结构力学——矩阵位移法

合集下载

结构力学二7-矩阵位移法

结构力学二7-矩阵位移法
简记为
e e
e
1
4ie
1
e
1e 2ie 2e 4ie
F k
2ie
---单元刚度方程 其中
k e称作单元刚度矩阵(简称作单刚)
1
ie
e 1
e
F2e
单元刚度矩阵中元素的物理意义
e e 4ie 2ie k k e 11 12 k e e 2 i 4 i k k e 21 22 e
F 4i 2ie
e 1 e e 1
e 2
ie
e 1
e
F2e
F
e 1

e 2
2
e F2e 2ie1e 4ie 2
1e
F
e
2e
F2e
e 1
F1 4ie 2ie 1 2 i 4 i F e 2 2 e
1
1/2
2
M-图(kN· m)
(2)乘大数法 若 i 0 ,则将总刚主对角 元素 kii 乘以大数N.
6kN.m
3kN.m
i1 1 i2 2
2 3
P3
1
4 2 0 1 6 2 12 4 3 2 P 0 4 8 3 3
4 2 0 1 / 2 1 0 F 2 4 1 / 4 1 2 1 / 4 0 8 4 1 / 4 2 3 2 F 4 8 0 1 1 1
q
练习: 求图示结构的等效结点荷载. q
1 2 3 4
1
2

结构力学矩阵位移法

结构力学矩阵位移法
k的单位转角引起的j端弯矩用
k jk 表示,k端弯矩用 k kk 表示,放在劲度矩阵第二列;
k(1)k(2)k(3) k kk jjj
k kk jk k 2 4ii
2i 4i
21
K1是 1 1自由度发生单1自 位由 转度 角引 在起的刚
位移法用结点的平衡
K1
1.位移法作结点位移引起的单位内力(弯矩、剪力) 图 矩阵位移法将结点位移引起的杆端力放在单元劲度 矩阵中。
2.位移法从结点位移引起的单位内力(弯矩、剪力) 图中取出结点作为脱离体,由脱离体的力平衡条件 求得附加约束反力,即整体劲度系数。
矩阵位移法由单元劲度矩阵集合成整体劲度矩阵。
10
位移法和矩阵位移法求自由项系数的方法有何不同?
11
背:位移法矩阵位移法整体结点位移正负号规定?
整体结点位移,矩阵位移法中与整体坐标方向一 致为正。位移法中角位移顺钟向为正,线位移无 规定。
12
第二专题: 只有转角未知量的连续梁的矩阵位移法
13
用位移法和矩阵位移法求图示连续梁的杆端弯矩
FP1 FP FP2 2FP ql FP
14
背:位移法和矩阵位移法的基本系-结点转角处附加刚臂
K21kk(2j) 2i
23
K12是2自由度发生单1自 位由 转度 角引 在起的刚
位移法用结点的平衡
K12的形成
矩阵位移法:与1和2自由度都 有关的单元单元只有(2)单 元,1自由度对应(2)单元的 j端,2自由度对应(2)单元 的k端,故:
K12k(j2k) 2i
24
K22是2自由度发生单2自 位由 转度 角引 在起的刚
5
背:为什么矩阵位移法比位移法可能有更多的独立的 结点线位移作为基本未知量?

结构力学十三讲矩阵位移法

结构力学十三讲矩阵位移法

-6EI l2
4EI l
4
§13-3 单元刚度矩阵(整体座标系)
一、单元座标转换矩阵 Y1
X1
X1
Y1
MM21
e
x
M2 X2
正交矩阵 [T]-1 =[T]T
e e
e T T e
v1
y e
X 2
Y2
Fⓔ T T F ⓔ
ee
F T F ee
座标转换矩阵
5
二、整体座标系中旳单元刚度矩阵
[k] e = [T]T k e [T]
(4)
(6)
00
(5)
y
单元 局部码总码
单元 局部码总码
(1) 1 (2) 2 (3) 3 (4) 0 (5) 0 (6) 4
1
2
3 0
0
4
(1) 1
1
(2) 2
2
(3) 3 (4) 0
3 0
(5) 0
0
(6) 0
0
18
1 2
[k] 1 = 3
0 0 4
1 2
[k] 2= 3
0 0 0
123004 101 102 103 104 105 106 201 202 203 204 205 206 301 302 303 304 305 306 401 402 403 404 405 406 501 502 503 504 505 506 601 602 603 604 605 606 123000 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66

