中考数学专题复习《一元二次方程》专题训练
《一元二次方程》总复习、练习、中考真题【题型解析】

一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0〕。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a〕2=b〔b≥0〕的方程两边直接开平方而转化为两个一元一次方程的方法。
x+a= ± b ∴ x1 =-a+ b x2 =-a- b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0〕的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a〕2=b 的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,那么原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是x = - b ± b 2 - 4ac (b2-4ac≥0)。
步骤:①把方程转化为一般形2a式;②确定 a,b,c 的值;③求出 b2-4ac 的值,当 b2-4ac≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:假设ab=0,那么 a=0 或b=0。
步骤是:①将方程右边化为 0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的考前须知:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0 时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c 的值;②假设b2-4ac<0,那么方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4) 2 =3〔x+4〕中,不能随便约去 x+4。
(完整版)九年级数学中考复习专题一元二次方程练习题及答案

中考数学复习专题一元二次方程一、选择题:1、若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0的常数项为0,则m的值等于( )A.﹣2 B.2 C.﹣2或2 D.02、方程x2+6x﹣5=0的左边配成完全平方后所得方程为( )A.(x+3)2=14 B.(x﹣3)2=14 C.(x+3)2=4 D.(x﹣3)2=43、关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0,常数项为0,则m值等于( )A.1 B.2 C.1或2 D.04、某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是( )A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1965、若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围( )A.k<1且k≠0 B.k≠0 C.k<1 D.k>16、关于x的一元二次方程x2+2x﹣m=0有两个实数根,则m的取值范围是( )A.m≥﹣1 B.m>﹣1 C.m≤﹣1且m≠0 D.m≥﹣1且m≠07、已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为( )A.﹣10 B.4 C.﹣4 D.108、若m、n是一元二次方程x2﹣5x﹣2=0的两个实数根,则m+n﹣mn的值是( )A.﹣7 B.7 C.3 D.﹣39、有一人患了流感,经过两轮穿然后共有49人患了流感,设每轮传染中平均一个人传染了x人,则x值为( )A.5 B.6 C.7 D.810、毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为( )A.5人 B.6人 C.7人 D.8人11、某市2013年生产总值(GDP)比2012年增长了12%,由于受到国际金融危机的影响,预计今年比2013年增长7%.若这两年GDP年平均增长率为x%,则x%满足的关系是( )A.12%+7%=x%B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)212、设x1、x2是方程x2+3x﹣3=0的两个实数根,则的值为( )A.5 B.﹣5 C.1 D.﹣1二、填空题:13、方程2x2﹣1=的二次项系数是 ,一次项系数是 ,常数项是 .14、若关于x的方程(a+3)x|a|-1-3x+2=0是一元二次方程,则a的值为________________.15、把方程(2x+1)(x—2)=5-3x整理成一般形式后,得,其中二次项系数是,一次项系数是,常数项是。
2024年全国各省市数学中考真题汇编 专题6一元二次方程及其应用(11题)含详解

专题06一元二次方程及其应用(11题)一、单选题1.(2024·四川自贡·中考真题)关于x 的一元二次方程220x kx +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.(2024·山东泰安·中考真题)关于x 的一元二次方程2230x x k -+=有实数根,则实数k 的取值范围是()A .98k <B .98k ≤C .98k ≥D .98k <-3.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =()A .9-B .4C .1-D .14.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13二、填空题5.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =.6.(2024·四川巴中·中考真题)已知方程220x x k -+=的一个根为2-,则方程的另一个根为.7.(2024·甘肃临夏州·中考真题)若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为.三、解答题8.(2024·黑龙江齐齐哈尔·中考真题)解方程:x 2﹣5x +6=09.(2024·安徽·中考真题)解方程:223x x -=10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.11.(2024·辽宁·中考真题)某商场出售一种商品,经市场调查发现,日销售量y (件)与每件售价x (元)满足一次函数关系,部分数据如下表所示:每件售价x /元⋅⋅⋅455565⋅⋅⋅日销售量y /件⋅⋅⋅554535⋅⋅⋅(1)求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价:如果不能,请说明理由.专题06一元二次方程及其应用(11题)一、单选题1.(2024·四川自贡·中考真题)关于x 的一元二次方程220x kx +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根【答案】A【分析】本题考查的是一元二次方程根的判别式,熟知一元二次方程20(0)ax bx c a ++=≠中,当0∆>时,方程有两个不相等的实数根是解题的关键.根据一元二次方程根的判别式解答即可.【详解】解: △()2241280k k =-⨯⨯-=+>,∴方程有两个不相等的实数根.故选:A .2.(2024·山东泰安·中考真题)关于x 的一元二次方程2230x x k -+=有实数根,则实数k 的取值范围是()A .9k <B .98k ≤C .98k ≥D .98k <-【答案】B【分析】本题考查了判别式与一元二次方程根的情况,熟知一元二次方程有实数根的条件是解题的关键.根据一元二次方程有实数根的条件是0∆≥,据此列不等式求解即可.【详解】解:∵关于x 的一元二次方程2230x x k -+=有实数根,∴()2Δ3420k =--⨯≥,解得98k ≤.故选B .3.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =()A .9-B .4C .1-D .1【答案】D【分析】此题考查了根的判别式,根据根的情况确定参数k 的取值,解题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当方程有两个不相等的实数根时,0∆>;当方程有两个相等的实数根时,Δ0=;当方程没有实数根时,Δ0<.【详解】解:∵关于x 的一元二次方程2960x x c -+=有两个相等的实数根,∴()2Δ64936360c c =--⨯⨯=-=,解得:1c =,故选:D .4.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13【答案】C【分析】本题考查了解一元二次方程,等腰三角形的定义,三角形的三边关系及周长,由方程可得13x =,27x =,根据三角形的三边关系可得等腰三角形的底边长为3,腰长为7,进而即可求出三角形的周长,掌握等腰三角形的定义及三角形的三边关系是解题的关键.【详解】解:由方程210210x x -+=得,13x =,27x =,∵337+<,∴等腰三角形的底边长为3,腰长为7,∴这个三角形的周长为37717++=,故选:C .二、填空题5.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =.【答案】1【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.6.(2024·四川巴中·中考真题)已知方程220x x k -+=的一个根为2-,则方程的另一个根为.7.(2024·甘肃临夏州·中考真题)若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为.【答案】-1【分析】根据关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根可知△=0,求出m 的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.三、解答题8.(2024·黑龙江齐齐哈尔·中考真题)解方程:x 2﹣5x +6=0【答案】x 1=2,x 2=3【分析】利用因式分解的方法解出方程即可.【详解】利用因式分解法求解可得.解:∵x 2﹣5x +6=0,∴(x ﹣2)(x ﹣3)=0,则x ﹣2=0或x ﹣3=0,解得x 1=2,x 2=3.【点睛】本题考查解一元二次方程因式分解法,关键在于熟练掌握因式分解的方法步骤.9.(2024·安徽·中考真题)解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.11.(2024·辽宁·中考真题)某商场出售一种商品,经市场调查发现,日销售量(件)与每件售价x (元)满足一次函数关系,部分数据如下表所示:每件售价x /元⋅⋅⋅455565⋅⋅⋅日销售量y /件⋅⋅⋅554535⋅⋅⋅(1)求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价:如果不能,请说明理由.【答案】(1)100=-+y x ;(2)该商品日销售额不能达到2600元,理由见解析。
专题10一元二次方程 专题训练 中考数学2023年真题 专项汇编(全国通用)(含答案)

专题10一元二次方程 专题训练 中考数学2023年真题 专项汇编(全国通用)(含答案)一、单选题A .B .3.(2023·山东聊城·统考中考真题)若一元二次方程取值范围是( )A .B .4.(2023·四川·统考中考真题)关于()4,41m ≥-A .B .8.(2023·四川泸州·统考中考真题)关于况是( )A .没有实数根C .有两个不相等的实数根(3,0)-A .0B .112.(2023·天津·统考中考真题)若A .B .126x x +=12x x +=①,②,③当线段长取最小值时,则④若点,则二、填空题23.(2023·重庆·统考中考真题)为了加快数字化城市建设,4124x x ⋅=-21242y y k +=+AB (0,1)N -AN BN⊥,三、解答题31.(2023·辽宁大连·统考中考真题)为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求年买书资金的平均增长率.32.(2023·福建·统考中考真题)已知抛物线交轴于两点,为抛物线的顶点,为抛物线上不与重合的相异两点,记中点为,直20202022-23y ax bx =++x ()()1,0,3,0A B M ,C D ,A B AB E(1)求这两个函数的解析式;(1)当___________时,(2)设2023年甲乙两种蔬菜总种植成本为最小?①求证:.x =2m y =23DO EO =等腰三角形的底边,在的同侧作等腰和等腰,且.在线段上取一点,使,连接.(1)如图1,求证:;(2)如图2,若的延长线恰好经过的中点,求的长.42.(2023·浙江宁波·统考中考真题)定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.(1)如图1,在四边形中,,对角线平分.求证:四边形为邻等四边形.(2)如图2,在6×5的方格纸中,A ,B ,C 三点均在格点上,若四边形是邻等四边形,请画出所有符合条件的格点D .(3)如图3,四边形是邻等四边形,,为邻等角,连接,过B 作交的延长线于点E .若,求四边形的周长.43.(2023·云南·统考中考真题)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数(实数为常数)的图象为图象.(1)求证:无论取什么实数,图象与轴总有公共点;(2)是否存在整数,使图象与轴的公共点中有整点?若存在,求所有整数的值;若不存在,请说明理由.AB ACD V BCE V A CBE ∠=∠EC F EF AD =,BF DE DE BF =2AD BF =,DE G BE ABCD ,90AD BC A ∠=︒∥BD ADC ∠ABCD ABCD ABCD 90DAB ABC ∠=∠=︒BCD ∠AC BE AC ∥DA 8,10AC DE ==EBCD 2(42)(96)44y a x a x a =++--+a T a T x a T x a(1)求,的值;(2)平行于轴的动直线与和反比例函数的图象分别交于点为顶点的四边形为平行四边形,求点k m y l参考答案:1.C2.D3.D4.C5.B6.B7.D8.C9.B10.C11.C12.A13.D14.D15.D16.C17.A18.C19.C20.A21.22.10 23.24.3 25.5 26.27.28.2()2100011440x+=2301(1)500x+=5-2-。
中考数学《一元二次方程》专题复习检测试卷

