若PA ,PB 是O e 的折弦.C 是»AB 的中点,CE PA ⊥于点E ,则AE PE PB =+.这就是著名的“阿基米德折弦定理”. 证明如下:如图2,在AE 上截取AF PB =,连接CA ,CF ,CP ,CB .则FAC PBC ∠=∠(依据1).∵C 是»AB 的中点,∴AC BC =n n,∴AC BC =. 在FAC V 和PBC V 中,AC BC = FAC PBC ∠=∠AF BP =∴()FAC PBC SAS V V ≌,∴CF CP =. ∵CE PA ⊥于点E ,∴FE PE =(依据2).∴AE FE AF PE PB =+=+.任务:(1)填空:材料中的依据1是指________________;依据2是指________________. (2)如图3,BC 是O e 的直径,D 是»AC 上一点,且满足45DAC ∠=︒,若12AB =,O e 的半径为10,求AD 的长.22.如图,已知抛物线 ²y x bx c =-++₁的顶点 D 的坐标为()14,,与x 轴的正半轴交于点 A ,与y 轴交于点B ,连接AB .(1)求b ,c 的值;(2)点(),P m n 在抛物线y 1上,当2m <时, 请根据图象直接写出n 的取值范围;(3)将抛物线1y 向右平移1个单位得到抛物线2y ,1y 与2y 交于点 C ,将点C 向下平移k 个单位,使得点C 落在线段AB 上,求k 的值.23.随着教育教学改革的不断深入,数学教学如何改革和发展,如何从“重教轻学”向自主学习探索为主的方向发展,是一个值得思考的问题.从数学的产生和发展历程来看分析,不外乎就是三个环节:【观察猜想】-【探究证明】-【拓展延伸】.下面同学们从这三个方面试看解决下列问题:已知:如图1所示将一块等腰三角板BMN 放置与正方形ABCD 的B ∠重含,连接 AN 、CM ,E 是AN 的中点,连接BE .【观察猜想】(1)CM 与 BE 的数量关系是________,CM 与BE 的位置关系是___________; 【探究证明】(2)如图2所示,把三角板 BMN 绕点B 逆时针旋转(090)αα<<,其他条件不变,线段CM与BE 的关系是否仍然成立,并说明理由; 【拓展延伸】(3)若旋转角45α=︒,且2NBE ABE ∠=∠,求BCBN的值.。
云南省昆明市部分中学2024届九年级下学期中考模拟数学试卷(含解析)

数学一、选择题:本题共15小题,每小题2分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.刘徽在《九章算术注》对负数做了很自然的解释:“两算得失相反,要令正、负以名之”.若收入100元记作+100元,那么支出30元应记作( )A. +30元B. ―30元C. +70元D. ―70元2.下列三星堆文物图案中,既是中心对称图形又是轴对称图形的是( )A. B.C. D.3.据华夏时报报告,经综合研判,预计2024年全国国内旅游人数将超过60亿人次,将60亿用科学记数法表示应为( )A. 60×108B. 6×109C. 0.60×1010D. 6×1084.如图,m//n,△ABC的顶点C在直线m上,∠B=70°,∠1=20°,则∠2的度数为( )A. 50°B. 40°C. 45°D. 60°5.下列计算正确的是( )A. a3⋅a3=a9B. (a2)2=a5C. (3a)2=6a2D. a5÷a2=a36.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD于点E,点F是BC的中点,若BD=10,则EF的长为( )A. 8B. 6C. 5D. 47.若y=x―1+2―2x―2,则(x+y)2024等于( )A. 1B. 5C. ―5D. ―18.如图是一个玻璃烧杯,图2是玻璃烧杯抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )A.B.C.D.9.已知多边形的内角和等于外角和的5倍,则这个多边形的边数是( )A. 11B. 12C. 13D. 1410.生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n来表示.即:21=2,22=4,23=8,24=16,25=32,…,请你推算22024的个位数字是( )A. 6B. 4C. 2D. 811.如图,在△ABC中,AB=AC=5,BC=2,以AB为直径的⊙O分别交AC、BC两边于点D、E,则△CDE的面积为( )A. 25B. 45C. 55D. 25512.关于x的一元二次方程x2―mx―4=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根13.某中学对延时服务选课意向进行了随机抽样调查,要求被调查者只能选择其中的一项,根据得到的数据,绘制不完整统计图如下,则下列说法中不正确的是( )A. 这次调查的样本容量是200B. 全校1200名学生中,估计选篮球课大约有400人C. 扇形统计图中,科技课所对应的圆心角是144°D. 被调查的学生中,选绘画课人数占比为20%14.如图,在矩形ABCD中,AB=6,BC=3,将矩形沿AC折叠,点D落在点D′处,则CF的长为( )A. 94B. 154C. 278D. 27415.“黔绣”的技师擅长在叶脉上飞针走绣,巧妙地将传统刺绣图案与树叶天然纹理完美结合,创作出神奇的“叶脉苗绣”作品.实际上,很多叶片本身都蕴含着黄金分割的比例,在大自然中呈现出优美的样子.如图,点P大致是AB的黄金分割点(AP>PB),如果AP的长为4cm,那么AB的长约为( )A. (25+2)cmB. (25―2)cmC. (25+1)cmD. (25―1)cm二、填空题:本题共4小题,每小题2分,共8分。
九年级中考数学模拟试卷(01)

九年级中考数学模拟试卷(01)一、选择题(本大题共12小题,每小题3分,共36分)1.﹣2的相反数等于()A.﹣2 B. 2 C.D.2.下列实数中,是有理数的为()A.B.C.πD.03.如图,直线AB、CD相交于点O,OE平分∠AOD,若∠COE=140°,则∠BOC=()A.50°B.60°C.70°D.80°4.使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠35.下列图形:是轴对称图形且有两条对称轴的是()A.①②B.②③C.②④D.③④6.化简(a﹣)÷的结果是()A.a﹣b B.a+b C.D.7.广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处,到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是()A.5 B.5.2 C.6 D.6.48.若(ax+3y)2=4x2﹣12xy+by2,则a,b的值分别为()A. 2,9 B.2,﹣9 C.﹣2,9 D.﹣4,99.A .B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .﹣=30B .﹣=C .﹣=D . +=3010.如图,AD 是△ABC 的中线,CE 是△ACD 的中线,DF 是△CDE 的中线,若S △DEF =2,则S △ABC 等于( )A . 16B . 14C . 12D . 1011.如图,在Rt △ABC 中,∠ABC=90°,BD ⊥AD 于点D ,其中,则=( )A .B .C .D .12.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-,对称轴为直线x =1,下列结论:①0abc <;②b c <;③30a c +=;④当0y >时,13x -<<其中正确的结论有( )A .1个B .2个C .3个D .4个的关系.解题的关键在于2y ax bx c ++=的图像的开口方向、对称轴、与y 轴的交点的决定因素.二、填空题(本大题共6小题,每小题3分,共18分)13.已知x+=5,那么x 2+= . 14.若关于x 的方程x 2﹣2x+m =0有两个相等的实数根,则实数m 的值等于 .15.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的54快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为 米.16.作图:已知线段a 、b ,请用尺规作线段EF 使EF =a+b .请将下列作图步骤按正确的顺序排列出来(只填序号)_____.作法:①以M 为端点在射线MG 上用圆规截取MF =b ;②作射线EG ;③以E 为端点在射线EG 上用圆规截取EM =a ;④EF 即为所求的线段.17.已知点A (2,y 1)、B (m ,y 2)是反比例函数y=的图象上的两点,且y 1<y 2.写出满足条件的m的一个值,m 可以是 .18.在四边形ABCD 中,AD ∥BC ,∠ABC=90°,AB=BC ,E 为AB 边上一点,∠BCE=15°,且AE=AD .连接DE 交对角线AC 于H ,连接BH .下列结论正确的是 .(填序号)①AC ⊥DE ;② =;③CD=2DH ;④ =.三、解答题(本大题共8小题,共66分)19.(1)计算:031(2019)2sin 3012()2π---︒- (2)解方程:23220x x --=20.反比例函数y =k x的图象经过点A(2,3). (1)求这个函数的解析式;(2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.21.课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.22.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.23.元宵节将至,我校组织学生制作并选送50盏花灯,共包括传统花灯、创意花灯和现代花灯三大种.已知每盏传统花灯需要35元材料费,每盏创意花灯需要33元材料费,每盏现代花灯需要30元材料费.(1)如果我校选送20盏现代花灯,已知传统花灯数量不少于5盏且总材料费不得超过1605元,请问选送传统花灯、创意花灯的数量有哪几种方案?(2)当三种花灯材料总费用为1535元时,求选送传统花灯、创意花灯、现代花灯各几盏?24.保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)25.在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A.B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A.B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A.B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.26.在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,M为AB的中点,连接MD,ME.(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是;(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求的值.。
2024年湖北省武汉市九年级中考数学模拟试卷三(含解析)

2024年武汉市中考数学模拟试卷(三)总分:120分 时间:120分钟 姓名: 得分:一.选择题(共10小题,满分30分,每小题3分)1.(2023·内蒙古)-5的倒数是( )A .B .-C .-5D .52.(2023·德州)下列选项中,直线l是四边形的对称轴的是( )A .B .C .D .3.(2023·营口)下列事件是必然事件的是( )A .四边形内角和是360°B .校园排球比赛,九年一班获得冠军C .掷一枚硬币,正面朝上D .打开电视,正播放神舟十六号载人飞船发射实况4.(2023·苏州)今天是父亲节,小东同学准备送给父亲一个小礼物.已知礼物外包装的主视图如图所示,则该礼物的外包装不可能是( )A .长方体B .正方体C .圆柱D .三棱锥5.(2023·台州)下列运算正确的是( )A .2(a -1)=2a -2B .(a +b )2=a 2+b 2C .3a +2a =5a 2D .(ab )2=ab 26.(2023·枣庄)如图,一束太阳光线平行照射在放置于地面的正六边形上,若∠1=44°,则∠2的度数为( )A .14°B .16°C .24°D .26°7.(2023·临沂)在项目化学习中,“水是生命之源”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是( )A .B .C .D .8.平面镜反射光线的规律是射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图,一束光线y 1射到平面镜a 上,被a 反射后的光线为y 2,则入射光线y 1,反射光线y 2与平面镜a 所夹的锐角相等,即∠1=∠2.若按如图建立平面直角坐标系,并设入射光线与反射光线所在直线的解析式分别为y 1=k 1x ,y 2=k 2x ,则关于k 1与k 2的关系,正确的是( )A .k 1+k 2=0B .k 1=k 2C .k 1>k 2D .k 2=2k 11515161312239.(2023·乐山)如图,在平面直角坐标系xOy 中,直线y =-x -2与x 轴、y 轴分别交于A 、B 两点,C 、D 是半径为1的⊙O 上两动点,且CD,P 为弦CD 的中点.当C 、D 两点在圆上运动时,△PAB 面积的最大值是( ) A .8B .6C .4D .310.(2023·硚口区模拟)有3个不同的函数y =(k m为不为0的常数,m =1,2,3);4个不同的二次函数y =a n x 2+c n (n =1,2,3,4),则这7个函数的图象的交点个数最多是( )A .36个B .48个C .60个D .72个二.填空题(共6小题,满分18分,每小题3分)11.(2023·徐州)“五一”假期我市共接待游客约4370000人次,将4370000用科学记数法表示为 .12.(2023·岳阳)函数y =中,自变量x 的取值范围是 .13.(2022·自贡)化简:·+= .14.(2023·赤峰)为发展城乡经济,建设美丽乡村,某乡对A 地和B 地之间的一处垃圾填埋场进行改造,把原来A 地去往B 地需要绕行到C 地的路线,改造成可以直线通行的公路AB .如图,经勘测,AC =6千米,∠CAB =60°,∠CBA =37°,则改造后公路AB 的长是 千米(精确到0.1千米;参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.751.73).15.(2023·深圳)如图,在△ABC 中,AB =AC ,tan B =,点D 为BC 上一动点,连接AD ,将△ABD 沿AD 翻折得到△ADE ,DE交AC 于点G ,GE <DG ,且AG ∶CG =3∶1,则= .16.(2023·汉阳区6月中考模拟)已知抛物线y =ax 2+bx +c (a ,b ,c 是常数),过A (-1,0),B (m ,0)两点,且1<m <2.当a >0时,现有下列四个结论:①b <0; ②a +b >0; ③a +2b =0;④若点M (x 1,y 1),N (x 2,y 2)在抛物线上,有(x 1-x 2)(y 1-y 2)<0, 则x 1+x 2<1.其中正确的是 (填写序号).m x k 12x -2344a a a -++243a a --22a +34AGE ADG S S 三角形三角形三.解答题(共8小题,满分72分)17.(8分)(2023·扬州)解不等式组,并写出它的所有整数解.18.(8分)(2023·日照)如图,平行四边形ABCD 中,点E 是对角线AC 上一点,连接BE ,DE ,且BE =DE .(1)求证:四边形ABCD 是菱形;(2)若AB =10,tan ∠BAC =2,求四边形ABCD 的面积.19.(8分)(2023·无锡)为迎接第28个世界读书日,营造爱读书、读好书、善读书的浓厚学习氛围,某校组织开展“书香校园阅读周”系列活动,拟举办5类主题活动.A :阅读分享会;B :征文比赛;C :名家进校园;D :知识竞赛;E :经典诵读表演为了解同学们参与这5类活动的意向,现采用简单随机抽样的方法抽取部分学生进行调查(每名学生仅选一项),并将调查结果绘制成如图.请根据图表提供的信息,解答下列问题.