结构力学 矩阵位移法

结构力学 矩阵位移法
K
e
1
e
K 2) 是对称矩阵 K 的对称性是指其元素有如下关系:
e e
k
e ( i )( j )
k
e ( j )(i )
(11-7)
这实际上是根据反力互等定理得 出的结论。
3)K 一般单元的是奇异矩阵 K的奇异性是指其行列式等于零,即
e e
K 0
e
(11-8)
直接计算式(11-6)的矩阵行列 式,便可验证上述结论。
(11-9)
此时单元刚度矩阵为
4 EI l e K 2 EI l 2 EI l 4 EI l
(11-10)
返回
在结构矩阵分析中,我们着眼于计 算过程的程序化、标准化和自动化。 因此只采用一种标准化形式—一般 单元的刚度矩阵(11-6),关于 单元刚度矩阵的各种特殊形式将由 计算机程序去自动形成。
图11—4
返回
u1 v1 u 2 v2 0
(a)
将式(a)代入式(11-4),即自动得出此特 殊单元的刚度方程如下:
M 1 M 2
e
4 EI 2 EI e l l 1 2 EI 4 EI 2 l l
K 由此可知, 不存在逆矩阵。也就是 说,根据单元刚度方程(11-5), e 可以由杆端位移 推算出杆端力 F 且 F 的解是唯一解;但不能由杆端 力 F 反推出杆端位移 , 可能无解, 如有解,则为非唯一解。
e e e e e e
为了避免混淆,我们把正反两个问 题再从数学提法、力法模型、解的 性质等方面作一对比。见下表:
首先,由杆端轴向位移 u1
e EA e F (u 1 u 2 ) l e e EA e F x2 (u 1 u 2 ) l e x1

结构力学之矩阵位移法

结构力学之矩阵位移法

第十二章 矩阵位移法【例12-1】 图 a 所示 连 续 梁 ,EI=常数,只 考 虑 杆 件 的 弯 曲 变 形 。

分别用位移法和矩阵位移法计算。

图12-1解:(1)位移法解•基本未知量和基本结构的确定用位移法解的基本结构如图c 所示。

这里我们将结点1处的转角也作为基本未知数,这样本题仅一种基本单元,即两端固定梁。

•位移法基本方程的建立⎪⎭⎪⎬⎫=+θ+θ+θ=+θ+θ+θ=+θ+θ+θ000333323213123232221211313212111P P P R K K K R K K K R K K K 将上式写成矩阵形式⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧θθθ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000321321333231232221131211P P P R R R K K K K K K K K K•系数项和自由项 计算(须绘出单位弯矩图和荷载弯矩图)由图d ,结点力矩平衡条件∑=0M ,得 EI K 411=,l EI K 221=,031=K由图e ,结点力矩平衡条件∑=0M ,得l EI K 212=,l EI l EI l EI K 84422=+=,l EI K 232=由图f ,结点力矩平衡条件∑=0M ,得 013=K ,l EI K 223=,l EI EI EI K 84433=+=由图g ,结点力矩平衡条件∑=0M ,得81Pl R p -=,2Pl R P -=,03=P R将系数项和自由项代入位移法基本方程,得⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧θθθ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0000118820282024321Pl l EI •解方程,得⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧θθθ14114162321EI Pl •由叠加法绘弯矩图,如图h 所示。

(2)矩阵位移法解•对单元和结点编号(图a ) 本题只考虑弯曲变形的影响,故连续梁每个结点只有一个角位移未知数。

结构力学课件 结构力学课件矩阵位移法nm

结构力学课件 结构力学课件矩阵位移法nm

k 1 3 k 2 3 k 3 3 k 4 3 k 5 3 k 6 3
k 1 4 k 2 4 k 3 4 k 4 4 k 5 4 k 6 4
1 , k k 1
0 0 0 0 0 1
α=90°
k
e
T
0 1 T 0 0 0 0
T
k T
e
第十章 矩阵位移法
扬 州 大 学 水 利 学 院
§10-4 整体分析
本节的整体分析是在单元分析的基础上,综合考虑静力、几何和物理三方面
6 EI l
2
i i
uj
12 EI l
3
vj vj
6 EI l
2
j
Mi X
6 EI l
2
4 EI l EA l
6 EI l
2
2 EI l
j
j