中考数学《一元二次方程》专题复习检测试卷一.单项选择题(共15小题,每小题3分,共45分)1.下列方程中,是一元二次方程的是( )A .3(1+x )2=3x 2+7B .3(1+x )2=x (3x +7)C .px 2+x ﹣4=x (px ﹣1)D .2x 2=02.若关于x 的方程mx m ﹣1+(m ﹣3)x +5=0是一元二次方程,那么m 的值为( )A .m =3B .m =2C .m =1D .m ≠03.一元二次方程2x 2﹣2x =1的一次项系数和常数项依次是( )A .﹣2和﹣1B .﹣2和1C .2和﹣1D .2和14.如果关于x 的一元二次方程(a ﹣2)x 2+3x +|a |﹣2=0的常数项为0,那么a 的值一定是( )A .2B .﹣2C .2或﹣2D .05.已知m 是方程x 2﹣x ﹣2=0的一个根,则代数式m 2﹣m +2022的值等于( )A .2024B .2022C .2023D .20216.已知x =﹣1是一元二次方程x 2+mx =3的一个解,则m 的值是( )A .0或2B .2C .0D .﹣27.方程x 2=4的解是( )A .±√2B .√2C .±2D .28.一元二次方程x 2﹣3=0的根是( )A .x =±√3B .x =√3C .x =3D .x =09.用配方法解方程x 2+7x ﹣5=0,变形后的结果正确的是( )A .(x +72)2=694 B .(x +72)2=294 C .(x −72)2=694 D .(x −72)2=29410.用配方法解方程x 2+4x ﹣1=0,配方后的方程是( )A .(x +2)2=5B .(x ﹣2)2=3C .(x ﹣2)2=5D .(x +2)2=311.对于实数a ,b ,定义运算“※”:a ※b =a 2﹣2b ,例如:5※1=52﹣2×1=23.若x ※x =﹣1,则x 的值为( )A .1B .0C .0或1D .1或﹣112.如果a是一元二次方程x2﹣3x﹣5=0的较小的根,那么下面对a的估值一定正确的是()A.﹣1.5<a<﹣1B.2<a<3C.﹣4<a<﹣3D.4<a<513.方程(x+2)(x﹣3)=0的解是()A.x=2B.x=﹣3C.x1=﹣2,x2=3D.x1=2,x2=﹣314.一元二次方程(x﹣1)(x﹣2)=0的一个解是x=2,则另一个解是()A.x=3B.x=2C.x=1D.无法判断15.如果y为实数,且满足等式(y2+m2)2﹣2(y2+m2)=24,那么5(y2+m2)的值一定是()A.6B.30C.36D.12二.填空题(共10小题,每小题3分,共30分)16.若关于x的方程(m+1)x m2+1−3x+2=0是一元二次方程,则m的值是________.17.将一元二次方程2x2=5x﹣3化成一般形式之后,若二次项的系数是2,则一次项系数为________.18.关于x的方程x2+kx+2=0的一个根是1,则k=________.19.方程x2﹣5=0的根是.20.下面是某同学解方程x2+6x﹣16=0的部分运算过程:解:移项,得x2+6x=16,…第一步配方,得x2+6x+9=16+9,…第二步即(x+3)2=25,…第三步两边开平方,得x+3=5,…第四步①该同学的解答从第________步开始出错.②请写出正确的解答过程.21.如果用公式法解关于x的一元二次方程,得到x=−9±√92−4×3×1,那么该一元二次方2×3程是________.22.方程x2=x的解是________.23.实数x、y满足(x2+y2)(x2+y2﹣1)=12,则x2+y2的值为________.24.一元二次方程x2+5x+1=0的根的判别式的值是________.25.写出一个一元二次方程的一般式,使它同时满足以下两个要求:①二次项系数为2,②两根分别为3和−1:________.2三.解答题(共4小题,共75分)26.已知关于x的一元二次方程(m﹣1)x2﹣5x+m2﹣3m+2=0的常数项为0,求m的值.27.已知m是方程2x2﹣7x+1=0的一个根,求代数式m(2m﹣7)+5的值.28.(1)用适当的方法解方程:81(1﹣x)2=64.(2)请你结合生活经验,设计一个问题,使它能利用建立方程模型“100(1﹣x)2=81”来解决.你设计的问题是:.29.阅读材料,并回答问题.小明在学习一元二次方程时,解方程2x2﹣8x+5=0的过程如下:解:2x2﹣8x+5=0.2x2﹣8x=﹣5.①.②x2−4x=−52+4.③x2−4x+4=−52.④(x−2)2=32.⑤x−2=√62.⑥x=2+√62问题:(1)上述过程中,从________步开始出现了错误(填序号).(2)发生错误的原因是:__________.(3)写出这个方程的解:__________.。
中考数学一元二次方程专题(附答案)

中考数学一元二次方程专题(附答案)一、单选题(共12题;共24分)1.下列一元二次方程有两个相等实数根的是()A. x2﹣2x+1=0B. 2x2﹣x+1=0C. 4x2﹣2x﹣3=0D. x2﹣6x=02.方程=0有两个相等的实数根,且满足=,则的值是()A. -2或3B. 3C. -2D. -3或23.若关于x的一元二次方程x2﹣2x﹣k+1=0有两个相等的实数根,则k的值是()A. ﹣1B. 0C. 1D. 24.若关于的一元二次方程有两个不相等的实数根,则一次函数的图象可能是:A. B. C. D.5.下列一元二次方程中,有两个相等实数根的是()A. x2﹣8=0B. 2x2﹣4x+3=0C. 9x2﹣6x+1=0D. 5x+2=3x26.已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于的一元二次方程的两个根,则k的值等于A. 7B. 7或6C. 6或D. 67.方程(x-1)•(x2+17x-3)=0的三根分别为x1,x2,x3 .则x1x2+x2x3+x1x3 =()A. 14B. 13C. -14D. -208.一元二次方程x2﹣4x+3=0的两个根分别是⊙O1和⊙O2的半径长,圆心距O1O2=4,则⊙O1和⊙O2的位置关系()A. 外离B. 外切C. 相交D. 内切9.已知关于的方程有两个实数根,则的取值范围是( )A. B. C. 且 D. 且10.设a、b、c和S分别为三角形的三边长和面积,关于x的方程b2x2+(b2+c2-a2)x+c2=0的判别式为Δ.则Δ与S的大小关系为( ).A. Δ=16S2B. Δ=-16S2C. Δ=16SD. Δ=-16S11.下列方程中,有两个不相等实数根的是().A. x2-4x+4=0B. x2+3x-1=0C. x2+x+1=0D. x2-2x+3=012.已知二次函数y=ax2+2ax+3a-2(a是常数,且a≠0)的图象过点M(x1,-1),N(x2,-1),若MN的长不小于2,则a的取值范围是()A. a≥B. 0<a≤C. - ≤a<0D. a≤-二、填空题(共6题;共12分)13.等腰三角形的腰和底边的长是方程x2-20x+91=0的两个根,则此三角形的周长为________.14.已知x=-1是方程x2+ax+4=0的一个根,则方程的另一个根为________ 。
中考数学专题复习题:一元二次方程

1 / 3中考数学专题复习题:一元二次方程一、单项选择题(共10小题)1.已知方程260x x +−=的两个根是a b ,,则ab 的值为( )A .1B .1−C .6D .6−2.在下列方程中,不属于一元二次方程的是( )A.2152x −=xB .7x 2=0C .0.3x 2+0.2x =4D .x (1-2x 2)=2x 2 3.如果关于x 的方程240x x m −+=有两个不相等的实数根,那么在下列数值中,m 可以取的是( )A .3B .4C .5D .64.关于x 的不等式x ﹣2a <1的解集为x <1,则关于x 的一元二次方程x 2+ax +1=0根的情况是( ) A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .无法确定5.若关于的一元二次方程2210kx x +−=有两个不相等的实数根,则实数k 的取值范围是( )A .1k >−B .且0k ≠C .1k ≥−且D .1k <−且6.如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,若每轮感染中平均一台电脑会感染x 台电脑,下列方程正确的是( )A .x (x +1)=81B .1+x +x 2=81C .1+x +x (x +1)=81D .1+(x +1)2=817.已知关于x 的方程220x kx +−=的一个解与方程131x x +=−的解相同,则方程的另一个解是( )A .B .2−C .1D .28.从4−,,,0,1,2,4,6这八个数中随机抽一个数,记为a ,数a 使关于xx 1k >−0k ≠0k ≠220x kx +−=1−2−1−2 / 3的一元二次方程()22240x a x a −−+=有实数解,关于y 的分式方程1311y a y y+−=−−有整数解,则符合条件的a 的值的和是( )A .B .C .D .29.已知ABC 的三边长为a ,b ,c ,且满足方程a 2x 2-(c 2-a 2-b 2)x +b 2=0,则方程根的情况是( )A .有两相等实根B .有两相异实根C .无实根D .不能确定10.三角形两边的长分别是6和8,第三边的长是一元二次方程216600x x −+=的一个实数根,则该三角形的面积是( )A .24B .24或 C .48或D .二、填空题(共5小题)11.已知x =-2是方程x 2+mx -6=0的一个根,则方程的另一个根是________.12.在国际象棋比赛中,若要求参赛的每两位棋手之间都要比赛一场,根据赛程计划共安排45场比赛,设本次比赛共有x 个参赛棋手,则可列方程为________.13.一元二次方程23670x x −−=的二次项系数是________,常数项是________. 14.把方程232x x −=用配方法化为2()x m n +=的形式,则m =______,n =______. 15.如图是一块矩形菜地ABCD ,AB=a (m ),AD=b (m ),面积为2()s m ,现将边AB 增加1m.(1)如图1,若a=5,边AD 减少1m ,得到的矩形面积不变,则b 的值是________. (2)如图2,边AD 增加2m ,有且只有一个a 的值,使得到的矩形面积为22()s m ,则s 的值是________.三、解答题(共7小题)16.解方程:(1)x 2-2x =1;(2)(x +3)2-2(x +3)=0 6−4−2−3 / 317.已知关于x 的方程x 2+9x +25+m =0,(1)若此方程有实数根,求m 的取值范围;(2)在(1)条件下m 取满足条件的最大整数时,求此时方程的解.18.一次函数5y x =−+与反比例函数k y x=的图象在第一象限交于A ,B 两点,其中()1,A a .(1)求反比例函数表达式;(2)若把一次函数的图象向下平移b 个单位,使之与反比例函数的图象只有一个交点,请求出b 的值.19.先化简再求值:2221(1)11m m m m m −−÷−−−+,其中m 是方程22016x x −=的解. 20.现有一块长20cm ,宽10cm 的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm 2的无盖长方体盒子,请求出剪去的小正方形的边长.21.已知关于x 的一元二次方程x 2-(2k +1)x +4k -3=0,当Rt △ABC 的斜边a且两直角边b 和c 恰好是这个方程的两个根时,求△ABC 的周长.22.已知关于的一元二次方程22(12)10k x k x +−+=有两个不相等的实数根.(1)求的取值范围;(2)若原方程的两个实数根为12x x ,,且满足121223x x x x +=−,求的值.5y x =−+k y x=x k k。
中考数学专题练习 一元二次方程(含解析)