(1)请把这幅频数分布直方图补充完整;(画图后请标注相应数据)(2)扇形统计图中“C ”所对应的圆心角的度数等于 ;(3)该校共有2400名学生,请你估计该校想参加“E :经典诵读表演”活动的学生人数.2(1)1 3 11 3x x x -+>-⎧⎪⎨+-⎪⎩①②…20.(8分)(2023·阜新)如图,AB 是⊙O 的直径,点C ,D 是⊙O 上AB 异侧的两点,DE ⊥CB ,交CB 的延长线于点E ,且BD 平分∠ABE .(1)求证:DE 是⊙O 的切线.(2)若∠ABC =60°,AB =4,求图中阴影部分的面积.21.(8分)(2023·江汉区二模)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点,△ABC 的顶点在格点上,请仅用无刻度的直尺在给定网格中画图,保留连线的痕迹,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题:(1)如图(1),在AB 上取点E ,使得DE =CD ;(2)直接写出= ;(3)如图(2),在BC 边上取点F ,使得tan ∠BAF =; (4)如图(2),作△ABF 的高FG .ADE ABC S S ∆∆1222.(10分)(2023·孝感)加强劳动教育,落实五育并举.孝礼中学在当地政府的支持下,建成了一处劳动实践基地.2023年计划将其中1000 m2的土地全部种植甲乙两种蔬菜.经调查发现:甲种蔬菜种植成本y(单位;元/m2)与其种植面积x(单位:m2)的函数关系如图所示,其中200⩽x⩽700;乙种蔬菜的种植成本为50元/m2.(1)当x= m2时,y=35元/m2;(2)设2023年甲乙两种蔬菜总种植成本为W元,如何分配两种蔬菜的种植面积,使W最小?(3)学校计划今后每年在这1000 m2土地上均按(2)中方案种蔬菜,因技术改进,预计种植成本逐年下降.若甲种蔬菜种植成本平均每年下降10%,乙种蔬菜种植成本平均每年下降a%,当a为何值时,2025年的总种植成本为28920元?23.(10分)【问题情境】如图,在△ABC 中,∠ACB =90°,AC =kBC ,CD 是AB边上的高,点E 是DB 上一点,连接CE ,过点A 作AF ⊥CE 于F ,交CD 于点G .(1)【特例证明】如图1,当k =1时,求证:DG =DE ;(2)【类比探究】如图2,当k ≠1时,(1)中的结论是否还成立?若成立,请写出证明过程,若不成立,请指出此时DG 与DE 的数量关系,并说明理由;(3)【拓展运用】如图3,连接DF ,若k =,AC =AE ,DG =3,求DF 的长.3424.(12分)(2023·南充)如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P在抛物线上,点Q在x轴上,以B,C,P,Q为顶点的四边形为平行四边形,求点P的坐标;(3)如图2,抛物线顶点为D,对称轴与x轴交于点E,过点K(1,3)的直线(直线KD除外)与抛物线交于G,H两点,直线DG,DH分别交x轴于点M,N.试探究EM·EN是否为定值,若是,求出该定值;若不是,说明理由.2024年武汉市中考数学模拟试卷三参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(2023·内蒙古)-5的倒数是( )A.B.-C.-5D.5【考点】倒数.【答案】B【分析】根据倒数的意义进行解答即可.【解答】解:∵(-5)×(-)=1,∴-5的倒数是-.故选:B.【点评】本题考查的是倒数,熟知乘积是1的两数互为倒数是解答此题的关键.2.(2023·德州)下列选项中,直线l是四边形的对称轴的是( )A.B.C.D.【考点】轴对称的性质.【专题】平移、旋转与对称;空间观念.【答案】C【分析】利用对称轴是任何一对对应点所连线段的垂直平分线可对各选项进行判断.【解答】解:直线L是四边形的对称轴的是.故选:C.【点评】本题考查了轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.(2023·营口)下列事件是必然事件的是( )A.四边形内角和是360°B.校园排球比赛,九年一班获得冠军C.掷一枚硬币时,正面朝上D.打开电视,正在播放神舟十六号载人飞船发射实况【考点】随机事件.【专题】统计的应用;数据分析观念.【答案】A【分析】根据随机事件,必然事件,不可能事件的特点,逐一判断即可解答.【解答】解:A、四边形内角和是360°,是必然事件,故A符合题意;B、校园排球比赛,九年一班获得冠军,是随机事件,故B不符合题意;C、掷一枚硬币时,正面朝上,是随机事件,故C不符合题意;D、打开电视,正在播放神舟十六号载人飞船发射实况,是随机事件,故D不符合题意;故选:A.【点评】本题考查了随机事件,熟练掌握随机事件,必然事件,不可能事件的特点是解题的关键.4.(2023·苏州)今天是父亲节,小东同学准备送给父亲一个小礼物.已知礼物外包装的主视图如图所示,则该礼物的外包装不可能是( )A.长方体B.正方体C.圆柱D.三棱锥【考点】由三视图判断几何体.【专题】投影与视图;几何直观.【答案】D【分析】根据主视图即可判断出答案.【解答】解:根据主视图可知,只有D选项不可能.故选:D.【点评】本题考查了由三视图判断几何体,熟练掌握主视图的定义是解题的关键.5.(2023·台州)下列运算正确的是( )A.2(a-1)=2a-2B.(a+b)2=a2+b2C.3a+2a=5a2D.(ab)2=ab2【考点】完全平方公式;整式的加减;幂的乘方与积的乘方.【专题】整式;运算能力.【答案】A【分析】根据去括号法则,完全平方公式,合并同类项法则,积的乘方法则将各项计算后进行判断即可.【解答】解:A.2(a-1)=2a-2×1=2a-2,则A符合题意;B.(a+b)2=a2+2ab+b2,则B不符合题意;C.3a+2a=(3+2)a=5a,则C不符合题意;D.(ab)2=a2b2,则D不符合题意;故选:A.【点评】本题考查整式的运算,其相关运算法则是基础且重要知识点,必须熟练掌握.6.(2023·枣庄)如图,一束太阳光线平行照射在放置于地面的正六边形上,若∠1=44°,则∠2的度数为( )A.14°B.16°C.24°D.26°【考点】平行线的性质.【专题】线段、角、相交线与平行线;推理能力.【答案】B【分析】由多边形的外角和可求得∠BCD=60°,∠ABC=120°,再由平行线的性质可得∠BDC=∠1=44°,由三角形的外角性质可求得∠3的度数,即可求∠2的度数.【解答】解:如图,∵太阳光线平行照射在放置于地面的正六边形上,∴∠BCD=360°÷6=60°,EF∥BD,∠ABC=120°,∴∠BDC=∠1=44°,∵∠3是△BCD的外角,∴∠3=∠BDC+∠BCD=104°,∴∠2=∠ABC-∠3=16°.故选:B.【点评】本题主要考查平行线的性质,解答的关键熟记平行线的性质:两直线平行,同位角相等.7.(2023·临沂)在项目化学习中,“水是生命之源”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是( )A.B.C.D.【考点】列表法与树状图法.【专题】概率及其应用;应用意识.【答案】D【分析】画树状图展示所有12种等可能的结果,再找出所选的学生恰好是一名男生和一名女生的结果数,然后根据概率公式计算.【解答】解:画树状图为:共有12种等可能的结果,其中一名男生和一名女生的结果数为8,所以恰好抽到一名男生和一名女生的概率==.故选:D.【点评】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求出事件A 或B的概率.8.(2024·湖南模拟)平面镜反射光线的规律是射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图,一束光线y1射到平面镜a上,被a反射后的光线为y2,则入射光线y1,反射光线y2与平面镜a所夹的锐角相等,即∠1=∠2.若按如图建立平面直角坐标系,并设入射光线与反射光线所在直线的解析式分别为y1=k1x,y2=k2x,则关于k1与k2的关系,正确的是( )A.k1+k2=0B.k1=k2C.k1>k2D.k2=2k1【考点】待定系数法求一次函数解析式;规律型:点的坐标.【专题】一次函数及其应用;推理能力.【答案】A【分析】先利用∠1=∠2得到直线y1=k1x与直线y2=k2x关于y轴对称,设直线y1=k1x上一点的坐标为(t,k1t),点(t,k1t)关于y轴的对称点(-t,k1t)在直线y2=k2x,所以k1t=-k2t,从而得到k1与k2的关系,从而可对各选项进行判断.【解答】解:∵∠1=∠2,∴直线y1=k1x与直线y2=k2x关于y轴对称,设直线y1=k1x上一点的坐标为(t,k1t),点(t,k1t)关于y轴的对称点的坐标为(-t,k1t),把(-t,k1t)代入y2=k2x得k1t=-k2t,∴k1+k2=0.、故选:A.【点评】本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx (k≠0),然后把一组对应值代入求出k得到正比例函数解析式.9.(2023·乐山)如图,在平面直角坐标系xOy中,直线y=-x-2与x轴、y轴分别交于A、B两点,C、D是半径为1的⊙O上两动点,且CD=,P为弦CD的中点.当C、D两点在圆上运动时,△PAB面积的最大值是( )A.8B.6C.4D.3【考点】点与圆的位置关系;一次函数的性质;一次函数图象上点的坐标特征;勾股定理;垂径定理.【专题】等腰三角形与直角三角形;圆的有关概念及性质;与圆有关的位置关系;运算能力;推理能力.【答案】D【分析】判断三角形OCD和三角形OAB都是等腰直角三角形,由题得,当P、O、Q共线时,S△ABP最大,求出AB、PQ,根据面积公式计算即可.【解答】解:作OQ⊥AB,连接OP、OD、OC,∵CD=,OC=OD=1,∴OC2+OD2=CD2,∴△OCD为等腰直角三角形,由y=-x-2得,点A(-2,0)、B(0,-2),∴OA=OB=2,∴△OAB为等腰直角三角形,∴AB=2,OQ=,由题得,当P、O、Q共线时,S△ABP最大,∵P为中点,∴OP=,∴PQ=OP+OQ=,∴S△ABP=AB·PQ=3.故选:D.【点评】本题考查了圆的相关知识点的应用,点圆最值的计算是解题关键.10.(2023·硚口区模拟)有3个不同的函数(k m为不为0的常数,m=1,2,3);4个不同的二次函数y=a n x2+c n(n=1,2,3,4),则这7个函数的图象的交点个数最多是( )A.36个B.48个C.60个D.72个【考点】反比例函数图象上点的坐标特征;二次函数图象上点的坐标特征;规律型:数字的变化类.【专题】二次函数图象及其性质;推理能力.【答案】C【分析】分三种情况:3个不同的函数与4个不同的二次函数的交点个数,4个不同的二次函数之间最多的交点个数,3个不同的函数之间的交点个数,然后再相加即可.【解答】解:∵一个函数与一个二次函数的交点最多有4个,∴3个不同的函数与4个不同的二次函数的交点个数最多为:4×3×4=48(个),2个二次函数图象最多有2个交点,第3个二次函数图象与前2个二次函数图象都有2个交点,第4个二次函数图象与前3个二次函数图象也都有2个交点,∴4个二次函数最多的交点个数为2+4+6=12(个),任意2个函数的图象都不存在交点,∴3个不同的函数之间没有交点,综上,这7个函数的图象的交点个数最多为48+12=60(个).故选:C.【点评】本题考查了函数图象的交点问题,解题的关键是熟练掌握二次函数与反比例函数图象的特点.二.填空题(共6小题,满分18分,每小题3分)11.(2023·徐州)“五一”假期我市共接待游客约4370000人次,将4370000用科学记数法表示为 4.37×106 .【考点】科学记数法—表示较大的数.【专题】实数;运算能力.【答案】见试题解答内容【分析】科学记数法的表示形式为a×10n,据此解答即可.【解答】解:4370000=4.37×106,故答案为:4.37×106.【点评】本题考查科学记数法的表示方法,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a和n的值.12.(2023·岳阳)函数y=中,自变量x的取值范围是 x≠2 .【考点】函数自变量的取值范围.【专题】函数及其图象;运算能力.【答案】x≠2.【分析】根据分母不为0可得:x-2≠0,然后进行计算即可解答.【解答】解:由题意得:x-2≠0,解得:x≠2,故答案为:x≠2.【点评】本题考查了函数自变量的取值范围,熟练掌握分母不为0是解题的关键.13.(2022·自贡)化简:·+= .【考点】分式的混合运算.【专题】分式;运算能力.【答案】.【分析】先将原分式的分子、分母分解因式,然后约分,再计算加法即可.【解答】解:·+=+=+=,故答案为:.【点评】本题考查分式的混合运算,解答本题的关键是明确因式分解的方法和分式加法的运算法则.14.(2023·赤峰)为发展城乡经济,建设美丽乡村,某乡对A地和B地之间的一处垃圾填埋场进行改造,把原来A地去往B地需要绕行到C地的路线,改造成可以直线通行的公路AB.如图,经勘测,AC=6千米,∠CAB=60°,∠CBA=37°,则改造后公路AB的长是 9.9 千米(精确到0.1千米;参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73).【考点】解直角三角形的应用.【专题】解直角三角形及其应用;运算能力;推理能力.【答案】9.9.【分析】过点C作CD⊥AB于点D,在Rt△ADC中利用∠CAB的余弦函数求出AD,利用∠CAB的正弦函数求出CD,然后再Rt△BCD中利用∠CBA正切函数求出DB,进而可得出答案.【解答】解:过点C作CD⊥AB于点D,如图:在Rt△ADC中,AC=6,∠CAB=60°,,,∴AD=AC·cos∠CAB=6cos60°=3(千米),(千米),在Rt△CDB中,∠CBA=37°,,,∴(千米),∴(千米).答:改造后公路AB的长是9.9千米.故答案为:9.9.【点评】此题主要考查了解直角三角形,解答此题的关键理解题意,熟练掌握锐角三角函数的定义,难点是正确的作出辅助线构造直角三角形.15.(2023·深圳)如图,在△ABC中,AB=AC,tan B=,点D为BC上一动点,连接AD,将△ABD沿AD翻折得到△ADE,DE交AC于点G,GE<DG,且AG:CG =3:1,则= .【考点】翻折变换(折叠问题);解直角三角形;等腰三角形的性质.【专题】等腰三角形与直角三角形;图形的相似;展开与折叠;运算能力;推理能力.【答案】.【分析】过点A作AF⊥BC于点F,过点A作AH⊥DE于点H,由折叠易得AF=AH ,AB=AE,BF=EH,CG=a,则AG=3a,于是AB=AC=AE=4a,在Rt△ABF中,利用tan B=可求出AH=AF=,BF=EH=,在Rt△AGH中,利用勾股定理求出GH=,以此求出EG=,由△AEG∽△DCG得,求得,则=.【解答】解:如图,过点A作AF⊥BC于点F,过点A作AH⊥DE于点H,∵AB=AC,∴∠B=∠C,根据折叠的性质可知,∠B=∠E,AF=AH,AB=AE,BF=EH,∴∠E=∠C,设CG=a,则AG=3a,∴AB=AC=AE=4a,在Rt△ABF中,tan B==,∴BF=AF,∴,解得:或AF=(舍去),∴AH=AF=,BF=EH=,在Rt△AGH中,GH===,∴EG=EH-GH==,∵∠AGE=∠DGC,∠E=∠C,∴△AEG∽△DCG,∴,即,∴,∴=,∴==.故答案为:.【点评】本题主要考查等腰三角形的性质、折叠的性质、解直角三角形、相似三角形的判定与性质、勾股定理,解题关键是将两三角形的面积比转化为两条线段的比,再利用相似三角形解决问题.16.(2023·汉阳区模拟)已知抛物线y=ax2+bx+c(a,b,c是常数),过A(-1,0),B(m,0)两点,且1<m<2.当a>0时,现有下列四个结论:①b<0;②a+b>0;③a+2b=0;④若点M(x1,y1),N(x2,y2)在抛物线上,有(x1-x2)(y1-y2)<0,则x1+x2<1.其中正确的是 ①②④ (填写序号).【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;推理能力.【答案】①②④.【分析】根据抛物线的对称性可知->0,由a>0,得出b<0,即可判断①;根据抛物线的对称性可知-<,由a>0得出-b<a,即a+b>0,即可判断②;x=-时,y=a-b+c<0,x=1时,a+b+c<0,两式相加得出a+b<0,进一步得出a+2b<0,即可判断③;把y1=+bx1+c,y2=+bx2+c代入不等式,得出(x1-x2)2[a(x1+x2)+b]<0,即可得出a(x1+x2)+b<0,即x1+x2<-,由-<可知x1+x2<1,即可判断④.