EA l
3
ui
Yj M
12 EI l
2
vi
6 EI l
2
i
12 EI l
2 3
vj
6 EI l
2
j
6 EI l
j
vi
2 EI l
i
6 EI l
vj
4 EI l
j
第十章 矩阵位移法
扬 州 大 学 水 利 学 院
F 1 e F 2 F 3 F 4 F 5 F 6
EA l 0 0 EA l 0 0
F
ke

结构力学第8章 矩阵位移法

结构力学第8章 矩阵位移法

单元两端的杆端位移分别在单元坐标系和整体坐标系 下分解,其位移分量就构成上面的杆端位移向量。
与坐标轴的正方向一致者为正;
返回目录
作业1:已知单元的内力图,列出单元坐标下 及整体坐标下的杆端力向量。
3.04
1.24
y 0.43
4.38N)
x
作业2:已知单元的杆端力如图,写出单元坐 标及整体坐标表示的单元杆端力向量,并 作出单元的内力图。
2EI
l
x
2EI EI
l 6EIl x x
l2
EuIj 1
6EIl
x
l 2 uj 1
EA
l
x
EI
EuIj 1
l
平l面梁单元ul j 的1 x单元刚度矩阵
l
y
ui=1
6EI
l2
N ElA i y
6EI
l
12 2EI l3
12EI
Qi
0l 3
y
2EI
0 Ml iy
2EI 6EI
l
l2
vi =1 θi=1
等截面直杆的刚度方程
适用于两端都是刚结点的杆, 基本未知量为杆两端的转角和侧移;
刚度方程:
M AB
4i A
2i B
6i
l
M BA
2i A
4i B
6i
l
QAB
QBA
1 l
(
M
AB
M BA)
QAB
QBA
6i l
A
6i l
B
1 2i l2
4i
❖ 写成矩阵的形式:
❖ 杆端弯矩、剪力、杆端 侧移均以绕杆端顺时针 为正。关键掌握每个系

矩阵位移法

矩阵位移法

⎤ ⎧δ1② ⎫ k ⎥⎨ ②⎬ k ⎦ ⎩δ 2 ⎭
② 12 ② 22
② ⎡ k11 =⎢ ② ⎣ k21 ② k12 ⎤ ②⎥ k22 ⎦
k①
① ⎡ k22 =⎢ ① ⎣ k32
① k23 ⎤ ①⎥ k33 ⎦
k②
23 / 42
第十章 矩阵位移法
② ② F1 = k11 Δ1 + k12 Δ 2 ② ① ② ① F2 = k21 Δ1 + (k22 + k22 )Δ 2 + k23 Δ 3 ① ① F3 = k32 Δ 2 + k33 Δ 3
e Nj
F = − F sinα + F cosα
e xi e yi
M ie
e
i
Me j
M ie = M ie
F
e xi
e FNi M ie e FSi
y x
e ⎧ FNi ⎫ ⎡ cosα ⎪ e⎪ ⎢ e Fi = ⎨ FSi ⎬ = ⎢ −sinα ⎪M e ⎪ ⎢ 0 ⎩ i⎭ ⎣
sinα cosα 0
10 / 42
第十章 矩阵位移法
廏鞾條栒厱冟剶异昕穧 局部坐标系下平面杆单元分析
y
i
EA
e
j
x
u je
单元方向: i → j
⎧uie ⎫ ⎪ ⎪ δ e = ⎨ e⎬ 杆端位移: ⎪u j ⎪ ⎩ ⎭
uie
e FNi
i
EA
e
j Fe Nj
F
F
e Ni
EA EA e = ⋅ ui − ⋅ u je l l
矩阵位移法与矩阵力法之不同就在于选取 的基本未知量不同,因此计算次序不同

结构力学-矩阵位移法

结构力学-矩阵位移法
Fxe1, Fye1, u1e , v2e , Fxe2 , Fye2 , u2e , v2e
以上杆端力和杆端线位移与相应的坐标轴正 方向一致为正,相反为负。
M1e,M 2e,1e,2e,M1e,M 2e,1e ,2e
以上杆端力矩和杆端转角均以顺时针方向为 正,逆时针方向为负。
10
3. 单元坐标转换矩阵