一元二次方程一、选择题1.方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程的个数是()A.1个B.2个C.3个D.4个2. x2﹣6x=1,左边配成一个完全平方式得()A.(x﹣3)2=10 B.(x﹣3)2=9 C.(x﹣6)2=8 D.(x﹣6)2=103.方程(x﹣1)(x+3)=5的根为()A.x1=﹣1,x2=﹣3 B.x1=1,x2=﹣3 C.x1=﹣2,x2=4 D.x1=2,x2=﹣44.若关于x的方程3x2﹣2x+m=0的一个根是﹣1,则m的值为()A.﹣5 B.﹣1 C.1 D.55.用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.﹣1,3,﹣1 B.1,﹣3,﹣1 C.﹣1,﹣3,﹣1 D.1,﹣3,16.方程x2=0与3x2=3x的解为()A.都是x=0B.有一个相同,且这个相同的解为x=0C.都不相同D.以上答案都不对7.已知x2﹣8xy+15y2=0,那么x是y的()倍.A.3 B.5 C.3或5 D.2或48.已知x=1是方程x2﹣ax+1=0的根,化简﹣得()A.1 B.0 C.﹣1 D.29.方程x(x+1)=x+1的根为()A.﹣1 B.1C.﹣1或1 D.以上答案都不对10.某产品的成本两年降低了75%,平均每年递降()A.50% B.25%C.37.5% D.以上答案都不对二、填空题11.方程3x2﹣5x=0的二次项系数是.12.5x2+5=26x化成一元二次方程的一般形式为.13.一元二次方程ax2+bx+c=0,若有一个根为﹣1,则a﹣b+c= ;如果a+b+c=0,则有一根为.14.一元二次方程ax2+bx+c=0(a≠0)有一根为零的条件是.15.关于x的方程2x﹣3=0是一元二次方程,则m= .三、解答题16.用适当的方法解方程:(1)2x2﹣4x+1=0;(2)x2﹣5x﹣6=0;(3)(x﹣2)(x﹣3)=12;(4)9(x﹣3)2﹣4(x﹣2)2=0.17.用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式.18.已知下列n(n为正整数)个关于x的一元二次方程:x2﹣1=0,x2+x﹣2=0,x2+2x﹣3=0,…x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.19.如图,有33米长的竹篱笆,要围成一边(墙长15米)面积为130平方米的长方形鸡场,求鸡场的长和宽各为多少?一元二次方程参考答案与试题解析一、选择题1.方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程的个数是()A.1个B.2个C.3个D.4个【考点】一元二次方程的定义.【分析】直接根据一元二次方程的定义可得到在所给的方程中x2﹣2x﹣5=0,x2=0是一元二次方程.【解答】解:方程x2﹣2x﹣5=0,x3=x,y2﹣3x=2,x2=0,其中一元二次方程是x2﹣2x﹣5=0,x2=0.故选B.【点评】本题考查了一元二次方程的定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程.2.x2﹣6x=1,左边配成一个完全平方式得()A.(x﹣3)2=10 B.(x﹣3)2=9 C.(x﹣6)2=8 D.(x﹣6)2=10【考点】解一元二次方程﹣配方法.【专题】计算题.【分析】给方程左右两边都加上9,左边化为完全平方式,右边合并为一个常数,即可得到正确的选项.【解答】解:x2﹣6x=1,方程左右两边都加上9得:x2﹣6x+9=10,即(x﹣3)2=10.故选A【点评】此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将方程的二次项系数化为1,同时将常数项移到方程右边,然后方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.3.方程(x﹣1)(x+3)=5的根为()A.x1=﹣1,x2=﹣3 B.x1=1,x2=﹣3 C.x1=﹣2,x2=4 D.x1=2,x2=﹣4【考点】解一元二次方程﹣因式分解法.【分析】首先把方程转化为一般形式,再利用因式分解法即可求解.【解答】解:(x﹣1)(x+3)=5,x2+3x﹣x﹣3﹣5=0,x2+2x﹣8=0,(x﹣2)(x+4)=0,解得x1=2,x2=﹣4.故选D.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.4.若关于x的方程3x2﹣2x+m=0的一个根是﹣1,则m的值为()A.﹣5 B.﹣1 C.1 D.5【考点】一元二次方程的解.【专题】方程思想.【分析】根据一元二次方程解的定义,将x=1代入原方程,然后解关于m的一元一次方程即可.【解答】解:∵关于x的方程3x2﹣2x+m=0的一个根是﹣1,∴当x=﹣1时,由原方程,得3+2+m=0,解得m=﹣5;故选A.【点评】本题考查的是一元二次方程的根即方程的解的定义.本题逆用一元二次方程解的定义易得出m的值.5.用公式法解﹣x2+3x=1时,先求出a、b、c的值,则a、b、c依次为()A.﹣1,3,﹣1 B.1,﹣3,﹣1 C.﹣1,﹣3,﹣1 D.1,﹣3,1【考点】解一元二次方程﹣公式法.【分析】先移项,化成一般形式,再得出答案即可.【解答】解:∵﹣x2+3x=1,∴﹣x2+3x﹣1=0,∴x2﹣3x+1=0,∴a=﹣1,b=3,c=﹣1(或a=1,b=﹣3,c=1),【点评】本题考查了解一元二次方程和一元二次方程的一般形式的应用,解此题的关键是能把方程化成一般形式.6.方程x2=0与3x2=3x的解为()A.都是x=0B.有一个相同,且这个相同的解为x=0C.都不相同D.以上答案都不对【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】解x2=0得x1=x2=0;变形3x2=3x得x2﹣x=0,左边分解得到x(x﹣1)=0,则x1=0,x2=1.【解答】解:∵x2=0∴x1=x2=0;∵x2﹣x=0,∴x(x﹣1)=0,∴x1=0,x2=1.故选B.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.7.已知x2﹣8xy+15y2=0,那么x是y的()倍.A.3 B.5 C.3或5 D.2或4【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】先把等式左边分解因式得到(x﹣3y)(x﹣5y)=0,则x﹣3y=0或x﹣5y=0,即可得到x=3y 或x=5y.【解答】解:∵(x﹣3y)(x﹣5y)=0,∴x﹣3y=0或x﹣5y=0,∴x=3y或x=5y.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.8.已知x=1是方程x2﹣ax+1=0的根,化简﹣得()A.1 B.0 C.﹣1 D.2【考点】一元二次方程的解;二次根式的性质与化简.【分析】先将x=1代入方程x2﹣ax+1=0,可得关于a的方程,解方程求出a的值,再根据二次根式的性质化简即可.【解答】解:∵x=1是方程x2﹣ax+1=0的根,∴12﹣a×1+1=0,∴a=2,∴﹣=﹣=a﹣1﹣(3﹣a)=2a﹣4=2×2﹣4=0.故选B.【点评】本题主要考查了方程的解的定义,二次根式的性质与化简,解题关键是将已知的根代入方程,正确求出a的值.9.方程x(x+1)=x+1的根为()A.﹣1 B.1C.﹣1或1 D.以上答案都不对【考点】解一元二次方程﹣因式分解法.【分析】首先提取公因式,可得(x+1)(x﹣1)=0,继而可求得答案.【解答】解:∵x(x+1)=x+1,∴x(x+1)﹣(x+1)=0,∴(x+1)(x﹣1)=0,解得:x1=﹣1,x2=1.故选C.【点评】此题考查了因式分解法解一元二次方程.此题难度不大,注意因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.10.某产品的成本两年降低了75%,平均每年递降()A.50% B.25%C.37.5% D.以上答案都不对【考点】一元二次方程的应用.【专题】增长率问题.【分析】设平均每年降低x,根据经过两年使成本降低75%,可列方程求解.【解答】解:设平均每年降低x,(1﹣x)2=1﹣75%解得x=0.5=50%或x=1.5(舍去).故平均每年降低50%.故选A.【点评】本题考查理解题意的能力,关键设出降低的百分率,然后根据现在的成本,可列方程求解.二、填空题11.方程3x2﹣5x=0的二次项系数是 3 .【考点】一元二次方程的一般形式.【分析】先找出方程的二次项,再找出项的系数即可.【解答】解:方程3x2﹣5x=0的二次项系数是3,故答案为:3.【点评】本题考查了一元二次方程的一般形式的应用,主要考查学生的理解能力.12.5x2+5=26x化成一元二次方程的一般形式为5x2﹣26x+5=0 .【考点】一元二次方程的一般形式.【专题】计算题.【分析】将方程右边的式子移项,并按照x的降幂排列,即可得到一元二次方程的一般形式.【解答】解:5x2+5=26x,移项得:5x2﹣26x+5=0.故答案为:5x2﹣26x+5=0【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=0(a,b,c 为常数,且a≠0).13.一元二次方程ax2+bx+c=0,若有一个根为﹣1,则a﹣b+c= 0 ;如果a+b+c=0,则有一根为 1 .【考点】一元二次方程的解.【分析】由一元二次方程解的意义把方程的根x=﹣1代入方程,得到a﹣b+c=0;由a+b+c=0,可知a×12+b×1+c=0,故方程ax2+bx+c=0有一根为1.【解答】解:把x=﹣1代入一元二次方程ax2+bx+c=0得:a﹣b+c=0;如果a+b+c=0,那么a×12+b×1+c=0,所以方程ax2+bx+c=0有一根为1.故答案是:0;1.【点评】本题考查的是一元二次方程的解的定义,属于基础题型,比较简单.14.一元二次方程ax2+bx+c=0(a≠0)有一根为零的条件是c=0 .【考点】一元二次方程的解.【专题】计算题.【分析】根据一元二次方程的定义和根与系数的关系解答.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)的二次项系数是a,常数项是c,∴x1•x2=,又∵该方程有一根为零,∴x1•x2==0;∵a≠0,∴c=0.故答案为:0.【点评】本题主要考查了一元二次方程的解,在解答此题时,利用了根与系数的关系.15.关于x的方程2x﹣3=0是一元二次方程,则m= ±.【考点】一元二次方程的定义.【分析】根据一元二次方程的概念,可得出m2﹣1=2,解得m即可.【解答】解:∵关于x的方程2x﹣3=0是一元二次方程,∴m2﹣1=2,解得m=±.故答案为:.【点评】本题考查了一元二次方程的概念,二次项系数不为0,未知数的最高次数为2.三、解答题16.用适当的方法解方程:(1)2x2﹣4x+1=0;(2)x2﹣5x﹣6=0;(3)(x﹣2)(x﹣3)=12;(4)9(x﹣3)2﹣4(x﹣2)2=0.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解;(2)利用因式分解法求解即可;(3)先将方程整理为一般形式,再利用因式分解法求解;(4)利用因式分解法求解即可.【解答】解:(1)2x2﹣4x+1=0,这里a=2,b=﹣4,c=1,∵△=16﹣4×2×1=8,∴x==,∴x1=,x2=;(2)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,解得x1=6,x2=﹣1;(3)(x﹣2)(x﹣3)=12,整理,得x2﹣5x﹣6=0,(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,解得x1=6,x2=﹣1;(4)9(x﹣3)2﹣4(x﹣2)2=0,[3(x﹣3)+2(x﹣2)][3(x﹣3)﹣2(x﹣2)]=0,(5x﹣13)(x﹣5)=0,解得x1=,x2=5.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式.【考点】解一元二次方程﹣公式法;配方法的应用.【专题】计算题.【分析】由a不为0,在方程左右两边同时除以a,并将常数项移到方程右边,方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边通分并利用同分母分式的减法法则计算,当b2﹣4ac≥0时,开方即可推导出求根公式.【解答】解:ax2+bx+c=0(a≠0),方程左右两边同时除以a得:x2+x+=0,移项得:x2+x=﹣,配方得:x2+x+=﹣=,即(x+)2=,当b2﹣4ac≥0时,x+=±=±,∴x=.【点评】此题考查了一元二次方程的求根公式,以及配方法的应用,学生在开方时注意b2﹣4ac≥0这个条件的运用.18.已知下列n(n为正整数)个关于x的一元二次方程:x2﹣1=0,x2+x﹣2=0,x2+2x﹣3=0,…x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.【考点】解一元二次方程﹣因式分解法;一元二次方程的解.【专题】规律型.【分析】(1)分别利用因式分解法解各方程;(2)根据方程根的特征易得这n个方程都有一个根为1,另外一根等于常数项.【解答】解:(1)x2﹣1=0,解得x1=1,x2=﹣1,x2+x﹣2=0,解得x1=1,x2=﹣2,x2+2x﹣3=0,解得x1=1,x2=﹣3,…x2+(n﹣1)x﹣n=0,解得x1=1,x2=﹣n;(2)这n个方程都有一个根为1,另外一根等于常数项.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).19.如图,有33米长的竹篱笆,要围成一边(墙长15米)面积为130平方米的长方形鸡场,求鸡场的长和宽各为多少?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】首先设鸡场的长为x米,则宽为米,根据题意可得等量关系:鸡场的长×宽=130平方米,列出方程,解出x的值.【解答】解:设鸡场的长为x米,则宽为米,由题意得:x×=130,解得:x1=25,x2=13,∵墙长15米,25>15,∴25不合题意舍去,∴x=13,则: =10(米).答:鸡场的长为13米,则宽为10米.【点评】此题主要考查了一元二次方程的应用,关键是弄懂题意,找出题目中的等量关系,此题根据鸡场的面积列出方程即可.。
2024年中考数学二轮复习模块专练—一元二次方程(含答案)