【解答】解:∵抛物线y=ax2+bx+c(a,b,c是常数),过A(-1,0),B(m,0)两点,且1<m<2,∴对称轴x=>0,∴对称轴在y轴右侧,∴->0,∵a>0,∴b<0,故①正确;∵抛物线y=ax2+bx+c(a,b,c是常数),过A(-1,0),B(m,0)两点,且1<m<2,∴对称轴x=<,∴-,∵a>0,∴-b<a,∴a+b>0,故②正确;∵x=-时,y=a-b+c<0,x=1时,a+b+c<0,∴a+b<0,∴a+2b<0,故③错误;∵(x1-x2)(y1-y2)<0,∴(x1-x2)(+bx1+c--bx2-c)<0,∴(x1-x2)[a(x1+x2)(x1-x2)+b(x1-x2)]<0,∴(x1-x2)2[a(x1+x2)+b]<0,∴a(x1+x2)+b<0,∴x1+x2<-,由题意可知-<,∴-<1,∴x1+x2<1,故④正确;故答案为:①②④.【点评】本题考查二次函数图象与系数的关系,二次函数图象上点的坐标特征,熟练掌握二次函数的性质,灵活运用所学知识是解题的关键.三.解答题(共8小题,满分72分)17.(8分)(2023·扬州)解不等式组并把它的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【专题】一元一次不等式(组)及应用;运算能力.【答案】-1<x≤2,解集在数轴上表示见解答.【分析】按照解一元一次不等式组的步骤,进行计算即可解答.【解答】解:,解不等式①得:x>-1,解不等式②得:x≤2,∴原不等式组的解集为:-1<x≤2,∴该不等式组的解集在数轴上表示如图所示:【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,熟练掌握解一元一次不等式组的步骤是解题的关键.18.(8分)(2023·日照)如图,平行四边形ABCD中,点E是对角线AC上一点,连接BE,DE,且BE=DE.(1)求证:四边形ABCD是菱形;(2)若AB=10,tan∠BAC=2,求四边形ABCD的面积.【考点】菱形的判定与性质;解直角三角形;平行四边形的性质.【专题】图形的全等;矩形菱形正方形;解直角三角形及其应用;运算能力;推理能力.【答案】(1)见解析;(2)80.【分析】(1)连接BD交AC于O,根据平行四边形的性质得到BO=OD,根据全等三角形的判定和性质和菱形的判定即可得到结论;(2)解直角三角形得到AO=2,BO=4,根据菱形的性质得到AC=2AO=4,BD=2BO=8,根据菱形的面积公式即可得到结论.【解答】(1)方法一:证明:连接BD交AC于O,∵四边形ABCD是平行四边形,∴BO=OD,在△BOE与△DOE中,∴△BOE≌△DOE(SSS),∴∠DOE=∠BOE,∵∠DOE+∠BOE=180°,∴∠DOE=90°,∴AC⊥BD,∴四边形ABCD是菱形;方法二:证明:连接BD交AC于O,∵四边形ABCD是平行四边形,∴BO=OD,在△BOE与△DOE中,∴△BOE≌△DOE(SSS),∴∠BEO=∠DEO,在△BAE与△DAE中,,∴△BAE≌△DAE(SAS),∴AB=AD,∴四边形ABCD是菱形;(2)解:在Rt△ABO中,∵tan∠BAC==2,∴设AO=x,BO=2x,∴AB==x=10,∴x=2,∴AO=2,BO=4,∵四边形ABCD是菱形,∴AC=2AO=4,BD=2BO=8,∴四边形ABCD的面积=AC·BD==80.【点评】本题考查了菱形的判定和性质,全等三角形的判定和性质,解直角三角形,正确地作出辅助线是解题的关键.19.(8分)(2023·无锡)为迎接第28个世界读书日,营造爱读书、读好书、善读书的浓厚学习氛围,某校组织开展“书香校园阅读周”系列活动,拟举办5类主题活动.A:阅读分享会;B:征文比赛;C:名家进校园;D:知识竞赛;E:经典诵读表演.为了解同学们参与这5类活动的意向,现采用简单随机抽样的方法抽取部分学生进行调查(每名学生仅选一项),并将调查结果绘制成如图.请根据图表提供的信息,解答下列问题.(1)请把这幅频数分布直方图补充完整;(画图后请标注相应数据)(2)扇形统计图中“C”所对应的圆心角的度数等于 126° ;(3)该校共有2400名学生,请你估计该校想参加“E:经典诵读表演”活动的学生人数.【考点】频数(率)分布直方图;扇形统计图;用样本估计总体.【专题】统计的应用;数据分析观念.【答案】(1)见解答;(2)126°;(3)552人.【分析】(1)先由B活动人数及其所占百分比求出总人数,再根据各活动人数之和等于总人数求出D人数,从而补全图形;(2)用360°乘以C活动人数所占比例即可;(3)总人数乘以样本中E活动人数所占比例即可.【解答】解:(1)被调查的总人数为20÷10%=200(人),D活动人数为200-(24+20+70+46)=40(人),补全图形如下:(2)扇形统计图中“C”所对应的圆心角的度数等于360°×=126°,故答案为:126°;(3)2400×=552(人),答:估计该校想参加“E:经典诵读表演”活动的学生约有552人.【点评】本题考查的是频数分布直方图.读懂统计图,从统计图中得到必要的信息是解决问题的关键.能清楚地表示出每个项目的数据.也考查了利用样本估计总体.20.(8分)(2023·阜新)如图,AB是⊙O的直径,点C,D是⊙O上AB异侧的两点,DE⊥CB,交CB的延长线于点E,且BD平分∠ABE.(1)求证:DE是⊙O的切线.(2)若∠ABC=60°,AB=4,求图中阴影部分的面积.【考点】切线的判定与性质;扇形面积的计算;角平分线的性质.【专题】圆的有关概念及性质;运算能力;推理能力.【答案】(1)证明过程见解答;(2)图中阴影部分的面积为-.【分析】(1)连接OD,根据垂直定义可得∠E=90°,再根据角平分线的定义和等腰三角形的性质可得OD∥BE,然后利用平行线的性质可得∠ODE=90°,即可解答;(2)连接OC,过点O作OF⊥BC,垂足为F,根据已知易得△OBC是等边三角形,从而利用等边三角形的性质可得OB=OC=BC=2,∠BOC=60°,然后在Rt△OBF中,利用锐角三角函数的定义求出OF的长,最后根据图中阴影部分的面积=扇形BOC的面积-△BOC的面积,进行计算即可解答.【解答】(1)证明:连接OD,∵DE⊥CB,∴∠E=90°,∵BD平分∠ABE,∴∠ABD=∠DBE,∵OD=OB,∴∠ODB=∠ABD,∴∠ODB=∠DBE,∴OD∥BE,∴∠ODE=180°-∠E=90°,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:连接OC,过点O作OF⊥BC,垂足为F,∵∠ABC=60°,OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=AB=2,∠BOC=60°,在Rt△OBF中,OF=OB·sin60°=2×=,∴图中阴影部分的面积=扇形BOC的面积-△BOC的面积=-BC·OF=-×2×=-,∴图中阴影部分的面积为-.【点评】本题考查了切线的判定与性质,角平分线的定义,扇形面积的计算,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.21.(8分)(2023·江汉区二模)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点,△ABC的顶点在格点上,请仅用无刻度的直尺在给定网格中画图,保留连线的痕迹,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题:(1)如图(1),在AB上取点E,使得DE=CD;(2)直接写出= ;(3)如图(2),在BC边上取点F,使得tan∠BAF=;(4)如图(2),作△ABF的高FG.【考点】三角形综合题.【专题】等腰三角形与直角三角形;图形的相似;解直角三角形及其应用;推理能力.【答案】(1)见解析过程;(2);(3)见解析过程;(4)见解析过程.【分析】(1)由相似三角形的性质可得AD=CD,由直角三角形的性质可得DE=CD ;(2)分别求出S△ADE和S△ABC的值,即可求解;(3)取格点K,连接BK,则BK=2,AB=4,即可求解;(4)由相似三角形的性质可求HF=PM=,由等腰直角三角形的性质可求解.【解答】解:(1)如图,取格点N,连接CN,并延长交AB于E,则DE为所求;∵∠ABC=∠BCN=45°,∴∠BEC=90°,∵AR∥CT,∴△ARD∽△CTD,∴,∵AR=CT,∴AD=CD,∴DE=DC;(2)∵BC=5,点A到BC的距离为4,∴S△ABC=10,∵△BEC是等腰直角三角形,∴BE=CE=,∵AB==4,∴AE=,∴S△AEC=×AE·EC=,∵AD=CD,△ADE∴=,故答案为:;(3)如图2,取格点K,连接BK,连接AK交BC于F,则点F为所求,∵∠ABC=45°,∠CBK=45°,∴∠ABK=90°,∵BK=2,AB=4,∴tan∠BAK==,即tan∠BAF=;(4)如图(2),取格点Q,连接TQ交BL于点P,连接FP交AB于G,则点G为所求,∵HK∥AR,∴==,∴HF=,∵QL∥MG,∴PM=,∴PB=BF,∵∠ABC=∠ABP=45°,∴BG⊥GF.【点评】本题是三角形综合题,考查了相似三角形的判定和性质,等腰直角三角形的性质,三角形的面积公式,锐角三角函数等知识,灵活运用这些性质解决问题是解题的关键.22.(10分)(2023·湖北)加强劳动教育,落实五育并举.孝礼中学在当地政府的支持下,建成了一处劳动实践基地.2023年计划将其中1000m2的土地全部种植甲乙两种蔬菜.经调查发现:甲种蔬菜种植成本y(单位;元/m2)与其种植面积x(单位:m2)的函数关系如图所示,其中200⩽x⩽700;乙种蔬菜的种植成本为50元/m2.(1)当x= 500 m2时,y=35元/m2;(2)设2023年甲乙两种蔬菜总种植成本为W元,如何分配两种蔬菜的种植面积,使W最小?(3)学校计划今后每年在这1000m2土地上,均按(2)中方案种植蔬菜,因技术改进,预计种植成本逐年下降.若甲种蔬菜种植成本平均每年下降10%,乙种蔬菜种植成本平均每年下降a%,当a为何值时,2025年的总种植成本为28920元【考点】二次函数的应用;一元二次方程的应用;一次函数的应用.【专题】一元二次方程及应用;一次函数及其应用;二次函数的应用;运算能力;应用意识.【答案】(1)500;。
广东省揭阳市2024-2025学年上学期九年级期中考数学模拟试题(解析版)

2024-2025学年度第一学期期中模拟试卷九年级数学试卷时间:90分钟 分数:120分一.选择题(每小题3分,共15分)1. 菱形ABCD 的对角线长分别为5和8,它的面积为( )A. 20B. 40C. 24D. 30【答案】A【解析】【分析】根据菱形的面积等于对角线乘积的一半,计算即可. 【详解】菱形的面积为:1 58202××=; 故选:A .【点睛】本题考查菱形的性质,掌握菱形的性质是解题的关键.2. 如果方程()27330mm x x −−−+=是关于x 的一元二次方程,那么m 的值为( ) A. 3±B. 3C. 3−D. 都不对【答案】C【解析】【分析】本题根据一元二次方程的定义解答,一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.根据题意得到272m −=,30m −≠,即可求得m 的范围.要特别注意二次项系数30m −≠这一条件,当30m −=时,方程就是一元一次方程了. 【详解】解:由一元二次方程的定义可知27230m m −= −≠, 解得:3m =−.故选:C .3. 在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有( )A. 5个B. 15个C. 20个D. 35个【答案】A【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:设袋中白球有x 个,根据题意得:1515x+=0.75, 解得:x =5,经检验:x =5是分式方程的解,故袋中白球有5个.故选A .【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n是解题关键. 4. 参加一次足球联赛的每两队之间都进行一场比赛,共比赛50场比赛,设参加比赛共有x 个队,根据题意,所列方程为( ).A. (1)50x x +=B. (1)502x x +=C. (1)50x x −=D. (1)502x x −= 【答案】D【解析】 【分析】设共有 x 个球队参赛,根据每两队之间都进行一场比赛,且共比赛 50 场,即可得出关于 x 的 一元二次方程,此题得解;【详解】设共有 x 个球队参赛,依题意, 得:(1)502x x −= 故选D【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程 是解题的关键5. 下列判断正确的是( )A. 对角线互相垂直的四边形是菱形B. 对角线相等的菱形是正方形C. 对角线相等的四边形是矩形D. 对角线互相垂直且相等的四边形是正方形【答案】B【解析】【分析】本题考查特殊平行四边形的判定,熟记判定定理是关键.根据菱形,矩形,正方形的判定逐项判【详解】对角线互相垂直平分的四边形是菱形,故A 错误;对角线相等的菱形是正方形,故B 正确;对角线相等的平行四边形是矩形,故C 错误;对角线互相平分垂直且相等的四边形是正方形,故D 错误.故选B .6. 如图,已知MON ∠,点A 在OM 边上,点B 在ON 边上,且OA OB =,点E 在OB 边上,小明,小红分别在图1,图2中作了矩形AEBF ,平行四边形AEBF ,并连接了对角线,两条对角线交于点C ,小明,小红都认为射线OC 是MON ∠的角平分线,你认为他们说法正确的是( )A. 小明,小红都对B. 小明,小红都错C. 小明错误,小红正确D. 小明正确,小红错误【答案】A【解析】 【分析】根据矩形的性质、平行四边形的性质都可以得到AC BC =,即可证得AOC BOC ≌△△,即可得出结论.【详解】解: 四边形AEBF 是矩形,AC BC ∴=,在AOC △和BOC 中,AC BC OA OB OC OC = = =,AOC BOCSSS ∴ ≌(), AOC BOC ∴∠=∠,∴射线OC 是MON ∠的角平分线,故小明的说法正确;四边形AEBF 是平行四边形,AC BC ∴=,在AOC △和BOC 中,AC BC OA OB OC OC = = =,AOC BOCSSS ∴ ≌(), AOC BOC ∴∠=∠,∴射线OC 是MON ∠的角平分线,故小红的说法正确.故选:A .【点睛】本题考查了矩形的性质、平行四边形的性质、三角形全等的判定和性质,角平分线的判定,解题的关键是熟练掌握矩形的性质和平行四边形的性质.7. 关于x 的方程2(1)(2)x x ρ−+=(ρ为常数)根的情况下,下列结论中正确的是( )A. 两个正根B. 两个负根C. 一个正根,一个负根D. 无实数根 【答案】C【解析】【分析】先将方程整理为一般形式,再根据根的判别式得出方程由两个不等的实数根,然后又根与系数的关系判断根的正负即可.【详解】解:2(1)(2)x x ρ−+=,整理得:2230x x ρ+−−=,∴()2221434130ρρ∆=−−−=+>,∴方程有两个不等的实数根,设方程两个根为1x 、2x , ∵121x x +=−,2123x x p =−− ∴两个异号,而且负根的绝对值大.故选:C .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;△<0,方程没有实数根.也考查了一元二次方程根与系数的关系:12bx x a +=−,12c x x a= 8. 关于x 的一元二次方程2(1)20x k x k −−−+=有两个实数根12,x x ,()1212122(2)2x x x x x x −+−−+3=−,则k 的值( )A. 0或2B. -2或2C. -2D. 2【答案】D【解析】【详解】解:由根与系数的关系,得: 12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x −+−−+=−,得: ()21212423x x x x −−+=−,即()21212124423x x x x x x +−+=−-,所以,()2142(2)3k k −−−−+=−,化简,得:24k =,解得:k =±2,因为关于x 的一元二次方程2(1)20x k x k −−−+=有两个实数根,所以,△=()214(2)k k −−−+=227k k +−>0,k =-2不符合,所以,k =2故选D .