4

7


1
36
曲杆可用多段直杆近似代替(以直代曲)。
进行结点编号时,要尽量使单元两端结点编号 的差值最小。
4
三、单元杆端力和杆端位移的坐标变换
1.坐标系
结构整体分析 —整体坐标系xy
x
2

4
y
①③

单元分析—局部坐标系 x y 1
3
单元始端指向末端的方向就
是 x 轴的正方向
1
x
坐标轴遵循右手法则,即
Fx1e
M
e 1
1
M
e 1
e
y
x
2
y
x
单元杆端力
x
2

4
y
①③

1
3
y v1e 1
1
u1e
u1e
v1e
1e
1e
e
y
x
2
x
2
单元杆端位移
7
Fxe1 Fye1
uv11ee
F
e
MFxe12e
e
u12ee
Fye2
v2e
M
e 2
e 2
Fxe1 Fye1
uv11ee
点,单元与单元、单元与支座均通

结构力学课件 第十章 矩阵位移法

结构力学课件 第十章 矩阵位移法

• 分别绘在结上,如图b 所示。
图17-12 返回 下一张 上一张 小结
• 第六节 矩阵位移法解题步骤
• 具体步骤如下:
• 1)将结构划分为若干个单元,并将各单元和结点进行编号。 • 2)选择结构坐标系及局部坐标系。 • 3)计算等效结点荷载,建立结点荷载列向量和结点位移列向
• 2)计算结构坐标系中各单元的单元刚度矩阵。
• 3)将各单元刚度矩阵的各子块,按“对号入座”送入结构总刚 度矩阵中。
• 17.3.2 结构总刚度方程

方程 K 式F中:
• {F} — 结构的结点力列向量;
• — 结构的结点位移列向量;
• [K] —结构的总刚度矩阵或叫结构整体刚度矩阵。
返回 下一张 上一张 小结
e
j
• 结点的杆端力列向量为:
e
F
i
e
Xi
Y
e i
e
M i
e
X j
F
e
j
e Y j
e
M j
• 注:这些杆端位移和杆端力的正向均规定与坐标轴的正方向一致 为正;其中转角和弯矩以顺时针为正。
返回 下一张 上一张 小结
• 17.2.3 单元杆端力与杆端位移之间的关系式
• 2)在 B、C 两点没有附加约束的情况
• 下,施加与上述固端剪力和固端弯矩
• 大小相等方向相反的力和力矩,如图
• 7-10(c)所示。
• 3) (a)=(b)+(c)
• 4)等效结点荷载为汇交在每一结点的
• 固端剪力的代数和以及固端弯矩代数
• 和,但方向相反。

图7-10
返回 下一张 上一张 小结
x

结构力学 第三十九、四十讲矩阵位移法

结构力学  第三十九、四十讲矩阵位移法

Y P1 4kN
M
4kN M P1 5kN m
第十一章 矩阵位移法
例11-3 试求图11-9a所示刚架在图11-13给定荷载下 的等效结点荷载向量{Pe}。
因此
0
12kN
FP
(1)
=10k0N
m
12kN
10kN m
0
4kN
(2) 5kN m
Y P1
M P1
X P2
Y P2
M P2 )T
第十一章 矩阵位移法
在表11-1中给出了几种典型荷载所引起的固端约束
力 FP。将e 固端约束力 反F号P,e 即得到单元等效结点
荷载 (局P部坐e 标系):
(e)
(e)
Pe FP
(11-55)
2、单元的等效结点荷载 Pe((e)整体坐标系)
第十一章 矩阵位移法
第十一章 矩阵位移法
目录
第十一章 矩阵位移法
§11-5 矩阵位移法基本方程 §11-6 计算步骤和应用举例
第十一章 矩阵位移法
§11-5 矩阵位移法基本方程
一、整体刚度方程的意义
F [K] (11-48)
整体刚度方程(11-48)是根据原结构的位移法基本体
系建立的,它表示由结点位移 推算结点力F( 即在基
向相反,则取负。
第十一章 矩阵位移法
例11-3 试求图11-9a所示刚架在图11-13给定荷载下 的等效结点荷载向量{Pe}。
解:(1)求局部坐标系中的
固端约束力 FP (e)
单元①:由表11-1第1行,
q 4.8k,N / m 得a :l 5m
X P1 0
Y P1 12kN
M
P1