2024年中考数学二轮复习模块专练—一元二次方程(含答案)a a【例1】试卷第2页,共8页【例1】【例1】【例1】【例1】试卷第4页,共8页试卷第6页,共8页三、解答题(2023·辽宁鞍山·校考一模)26.解下列方程:(1)22410x x +-=.(2)()263x x x -=-;(2023·湖北襄阳·统考中考真题)27.关于x 的一元二次方程2230x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个根为α,β,且23k k αβ=+,求k 的值.(2023·浙江杭州·统考中考真题)28.设一元二次方程20x bx c ++=.在下面的四组条件中选择其中一组..,b c 的值,使这个方程有两个不相等的实数根,并解这个方程.①2,1b c ==;②3,1b c ==;③3,1b c ==-;④2,2b c ==.注:如果选择多组条件分别作答,按第一个解答计分.(2023·四川遂宁·统考中考真题)29.我们规定:对于任意实数a 、b 、c 、d 有[,][,]a b c d ac bd *=-,其中等式右边是通常的乘法和减法运算,如:[3,2][5,1]352113*=⨯-⨯=.(1)求[4,3][2,6]-*-的值;(2)已知关于x 的方程[,21][1,]0x x mx m -*+=有两个实数根,求m 的取值范围.(2023·湖北·统考中考真题)30.已知关于x 的一元二次方程()22210x m x m m -+++=.(1)求证:无论m 取何值时,方程都有两个不相等的实数根;(2)设该方程的两个实数根为a ,b ,若()()2220a b a b ++=,求m 的值.(2023·四川南充·统考中考真题)试卷第8页,共8页参考答案:1.B【分析】直接把2x =-代入方程,可求出m 的值,再解方程,即可求出另一个根.【详解】解:根据题意,∵2x =-是一元二次方程220x x m ++=的一个根,把2x =-代入220x x m ++=,则2(2)2(2)0m -+⨯-+=,解得:0m =;∴220x x +=,∴(2)0x x +=,∴12x =-,0x =,∴方程的另一个根是0x =;故选:B【点睛】本题考查了解一元二次方程,方程的解,解题的关键是掌握解一元二次方程的步骤进行计算.2.C【分析】利用一元二次方程根的定义,确定出m 的值即可.【详解】解:∵关于x 的一元二次方程()22390m x x m -++-=的一个根为0,∴30m -≠且290m -=,解得:3m =-.故选:C .【点睛】本题考查了一元二次方程的解,一元二次方程的定义,一元二次方程的一般形式为答案第2页,共21页231841x x =-+()23314x =-+;∵()230x -≥,∴222x y z ++的最小值是14,故答案为14.【点睛】本题考查配方法的应用.将代数式转化为只含x 的代数式,利用配方法求最值,是解题的关键.6.6【分析】根据a -b 2=4得出24b a =-,代入代数式a 2-3b 2+a -14中,通过计算即可得到答案.【详解】∵a -b 2=4∴24b a =-将24b a =-代入a 2-3b 2+a -14中得:()2222341423142a a a b a a a a =--+-=---+-()2222221313a a a a a --=-+-=--∵240b a =-≥∴4a ≥当a=4时,()213a --取得最小值为6∴222a a --的最小值为6∵22231422a a ab a --=-+-∴22314a b a -+-的最小值6故答案为:6.答案第4页,共21页答案第6页,共21页答案第8页,共21页【分析】由于关于x 的一元二次方程2210mx x ++=有实数根,根据一元二次方程根与系数的关系可知0∆≥,且0m ≠,据此列不等式求解即可.【详解】解:由题意得,440m -≥,且0m ≠,解得,1m £,且0m ≠.故选:D .【点睛】本题考查了一元二次方程()200ax bx c a ++=≠的根的判别式24b ac ∆=-与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当0∆>时,一元二次方程有两个不相等的实数根;当Δ0=时,一元二次方程有两个相等的实数根;当Δ0<时,一元二次方程没有实数根.13.C【分析】根据配方法,先将常数项移到右边,然后两边同时加上4,即可求解.【详解】解:2410x x --=移项得,241x x -=两边同时加上4,即2445x x +=-∴2(2)5x -=,故选:C .【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法是解题的关键.14.A【分析】根据整式的加减化简,然后根据配方法得出P Q -()2=110x -+>,即可求解.【详解】解:∵2P x x =-,2Q x =-∴P Q -()()222222110x x x x x x =---=-+=-+>∴P Q -的值大于0,故选:A .【点睛】本题考查了整式的加减,配方法的应用,非负数的性质,熟练掌握配方法是解题的关键.15.A【分析】由已知得224y x =-,注意x 的取值范围,代入222x y x ++再配方,利用非负数的性质即可求解.【详解】解:∵2240y x -+=,∴224y x =-,且240x -≥即2x ≥,∴2222422x y x x x x+=-+++2448x x +=+-()228x =+-,∵()220x +≥,2x ≥∴当2x =时,222x y x ++的最小值是8,故选:A .【点睛】本题考查的是配方法的应用,非负数的性质,代数式求值,掌握完全平方公式及确定x 的取值范围是解决问题的关键.16.B【分析】利用配方法表示出B A -,以及2B A =时,用含n 的式子表示出x ,确定x 的符号,进行判断即可.【详解】解:∵226A x x n =++,2224B x x n =++,∴()2222246B A x x n x x n -=+++-+2222246x x n x x n =--++-答案第10页,共21页解得0x =或40x y +-=,即0x =或4x y +=,①错误;由243x mxy x x +-=可得()7x my x x +=,∵无论x 取任何实数,等式243x mxy x x +-=都恒成立,∴7x my +=,②正确;2245,47x xy x y xy y +-=+-=两式相加可得:2224412x xy y x y ++--=即2()4()12x y x y +-+=令t x y =+,则24120t t --=,解得16t =,22t =-即2x y +=-或6x y +=,③错误;由22440x xy x y xy y +-+--≤可得22(2)(2)8x y -+-≤正整数解为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),总共有16个,④错误正确的个数为1,故选:A【点睛】本题主要考查了整式加减,二元一次不等式的解,完全平方公式,一元二次方程的解,解题的关键是熟练掌握相关运算法则以及灵活运用完全平方公式.19.5【分析】:把1x =代入方程260x mx +-=,求出关于m 的方程的解即可.【详解】把1x =代入方程260x mx +-=,得160m +-=,解得5m =.故答案为:5.【点睛】本题考查了一元二次方程的解.能使一元二次方程左右两边相等的未知数的值是一答案第12页,共21页答案第14页,共21页答案第16页,共21页答案第18页,共21页答案第20页,共21页。
中考数学专题复习题:一元二次方程