【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.9. 如图1,在菱形ABCD 中,60A ∠=°,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( )A. B. C. D. 【答案】B【解析】【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为【详解】解:在菱形ABCD 中,∠A =60°,∴△ABD 为等边三角形,设AB =a ,由图2可知,△ABD 的面积为∴△ABD 的面积2解得:a =负值已舍)故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.10. 如图,在正方形ABCD 中,E 为CD 边上一点,F 为 BC 延长线上一点,且CE CF =,连接EF .给出下列至个结论:①BE DF =;②BE DF ⊥;③EF =;④EDF EBF ∠=∠;⑤2ED EC =.其中正确结论的个数是( )A. 2个B. 3个C. 4个D. 5个【答案】C【解析】 【分析】本题考查了正方形的性质、三角形全等的判定定理与性质、勾股定理,①先根据正方形的性质可得,90BC DC BCE DCF =∠=∠=°,再根据三角形全等的判定定理与性质即可得;②先根据三角形全等的性质可得CBE CDF ∠=∠,再根据三角形的内角和定理、等量代换可得90DGE ∠=°,由此即可得;③根据勾股定理即可得;④根据①中所证的全等三角形的性质即可得;无法说明2ED EC =成立,从而得出与题意不符,由此即可得结论.【详解】解:如图,延长BE ,交DF 于点G ,四边形ABCD 正方形,,90BC DC BCE DCF ∴=∠=∠=°,在BCE 和DCF 中,BC DC BCE DCF CE CF = ∠=∠ =, (SAS)BCE DCF ∴ ≌,,BE DF CBE CDF ∴=∠=∠,则结论①正确;即EDF EBF ∠=∠,则结论④正确;由对顶角相等得:BEC DEG ∠=∠,180180CBE BEC CDF DEG ∴°−∠−∠=°−∠−∠,即90BCE DGE ∠=∠=°, BE DF ∴⊥,则结论②正确;是,90CE CF DCF =∠=° ,EF ∴=,则结论③正确;无法说明2ED EC =成立,结论⑤错误;综上,正确结论的个数是4个,故选:C .二.填空题(每小题3分,共15分)11. 如图,小球从A 入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等,则小球从E 出口落出概率是________.【答案】14##025 【解析】【分析】根据“在每个交叉口都有向左或向右两种可能,且可能性相等”可知在点B 、C 、D 处都是等可能情况,从而得到在四个出口E 、F 、H 也都是等可能情况,然后概率的意义列式即可得解.【详解】由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,小球最终落出的点共有E 、F 、G 、H 四个,所以小球从E 出口落出的概率是:14; 故填:14. 【点睛】本题考查了概率的求法,读懂题目信息,得出所给的图形的对称性以及可能性相等是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.12. 设12,x x 是一元二次方程220240x x +−=的两个根,则21122x x x ++=______. 【答案】2023【解析】【分析】根据方程解的定义、根与系数关系,得2112024x x +=,121x x +=−,对待求解代数式变形,用已知的代数式表示求解.的.【详解】解:由题意,得21120240x x +−=,121x x +=− ∴2112024x x +=. ∴2211211122202412023x x x x x x x ++=+++=−=.故答案为:2023【点睛】本题考查方程解的定义,一元二次方程根与系数关系;掌握根与系数关系是解题的关键. 13. 在“新冠”初期,有2人感染了“新冠”,经过两轮传染后共有288人感染了“新冠”(这两轮感染均未被发现未被隔离),则每轮传染中平均一个人传染了_______个人.【答案】11【解析】【分析】设每轮传染中平均一个人传染了x 个人,根据“有2人感染了“新冠”,经过两轮传染后共有288人感染了“新冠””,列出方程,即可求解.【详解】解:设每轮传染中平均一个人传染了x 个人,根据题意得: ()221288x +=解得:1211,13x x ==−,∵0x >且为整数∴213x =−不符合题意,舍去,答:每轮传染中平均一个人传染了11个人.故答案为:11【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.14. 如图,数轴上点A 代表的数字为3+1x ,点B 代表的数字为22+x x ,已知=5AB ,且点A 在数轴的负半轴上,则x 的值为 _____.【答案】2−【解析】【分析】先利用数轴上两点之间的距离的求法得到()2+23+1=5x x x −,再把方程化为一般式26=0x x −−,接着再用因式分解法把方程转化为3=0x −或+2=0x ,然后再解两个一次方程.【详解】解:根据题意得2+2(3+1)=5x x x −,整理得26=0x x −−,()()3+2=0x x −,3=0x −或+2=0x ,所以1=3x ,2=2x −,将1=3x 代入3+1x 中,得出A 为9,因点A 在数轴的负半轴上,故1=3x (舍去); 将2=2x −,代入3+1x 中,得出A 为5−,点A 在数轴的负半轴上,故=2x −.故答案为:2−.【点睛】本题考查了一元二次方程的因式分解法,这种方法简便易用,是解一元二次方程最常用的方法,也考查了数轴.15. 在正方形ABCD 中,2AD =,E ,F 分别为边DC CB ,上的点,且始终保持DE CF =,连接AE 和DF 交于点P ,则线段CP 的最小值为 _________.1−##1−+【解析】【分析】根据“边角边”证明ADE 和DCF 全等,根据全等三角形对应角相等可得DAE CDF ∠=∠,然后求出90APD ∠=°,取AD 的中点O ,连接OP ,根据直角三角形斜边上的中线等于斜边的一半可得点P 到AD 的中点的距离不变,再根据两点之间线段最短可得C 、P 、O 三点共线时线段CP 的值最小,然后根据勾股定理列式求出CO ,再求解即可.【详解】解: 四边形ABCD 是正方形,AD CD ∴=,90ADE DCF ∠=∠=°, 在ADE 和DCF 中,AD CD ADE BCD DE CF = ∠=∠ =, ()SAS ADE DCF ∴ ≌,DAE CDF ∴∠=∠,90CDF ADF ADC ∠+∠=∠=° ,90ADF DAE ∴∠+∠=°,90APD ∴∠=°,取AD 的中点O ,连接OP CO ,,则1133222OP AD ==×=(不变), 根据两点之间线段最短得C 、P 、O 三点共线时线段CP 的值最小,在Rt COD中,根据勾股定理得,CO =,∴1CP CO OP =−−,∴CP1−,1−.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,确定出点P 到AD 的中点的距离是定值是解题的关键.三.解答题(每小题8分,共24分)16. 解方程:(1)2221x x x =+−;(2)()2231x x x −−=−. 【答案】(1)1222x x +(2)1x =,2x =【解析】【分析】(1)先将方程化为一般式,再用配方法求解即可;(2)先将方程化为一般式,再用公式法求解即可.小问1详解】解:2221x x x =+−,241x x −=,2445x x +=−,()225x −=,2x −,解得:1222x x +−;【小问2详解】解:()2231x x x −−=−, 22231x x x −−=−,22210x x +−=,2,2,1a b c ===−,∴()224242112b ac ∆=−=−××−=,x ,解得:1x =,2x =. 【点睛】本题主要考查了解一元二次方程,解题的关键是熟练掌握一元二次方程的法和步骤.17. 笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子所有的门都打开.松鼠要先经过第一道门(A ,B ,或C ),再经过第二道门(D 或E )才能出去.【(1)请用树状图或列表的方法,表示松鼠走出笼子的所有可能路线(经过的两道门).(2)求松鼠经过E门出去的概率.【答案】(1)见解析(2)1 2【解析】【分析】(1)根据题意画出树状图即可;(2)根据(1)所画的树状图确定松鼠走出笼子的所有可能路线结果数和松鼠经过E门出去的结果数,然后运用概率公式计算即可.【小问1详解】解:根据题意画出树状图如下:【小问2详解】解:根据(1)所得的树状图可知:松鼠走出笼子的所有可能路线结果数为6,松鼠经过E门出去的结果数为3,则松鼠经过E门出去的概率为31 62 =.【点睛】本题主要考查了画树状图、根据树状图求概率等知识点,正确画出树状图是解答本题的关键.18. 已知:平行四边形ABCD的两边AB,AD的长是关于x的方程210 24mx mx−+−=的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么平行四边形ABCD的周长是多少?【答案】(1)1 2(2)5【解析】【分析】本题考查了菱形的性质,平行四边形的性质,一元二次方程根的判别式以及根据系数的关系,解一元二次方程,综合运用各知识点是解答本题的关键.(1)根据菱形的性质可知方程210 24mx mx−+−=有两个相等的实数根,由根的判别式求出m,进而可求出方程的根;(2)由AB的长为2,可知2是方程的一个根,代入方程求出m,根据根与系数的关系可求出平行四边形ABCD的周长.【小问1详解】解:∵平行四边形ABCD 是菱形,∴AB AD =, ∴方程21024m x mx −+−=有两个相等的实数根, ∴()214024m m ∆=−−−=, 解得:121m m ==, 当1m =时,方程为2104x x −+=, 解得1212x x ==, 即菱形的边长为12; 【小问2详解】 解:∵AB ,AD 的长是方程21024m x mx −+−=的两个实数根,AB 的长为2, ∴AB AD m +=,2是方程的一个根, ∴2122024m m −+−=, ∴解得52m =, ∴52AB AD +=, ∴()25AB AD +=, ∴平行四边形ABCD 的周长为5.四.解答题(每小题9分,共27分)19. 阅读材料:我们知道20x ≥,()20a b ±≥这一性质在数学中有着广泛的应用,比如探求多项式2362x x +−的最小值时,我们可以这样处理:2362x x +−()2322x x +−()22232112x x =++−−()223112x =+−−()2315x =+−.因为()210x +≥,所以()231505x +−≥−,当1x =−时,()2315x +−取得最小值5−.(1)求多项式2283x x −+的最小值,并写出对应的x 的取值.(2)求多项式22247x x y y −+−+的最小值.【答案】(1)xx =2,最小值5−;(2)2【解析】【分析】此题考查的是完全平方公式,非负数的性质,解题的关键是把给出的式子化成完全平方的形式. (1)先把给出的式子化成完全平方的形式,再根据非负数的性质即可得出答案;(2)根据完全平方公式把给出的式子进行整理,即可得出答案.【小问1详解】解:2283x x −+ ()2243x x −+()224443x x =−++﹣()22243x =−−+ ()2225x =−−,∵()220x −≥,∴()222505x −−≥−,∴当xx =2时,()2225x −−取得最小值5−;【小问2详解】解:22247x x y y −+−+ ()()2221442x x y y =−++−++()()22122x y =−+−+,∵()210x −≥,()220y −≥,∴()()221222x y −+−+≥,∴当xx =1,2y =时,22247x x y y −+−+有最小值2.20. 如图,在ABCD 中,5AB =,4BC =,点F 是BC 上一点,若将DCF 沿DF 折叠,点C 恰好与AB 上的点E 重合,过点E 作EG BC ∥交DF 于点G ,连接CG .(1)求证:四边形EFCG 是菱形;(2)当A B ∠=∠时,求点B 到直线EF 的距离.【答案】(1)证明见解析(2)点B 到直线EF 的距离为65. 【解析】【分析】(1)由折叠的性质得出CFD EFD ∠=∠,CF EF =,CG EG =,再根据平行线的性质可得EGF EFD ∠=∠,进而可证四条边相等;(2)先由题意得出四边形ABCD AE ,CE 的长,最后利用等面积法即可求解.【小问1详解】证明:∵将DCF 沿DF 折叠,点C 恰好与AB 上的点E 重合,∴CFD EFD ∠=∠,CF EF =,CG EG =,∵EG BC ∥,∴EGF CFD ∠=∠,∴EGF EFD ∠=∠,∴EG EF =,∴EG EF CF CG ===,∴四边形EFCG 是菱形;【小问2详解】解:∵ABCD ,则AD BC ∥,∴180A B ∠+∠=°,∵A B ∠=∠,∴90A B ∠=∠=°,∴四边形ABCD 是矩形,∵5AB =,4BC =,∴5AB CD ED ===,4BC AD ==,∴3AE ,∴2BE =,在Rt BEF △中,222BE BF EF +=,4EF CF BF ==−,∴()22224BF BF +=−, 解得32BF =, ∴35422EF =−=, 设点B 到直线EF 的距离为h , ∴131522222h ××=×, 解得65h =, ∴点B 到直线EF 的距离为65. 【点睛】本题考查矩形的性质,菱形的判定,平行线的性质,勾股定理,折叠的性质等知识,熟练掌握以上知识是解题关键.21. 某商店准备销售一种多功能旅行背包,计划从厂家以每个30元的价格进货,经过市场发现当每个背包的售价为40元时,月均销量为1元,月均销量就相应减少10个.(1)若使这种背包的月均销量不低于130个,每个背包售价应不高于___________元?(2)在(1)的条件下,当该这种书包销售单价为多少元时,销售利润是3120元?(3)这种书包的销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由.【答案】(1)每个背包售价应不高于55元.(2)当该这种书包销售单价为42元时,销售利润是3120元.(3)这种书包的销售利润不能达到3700元.【解析】【分析】(1)设每个背包的售价为x 元,则月均销量为()2804010x ⎡⎤--⨯⎣⎦个,根据月均销量不低于130个,即可得出关于x 的一元一次不等式,解之取其最大值即可得出结论;(2)根据总利润=每个的利润×月均销量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(3)根据总利润=每个的利润×月均销量,即可得出关于x 的一元二次方程,由根的判别式Δ=-36<0,即可得出这种书包的销售利润不能达到3700元.【小问1详解】解:设每个背包的售价为x 元,则月均销量为()2804010x ⎡⎤--⨯⎣⎦个,依题意, 得:()2804010130x ⎡⎤--⨯≥⎣⎦, 解得:55x ≤.答:每个背包售价应不高于55元.【小问2详解】依题意,得:()()3028040103120x x ⎡⎤---⨯=⎣⎦, 整理,得:29823520x x −+=,解得:124256x x ==,(不合题意,舍去). 答:当该这种书包销售单价为42元时,销售利润是3120元.【小问3详解】依题意,得:()()3028040103700x x ⎡⎤---⨯=⎣⎦, 整理,得:29824100x x -+=.∵()298412410360=--⨯⨯=- <,∴该方程无解,∴这种书包的销售利润不能达到3700元.【点睛】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)(3)找准等量关系,正确列出一元二次方程.五.解答题(每小题12分,共24分)22. 如图所示,在Rt ABC △中,90B ∠=︒,100cm AC =,60A ∠=°,点D 从点C 出发沿CCCC 方向以4cm/s 的速度向点A 匀速运动,同时点E 从点A 出发沿CCAA 方向以2cm/s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D E 、运动的时间是t 秒(025t <≤),过点D 作DF BC ⊥于点F ,连接DE EF ,.