结构力学 矩阵位移法

结构力学 矩阵位移法

§9-2节 单元刚度矩阵(局部坐标系)
一.一般单元的刚度方程和刚度矩阵
1.单元两端采用局部编码1、2
1
e
2.六个杆端位移组成杆端位移列向量。
v1
1
u1
EAI L
3.六个杆端力组成杆端力列向量。
y
2
2 vu22 x
e
1
2
e
u1 v1
e
3
1
F1
e
F2
e
F x1 Fy1
单元刚度矩阵中的每个元素都代表单元
杆端单位位移引起的杆端力称之为单元
刚度系数。其中
k
表示第j个杆端单位位移
ij
引起的第i个杆端力。
⑵单元刚度矩阵为对称矩阵。 kij k ji
⑶一般单元刚度矩阵为奇异矩阵 k e 0
三、特殊单元刚度方程和刚度矩阵
⑴连续梁中的受弯杆件单元 ⑵桁架结构中杆件单元
⑴连续梁中的受弯杆件单元
忽略轴变时单元的刚度矩阵
12EI
l3 6EI
k
e
l2
12E
l3 6EI
I
l2
6EI
l2 4EI
l 6EI
l2 2EI
l
12EI l3
6EI l2
12EI
l3 6EI l2
6EI
e
l2 2EI
l
6EI l2
4EI
l
§9-3节 单元刚度矩阵(整体坐标系)
一、单元坐标转换矩阵
⑶根据所选基本未知量的不同,结构矩阵分析 包括:
§9-1节 位移法概述
矩阵力法
结构矩阵分析
一般刚度法
矩阵位移法
直接刚度法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构力学
学习内容
有限单元法的基本概念,结构离散化。 平面杆系结构的单元分析:局部坐标系下的单元刚度矩
阵和整体坐标系下的单元刚度矩阵。 平面杆系结构的整体分析:结构整体刚度矩阵和结构整
体刚度方程。 边界条件的处理,单元内力计算。 利用对称性简化位移法计算。 矩阵位移法的计算步骤和应用举例。
2
学习目的和要求
2、局部坐标系中的单元刚度矩阵
k
e
EA l
1 1
1
1
kk1211
k12 k22
刚度系数的物理意义: • 单元刚度矩阵是杆端力与杆端位移之物理关系; • 矩阵的阶数与杆端位移分量数相等; • kij 表示 uj 1 引起的杆端力Fi 的大小。
15
第二节 单元分析(局部坐标系下的单元分析 )
5
第一节 矩阵位移法概述
结构力学传统方法与结构矩阵分析方法,二者同源而有别:
在原理上同源,在作法上有别
前者在“手算”的年代形成,后者则着眼于“电算”,计算手 段的不同,引起计算方法的差异。
与传统的力法、位移法相对应,在结构矩阵分析中也有矩阵力 法和矩阵位移过程程序化的优点而广为流传。
3、局部坐标系中的单元刚度矩阵性质
矩阵位移法的要点 :
化整为零
集零为整
(离散化、单元分析) (结点力平衡、位移协调)
9
第一节 矩阵位移法概述
2、单元划分
将一个在荷载作用下的连续结构剖分成若干个各自独立 的单元,原结构可以看成是由各单元在连接点(称结点) 连接而成的体系——化整为零
在杆件结构矩阵分析中,一般 是把杆件的转折点、汇交点、 边界点、突变点或集中荷载作 用点等列为结点,结点之间的 杆件部分作为单元。
3
学习目的和要求
要求:矩阵位移法包含两个基本环节:单元分析和整 体分析。
在单元分析中,熟练掌握单元刚度矩阵和单元等效荷载 的概念和形成。熟练掌握已知结点位移求单元杆端力的计 算方法。
在整体分析中,熟练掌握结构整体刚度矩阵元素的物理 意义和集成过程,熟练掌握结构综合结点荷载的集成过程。 掌握单元定位向量的建立,支撑条件的处理。
c、正负号规定(采用右手法则)
杆端内力规定当与坐标轴正方向一致时为正; 杆端位移和结点位移规定当与坐标轴正方向一致时为正。 结点外力规定当与坐标轴正方向一致时为正;
8
第一节 矩阵位移法概述
1、矩阵位移法的基本思路