中考数学专题复习题:一元二次方程一、单项选择题(共10小题)1.下列一元二次方程中,没有实数根的是()A.220+−=x x−=B.2410x xC.2x x352=+2430x x−+=D.22.学校连续三年组织学生参加义务植树,第一年植树400棵,第三年植树625棵,设该校植树棵数的年平均增长率为x,根据题意,下列方程正确的是()A.625(1−x)2=400B.()2x+=4001625C.2x=D.400(1−x)2=6256254003.用配方法解方程2440x x−−=,则方程可变形为()A.()228x−=D.()228x−= x+=B.()220x−=C.()2154.下列关于x的一元二次方程中,有两个不相等的实数根的是()A.291240−+=x x=B.22x xx x++=C.210++=D.()450x x5.2020年某汽车累计销量为150万辆,销量逐年增加,预计到2022年销量达到486万辆.若2020年到2022年的年平均增长率为x,则x的值为()A.80%B.120%C.112%D.150%6.M同学与N同学一起写作业,在解一道一元二次方程时,M同学在化简过程中写错了常数项,因而得到方程的两个根是6和1;N同学在化简过程中写错了一次项的系数,因而得到方程的两个根是-2和-5,则原来的方程是()A.2650−+=x xx x++=B.27100C.2520x xx x−−=−+=D.261007.对于一元二次方程,我国及其他一些国家的古代数学家还研究过其几何解法呢!以方程x2+2x﹣35=0即x(x+2)=35为例加以说明,三国时期的数学家赵爽在其所著的《勾股圆图注》中记载的方法是:构造如图,图中的大方形的面积是(x+x+2)2;它又等于四个矩形面积加上中间小正方形的面积,即4×35+22,据此易得x=5,那么在下面的四个构图中,能够说明x 2﹣2x ﹣8=0的正确构图是( )A .B .C .D .8.已知关于x 的一元二次方程kx 2﹣2x +3=0有两个不相等的实数根,则k 的取值范围是( )A .k <13B .k >﹣C .k >﹣且k ≠0D .k <且k ≠0 9.某种商品的标价为160元/件,经过两次降价后的价格为90元/件,若两次降价的百分率都为x ,则可列方程( )A .290160x =B .2160(1)90x +=C .2160(1)90x −=D .290(1)160x += 10.下列结论:①当3m =时,若220x mxy x +−=,则32x y +=;②无论x 取任何实数,等式230x mxy x +−=都恒成立,则()29x my +=;③若227x xy x +−=,228y xy y +−=,则5x y +=;131313④满足()()22420x xy x y xy y +−+−−<的整数解(),x y 共有12个.正确的个数有( )A .1个B .2个C .3个D .4个二、填空题(共8小题)11.关于的一元二次方程2680x x m −+−=有实数根,则m 的最小值为________. 12.2210ax x +−=是关于的一元二次方程,则a 的取值范围是________.13.若等腰三角形的一边长是4,另两边的长是关于的方程260x x n −+=的两个根,则n 的值为________.14.已知一元二次方程220x mx m −+−=的两个实数根为1x 、2x ,且1212()3x x x x +=,则的值是________.15.定义:若3432n n −−(n 为正整数)等于两个连续正奇数的乘积,则称n 为“智慧数”.(1)当010n <<时,请任意写出一个智慧数:________;(2)当0500n <<时,则“智慧数”n 的最大值为________.16.某同学用一块面积为2400cm 的正方形纸片,沿边的方向裁出一块面积为2222cm 的长方形纸片,使它的长宽之比为3:2,则这个长方形的边长分别是________. 17.三角形的两边分别2和6,已知第三边是方程210210x x −+=的解,则三角形周长为________.18.如图,在ABC 中,90BAC ∠=︒,D 是AC 边上的一点,2C CBD ∠=∠,E ,F 分别是BC ,BD 上的点,且2BEF CAE ∠=∠,AB BE =.(1)设CBD α∠=,则BEF ∠=________(用含α的式子表示);(2)若2EF =,1CE =,则BE 的长为________.三、解答题(共5小题) 19.如图,要设计一幅长24cm ,宽10cm 的矩形图案,其中有一横两竖的彩条,横竖x x xm彩条的宽度相同,如果要使彩条所占面积是图案面积的三分之一,那么彩条的宽度应该为多少厘米?20.某水果超市调查一种水果的销售情况,该水果的进价是每千克22元,当售价为每千克38元时,每天可售出160千克;若每千克降低3元,则每天的销量将增加120千克,超市每天要获得利润3640元,又要尽可能让顾客得到实惠,求这种水果的售价.21.解方程:(1)2230x x −−=;(2)2212x x −=.22.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m 2?23.如图,四边形AOBC 为正方形,为的中点,连接OE,OE =.(1)求点C 的坐标;(2)为上一点,2FOB AOE ∠=∠,①求点的坐标;②作点A 关于OF 的对称点H ,连接AH 和BH ,则AHB ∠的度数为_______;的长度为_______(直接写出结果).E ACF AC FBH。
中考数学一轮复习《一元二次方程》练习题(含答案)

中考数学一轮复习《一元二次方程》练习题(含答案)一、单选题1.解一元二次方程2210x x +-=,配方得到()21x a +=,则a 的值为( ) A .1B .1-C .2D .2-2.关于x 的一元二次方程x 2﹣2x +m ﹣1=0有两个不相等的实数根,则实数m 的取值范围是( ) A .m ≥2B .m ≤2C .m >2D .m <23.用配方法解一元二次方程27120x x -+=,配方后的方程为( ) A .27124x ⎛⎫-= ⎪⎝⎭B .27124x ⎛⎫+= ⎪⎝⎭C .()2737x -=D .()2737x +=4.某超市销售一种商品,其进价为每千克30元,按每千克45元出售,每天可售出300千克,为让利于民,超市采取降价措施,当售价每千克降低1元时,每天销量可增加50千克,若每天的利润要达到5500元,则实际售价应定为多少元?设售价每千克降低x 元,可列方程为( )A .(45-30-x )(300+50x )=5500B .(x -30)(300+50x )=5500C .(x -30)[300+50(x -45)]=5500D .(45-x )(300+50x )=55005.铜罗中学组织一次乒乓球赛,比赛采用单循环制,要求每两队之间赛一场.若整个比赛一共赛了45场,则有几个球队参赛?设有x 个球队参赛,则下列方程中正确的是( ) A .x (x +1)=45B .1(1)452x x +=C .x (x ﹣1)=45D .1(1)452x x -=6.一元二次方程22560x x -+=的根的情况为( ) A .无实数根B .有两个不等的实数根C .有两个相等的实数根D .不能判定7.已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k的取值范围是( )A .14k >-B .14k <C .14k >-且0k ≠D .14k <且0k ≠ 8.一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A .12B .9C .15D .12或159.某超市一月份的营业额为100万元,已知第一季度的总营业额共500万元,如果平均每月增长率为x ,则由题意列方程应为( )A .100+100(1+x )+100(1+x )2=500B .100(1+x )2=500C .100+100(1+x )2=500D .100(1+x )=50010.如图,在长为32米、宽为20米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪,要使小路的面积为100平方米,设道路的宽x 米,则可列方程为( )A .32203220100x x ⨯--=B .()()23220100x x x --+=C .23220100x x x +=+D .()()3220100x x --=11.对于任意实数k ,关于x 的方程222(5)24500x k x k k -++++=的根的情况为( ) A .有两个相等的实数根 B .无实数根 C .有两个不相等的实数根D .无法判定12.随着生产技术的进步,某制药厂生产成本逐年下降,两年前生产一吨药的成本是6000元,现在生产一吨药的成本是5000元.设生产成本的年平均下降为x ,下列所列的方程正确的是( ) A .6000(1+x )2=5000 B .5000(1+x )2=6000 C .6000(1﹣x )2=5000D .5000(1﹣x )2=6000二、填空题 13.方程290x 的根是_________.14.若关于x 的一元二次方程2210++-=x x m 有一个根为0,则m =________.15.关于x 的一元二次方程()21210m x x -+-=有两个不相等的实数根,则m 的取值范围是_______.16.已知关于x 的方程21(1)230m m x x +-+-=是一元二次方程,则m 的值为_________. 17.2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育活动.据了解,某展览中心3月份的参观人数为10万人,5月份的参观人数增加到12.1万人.设参观人数的月平均增长率为x ,则可列方程为________. 18.一元二次方程2430x x -+=配方为()22x k -=,则k 的值是______.19.已知x =﹣2时,二次三项式x 2﹣2mx +4的值等于﹣4,当x =_____时,这个二次三项式的值等于﹣1.20.常态化防疫形势下,某学生写了一份预防新型冠状病毒倡议书在微信朋友圈传播,规则为:将倡议书发表在自己的朋友圈,再邀请x 个好友转发倡议书,每个好友转发倡议书,又邀请x 个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有931人参与了传播活动,则方程列为__________________.三、解答题21.用适当的方法解下列方程: (1)23650x x +-= (2)2670x x +-= (3)2760x x += (4)()()22333x x x =--22.已知关于x 的一元二次方程2(2)10x m x m -+++=. (1)如果该方程有两个相等的实数根,求m 的值; (2)如果该方程有一个根小于0,求m 的取值范围.23.已知关于x 的一元二次方程23210x x a -+-=有两个不相等的实数根. (1)求a 的取值范围;(2)若a 为正整数,求方程的根.24.如图,在长方形ABCD 中,6cm,7cm ==AB BC ,点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.当点Q 运动到点C 时,两点停止运动.设运动时间为s t .多少秒后三角形BPQ 的面积等于25cm25.为应对新冠疫情,较短时间内要实现全国医用防护服产量成倍增长,有效保障抗击疫情一线需要,某医用防护服生产企业1月份生产9万套防护服,该企业不断加大生产力度,3月份生产达到12.96万套防护服.(1)求该企业1月份至3月份防护服产量的月平均增长率.(2)若平均增长率保持不变,4月份该企业防护服的产量能否达到16万套?请说明理由.26.某商店以每件16元的价格购进了一批热销商品,出售价格经过两个月的调整,从每件25元上涨到每件36元,此时每月可售出160件商品. (1)求该商品平均每月的价格增长率;(2)因某些原因商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降0.5元,每个月多卖出1件,当降价多少元时商品每月的利润可达到1800元.27.金都百货某小家电经销商销售一种每个成本为40元的台灯,当每个台灯的售价定为60元时,每周可卖出100个,经市场调查发现,该台灯的售价每降低2元.其每周的销量可增加20个.(1)台灯单价每降低4元,平均每周的销售量为 个.(2)如果该经销商每周要获得利润2240元,那么这种台灯的售价应降价多少元? (3)在(2)的条件下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?28.位于宁波市江北区的保国寺以其精湛绝伦的建筑工艺闻名全国,其中大雄宝殿(又称无梁殿)更是以四绝“鸟不栖,虫不入,蜘蛛不结网,梁上无灰尘”吸引了各地游客前来参观.据统计,假期第一天保国寺的游客人数为5000人次,第三天游客人数达到7200人次. (1)求游客人数从假期第一天到第三天的平均日增长率;(2)据悉,景区附近商店推出了保国寺旅游纪念章,每个纪念章的成本为5元,当售价为10元时,平均每天可售出500个,为了让游客尽可能得到优惠,商店决定降价销售.市场调查发现,售价每降低0.5元,平均每天可多售出100个,若要使每天销售旅游纪念章获利2800元,则售价应降低多少元?29.2022年北京冬奥会吉祥物“冰墩墩”意喻敦厚、健康、活泼、可爱,象征着冬奥会运动员强壮的身体、坚韧的意志和鼓舞人心的奥林匹克精神.随着北京冬奥会开幕日的临近,某特许零售店“冰墩墩”的销售日益火爆.据调查“冰墩墩”每盒进价8元,售价12元. (1)商店老板计划首月销售330盒,经过首月试销售,老板发现单盒“冰墩墩”售价每增长1元,月销量就将减少20盒.若老板希望“冰墩墩”月销量不低于270盒,则每盒售价最高为多少元?(2)实际销售时,售价比(1)中的最高售价减少了2a 元,月销量比(1)中最低销量270盒增加了60a 盒,于是月销售利润达到了1650元,求a 的值。
中考数学一元二次方程专题(附答案)