(1)求证:四边形AEFD 是平行四边形;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(3)当t 为何值时,DEF 为直角三角形?请说明理由.【答案】(1)证明见解析(2)能,503t = (3)252或20,理由见解析 【解析】【分析】(1)根据时间和速度表示出AE 和CCCC 的长,利用30°所对的直角边等于斜边的一半求出DF 的长,可得AE DF =,再证明DF AE ∥即可求证; (2)由(1)知四边形AEFD 为平行四边形,如果四边形AEFD 能够成为菱形,则必有邻边相等,即AE AD =,据此列方程求解即可;(3)当DEF 为直角三角形时,有三种情况:①当90EDF ∠=°时,②当90DEF ∠=°时,③当90DFE ∠=°时,分别找出等量关系列方程即可求出t 的值即可.【小问1详解】证明:由题意得,2AE t =,4CD t =,∵DF BC ⊥,∴90CFD ∠=°,∵90B ∠=︒,60A ∠=°,∴30C ∠=°, ∴114222DF CD t t ==×=,∴AE DF =;∵90CFD B ∠=∠=°,∴DF AE ∥,∴四边形AEFD 是平行四边形;【小问2详解】解:四边形AEFD 能够成为菱形,理由如下: 由(1)得,四边形AEFD 为平行四边形,若AEFD 为菱形,则AE AD =,∵100AC =,4CD t =,∴1004AD t =−,∴21004t t =−, ∴503t =, ∴当503t =时,四边形AEFD 能够成为菱形; 【小问3详解】解:分三种情况:①当90EDF ∠=°时,如图1, ∵90CFD B EDF ∠=∠=∠=°, ∴四边形DFBE 为矩形, ∴2DF BE t ==, ∵1502AB AC ==,2AE t =, ∴2502t t =−,252t =;②当90DEF ∠=°时,如图2, ∵四边形AEFD 为平行四边形, ∴EF AD ∥,∴90ADE DEF ∠=∠=°, 在Rt ADE 中,60A ∠=°, ∴30AED ∠=°,∵2AE t =, ∴12AD AE t ==,∵AD CD AC +=,∴4100t t +=,∴20t =;③当90DFE ∠=°不成立;综上所述:当t 为252或20时,DEF 为直角三角形. 【点睛】本题考查了平行四边形的判定与性质,菱形的性质,矩形的判定与性质,,含30°角的直角三角形的性质,直角三角形两锐角互余,平行线的判定与性质,一元一次方程的应用,掌握以上知识点是解题的关键.23. 如图,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(3,4)−,点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H ,连接BM .(1)填空:菱形ABCO 的边长=______;(2)求直线AC 的解析式;(3)动点P 从点A 出发,沿折线A B C --方向以3个单位/秒的速度向终点C 匀速运动,设PMB △的面积为()0S S ≠,点P 的运动时间为t 秒, ①当503t <<时,求S 与t 之间的函数关系式; ②在点P 运动过程中,当2S =,请直接写出t 的值. 【答案】(1)5 (2)直线AC 的解析式为1522y x =−+ (3)①91544t S =−+;②79t =或115【解析】 【分析】(1)根据点A 的坐标,结合勾股定理可计算菱形边长AO 的长度;(2)先求出C 点坐标,设直线AC 解析式y kx b =+,将点A C ,坐标代入得到二元一次方程组,然后解方程组即可得到,k b 的值;(3)①当503t <<时,根据题意得到53BP BA AP t =−=−,53422HM OH OM =−=−=,然后利用三角形面积公式,即可表示出S 与t 之间的函数关系;②设M 到直线BC 的距离为h ,根据等面积方法列方程,求出h ,可得到当51033t <<时,S 与t 之间的函数关系,将2S =分别代入两个解析式中,分别解方程即可得解.【小问1详解】解:∵点A 的坐标为()3,4−,∴34AH HO ==,在Rt AOH △中,5AO,故答案为:5;【小问2详解】解:∵四边形ABCO 是菱形,∴5OC OA ==,即50C (,). 设直线AC 的解析式y kx b =+,函数图象过点A C ,, 则5034k b k b += −+=, 解得1252k b =− =, ∴直线AC 的解析式为:1522y x =−+; 【小问3详解】 解:由1522y x =−+,令0x =,52y =,则50,2M ,则52OM =, ①当503t <<时,如图所示, 的53BP BA AP t =−=−,53422HM OH OM =−=−=, ∴()113915·5322244S BP HM t t ==××−=−+, ∴91544t S =−+, ②设M 到直线BC 的距离为h , ∴ΔΔΔ111222ABC AMB BMCS S S AB OH AB HM BC h +⋅⋅+⋅ 则113154552222h ××=××+×, 解得52h =, 当51033t <<时,如图所示,35BP t =−,52h =, ()11515253522244t S BP h t ∴=×=×−×=−, 当2S =时,代入91544t S =−+, 解得79t =, 代入152544t S =−,解得115t=,综上所述79t=或115.【点睛】本题考查了菱形的性质、动点问题、求一次函数解析式、勾股定理等知识,采用数形结合并分情况分析是解题关键.。
山东省菏泽市2024届九年级下学期中考模拟数学试卷(含解析)

菏泽市二0二四年初中学业水平考试(模拟)数学试题本试卷共4页,共24个题。
满分120分,时间120分钟。
注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、考生号和座号填写在答题卡和试卷规定的位置上。
考试结束后,将试卷和答题卡一并交回。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案写在试卷上无效。
3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第I 卷选择题部分(共24分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置.1.下面四个数中,最小的是()A .(1)--B .2(0.2)-C .|3|--D .13-2.2020年12月3日.中共中央政治局常务委员会召开会议,听取脱贫攻坚总结评估汇报.中共中央总书记习近平主持会议并发表重要讲话.指出经过8年持续奋斗,我们如期完成了新时代脱贫攻坚目标任务,现行标准下农村贫困人口全部脱贫,贫困县全部摘帽,消除了绝对贫困和区域性整体贫困,近1亿贫困人口实现脱贫,取得了令全世界刮目相看的重大胜利.将100000000用科学记数法表示为()A .80.110⨯B .7110⨯C .8110⨯D .81010⨯3.如图几何体中,主视图是三角形的是()A .B .C .D .4.如图,将矩形纸片ABCD 沿AC 折叠,使点B 落到点B '处,2∠等于()第4题图A .1∠B .21∠C .901︒-∠D .9021︒-∠5.如图是护士统计一位病人的体温变化图,这位病人在16时的体温约是()第5题图A .37.8C ︒B .38C ︒C .38.7C ︒D .39.4C︒6.如图,AB 是半圆O 的直径,,2,30,AC AD OC CAB E ==∠=︒为线段CD 上一个动点,连接OE ,则OE 的最小值为()第6题图A B .1C D .27.二次函数2y ax bx c =++的图象如图所示,则一次函数y ax b =+和反比例函数c y x=在同一平面直角坐标系中的图象可能是()第7题图A .B .C .D .8.正ABC △的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A B C →→的方向运动,到达点C 时停止,设运动时间为x (秒),2y PC =,则y 关于x 的函数的图像大致为()第8题图A .B .C .D .第II 卷非选择题部分(共96分)二、填空题:本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内.9.已知3m n +=,则226m n n -+=______.10.若代数式12x-有意义,则实数x 的取值范围是______.11.如图,是一张撕掉一个角的四边形纸片,根据图中所标示的数据,可得被撕掉的A ∠大小为______.第11题图12.如图,两半圆的圆心点1O 、2O 分别在直角ABC △的两直角边AB 、AC 上,直径分别为AB 、CD ,如果两半圆相外切,且10AB AC ==,那么图中阴影部分的面积为______.第12题图13.设实数,,a b c 满足:2223,4a b c a b c ++=++=,则222222222a b b c c a c a b +++++=---______.14.直角坐标系中,函数y =和3y x =-的图象分别为直线12,l l ,过2l 上的点131,3A ⎛⎫- ⎪ ⎪⎝⎭作x 轴的垂线交1l 于点2A ,过点2A 作y 轴的垂线交2l 于点3A ,过点3A 作x 轴的垂线交1l 于点4,A ⋯依次进行下去,则点2020A 的横坐标为______.第14题图三、解答题:本题共78分,把解答和证明过程写在答题卡的相应区域内.15.(6分)(1)解分式方程:214124x x -=--;(2)计算:10181tan 603-⎛⎫-++-︒ ⎪⎝⎭16.(5分)解不等式组53(1)92151132x x x x --<⎧⎪-+⎨-≤⎪⎩,并在数轴上表示出其解集.。
2024年6月山西省长治市多校中考模拟九年级数学试卷(PDF版,含答案)

2023—2024学年初三年级阶段性测试试卷数学模拟演练说明:本试卷全卷共8页,满分120分,考试时间120分钟。
第I 卷选择题(共30分)一、选择题(本大题共有10个小题,每小题3分,共30分)1.2-的绝对值是()A .2B .2-C .12D .12-2.花窗是中国古代园林建筑中窗的一种装饰和美化形式,既具备实用功能,又带有装饰效果.下列花窗图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3.下列运算正确的是()A =B (35=-C .23356a a a +=D .()32439a a -=-4.瓦楞纸箱具有较高抗压强度及防震性能,能够抵挡搬运过程中的碰撞、冲击和摔跌,在商业包装中有着举足轻重的作用.如图所示,是一件正六棱柱瓦楞纸箱,则该几何体的主视图是()A .B .C .D .5.如图,点E ,F 分别在直线AB ,CD 上,AB CD ,G 是直线AB 上方一点,76FEG ∠=︒,56CFE ∠=︒,若EH 平分FEG ∠,则BEH ∠的度数为()A .14°B .16°C .18°D .28°6.如图,点A 是反比例函数k y x=的图象上的一点,过点A 作AB x ⊥轴,垂足为B .点C 为y 轴上一点,连接AC ,BC .若ABC △的面积为3,则k 的值是()A .3B .6-C .6D .3-7.如图,四边形ABCD 内接于O ,直线EF 与O 相切于点A ,且AB AD =.若35BAE ∠=︒,则BCD ∠的度数为()A .35°B .55°C .70°D .80°8.化简2110525x x +--的结果为()A .5x +B .5x -C .15x -+D .15x +9.杆秤是人类发明的各种衡器中历史最悠久的一种,是利用杠杆原理来测定物体质量的简易衡器.如图1所示是兴趣小组自制的一个无刻度简易杆秤,其使用原理:将待测物挂于秤钩A 处,提起提纽B ,在秤杆上移动金属秤锤C (质量为1.5kg ),当秤杆水平时,金属秤锤C 所在的位置对应的刻度就是待测物的质量(量程范围内).为了给秤杆标上刻度,兴趣小组做了如下试验,用m (单位:kg )表示待测物的质量,l (单位:cm )表示秤杆水平时秤锤C 与提纽B 之间的水平距离,则水平距离l 与待测物质量m 之间的关系如图2所示.根据以上信息,下列说法正确的是()A .待测物的质量越大(量程范围内),秤杆水平时秤锤C 与提纽B 之间的水平距离越小B .当待测物的质量m 为3kg 时,测得水平距离l 为8cmC .若秤锤C 在水平距离l 为15cm 的位置,则秤杆在此处的刻度应为5kgD .若秤杆长为80cm ,则杆秤的最大称重质量为40kg10.如图,在Rt ABC △中,90C ∠=︒,12AC =cm ,16BC =cm ,点P ,Q 分别从A ,B 两点出发沿AC ,BC 方向向终点C 匀速运动,其速度均为2cm/s.设运动时间为t s ,则当PCQ △的面积是ABC △的面积的一半时,t 的值为()A .1B .2C .3D .4二、填空题(本题共有5个小题,每小题3分,共15分)11a =___________.12.黄河流域两岸地带培育的大红枣,学名“木枣”,自古以来就被列为“五果”(桃、李、梅、杏、枣)之一“家家利”超市购进一批大红枣,一箱的进价为18元,标价为21元,在春节期间,该超市准备打折销售,但要保证利润率不低于5%,则至多可以打___________折.13.如图,在ABCD 中,对角线AC ,BD 相交于点O ,过点D 作DH AB ⊥于点H ,连接OH .若5OB =,则OH 的长为___________.14.苯是一种有机化合物,是组成结构最简单的芳香烃,可以合成一系列衍生物.如图是某小组用小木棒摆放的苯及其衍生物的结构式,第1个图形需要9根小木棒,第2个图形需要16根小木棒,第3个图形需要23根小木棒.……按此规律,第n 个图形需要__________根小木棒.(用含n 的代数式表示)15.如图,在正方形ABCD 中,F 是AB 边上一点,连接CF ,过点B 作BE CF ⊥于点E ,连接AE 并延长,交BC 边于点G .若1AF =,4BC =,则线段CG 的长为___________.三、解答题(本题共有8个小题,共75分。
2024年河南省平顶山中考数学一模模拟试题(解析版)