先把结构拆开,分解成若干个单元(在杆件结构中,一 般把每个杆件取作一个单元),这个过程称作离散化。然 后按单元力学性质对每个单元分析建立单元刚度方程,在 满足变形条件和平衡条件的前提下,将这些单元集合成整 体求解。在一分一合,先拆后搭的过程中,把复杂结构的 计算问题转化为简单单元分析和集合问题。
目的:矩阵位移法是以计算机为计算工具的现代化结构 分析方法。基于该法的结构分析程序在结构设计中得到了 广泛的应用。因此,以计算机进行结构分析是本章的学习 目的。
矩阵位移法是以位移法为理论基础,以矩阵为表现形式, 以计算机为运算工具的综合分析方法。引入矩阵运算的目 的是使计算过程程序化,便于计算机自动化处理。尽管矩 阵位移法运算模式呆板,过程繁杂,但这些正是计算机所 需要的和十分容易解决的。矩阵位移法的特点是用“机算” 代替“手算”。因此,学习本章是既要了解它与位移法的 共同点,更要了解它的一些新手法和新思想。
2、局部坐标系中的单元刚度矩阵 采用局部坐标系(以杆的轴线作为x轴)时,杆端力及
杆端位移的正方向以坐标轴正方向为正。
y
EA
F1e
e
u1 1
l
F2e 2 u2
x
杆件方向: 1 2
杆端位移: u1, u2
杆端内力: F1, F2
13
第二节 单元分析(局部坐标系下的单元分析 )
2、局部坐标系中的单元刚度矩阵
EA l u1
u1 e
1 EA
2
EA
l u2
1
e
EA
u2
2
EA l u1 EA
l u2
局部坐标 系下的单 刚方程
F1e
EA l
u1e
EA l
u2e
F2e
EA l
u1e
EA l
u2e
F1
e
F2
EA l
1 1
1
1
uu12
e
F e k e e
k
e
EA l
1 1
1
1
14
第二节 单元分析(局部坐标系下的单元分析 )
自由式单元的单元刚度矩阵不要求背记,但要领会其物 理意义,并会有它推出特殊单元的单元刚度矩阵。
4
第一节 矩阵位移法概述
矩阵位移法以传统的结构力学作为理论基础; 以矩阵作为数学表达形式; 以电子计算机作为计算手段
三位一体的解决各种杆系结构受力、变形等计算的方法。
采用矩阵进行运算,不仅公式紧凑,而且形式统一,便 于使计算过程规格化和程序化。这些正是适应了电子计 算机进行自动化计算的要求。
矩阵位移法是有限元法的雏形,因此结构矩阵分析有时也称为 杆件结构的有限元法。在本章中将使用有限元法中的一些术语 和提法。
6
第一节 矩阵位移法概述
1、矩阵位移法的基本思路
a、方法的选择
位移法与力法之由于选取的基本未知量不同,因此计算次序不同
力法
结构结点力 杆件杆端力 杆件端点位移 结构结点位移
位移法
10
第一节 矩阵位移法概述
2、单元划分
将一个在荷载作用下的连续结构剖分成若干个各自独立 的单元,原结构可以看成是由各单元在连接点(称结点) 连接而成的体系——化整为零
为了减少基本未知量的数目,跨 间集中荷载作用点可不作为结点, 但要计算跨间荷载的等效结点荷 载;跨间结点也可不作为结点, 但要推导相应的单元刚度矩阵, 编程序麻烦。
11
第二节 单元分析(局部坐标系下的单元分析 )
单元分析的目的是以结点位移为基本未知量,分析每个单元 的结点力和结点位移及荷载之间的关系,即建立单元刚度方 程,并用矩阵形式表示。
1、坐标系的选择: 在矩阵位移法中采用两种坐标系: 局部坐标系和整体坐标系。
y
xx
FP
整体坐标
y
局部坐标
y
x
12
第二节 单元分析(局部坐标系下的单元分析 )
力 法 需要选择基本体系和多余约束。所以较多地依赖于结构的具 体情况,不宜实现计算机计算的自动化,但其优点是计算出 的结果就是力。
位移法 是先求结点位移,再换算成力,该法的计算自动化和通用性强,
目前广为采用。
7
第一节 矩阵位移法概述
1、矩阵位移法的基本思路 b、基本假设和基本原理
线弹性、小变形。满足叠加原理、功能原理
相关文档
最新文档