中考数学⼀元⼆次⽅程专题(附答案)中考数学⼀元⼆次⽅程专题(附答案)⼀、单选题(共12题;共24分)1.下列⼀元⼆次⽅程有两个相等实数根的是()A. x2﹣2x+1=0B. 2x2﹣x+1=0C. 4x2﹣2x﹣3=0D. x2﹣6x=02.⽅程=0有两个相等的实数根,且满⾜=,则的值是()A. -2或3B. 3C. -2D. -3或23.若关于x的⼀元⼆次⽅程x2﹣2x﹣k+1=0有两个相等的实数根,则k的值是()A. ﹣1B. 0C. 1D. 24.若关于的⼀元⼆次⽅程有两个不相等的实数根,则⼀次函数的图象可能是:A. B. C. D.5.下列⼀元⼆次⽅程中,有两个相等实数根的是()A. x2﹣8=0B. 2x2﹣4x+3=0C. 9x2﹣6x+1=0D. 5x+2=3x26.已知m、n、4分别是等腰三⾓形(⾮等边三⾓形)三边的长,且m、n是关于的⼀元⼆次⽅程的两个根,则k的值等于A. 7B. 7或6C. 6或D. 67.⽅程(x-1)?(x2+17x-3)=0的三根分别为x1,x2,x3 .则x1x2+x2x3+x1x3 =()A. 14B. 13C. -14D. -208.⼀元⼆次⽅程x2﹣4x+3=0的两个根分别是⊙O1和⊙O2的半径长,圆⼼距O1O2=4,则⊙O1和⊙O2的位置关系()A. 外离B. 外切C. 相交D. 内切9.已知关于的⽅程有两个实数根,则的取值范围是( )A. B. C. 且 D. 且10.设a、b、c和S分别为三⾓形的三边长和⾯积,关于x的⽅程b2x2+(b2+c2-a2)x+c2=0的判别式为Δ.则Δ与S的⼤⼩关系为( ).A. Δ=16S2B. Δ=-16S2C. Δ=16SD. Δ=-16S11.下列⽅程中,有两个不相等实数根的是().A. x2-4x+4=0B. x2+3x-1=0C. x2+x+1=0D. x2-2x+3=012.已知⼆次函数y=ax2+2ax+3a-2(a是常数,且a≠0)的图象过点M(x1,-1),N(x2,-1),若MN的长不⼩于2,则a的取值范围是()A. a≥B. 0C. - ≤a<0D. a≤-⼆、填空题(共6题;共12分)13.等腰三⾓形的腰和底边的长是⽅程x2-20x+91=0的两个根,则此三⾓形的周长为________.14.已知x=-1是⽅程x2+ax+4=0的⼀个根,则⽅程的另⼀个根为________ 。
中考数学《一元二次方程》专题训练(附带答案)

中考数学《一元二次方程》专题训练(附带答案)一、单选题1.关于x的方程x2-2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1B.k>1C.k<-1D.k>-12.关于x的一元二次方程x2+4x+k=0有两个相等的实数根,则k的值为()A.k=4B.k=﹣4C.k≥﹣4D.k≥43.关于x的一元二次方程方程(m-1)x2-2x-1=0有两个实数根,则实数m的取值范围是()A.B.C.D.4.方程x2﹣5x=0的解是()A.x1=0,x2=﹣5B.x=5C.x1=0,x2=5D.x=05.用配方法解一元二次方程x2+6x−10=0,此方程可变形为()A.(x+3)2=1B.(x−3)2=1C.(x−3)2=19D.(x+3)2=19 6.已知b2﹣4ac是一元二次方程ax2+bx+c=0(a≠0)的一个实数根,则ab的取值范围为()A.ab≥18B.ab≤18C.ab≥14D.ab≤147.已知A=x2+3,B=2x+1,则A,B的大小关系正确的是()A.A>B B.A<BC.A=B D.与x的大小有关8.已知关于x的一元二次方程2x²+4x·sinα+1=0有两个相等的实数根,则锐角α的度数为()A.30°B.45°C.60°D.75°9.用配方法解方程x2﹣x﹣1=0时,配方结果正确的是()A.(x﹣1)2=2B.(x −12)2=54C.(x −12)2=1D.(x −12)2=3410.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是()A.2500(1+x)2=3200B.2500(1−x)2=3200C.3200(1−x2)=2500D.3200(1−x)2=250011.用配方法解方程x2﹣4x﹣3=0,下列配方结果正确的是()A.(x﹣4)2=19B.(x﹣2)2=7C.(x+2)2=7D.(x+4)2=1912.下列关于x的方程中,没有实数解的是()A.x2﹣4x+4=0B.x2﹣2x﹣3=0C.x2﹣2x=0D.x2﹣2x+5=0二、填空题13.某企业2018年底缴税80万元,2020 年底缴税96.8万元,设这两年该企业交税的年平均增长率为x根据题意,可得方程为。
中考数学复习 《一元二次方程》真题练习含答案

中考数学复习 一元二次方程一、选择题1.下列函数中,当x>0时,y 随x 的增大而减小的是( A ) A .y =2x B .y =-4xC .y =3x +2D .y =x 2-32.如图,在同一平面直角坐标系中,直线y =k 1x (k 1≠0)与双曲线y =k 2x (k 2≠0)相交于A ,B 两点,已知点A 的坐标为(1,2),则点B 的坐标为( A )A .(-1,-2)B .(-2,-1)C .(-1,-1)D .(-2,-2),第2题图) ,第4题图)3.已知A (x 1,y 1),B (x 2,y 2)是反比例函数y =kx (k ≠0)图象上的两个点,当x 1<x 2<0时,y 1>y 2,那么一次函数y =kx -k 的图象不经过( B )A .第一象限B .第二象限C .第三象限D .第四象限4.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(-3,4),顶点C 在x 轴的负半轴上,函数y =kx(x <0)的图象经过顶点B ,则k 的值为( C )A .-12B .-27C .-32D .-36 【解析】OA =32+42=5,∵四边形OABC 是菱形,∴AO =CB =OC =AB =5,则点B的横坐标为-8,故B 的坐标为(-8,4),将点B 的坐标代入y =k x 得,4=k-8,解得k =-32.故选C.5.如图,点A 在双曲线y =5x 上,点B 在双曲线y =8x 上,且AB ∥x 轴,则△OAB 的面积等于( A )A.32B .3C .2D .1,第5题图) ,第6题图)6.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,tan ∠AOC =43,反比例函数y =kx的图象经过点C ,与AB 交于点D ,若△COD 的面积为20,则k 的值等于( A )A .-24B .32C .-32D .-12【解析】作DE ∥AO 交CO 于E ,CF ⊥AO 于F ,∵四边形OABC 为菱形,∴AB ∥CO ,AO ∥BC ,∵DE ∥AO ,∴S △ADO =S △DEO ,同理S △BCD =S △CDE ,∴S 菱形ABCO =S △ADO +S △DEO +S △BCD +S △CDE =2(S △DEO +S △CDE )=2S △CDO =40,∵tan ∠AOC =43,设CF =4x ,∴OF =3x ,∴OC =OF 2+CF 2=5x ,∴OA =OC =5x ,∵S 菱形ABCO =AO ·CF =20x 2,解得x =2,∴OF =32,CF =42,∴点C 坐标为(-32,42),∵反比例函数y =kx 的图象经过点C ,∴代入点C 得,k =-24二、填空题7.如图,直线y =ax 与双曲线y =k x (x >0)交于点A (1,2),则不等式ax >kx的解集是__x>1__.,第7题图) ,第9题图)8.对于函数y =2x ,当函数值y <-1时,自变量x 的取值范围是__-2<x <0__.9.如图,直线y =-33x -3与x ,y 轴分别交于点A ,B ,与反比例函数y =kx的图象在第二象限交于点C .过点A 作x 轴的垂线交该反比例函数图象于点D .若AD =AC ,则点D 的坐标为__(-3,23)__.【解析】过C 作CE ⊥x 轴于E ,求得A(-3,0),B(0,-3),解直角三角形得到∠OAB=30°,求得∠CAE =30°,设D(-3,k -3),得到AD =k -3,AC =k -3,于是得到C(-3+3k6,-k 6),列方程即可得(-3+3k 6)·(-k6)=k ,解得k =-63,因此可求D(-3,23).10.如图,已知点A(1,2)是反比例函数y =kx 图象上的一点,连结AO 并延长交双曲线的另一分支于点B ,点P 是x 轴上一动点;若△PAB 是等腰三角形,则点P 的坐标是__(-3,0)或(5,0)或(3,0)或(-5,0)__.【解析】∵反比例函数y =kx 图象关于原点对称,∴A ,B 两点关于O 对称,∴O 为AB的中点,且B(-1,-2),∴当△PAB 为等腰三角形时,有PA =AB 或PB =AB ,设P 点坐标为(x ,0),∵A (1,2),B(-1,-2),∴AB =[1-(-1)]2+[2-(-2)]2=25,PA=(x -1)2+(-2)2,PB =(x +1)2+22,当PA =AB时,则有(x -1)2+(-2)2=25,解得x =-3或5,此时P 点坐标为(-3,0)或(5,0);当PB =AB 时,则有(x +1)2+22=25,解得x =3或-5,此时P 点坐标为(3,0)或(-5,0);综上可知P 点的坐标为(-3,0)或(5,0)或(3,0)或(-5,0).三、解答题11.如图,直线y 1=ax +b 与双曲线y 2=kx 交于A ,B 两点,与x 轴交于点C ,点A 的纵坐标为6,点B 的坐标为(-3,-2).(1)求直线和双曲线的解析式;(2)求点C 的坐标,并结合图象直接写出y 1<0时x 的取值范围. 解:(1)y 1=2x +4,y 2=6x(2)由直线y 1=0得,x =-2,∴点C 的坐标为(-2,0),当y 1<0时x 的取值范围是x <-212.如图,已知反比例函数y =kx 的图象经过点A (4,m ),AB ⊥x 轴,且△AOB 的面积为2.(1)求k 和m 的值;(2)若点C (x ,y )也在反比例函数y =kx 的图象上,当-3≤x ≤-1时,求函数值y 的取值范围.解:(1)∵△AOB 的面积为2,∴k =4,∴反比例函数解析式为y =4x ,∵A (4,m ),∴m=44=1 (2)∵当x =-3时,y =-43;当x =-1时,y =-4,又∵反比例函数y =4x 在x <0时,y 随x 的增大而减小,∴当-3≤x ≤-1时,y 的取值范围为-4≤y ≤-4313.某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:第1天 第2天 第3天 第4天 售价x (元/双)150200 250 300 销售量y (双)40302420(1)(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?解:(1)由表中数据得:xy =6000,∴y =6000x ,∴y 是x 的反比例函数,故所求函数关系式为y =6000x (2)由题意得(x -120)y =3000,把y =6000x 代入得(x -120)·6000x =3000,解得x =240,经检验,x =240是原方程的根,则单价应定为240元14.如图,直线l 过点A (a ,0)和点B (0,b )(其中a >0,b >0).反比例函数y =kx(k >0)的图象与直线l 交于C ,D 两点,连结OC ,OD .(1)若a +b =10,△AOB 的面积为S ,问:当b 为何值时,S 取最大值?并求出这个最大值;(2)当S 取最大值时,若C ,D 恰好是线段AB 的三等分点,求k 的值.解:(1)根据题意得OA =a ,OB =b ,∴S =12ab ,又由a +b =10,得a =10-b ,得S =12b (10-b )=-12b 2+5b =-12(b -5)2+252.∵-12<0,∴S 有最大值,当b =5时,S 取得最大值252(2)设直线l 的解析式为y =mx +n ,因为直线l 过点A (5,0),B (0,5),∴⎩⎨⎧5m +n =0,n =5,解得⎩⎨⎧m =-1,n =5,∴直线l 的函数关系式为y =-x +5.过点C 作x 轴的垂线,垂足为F ,当C ,D 是线段AB 的三等分点时,△AOC ,△COD ,△BOD 的面积都相等,有S △AOC =13S △AOB ,即12OA ×CF =13×12OA ×OB ,∴CF =53,即C 点的纵坐标为53.将y =53代入y =-x +5,得x =103,即点C 的坐标为(103,53).∵点C 在反比例函数y =k x 的图象上,∴k =103×53=509。
中考专题一元二次方程练习打印版