2024年平顶山市中招学科第-次调研试卷九年级数学注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上.答在试卷上的答案无效.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1. 的相反数是( )A. B. C. D. 【答案】D【解析】【分析】本题考查相反数的定义,根据相反数定义直接求解即可得到答案,熟记相反数定义是解决问题的关键.【详解】解:的相反数是,故选:D .2. 已知某几何体的俯视图如图所示,该几何体可能是( )A. B. C. D.【答案】A【解析】【分析】本题考查由三视图判断几何体.由于俯视图是从物体的上面看得到的视图,所以先得出四个选项中各几何体的俯视图,再与题目图形进行比较即可.【详解】解:图示是一个圆且这个圆的圆心.A 、圆柱的俯视图是一个圆,没有圆心,故选项符合题意;B 、三棱柱的俯视图是三角形,故选项不符合题意;C 、圆锥的俯视图是一个圆,有圆心,故选项不符合题意;D 、长方体的俯视图是一个长方形,故选项不符合题意;故选:A.20241202412024-20242024-20242024-3. 龙年伊始,平顶山市迎来了新年文旅“满堂红”.今年春节期间,平顶山市共接待游客万人次,实现旅游收入亿元.数据亿用科学记数法表示为( )A. B. C. D. 【答案】D【解析】【分析】本题考查了科学记数法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值大于等于时与小数点移动的位数相同.【详解】解:亿,故选:D .4. 如图,直线,等边的顶点B ,C 分别在直线m ,n 上,若,则∠2的度数为( )A. B. C. D. 【答案】B【解析】【分析】本题考查了平行线的性质,等边三角形的性质.由平行线的性质求得的度数,根据等边三角形的性质求得,再利用平角的性质求解即可.【详解】解:∵直线,∴,∵是等边三角形,∴,∴,599.6636.436.483.6410⨯836.410⨯90.36410⨯93.6410⨯10n a ⨯110a ≤<n n a n 1036.48936.410 3.6410=⨯=⨯m n ∥ABC 170=︒∠45︒50︒55︒60︒3∠60ABC ∠=︒m n ∥3170∠=∠=︒ABC 60ABC ∠=︒2180706050∠=︒-︒-︒=︒故选:B .5. 下列计算中,正确的是( )A.B. C. D. 【答案】D【解析】【分析】本题考查了同底数幂相乘、积的乘方、幂的乘方,合并同类项,根据相关运算法则进行逐项分析,即可作答.【详解】解:A 、不是同类项,不能合并,故该选项是错误的;B 、,故该选项是错误的;C 、,故该选项是错误的;D 、,故该选项是正确的故选:D6. 如图所示,是的内接三角形.若则的度数等于( )A. 70°B. 65°C. 60°D. 55°【答案】A【解析】【分析】本题考查了圆周角定义,三角形的内角和性质,同弧所对的圆周角是圆心角的一半,据此即可作答.【详解】解:∵,∴,,∴,故选:A.247a a a +=()328=a a ()55210a a =235a a a = 24a a ,()326a a =()55232a a =235a a a = ABC O 20OAC ∠=︒,ABC ∠20OAC OA OC ∠=︒=,20180220140OAC ACO AOC ∠=∠=︒∠=︒-⨯︒=︒ AC AC = 1702ABC AOC ∠=∠=︒7. -元二次方程根的情况是( )A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 只有一个实数根【答案】C【解析】【分析】本题主要考查根的判别式.先整理成一般式,再计算判别式即可判断一元二次方程的跟的情况.【详解】解:整理得,∴,∴有两个不相等的实数根.故选:C .8. 若反比例函数经过点.则一次函数的图像一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】本题考查反比例函数图像上点的坐标特征.先确定反比例函数解析式,从而可得一次函数解析式,进而求解.【详解】解:∵反比例函数的图像经过点,∴,解得:,∴一次函数的解析式为,∴该直线经过第二、三、四象限,不经过第一象限,故选:A .9. 如图,电路图上有4个开关A 、B 、C 、D 和1个小灯泡,同时闭合开关A 、B 或同时闭合开关C 、D 都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是( )()23x x -=24b ac ∆=-()23x x -=2230x x --=()()2242413412160b ac ∆=-=--⨯⨯-=+=>()0k y k x =≠()1,2-y kx k =+()0k y k x =≠()1,2-21k =-2k =-22y x =--A. 只闭合1个开关B. 只闭合2个开关C. 只闭合3个开关D. 闭合4个开关【答案】B【解析】【分析】本题考查了事件的分类,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.根据必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对每一项进行分析即可.【详解】解:A 、只闭合1个开关,小灯泡不会发光,属于不可能事件,不符合题意;B 、只闭合2个开关,小灯泡可能发光也可能不发光,是随机事件,符合题意;C 、只闭合3个开关,小灯泡一定会发光,是必然事件,不符合题意;D 、闭合4个开关,小灯泡一定会发光,是必然事件,不符合题意;故选:B .10. 如图1,在中,.动点P 从点A 出发沿折线A →B →C 匀速运动至点C 后停止.设点P 运动路程为x ,线段的长度为y ,图2是y 随x 变化的关系图像,其中M 为曲线的最低点,则的面积为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了动点问题的函数图象,勾股定理,垂线段最短.作,当动点P 运动到点时,线段的长度最短,此时,当动点P 运动到点时,运动结束,此时的ABC 60ABC ∠=︒AP DE ABC AD BC ⊥D AP AB BD +=C AC =根据直角三角形的性质结合勾股定理求解即可.【详解】解:作,垂足为,当动点P 运动到点时,线段的长度最短,此时点P 运动的路程为,即,当动点P 运动到点时,运动结束,线段的长度就是的长度,此时,∵,∴,∴,∴,∴,∴,在中,,∴,∴,∴的面积为故选:C .二、填空题(每小题3分,共15分)11. 已知点P 在数轴上,且到原点的距离大于2,写出一个点P 表示的负数:______.【答案】【解析】【分析】本题考查了数轴上两点之间的距离,在数轴上表示有理数,根据“点P 在数轴上,且到原点的距离大于2,还是负数”这三个条件,写出一个即可作答.答案不唯一AD BC ⊥D D AP AB BD +=C AP AC AC =60ABC ∠=︒30BAD ∠=︒2AB BD =3AB BD BD +==BD =AB =2AD ==Rt △ABD AC =CD ==BC BD CD =+=ABC 11222BC AD ⨯=⨯=3-【详解】解:依题意,当点P 在数轴的负半轴上,即点P 表示为满足“到原点的距离大于2,还是负数”故答案为:12.分式方程的解是______.【答案】【解析】【分析】本题考查解分式方程.方程两边乘以得出,求出方程的解,再进行检验即可【详解】解:方程两边乘以得,解这个方程,得,检验:当时,,所以是原分式方程的解.即原分式方程的解为.故答案为:.13. 某校为了解学生对篮球、足球、乒乓球、羽毛球四类运动的参与情况,随机调查本校部分学生,让他们从中选择参与最多的一类运动,以选择各项目的人数制作了条形统计图.若从该校学生中任意抽取1人,则该学生恰好选择篮球这项运动的概率约为______.【答案】##0.375【解析】【分析】本题考查了概率公式.用恰好选择篮球这项运动的人数除以调查的总人数即可求解.【详解】解:∵调查的总人数为(人),其中选择篮球这项运动的人数为人,∴从该校学生中任意抽取1人,则该学生恰好选择篮球这项运动的概率约为,故答案为:.3-,3-2111x x x-=+2x =x 211x x -=+x 211x x -=+2x =2x =0x ≠2x =2x =2x =383020181280+++=30303808=3814. 如图,直线与y 轴交于点A ,与反比例函数图象交于点C ,过点C 作轴于点B ,,则k 的值为______.【答案】【解析】【分析】本题考查了反比例函数与一次函数图象的交点问题.先求出点A 的坐标,然后求出的长,即知点C 的横坐标,再将点C 的横坐标代入反比例函数解析式,可求得点C 的坐标,最后将点C 的坐标代入一次函数解析式,即得答案.【详解】解:对于函数中,令,则,,,,,即点C 的横坐标为,把代入,得,,把代入,得,解得.故答案为:.15. 在矩形中,,,若是射线上一个动点,连接,点关于直线的对称点为.连接,,当,,三点共线时,的长为______.3y kx =+()40y x x=-<CB x ⊥3AO BO =1-BO 3y kx =+0x =3y =()03A ∴,3OA ∴=3AO BO =Q 1BO ∴=1-=1x -4y x=-4y =()14C ∴-,()14C -,3y kx =+43k =-+1k =-1-ABCD 3AB =5BC =P AD BP A BP M MP MC P M C AP【答案】1或9【解析】【分析】本题考查了矩形的性质,折叠的性质,勾股定理,分情况讨论,当点在线段上时,当点在的延长线时,根据折叠的性质和勾股定理即可得到结论.【详解】解:当点线段上时,如图,与关于直线对称,,,,,,,,设,,,,解得,;当点在的延长线时,如图,与关于直线对称,P AD P AD P AD ABP MBP BP 90BMP A ∴∠=∠=︒3BM AB ==AP PM =90BMC ∴∠=︒222BM CM BC += 22235CM ∴+=4CM ∴=AP PM x ==90D ∠=︒ 222DP CD CP ∴+=222(5)3(4)x x ∴-+=+1x =1AP ∴=P AD ABP MBP BP,,,,,,,,,,,,,综上所述,的长为1或9,故答案为:1或9.三、解答题(本大题共8小题,满分75分)16. (1)计算:;(2)解不等式组:【答案】(1)2;(2).【解析】【分析】此题考查了一元一次不等式组的求解,负整指数幂,乘方,绝对值以及算术平方根的运算,解题的关键是熟练掌握相关运算法则.(1)根据乘方,负整数指数幂,绝对值以及算术平方根的运算求解即可;(2)求得每个不等式的解集,取公共部分即可.【详解】解:(1);(2),90BMP A ∴∠=∠=︒3BM AB ==AP PM =APB MPB ∠=∠AP BC ∥APB CBP ∴∠=∠CPB CBP ∴∠=∠5CP BC ∴==90BMC ∠=︒ 222BM CM BC ∴+=22235CM ∴+=4CM ∴=549AP PM ∴==+=AP 2132-122113x x ->⎧⎪⎨+≥⎪⎩①②3x>21332-÷--19322=÷-⨯31=-2=122113x x ->⎧⎪⎨+≥⎪⎩①②解不等式①可得:,解不等式②可得:,则不等式组的解集为:.17. 为了解A ,B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A ,B 两款智能玩具飞机各10架,记录下它们运行的最长时间(单位:min ),并对数据进行整理描述和分析(运行最长时间用x 表示,共分为三组:合格,中等,优等),下面给出了部分信息.a .10架A 款智能玩具飞机一次充满电后运行的最长时间(单位min )分别是:60,64,67,69,71,71,72,72,72,82.b .10架B 款智能玩具飞机一次充满电后运行的最长时间(单位:min )在中等组的数据分别是:70,71,72,72,73.C .两款智能玩具飞机运行最长时间统计表d .B 款智能玩具飞机运行最长时间扇形统计图类别A B 平均数7070中位数71b 众数a 67方差30.431.6根据以上信息,解答下列问题:(1)上述图表中,______,______,______.(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由.(写出一条理由即可)(3)若某玩具仓库有A 款智能玩具飞机200架,B 款智能玩具飞机120架,估计两款智能玩具飞机运行性能在中等及以上的共有多少架?【答案】(1),,;3x >1x ≥3x >6070x ≤<7080x ≤<80x ≥=a b =m =7270.510(2)A 款智能玩具飞机运行性能更好;因为A 款智能玩具飞机运行时间的方差比B 款智能玩具飞机运行时间的方差小,运行时间比较稳定;(3)两款智能玩具飞机运行性能在中等及以上的大约共有架.【解析】【分析】(1)由A 款数据可得A 款的众数,即可求出,由B 款扇形数据可求得合格数及优秀数,从而求得中位数及优秀等次的百分比;(2)根据方差越小越稳定即可判断;(3)用样本数据估计总体,分别求出两款飞机中等及以上的架次相加即可.【小问1详解】解:由题意可知架A 款智能玩具飞机充满电后运行最长时间中,只有出现了三次,且次数最多,则该组数据的众数为,即;由B 款智能玩具飞机运行时间的扇形图可知,合格的百分比为,则B 款智能玩具飞机运行时间合格的架次为:(架)则B 款智能玩具飞机运行时间优等的架次为:(架)则B 款智能玩具飞机的运行时间第五、第六个数据分别为:,故B 款智能玩具飞机运行时间的中位数为:,B 款智能玩具飞机运行时间优等的百分比为:,即,故答案为:,,;【小问2详解】解:A 款智能玩具飞机运行性能更好;因为A 款智能玩具飞机运行时间的方差比B 款智能玩具飞机运行时间的方差小,运行时间比较稳定;【小问3详解】解:架A 款智能玩具飞机运行性能在中等及以上的架次为:(架)架B 款智能玩具飞机运行性能在中等及以上的架次为:(架)则两款智能玩具飞机运行性能在中等及以上的共有:架,192a 10727272a =40%1040%4⨯=10451--=70,71707170.52+=1100%10%10⨯=10m =7270.510200620012010⨯=12061207210⨯=12072192+=答:两款智能玩具飞机运行性能在中等及以上的大约共有架.【点睛】本题考查了扇形统计图,中位数、众数、百分比,用方差做决策,用样本估计总体;解题的关键是熟练掌握相关知识综合求解.18. 如图,已知中,,,.(1)作的垂直平分线,分别交、于点、;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接,求的周长.【答案】(1)见解析(2)13【解析】【分析】(1)利用基本作图,作BC 的垂直平分线分别交、于点、即可;(2)由作图可得CD =BD ,继而可得AD =CD ,再结合三角形周长的求解方法进行求解即可.【小问1详解】如图所示,点D 、H 即为所求【小问2详解】∵DH 垂直平分BC ,∴DC =DB ,∴∠B =∠DCB ,∵∠B +∠A =90°,∠DCB +∠DCA =∠ACB =90°,∴∠A =∠DCA ,∴DC = DA,192Rt ABC 90ACB ∠=︒8AB =5BC =BC AB BC D H CD BCD △AB BC D H∴△BCD 的周长=DC +DB +BC =DA +DB +BC =AB +BC =8+5=13.【点睛】本题考查了作垂直平分线,垂直平分线的性质,等腰三角形的判定与性质等,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.19. 如图,为直径,点是的中点,过点作的切线,与的延长线交于点,连接.(1)求证:(2)连接,当时:①连接,判断四边形的形状,并说明理由.②若,图中阴影部分的面积为(用含有的式子表示).【答案】(1)见解析(2)①菱形,理由见解析;②【解析】【分析】(1)连接,证明,即可得到结论.(2)①根据(1)的结论和已知条件先证明四边形是平行四边形,根据平行线的性质以及点是的中点,可得从而证明邻边相等,即可得出结论;②连接,如图所示,设交于点,证明得,从而可求出,解直角三角形得出,根据,从而可得,求出扇形的面积即可得到阴影部分的面积.小问1详解】证明:如图所示,连接,的【AB O C AD C O CE BD E BC 90CEB ∠=︒CD CD AB ∥OC OBDC 3BE =______π23πOC OC BE ∥OBDC C AD DCB DBC ∠=∠OD ,OD BC F AC DCBC ==60AOC ∠=︒30CBE ∠=︒2OB =CD AB ∥COD BCD S S =△△COD OC∵点是的中点,∴,∴,∵,∴,∴,∴,∵是的切线.∴,∴,即:;【小问2详解】①如图所示,由(1)可得∵∴,四边形是平行四边形,又∵∴∴,∴四边形是菱形,C AD AC DC=ABC EBC ∠=∠OB OC =ABC OCB ∠=∠EBC OCB ∠=∠OC BE ∥CE O OC CE ⊥BE CE ⊥90CEB ∠=︒OC BE∥CD AB∥DCB ABC ∠=∠OBDC ABC EBC∠=∠DCB EBC∠=∠DC DB =OBDC②连接,如图所示,设交于点∵,∴,∵,,∴,∴,∴,∵,,∴∴∵,∴,∴.∴.【点睛】本题考查了圆周角定理,切线的判定,弧弦圆心角的关系,平行线的判定与性质,等腰三角形的性质,等边三角形的判定与性质,解直角三角形,扇形的面积等知识,熟练掌握切线的判断定理以及扇形面积的求法是解题的关键.20. 近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?OD ,OD BC FCD BD = CDBD = CD BD = AC DC= AC DCBC ==60AOC COD BOD ∠=∠=∠=︒1302ABC CBE AOC ∠=∠=∠=︒cos BE CBE BC ∠=3BE =3cos30BC ==︒BF =2cos30OF OB ===︒CD AB ∥COD BCD S S =△△COD S S =阴影扇形260223603COD S S ππ⨯===阴影扇形(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?【答案】(1)甲、乙两种头盔的单价各是65元, 54元.(2)购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【解析】【分析】(1)设购买乙种头盔的单价为x 元,则甲种头盔的单价为元,根据题意,得,求解;(2)设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w ,则,解得,故最小整数解为,,根据一次函数增减性,求得最小值=.【小问1详解】解:设购买乙种头盔的单价为x 元,则甲种头盔的单价为元,根据题意,得解得,,,答:甲、乙两种头盔的单价各是65元, 54元.