1. 方程(x+1)2-2(x -1)2=6x -5的一般形式是 x 2-4=0 。
2. 方程(2x-1)(3x+1)=x 2+2化为一般形式为__ 5x 2-x-3=0________,其中a =__5____,b=__-1_____,c =___-3____.3. 关于x 的一元二次方程x 2+mx+3=0的一个根是1,则m 的值为 -4 。
4. 关于x 若一元二次方程 (m -2)x 2+3(m 2+15)x+m 2-4=0的一个根是0,则m 为___-2_.5. 已知x = 1 是关于x 的一元二次方程(m 2 - 1)x 2 – mx + m 2 = 0的一个根,那么m 的值为__21-__. 6. 方程41(x+1)2=31(x+1)的根是_____31,1-_________ 7. 方程2x(x-3)=5(x-3)的根一定是______25,3________ 8. 使方程x 2-2xy-8y 2=0成立的x 、y 满足关系是____y x y x 2,4-==_________9. 若ab b a a b b a b ab a 2222,02+--=-+则的值为___1或-2____________ 10. 设,则_____24_________11. 若x 2-x -1=0,求下列代数式的值:1)1242++x x x ;2)-x 3+2x 2+2009 (1)14;(2)2010二、一元二次方程的根的判别式1. 解方程,判断方程 (1) x 2 – 4x + 5 = 0; (无解)(2) 2x 2 – 22x + 1 = 0; (有两个相等实根)(3) x 2 – 4x - 3 = 0; (有两个不等实根)根的情况.2. 关于 x 的一元二次方程 ( a + 1 )x 2 – ( 2a – 1 )x + a – 2 = 0 的根的情况是 有两个不等实根 .,9=∆3. 已知关于 x 的方程 ( k 2 - 2 )x 2 – 2( k + 1 )x + 1 = 0 有两个不相等的实数根,则 k 的取值范围当_223±≠-k k 且 ________. 4. 关于 x 的一元二次方程 ( m 2 - 1 )x 2 – 2( m + 1 )x + 1 = 0有两个实数根,则 m 的取值范围当m__1,1≠-m 且 _______.5. 当m__041≠≤m 且________时,方程m 2x 2+(2m-1)x+1=0有两个实数根.6. 已知二次三项式x 2+2mx+4-m 2是一个完全平方式,则7. 已知 m 为非负整数,且关于 x 的一元二次方程 m ( x - 1 )2 = x 2 – x - 1 有两个实数根,求 m 的值,并求出这个方程的根.251,0±==x m 8. 求证:m 取任何实数时,方程 2x 2 + ( m + 5 )x + ( m + 1 ) = 0 都有两个不相等的实数根.9. 已知关于 x 的方程 3x 2 – 2x + m = 0 的一个根是 -1,求证:关于 x 的方程 kx 2 + ( k + m )x +m + 4 = 0 有实根,10.已知关于 x 的方程 x 2 – 42+k x + k = 0 有两个不相等的实数根,(1) 求 k 的取值范围; (2) 化简:| - k – 2 | + 442+-k k .(1)22≤≤-k(2)411.已知方程 x 2 + 2( m – 3 )x + m 2 – 7m – n + 12 = 0 有两个相等的实数根,且 m 、n 满足 2m – n= 0.(1)求 m 、n 的值,(2)证明方程 ( -m + n )x 2 + nkx + 2k – ( m + n ) = 0 有两个不相等的实数根.25,45==n m12. 已知关于x 的方程054)1(3222=--+-+m m x m x .(1) 求证:对于任何实数m ,方程永远有实数根;(2) 已知等腰三角形△ABC 的两边长a 、b 是这个方程的两根,另一条边长c =1,求△ABC 的周长。
初三中考复习 一元二次方程 专题练习题 含答案

一元二次方程专题练习题1.下列方程中,一定是一元二次方程的是( )A .3x 2+2x-1=0 B .5x 2-6y -3=0 C .ax 2-x +2=0 D .3x 2-2x -1=0 2.若关于x 的方程(a -2)x 2-2ax +a +2=0是一元二次方程,则a 的值是( )A .2B .-2C .0D .不等于2的任意实数3.将一元二次方程3x 2=-2x +5化为一般形式,其一次项系数与常数项的和为____.4.将一元二次方程y(2y -3)=(y +2)(y -2)化为一般形式,并写出它的二次项系数、一次项系数和常数项.2x 2+x =2的解是( )x =-1和x =06.已知关于x 的方程x 2+x +2a -1=0的一个根是0,则a =______.7.若关于x 的一元二次方程ax 2-bx -2018=0有一根为x =-1,则a +b =______.8.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60 m ,若将短边增长到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1600 m 2,设扩大后的正方形绿地边长为x m ,下面所列方程正确的是( )A .x(x -60)=1600B .x(x +60)=1600C .60(x +60)=1600D .60(x -60)=16009. 有x 支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )A .12x(x -1)=45 B. 12x(x +1)=45 C .x(x -1)=45 D .x(x +1)=45 10.如图所示的图形的面积为24,根据图中的条件,可列出方程:_______________________.11.下列方程中是关于x 的一元二次方程的是( )A .x 2+1x2=0 B .ax 2+bx +c =0 C .(x -1)(x +2)=1 D .x(x -1)=x 2+2x12.若关于x 的一元二次方程(a -1)x 2+x +|a|-1=0的一个根是0,则实数a 的值为( )A .-1B .0C .1D .-1或113.已知m 是关于x 的方程x 2-2x -3=0的一个根,则2m 2-4m =______.14.若方程(m-2)x2+m x=1是关于x的一元二次方程,则m的取值范围是______________________.15.小明用30厘米的铁丝围成一个斜边长等于13厘米的直角三角形,设该直角三角形的一条直角边长为x厘米,则另一条直角边长为__________厘米,可列出方程:___________________________.16.根据下列问题列出一元二次方程,并将其化成一般形式.(1)某市2015年平均房价为每平方米8000元,2017年平均房价降到每平方米7000元,求这两年平均房价年平均降低率;(2)如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一边平行),剩余部分种上草坪,使草坪面积为300平方米,求道路的宽;(3)某种服装平均每天可销售20件,每件盈利30元,若单价每件降价1元,则每天可多销售5件,如果每天要盈利1445元,求每件服装应降价多少元.17.一元二次方程ax2+bx+c=0的一个根是1,且a,b满足等式b=a-1+1-a+2,求这个一元二次方程.18.已知关于x的方程(k2-9)x2+(k+3)x=0.(1)当k为何值时,此方程是一元一次方程?(2)当k为何值时,此方程是一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数和常数项.19.若x 2a +b -3x a -b +1=0是关于x 的一元二次方程,求a ,b 的值.下面是两位同学的解法.甲:根据题意,得⎩⎨⎧2a +b =2,a -b =1,解得⎩⎨⎧a =1,b =0.乙:根据题意,得⎩⎨⎧2a +b =2,a -b =1或⎩⎨⎧2a +b =1,a -b =2, 解得⎩⎨⎧a =1,b =0或⎩⎨⎧a =1,b =-1. 你认为上述两位同学的解法是否正确?为什么?如果都不正确,请给出正确的解法.答案:1. D2. D3. -34. 解:一般形式为y2-3y+4=0,二次项系数是1,一次项系数是-3,常数项是45. C6. 127. 20188. A9. A10. (x+1)2-1=2411. C12. A13. 614. m≥0且m≠215. (17-x) x2+(17-x)2=13216. 解:(1)设这两年平均房价年平均降低率为x,根据题意得8000(1-x)2=7000,化成一般形式为8x2-16x+1=0(2)设道路的宽为x米,则(22-x)(17-x)=300,化成一般形式为x2-39x+74=0(3)设每件应降价x元,则(20+5x)(30-x)=1445,化成一般形式为x2-26x+169=017. 解:a=1,b=2,c=-3,此方程为x2+2x-3=018. (1) 解:由题意得k2-9=0,k+3≠0,解得k=3,∴k=3时,此方程是一元一次方程(2) 解:由题意得k2-9≠0,则k≠±3,∴k≠±3时,此方程是一元二次方程,二次项系数、一次项系数和常数项分别为k2-9,k+3,019. 解:都不正确,均考虑不全面.正确解法如下:要使x2a+b-3xa-b+1=0是关于x 的一元二次方程,则2a+b=2,a-b=2或2a+b=2,a-b=1或2a+b=2,a-b=0或2a +b=1,a-b=2或2a+b=0,a-b=2,解得a=43,b=-23或a=1,b=0或a=23,b =23或a=1,b=-1或a=23,b=-43。
2024年中考九年级数学复习练习题:一元二次方程含参考答案

2024年中考九年级数学复习练习题:一元二次方程一、选择题1.一元二次方程3x 2=12的二次项,一次项和常数项分别为()A.3x 2,无一次项,−12B.3x 2,无一次项,12C.3x 2,0,−12D.3x 2,0,122.用配方法解方程x 2+4x −1=0,下列配方结果正确的是().A.(x +2)2=5B.(x +2)2=1C.(x −2)2=1D.(x −2)2=53.关于x 的一元二次方程x 2−8x +m =0有两个不相等的实数根,则m 的值可能是()A.15B.16C.17D.184.已知直角三角形的两条直角边长恰好是方程x 2−5x +6=0的两个根,则此直角三角形斜边长是()A.13B.5C.5D.135.已知菱形ABCD 的对角线AC,BD 的长度是方程x 2﹣13x+36=0的两个实数根,则此菱形的面积为()A.18B.24C.30D.366.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是()A.(3+x)(4-0.5x)=15B.(x+3)(4+0.5x)=15C.(x+4)(3-0.5x)=15D.(x+1)(4-0.5x)=157.若α、β是方程x 2+2x −2005=0的两个实数根,则α2+3α+β的值为()A.2005B.2003C.-2005D.40108.为增强同学们的体质,丰富校园文化体育生活,某校八年级举行了篮球比赛,比赛以循环赛的形式进行,即每个班级之间都要比赛一场,共比赛了45场.该校八年级共有()个班.A.9B.10C.5D.8二、填空题9.一元二次方程x 2=x 的根是.10.若关于x 的一元二次方程x 2+2x +m −1=0有实数根,则m 的取值范围是.11.一个三角形的两边长分别为2和3,第三边的长是方程x 2-10x+21=0的根,则该三角形的第三边的长为.12.已知x 1、x 2是方程x 2﹣2x﹣1=0的两根,则x 12+x 22=.13.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请个队参赛.14.解方程:(1)x 2﹣6x=0;(2)2x 2+5x﹣1=0;(3)2x(x﹣3)=x﹣3.15.已知关于x 的一元二次方程(x −1)(x −2k)+k(k −1)=0.(1)求证:该一元二次方程总有两个不相等的实数根;(2)若该方程的两个根x 1,x 2是一个矩形的一边长和对角线的长,且矩形的另一边长为3,试求k 的值.16.已知关于x 的一元二次方程x 2+(2m﹣1)x+m 2﹣2=0有实数根.(1)求实数m 的取值范围;(2)当m=1时,方程的根为x 1,x 2,求代数式(x 12+2x 1)(x 22+4x 2+2)的值.17.某农场今年第一季度的产值为50万元,第二季度由于改进了生产方法,产值提高了20%;但在今年第三、第四季度时该农场因管理不善.导致其第四季度的产值与第二季度的产值相比下降了11.4万元.(1)求该农场在第二季度的产值;(2)求该农场在第三、第四季度产值的平均下降的百分率.18.某经销商经销的学生用品,他以每件280元的价格购进某种型号的学习机,以每件360元的售价销售时,每月可售出60个,为了扩大销售,该经销商采取降价的方式促销,在销售中发现,如果每个学习机降价10元,那么每月就可以多售出50个.(1)降价前销售这种学习机每月的利润是多少元?(2)经销商销售这种学习机每月的利润要达到7200元,且尽可能让利于顾客,求每个学习机应降价多少元?(3)在(2)销售过程中,销量好,经销商又开始涨价,涨价后每月销售这种学习机的利润能达到10580元吗?若能,请求出涨多少元;若不能,请说明理由.1.C 2.A 3.A 4.D 5.A 6.A 7.B 8.B9.x 1=1,x 2=010.m ≤211.312.613.814.解:(1)x 2﹣6x=0,x(x﹣6)=0,∴x=0或x﹣6=0,解得:x 1=0,x 2=6;(2)2x 2+5x﹣1=0,∵a=2,b=5,c=﹣1,∴Δ=52﹣4×2×(﹣1)=33>0,∴x =∴x 1=2=(3)2x(x﹣3)=x﹣3,2x(x﹣3)﹣(x﹣3)=0,(x﹣3)(2x﹣1)=0,∴x﹣3=0或2x﹣1=0,∴x 1=3,x 2=12.15.(1)证明:(x −1)(x −2k)+k(k −1)=0,整理得:x 2−(2k +1)x +k 2+k =0∵a =1,b =−(2k +1),c =k 2+k ,∴Δ=b 2−4ac =(2k +1)2−4×1×(k 2+k)=1>0,∴该一元二次方程总有两个不相等的实数根;(2)解:x (2k +1)x +k 2+k =0,x ==2k+1±12,∴x 1=k ,x 2=k +1,①当x =k 为对角线时,k 2=(k +1)2+32,解得:k =−5(不符合题意,舍去),②当x =k +1为对角线时,(k +1)2=k 2+32,解得:k =4;综合可得,k 的值为4.16.解:(1)∵关于x 的一元二次方程x 2+(2m﹣1)x+m 2﹣2=0有实数根,∴Δ≥0,即(2m﹣1)2﹣4(m 2﹣2)≥0,整理得:﹣4m+9≥0,解得:m ≤94.故实数m 的取值范围是m ≤94;(2)当m=1时,方程为x 2+x﹣1=0,∵该方程的两个实数根分别为x 1,x 2,∴x 1+x 2=﹣1,x 1x 2=﹣1,x 12+x 1=1,x 22+x 2=1,∴(x 12+2x 1)(x 22+4x 2+2)=(x 1+1)(3x 2+3)=3[x 1x 2+(x 1+x 2)+1]=3×(﹣1﹣1+1)=3×(﹣1)=﹣3.17.(1)解:第二季度的产值为:50(120%)60⨯+=(万元);(2)解:设该农场在第三、第四季度产值的平均下降的百分率为x ,根据题意得:该农场第四季度的产值为6011.448.6-=(万元),列方程,得:260(1)48.6x -=,即2(1)0.81x -=,解得:120.1 1.9x x ==,(不符题意,舍去).答:该农场在第三、第四季度产值的平均下降百分率为10%.18.(1)解:由题意得:60×(360−280)=4800(元),∴降价前商场每月销售学习机的利润是4800元;(2)解:设每个学习机应降价x 元,由题意得:(360−x −280)(50⋅x10+60)=7200,解得:x =8或x =60,由题意尽可能让利于顾客,x =8舍去,即x =60,∴每个学习机应降价60元;(3)解:设应涨y 元每月销售这种学习机的利润能达到10580元,根据题意得:(360−60+y −280)[5(60−y)+60]=10580,方程整理得:y 2−52y +676=0,解得:y 1=y 2=26,∴应涨26元每月销售这种学习机的利润能达到10580元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程
A级基础题
1.一元二次方程x2-3x=0的根是( )
A.x1=0,x2=-3 B.x1=1,x2=3 C.x1=1,x2=-3 D.x1=0,x2=3 2.(2017浙江舟山)用配方法解方程x2+2x-1=0时,配方结果正确的是( )
A.(x+2)2=2 B.(x+1)2=2 C.(x+2)2=3 D.(x+1)2=3
3.(2017年江苏南京改编)解方程(x-5)2=19,用以下哪种方法最恰当( )
A.配方法 B.直接开平方法 C.因式分解法 D.公式法
4.(2018年湖南娄底)关于x的一元二次方程x2-(k+3)x+k=0的根的情况是( ) A.有两不相等实数根 B.有两相等实数根 C.无实数根 D.不能确定
5.(2018年湖南湘潭)若一元二次方程x2-2x+m=0有两个不相同的实数根,则实数m的取值范围是( )
A.m≥1 B.m≤1 C.m>1 D.m<1
6.如图214,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2 m,另一边减少了3 m,剩余一块面积为20 m2的矩形空地,则原正方形空地的边长是( )
图214
A.7 m B.8 m
C.9 m D.10 m
7.(2018年吉林)若关于x的一元二次方程x2+2x-m=0有两个相等的实数根,则m的值为________.
8.一元二次方程x2-2x=0的解是____________.
9.已知关于x的一元二次方程x2+mx-8=0的一个实数根为2,则另一实数根及m的值分别为____________.
10.已知关于x的方程x2+2x+a-2=0.
(1)若该方程有两个不相等的实数根,求实数a的取值范围;
(2)当该方程的一个根为1时,求a的值及方程的另一根.
11.(2018年沈阳)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2.3.4月每个月生产成本的下降率都相同.
(1)求每个月生产成本的下降率;
(2)请你预测4月份该公司的生产成本.
12.先化简,再求值:(x -1)÷⎝
⎛⎭
⎪⎫2x +1-1,其中x 为方程x2+3x +2=0的根.
B 级 中等题
13.已知2是关于x 的方程x2-2mx +3m =0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )
A .10
B .14
C .10或14
D .8或10
14.(2018年四川南充)若2n(n≠0)是关于x 的方程x2-2mx +2n =0的根,则m -n 的值为________.
15.(2018年四川绵阳)已知a >b >0,且2a +1b +3b -a =0,则b a
=________. 16.(2017年黑龙江绥化)已知关于x 的一元二次方程x2+(2m +1)x +m2-4=0.
(1)当m 为何值时,方程有两个不相等的实数根?
(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m 的值.
C 级 拔尖题
17.(2017年江苏盐城)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.
(1)2014年这种礼盒的进价是多少元每盒?
(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?
参考答案
1.D 2.B 3.B 4.A 5.D 6.A
7.-1 8.x1=0,x2=2 9.-4,2
10.解:(1)∵关于x 的方程有两个不相等的实数根,
∴Δ=22-4()a -2>0.解得a<3.
(2)∵该方程的一个根为1,
∴1+2+a -2=0.解得a =-1.
∴原方程为x2+2x -3=0.解得x1=1,x2=-3.
∴a =-1,方程的另一根为-3.
11.解:(1)设每个月生产成本的下降率为x.
根据题意,得400(1-x)2=361.
解得x1=0.05=5%,x2=1.95(不合题意,舍去).
答:每个月生产成本的下降率为5%.
(2)361×(1-5%)=342.95(万元).
答:预测4月份该公司的生产成本为342.95万元.
12.解:原式=(x -1)÷2-x -1x +1=(x -1)÷1-x x +1
=(x -1)×x +11-x
=-x -1.
由x 为方程x2+3x +2=0的根,解得x =-1,或x =-2.
当x =-1时,原式无意义,所以x =-1舍去;
当x =-2时,原式=-(-2)-1=2-1=1.
13.B 14.12 15.-1+32
16.解:(1)∵方程x2+(2m +1)x +m2-4=0有两个不相等的实数根,
∴Δ=(2m +1)2-4(m2-4)=4m +17>0,解得m >-
174. ∴当m >-174
时,方程有两个不相等的实数根. (2)设方程的两根分别为a ,b ,
根据题意,得a +b =-2m -1,ab =m2-4.
∵2a,2b 为边长为5的菱形的两条对角线的长,
∴a2+b2=(a +b)2-2ab =(-2m -1)2-2(m2-4)=25.
解得m =-4或m =2.
∵a >0,b >0,∴a +b =-2m -1>0.
∴m =-4.
17.解:(1)设2014年这种礼盒的进价为x 元/盒,则2016年这种礼盒的进价为(x -11)元/盒.根据题意,得 3500x =2400x -11
. 解得x =35.
经检验:x =35是原方程的解.
答:2014年这种礼盒的进价是35元/盒.
(2)设年增长率为a ,
2014年的销售数量为3500÷35=100(盒).
根据题意,得
(60-35)×100(1+a)2=(60-35+11)×100.
解得a =0.2=20%或a =-2.2(不合题意,舍去).
答:年增长率为20%.。