小问2详解】解:设购m 只甲种头盔,此次购买头盔的总费用最小,设总费用为w ,则,解得,故最小整数解为,,∵,则w 随m 的增大而增大,∴时,w 取最小值,最小值.答:购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【点睛】本题考查一元一次方程的应用,一次函数的性质,一次函数的应用、一元一次不等式的应用;根据题意列出函数解析式,确定自变量取值范围是解题的关键.21. 下图是某篮球架的侧而示意图,四边形为平行四边形.其中为长度固定的支【(11)x +20(11)302920x x ++=1(40)2m m ³-1313m ≥14m =41920w m =+41419201976´+=(11)x +20(11)302920x x ++=54x =1165x +=1(40)2m m ³-1313m ≥14m =0.865(546)(40)41920w m m m =´+--=+40>14m =41419201976=⨯+=ABCD BE CD GF ,,架,支架在A ,D ,G 处与立柱连接(垂直于,垂足为H ),在B ,C 处与篮板连接,旋转点F 处的螺栓可以调节长度,使支架绕点A 旋转,进而调节篮板的高度,已知.(1)如图1,当时,测得点C 离地面的高度为,求的长度;(2)如图2,调节伸缩臂,将由调节为时,请判断点C 离地面的高度是升高了还是降低了?并计算升(或降)的距离.(参考数据,)【答案】(1);(2)点离地面的高度升高了,升高了.【解析】【分析】本题考查是平行四边形性质,矩形的判定与性质,解直角三角形的实际应用,理解题意,作出合适的辅助线是解本题的关键.(1)如图,延长与底面交于点,过作于,则四边形为矩形,可得,根据四边形是平行四边形,可得,当时,则,此时,,即可求得;(2)当时,则,解直角三角形得,从而可得答案.【小问1详解】解:如图,延长与底面交于点,过作于,则,四边形为矩形,∴,的AH AH MN EF BE 209cm DH =60GAE ∠=︒289cm CD EF GAE ∠60︒54︒sin540.8cos540.6︒≈︒≈,tan 54 1.4︒≈160cm CD =C 16cm BC K D D Q C K ^Q DHKQ 208QK DH ==ABCD AB CD ∥60GAE ∠=︒60QCD QBA GAE ∠=∠=∠=︒30CDQ ∠=︒28920980CQ =-=2160CD CQ ==54GAE ∠=︒54QCD QBA GAE ∠=∠=∠=︒cos541600.696CQ CD =︒≈⨯= BC K D DQ C K ^Q 90DHK DQK HKQ ∠=∠=∠=︒DHKQ 209QK DH ==∵四边形是平行四边形,∴,当时,则,此时,,∴;【小问2详解】解:当时,则,∴,而,,∴点离地面的高度升高了,升高了.22. 一次足球训练中,小明从球门正前方的A 处射门,球射向球门的路线呈抛物线,其函数表达式为.当球飞行的水平距离为时,球达到最高点,此时球离地面.已知球门高为,现以O 为原点建立如图所示平面直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)经过教练指导,小明改变了射球的力度和角度,在同一地点再次射门,球射向球门的路线呈抛物线,其表达式为.结果足球“画出一-条美妙的曲线”在点O 正上方处精彩落入球网内.求两次射门,足球经过的路线最高点之间的距离.ABCD AB CD ∥60GAE ∠=︒60QCD QBA GAE ∠=∠=∠=︒30CDQ ∠=︒28920980CQ cm =-=()2160cm CD CQ ==54GAE ∠=︒54QCD QBA GAE ∠=∠=∠=︒·cos541600.696CQ CD cm =︒≈⨯=96>80968016cm -=C 16cm 8m ()2y a x h k =-+6m 3m OB 2.44m 2116y x bx c =-++2m(注:题中的x 表示球到球门的水平距离,y 表示球飞行的高度)【答案】(1),球不能射进球门 (2)【解析】【分析】本题考查二次函数的应用,理解题意,求出解析式是解题的关键.(1)先确定抛物线的顶点坐标,利用待定系数法求出解析式即可;(2)求出第二次射门的解析式,求出顶点坐标即可求出答案.【小问1详解】由题意,可知抛物线的顶点坐标为,∴把代入,得,解得,∴抛物线的函数表达式为,当时,,∴球不能射进球门;【小问2详解】把,代入,得,∴,∴,∴顶点坐标为,()212312y x =--+3m 4()23,()223y a x =-+()80A ,()223y a x =-+3630a +=112a =-()212312y x =--+0x =8 2.443y =>()80A ,()0,22116y x bx c =-++210 88162b c c⎧=-⨯++⎪⎨⎪=⎩142b c ⎧=⎪⎨⎪=⎩()221119 2 2164164y x x x =-++=--+92,4⎛⎫ ⎪⎝⎭∵.∴两次射门,足球经过的路线最高点之间的距离为.23. (1)观察发现:已知是直角三角形,.将绕点B 顺时针旋转得到,旋转角为,直线交直线AC 于点F .如图1,当时,判断:四边形的形状为_____,与的数量关系为_____;(2)深入探究:在图1的基础上,将绕点B 逆时针旋转,旋转角为,如图2,当时,直接写出线段的数量关系______;继续旋转,如图3,当时,请写出线段的数量关系,并说明理由;(3)拓展应用:在(2)的基础上当时,若,请直接写出的长.【答案】(1)正方形,;(2);;理由见解析;(3)的长为或.【解析】【分析】(1)先证明四边形为矩形,根据,证明四边形为正方形,推出;(2)当时,连接,证明,据此即可求得;当时,同理求得;(3)当时,根据角的转换求得,推出,得到,进而求得,据此求解即可;当时,同理即可求解.【详解】解:(1)根据题意,由旋转的性质得,∴四边形为矩形,由旋转的性质得,933m 44-=3m 4ABC 90ACB ∠=︒ABC DBE αDE 90α=︒BCFE CF EF DBE β090β︒<<︒AF EF DE ,,90180β︒<<︒AF EF DE ,,CBE BAC ∠=∠912BC AC ==,AF CF EF =AF EF DE +=AF EF DE -=AF 915BCFE BC BE =BCFE CF EF =090β︒<<︒BF ()Rt Rt HL BCF BEF ≌AF EF DE +=90180β︒<<︒AF EF DE -=090β︒<<︒ABD BAC ∠=∠DB AC ∥A D AFD ABD ∠=∠=∠=∠15DF AB ==90180β︒<<︒90C DEB BEF ∠=∠=∠=︒90BCE ∠=︒BCFE BC BE =∴四边形为正方形,∴;故答案为:正方形,;(2)当时,连接,∵,,,∴,∴,∵,∴,即;当时,连接,同理,,∴,∵,∴,即;故答案为:;;(3)当时,BCFE CF EF =CF EF =090β︒<<︒BF BC BE =90B BEF ∠=∠=︒BF BF =()Rt Rt HL BCF BEF ≌EF CF =DE AC =AF CF AC +=AF EF DE +=90180β︒<<︒BF ()Rt Rt HL BCF BEF ≌EF CF =DE AC =AF CF AC -=AF EF DE -=AF EF DE +=AF EF DE -=090β︒<<︒∵,∴,∴,∴,∵,∴,∴,∵,∴,∴,∵,∴,∴,,∴,即,解得,∴;当时,同理,求得.综上,的长为或.【点睛】本题考查了勾股定理,正方形的判定和性质,全等三角形的判定和性质,平行线的判定和性质,正确引出辅助线解决问题是解题的关键.912BC AC ==,15AB ==912BE DE ==,15DB =ABC DBE ∠=∠ABC ABE DBE ABE ∠-∠=∠-∠CBE ABD ∠=∠CBE BAC ∠=∠ABD BAC ∠=∠DB AC ∥A D ∠=∠A D AFD ABD ∠=∠=∠=∠AG FG =DG BG =15DF AB ==1215DE EF EF +=+=3EF CF ==1239AF =-=90180β︒<<︒15AF BD ==AF 915。
九年级数学中考模拟试卷

九年级数学中考模拟试卷注意事项: 1.本卷满分130分.考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果. 一、选择题(本大题共10题,每小题3分,共计30分.) 1.9的平方根等于( ▲ ) A .3 B .3- C .3± D 2.下列运算正确的是 ······································································································ (▲ ) A .a +a =2a 2 B .a 2·a =2a 2 C .(-ab )2=2ab 2 D .(2a )2 ÷a=4a 3x 的取值范围是( ▲ )A .13x >B .13x >-C . 13x ≥D .13x ≥-4.下列图形中,中心对称图形有 ( ▲ )A.1个 B .2个 C .3个 D .4个5.已知⊙O 1与⊙O 2相切,⊙O 1的半径为3cm ,⊙O 2的半径为2cm ,则O1O 2的长是(▲) A .1 cm B .5 cm C .1 cm 或5 cm D .0.5cm 或2.5cm6.小丽在清点本班为青海玉树地震灾区的捐款时发现,全班同学捐款的钞票情况如下:l00元的5 张,50元的l0张,l0元的20张,5元的l0张.在这些不同面额的钞票中,众数是(▲)元的钞票. A .5 B .10 C .20 D .1007.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为 ( ▲ )8.下列命题正确的是( ▲ ) A .两个等边三角形全等B .各有一个角是40°的两个等腰三角形全等C .对角线互相垂直平分的四边形是菱形D .对角线互相垂直且相等的四边形是正方形9.如图a 是长方形纸带,︒=∠20DEF ,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的CFE ∠的度数是 (▲ ) A .110° B .120° C .140° D .150°图a图b图c1 3 21 A . B .C .D .10.如图,A 、B 是第二象限内双曲线xky =上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =9.则k 的值为 ( ▲ ). A 6 B. -6 C. 4 D. -4二、填空题(本大题共8小题,每小题2分,共计16分.) 11.9的相反数是 ▲ .12.上海世博会主题馆屋面太阳能板面积达3万多平方米,年发电量可达280万度.这里 的280万度用科学记数法表示(保留三个有效数字)为___▲_____________度. 13.分解因式:a 2b -b 3= ▲ . 14.方程0122=--x x 的解是▲.15.八边形的外角和等于 ▲ °.16.若圆锥的底面半径为3cm ,高为4cm ,则这个圆锥的侧面积为 ▲ cm 2.17.如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,∠ACB =500, 点D 是 上一点,则∠D =____▲ ____18.如图,在平面直角坐标系上有个点P(1,0),点P 第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(―1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,……,依此规律跳动下去,点P 第100次跳动至点P100的坐标是 。
2023-2024学年河北省石家庄第四十一中学九年级下学期5月中考数学模拟试题

2023-2024学年河北省石家庄第四十一中学九年级下学期5月中考数学模拟试题一、单选题1.在1-,0,53, 6.8-和2024这五个有理数中,正数有()A .1个B .2个C .3个D .4个2.如图,把一个三角形沿虚线剪去一个角后得到一个四边形,若原三角形的周长为m ,得到的四边形的周长为n ,则关于m 与n 的大小关系是()A .m n =B .m n<C .m n>D .与原三角形的形状有关,无法判断3.式子2169--+-有下面两种读法;读法一:负2,负1,正6与负9的和;读法二:负2减1加6减9.则关于这两种读法,下列说法正确的是()A .只有读法一正确B .只有读法二正确C .两种读法都不正确D .两种读法都正确4.Rt ACB 和Rt DFE 是一副三角板,90ACB DFE ∠=∠=︒,45CAB ∠=︒,30DEF ∠=︒,将这副三角板按如图所示的位置摆放,点D 在边AC 上,点E 在边C 的延长线上,且AB EF ∥,则CDE ∠=()A .60°B .70︒C .75︒D .80︒5.用代数式表示“a 的3倍与b 的相反数的和”,下列不正确...的是()A .3a b-B .3a b+C .()3a b +-D .3b a-+6.一个几何体由若干个大小相同的小正方体组成,下图是该几何体的三视图,则这个几何体是()A .B .C .D .7.已知2m n +=-,4mn =-,则整式()()2332mn m n mn ---的值为()A .8B .8-C .16D .16-8.如图,在64⨯的正方形网格中,以格点A ,B ,C ,D ,E ,F 中的四个点为顶点,可以画出平行四边形的个数为()A .三B .四C .六D .八9.如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒……按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A .920B .1019C .13D .1210.如图,点M 是射线ON 上的一个动点(不与点O 重合),点A 在射线ON 外,且30AON ∠=︒,在点M 运动过程中,若AOM 为锐角三角形,则∠A 的取值范围是()A .6090A ︒<∠<︒B .3060A ︒<∠<︒C .030A ︒<∠<︒D .090A ︒<∠<︒11.李老师在黑板上出了一道题目,计算:23224x xx x +-++-.下面是三位同学的解答过程:小明:原式()()22222232262414444x x x x x x x x x x x +--+-+--=+===----;小亮:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-;小华:原式323131212(2)(2)2222x x x x x x x x x x x x +-++-+=-=-===++-++++.则关于以上三位学生的解答,下列说法正确的是()A .只有小明的解答正确B .只有小亮的解答正确C .小明和小亮的解答都不正确D .小明和小华的解答都正确12.如图,已知在ABC 中,70A ∠=︒,AC BC =,根据图中尺规作图痕迹,ACE ∠=()A .4︒B .5︒C .8︒D .10︒13.如图,弓形AMB 中, AB 所在圆的圆心为点O ,作 AB 关于直线AB 对称的 AB , AB 经过点O ,6AB =,点P 为C 上任一点(不与点A ,B 重合),点M ,N 分别是»AP , BP 的中点,则 MN的长为()A .3π6B .3C .23π3D 14.将一张半透明的矩形纸片ABCD 在平而直角坐标系中按如图所示的位置摆放,其中点B ,C 在x 轴的负半轴上,且3AD =,8AB =.双曲线:(0,0)kL y x k x=<<分别与边AB ,DC 交于点F E 、,连接AE ,在矩形纸片ABCD 沿着x 轴左右平移过程中,当点E 恰为DC 中点时,有2AF AE -=,则双曲线L 的表达式为()A .1y x=-B .4y x=-C .6y x=-D .8y x=-15.在数学综合实践课上,李老师拿出了如图1所示的三个边长都为1cm 的正方形硬纸板,并提出问题:“若将这三个正方形硬纸板互不重叠平放在桌面上,用一个圆形纸片将其完全覆盖,怎样摆放才能使这个圆形纸片的直径最小呢?”全班同学经过讨论后,得出如图2所示的三种方案,则下列说法正确的是()Acm B .方案二中圆形纸片的直径最小,直径是cm .C .方案二和方案三中圆形纸片的直径都最小,直径都是cm D .方案一、方案二和方案三中圆形纸片的直径都不是最小的16.如图1,在ABC V 中,90ABC ∠>︒,动点P 从点A 开始出发向点C 运动,连接BP ,设AP x =,BP y =,如图2是y 关于x 的函数图象,点Q 是函数图象上的最低点.观察图象,对于以下结论:①9AC =,4BC =;②30A ∠=︒;③当BCP 是直角三角形时,x 的值为7;④当79x <<时,BCP 是钝角三角形.其中正确的是()A .①②B .②③C .①④D .③④二、填空题17.如图,OA 的方向是北偏东15︒,OB 的方向是北偏西40︒.若AOC AOB ∠∠=,则OC 的方向是.18.已知22M a a =-,(1)把M 分解因式,结果是.(2)若1a +,则M 的值为.19.如图,在矩形纸片ABCD 中,3cm AB =,4cm BC =,点F 是AD 上一点(不与点A ,D 重合),连接BF ,将BAF △沿BF 翻折,点A 的对应点记作A '.(1)当点A '落在直线CF 上时,CF 的长是cm ;(2)当点A '落在直线BD 上时,AF 的长是cm .三、解答题20.如图,从左向右依次摆放序号分别为1,2,3,...n 的小正方形卡片,每个小正方形卡片上均画有若干个小圆点.其中任意相邻的4个小正方形卡片上的小圆点数量之和相等.(1)分别求出a ,b 的值;(2)当26n =时,所有这些小正方形纸片上的小圆点数量之和是多少?(3)小明说,第99个小正方形卡片上的小圆点的个数是3个,请直接判断他的说法是否正确.21.一个三位正整数,它的百位数字与个位数字相等,我们把这样的三位正整数叫作“对称数”,如101,232,555等都是“对称数”.(1)填空:①()101101-++=______=______11⨯;②()232232-++=______=_____25⨯;③()555555-++=______=_____60⨯.(2)小红观察(1)后有一个猜想:将“对称数”减去其各位数字之和,所得结果能够被9整除.请你再任意写出另外两个“对称数”,并通过计算验证小红的猜想;(3)设aba 为一个对称数,请你通过计算和推理说明小红的猜想是正确的.22.小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况.他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m 的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.如图1,在立柱上竖直安装了一个喷水装置ABC ,建立如图2所示的平面直角坐标系,一个单位长度代表1m 长,水流从y 轴上的喷头C 喷出,7m 4CO =,水流的路线为抛物线2:L y x bx c =-++(0x >,其中b ,c 均为常数)的一部分,当水流到达D 处时,达到最大高度,此时水流的最高点D 到喷头C 的水平距离为3m 2.(1)求抛物线L 的表达式及点D 的坐标;(2)定义“高差”:当抛物线上的点到喷头C 的水平距离x 在()0m x t ≤≤时,抛物线L 上的点到水平地面的距离()m y 的最大值与最小值的差叫作0到()m t 之间的“高差”,记作h (单位:m ).①当1t =时,求高差h 的值;②若()0m x t ≤≤时,总有9m 4h =,请直接写出....t 的取值范围.24.如图,在△ABC 中,AB AC =,BC =,30ABC ∠=︒.点D 是线段BC 上一点(不与点B ,C 重合),连接AD ,将ABD △沿直线AB 翻折后得到ABF △,将ACD 沿直线AC 翻折后得到ACE △,连接EF .(1)求tan AFE ∠的值;(2)设AD x =,用含x 的代数式表示AEF S ,并直接写出当x 为何值时,AEF S 最小,最小值是多少?(3)当点D ,A ,F 共线时,在备用图中画出四边形ADCE ,判断四边形ADCE 是哪种特殊的四边形,并说明理由.25.如图,在平面直角坐标系中,直线1l 与x 轴交于点()4,0A ,与y 轴交于点()0,3B -,直线29:34l y x =+与x 轴交于点C ,与y 轴交于点E ,且与1l 相交于D .点P 为线段DE 上一点(不与点D ,E 重合),作直线BP .(1)求直线1l 的表达式及点D 的坐标;(2)若直线BP 将ACD 的面积分为7:9两部分,求点P 的坐标;(3)点P 是否存在某个位置,使得点D 关于直线BP 的对称点D '恰好落在直线AB 上方的坐标轴上.若存在,直接写出....点P 的坐标;若不存在,请说明理由.26.如图,在ABC V 中,60C ∠=︒,点O ,D 分别在边AC ,BC 上,并且到AB 的距离相等,OD OA =,6CO =,4CD =.以点O 为圆心,半径长为1作⊙O ,再过点D 作⊙O 的切线DE ,DF ,切点分别为E ,F .(1)求证:ODE ODF△的面积及CA的长;.(2)求COD∥,(3)点P在线段DF上,且OP DE①求线段OP的长;②将①中的线段OP绕点O顺时针旋转一周,旋转过程中,将P的对应点记作点Q,请直接..写出..点Q到AB的最短距离.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考模拟试卷 初 三 数 学(考试时间: 100分钟; 满分120分)一、填空题(本大题共14题,每题3分,满分42分)1.计算:|-2| =____________.2.分解因式:2221b a a -++=____________________.3.如果关于x 的方程032=--mx x 的一个根是 –1 , 那么._____________=m 4.不等式组⎩⎨⎧>+<-0102x x 的解集为___________.5.已知y 是x 的反比例函数,它的图象经过点(-1,3),那么这个函数的解析式是____________. 6.如果直线m x y +=2不经过第二象限,那么实数m 的取值范围是______________. 7.方程x x =+2的根是___________. 8.函数21-=x y 自变量x 的取值范围是______________.9. 点P(-1 , 2 )关于X 轴的对称点P ′的坐标是______________.10.如果梯形一底边长为5,另一底边长为7,那么中位线长为_______________.11.已两个相似三角形的面积之比是4:9,那么这两个三角形对应边的比是______________. 12.已知点G 是△ABC 的重心,GP//BC 交AC 边于点P,如果BC=12,那么GP=__________. 13.已知正方形ABCD 的边长为1,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上D ′处,连结D ′A , 那么D BA tg '∠的值为_______________.14. 如图,已知等腰△ABC 中,顶角∠A=36°,BD 为∠ABC 的平分线,那么ACAD的值为_______________. 二、选择题(本大题共4题,每题3分,满分12分)【下列每题列出的四个答案中,只有一个是正确的,把正确答案的代号填入括号内】 15.下列运算中,计算结果正确的是………………………………………( )(A )632x x x =⋅ (B )222+-=÷n n nx x xD CB A(C )9234)2(x x = (D )633x x x =+16.如图,函数)1(+=x k y 与xky =在同一直角坐标系内的图象仅可能是…( ) (A )(C ) (D )17.下列命题中错误的是……………………………………………………( ) (A )平行四边形的对角相等 (B )两条对角线相等的平行四边形是矩形 (C )等腰梯形的对角线相等 (D )对角线互相垂直的四边形是菱形 18.如果两圆的半径分别为3、5,圆心距为2,那么两圆的位置关系为…( ) (A )外切 (B )相交 (C )内切 (D )内含三、(本大题共3题,每题8分,满分24分)19.解方程组⎩⎨⎧=-+=+02222y xy x y x20.如图,在直角梯形ABCD 中,AD//BC , DC ⊥BC ,E 为BC 边上的点,将直角梯形ABCD沿对角线BD 折叠,使△ABD △与EBD 重合.若∠A=120°,AB=4cm ,求EC 的长.21.在一次环保知识测试中,初三(1)班的两名学生根据班级成绩(分数为整数)分别绘制了组距不同的频率分布直方图,如图1、图2 .已知,图1从左到右每个小组的频率分别为:0.04、0.08、0.24、0.32、0.20、0.12,其中68.5~76.5小组的频数为12;图2从左到右每个小组的频数之比为1:2:4:7:6:3:2,请结合条件和频率分布直方图回答下列问题:(1) 初三(1)班参加测试的人数为________人;(2)若这次测试成绩80分以上(含80分)为优秀,则优秀人数为_______人,优秀率为__________;(3)若这次测试成绩60分以上(含60分)为及格,则及格率为__________.EDCBA四、(本大题共3题,每题10分,满分30分)22. 如图,△ABC 中D 为AC 上一点,CD=2DA ,∠BAC=45°,∠BDC=60°,CE ⊥BD ,E 为垂足,连结AE. 求证:(1) ED=DA ;(2)∠EBA =∠EAB (3) BE 2=AD ·AC23.如图,在平面直角坐标系内,O 为坐标原点,点A 在x 轴负半轴上,点B 在x 轴正半轴上,且OB > OA . 设点C (0 , -4 ), 1722=+OB OA ,线段OA 、OB 的长是关于x的一元二次方程0)3(22=-+-m mx x 的两个根. (1) 求过A 、B 、C 三点的抛物线的解析式; (2) 设上述抛物线的顶点为P ,求直线PB 的解析式..EDCBA24.陈海公路上一路段的道路维修工作准备对外招标,现有甲、乙两个工程队竞标,竞标资料上显示:若由两队合做,6天可以完成,共需工程费用7800元;若单独完成此项工程,甲队比乙队少用5天,但甲队每天的工程费比乙队多300元。
工程指挥部决定从这两个队中选一个队单独完成此项工程,若从节省资金的角度考虑,应该选择哪个工程队?为什么?五、(本题满分12分)25.如图,直角坐标系内的矩形ABCD 中顶点A 的坐标为(0,3),BC=2AB ,P 为AD 边上一动点(与点A 、D 不重合),以点P 为圆心作⊙P ,与对角线AC 相切于点F ,过P 、F 作直线l ,交BC 边上于点E .当点P 运动到点1P 位置时,直线l 恰好经过点B ,此时直线的解析式是12+=x y .(1) 求BC 、AP 1的长; (2) 设AP=m ,梯形PECD 的面积为S ,求S 关于m 的函数关系式,并写出自变量m 的取值范围;(3)以点E 为圆心作⊙E ,与x 轴相切 .试探究并猜想⊙P 和⊙E 有哪几种不同的位置关系,并求出AP 相应的取值范围.中考模拟试卷参考答案及评分标准 xx.4一、1. 2 ; 2. )1)(1(b a b a -+++; 3. 2 ; 4. 21<<-x ; 5. xy 3-= 6. m ≤0 ; 7. 2 ; 8. 2>x ; 9. ( -1 , -2 ) ; 10. 6 ; 11. 2 ∶3 12. 4 ; 13.2 ; 14.215- 二、15. B 16. C 17. D 18. C 三、19.解:原方程组可变形为(Ⅰ)⎩⎨⎧=+=+022y x y x ……(2分) 或(Ⅱ) ⎩⎨⎧=-=+02y x y x ……(2分)由(Ⅰ)得 ⎩⎨⎧-==24y x ……(2分) 由(Ⅱ)得⎩⎨⎧==11y x ……(2分)∴原方程组的解为⎩⎨⎧-==24y x 或 ⎩⎨⎧==11y x20.解: ∵△ABD 与△EBD 关于对角线BD 对称∴∠BED=∠A=120°……………………………………(1分) ∵点E 在BC 边上 ∴∠DEC=60°…………………(1分) ∵AD ∥BC ∴∠ABC=60°…………………………(1分) ∴∠ABC=∠DEC ∴AB ∥DE ………………………(1分) ∴四边形ABCD 为平行四边形………………………(1分) ∴DE=AB=4……………………………………………(1分) 在Rt △DEC 中, DEEC=ο60cos …………………(1分) ∴EC=21×4=2………………………………………(1分) 21. (1) 50 (2) 22 ; 44% (3) 96% (每空格2分)22.证明:(1) ∵CE ⊥BD ∴∠CED=90° 又 ∠BDC=60°∴∠ECD=30°……(1分) ∴CD=2ED …………………………(1分)∵CD=2DA ∴ED=DA …………………………(1分)(2) ∵ED=DA ∴∠DEA=∠DAE∵∠EDC=60° ∴∠EAD=∠DEA=30°………………………(1分) ∵∠BAD=45° ∴∠EAB=15°…………………………………(1分) 又∠BDC=∠DBA+∠BAD ∴∠DBA=15° ∴∠EAB=∠EBA ……………………………(1分)(3) ∵∠EAB=∠EBA ∴BE=AE ……………………………………(1分)∵∠AED=∠ACE ∴△AED ∽△ACE …………………………(1分) ∴AEADAC AE =………………………(1分) ∴AE 2=AD ·AC 即BE 2=AD ·AC ………………………(1分)23.解(1) ∵OA 、OB 是方程x 2-mx+2(m-3)=0的两个根. ∴OA+OB= m OA ·OB=2(m-3)………………(1分)∵OA 2+OB 2=17 ∴(OA+OB)2-2OA ·OB=17 ∴m 2-4(m-3)=17 ∴m 2-4m-5=0……………(1分) ∴m 1=5, m 2=-1………………………………(1分) ∵OA+OB= m > 0 ∴m = -1 (舍去) ………………(1分) 当m=5时, x 2-5x+4=0 ∴x 1=1. x 2=4………(1分)∵OB>OA ∴PA=1, OB=4 按题意得 A(-1, 0), B(4, 0)………(1分) 设所求抛物线的解析式为c bx ax y ++=2则⎪⎩⎪⎨⎧-==++=+-404160c c b a c b a 解得 ⎪⎩⎪⎨⎧-=-==431c b a ∴ 抛物线的解析式为432--=x x y …………………(1分) (2)∵425)23(4322--=--=x x x y ∴点)425,23(-P ………(1分) 设直线PB 的解析式为m kx y +=………………………(1分)则⎪⎩⎪⎨⎧-=+=+4252304m k m k 解得⎪⎩⎪⎨⎧-==1025m k 即1025-=x y …………(1分) 24.解:设甲工程队单独完成需x 天,每天需费用m 元,则乙工程队单独完成需(x+5)天,每天需费用 (m-300)元.……(1分)根据题意,得1566=++x x ……………………………………(3分) ∴x 2-7x-30=0……………………………………(1分) ∴x 1=10, x 2=-3经检验,x 1=10,x 2=-3 都是原方程的解. 但x 2=-3不合题意, 舍去. ∴x=10…………………………………………(1分) 又6(m+m-300)=7800 解得 m=800…………(1分) ∴甲工程队单独完成需费用10×800=8000(元),……(1分) 则乙工程队单独完成需费用15×500=7500(元).……(1分) 答:若由一个队单独完成此项工程,从节约资金的角度考虑,应由乙工程队单独完成.……………………………(1分)25.解(1)由y=2x+1可知, 当x=0时 ,y=1 ∴ 点B(0,1) ………(1分)∵点A(0,3) ∴AB=2 又 BC=2AB ∴ BC=4………(1分)∵点P 1在直线y=2x+1和AD 边上,又AD // X 轴 , ∴可设)3,(1a p ) 则 123+=a 即1=a ∴)3,1(1p ………………(1分) ∴AP 1=1………………………………(1分)(2) ∵AP=m AD=4 AP 1=1 ∴PD = 4-m P 1P = m-1……………(1分) 又P 1P//BE,P 1B//PE, ∴P 1PEB 是平行四边形.∴BE=P 1P ∴EC = 4-(m-1) = 5-m ……………(1分) ∴S=21[(4-m)+(5-m)]×2 = 9-2m ……………(1分) 1≤m<4………………………………………(1分)(3) 当⊙E 与x 轴及⊙P 外切时,EF=1, ∵ △CFE ∽△CBA∴ACABEC EF =∴5221=EC 即EC=5……………(1分) ∴BE=4-5 即m-1=4-5 ∴m=5-5 ∴当m=5-5时, ⊙P 与⊙E 外切……………(1分) 当1≤m<5-5时, ⊙P 与⊙E 外离……………(1分) 当5-5<m<4时, ⊙P 与⊙E 相交……………(1分)。