2.4等比数列性质及简单应用

合集下载

2.4等比数列(基础)

2.4等比数列(基础)

2.4等比数列(基础)要点一、等比数列的定义一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(0q ≠),即:1(0)n na q q a +=≠. 要点诠释:①由于等比数列每一项都可能作分母,故每一项均不为0,因此q 可不能是0; ②“从第二项起,每一项与它的前一项的比等于同一个常数q ”,这里的项具有任意性和有序性,常数是同一个;③隐含条件:任一项0n a ≠且0q ≠;“0n a ≠”是数列{}n a 成等比数列的必要非充分条件;④常数列都是等差数列,但不一定是等比数列;不为0的常数列是公比为1的等比数列; ⑤证明一个数列为等比数列,其依据*1(0)n na q n N q a +=∈≠,.利用这种形式来判定. 要点二、等比中项如果三个数a 、G 、b 成等比数列,那么称数G 为a 与b 的等比中项.其中G =。

要点诠释:①只有当a 与b 同号即0ab >时,a 与b 才有等比中项,且a 与b 有两个互为相反数的等比中项. 当a 与b 异号或有一个为零即0ab ≤时,a 与b 没有等比中项。

②任意两个实数a 与b 都有等差中项,且当a 与b 确定时,等差中项2a bc +=唯一. 但任意两个实数a 与b 不一定有等比中项,且当a 与b 有等比中项时,等比中项不唯一。

③当0ab >时,a 、G 、b 成等比数列⇔G ba G=2 ④2G ab =是a 、G 、b 成等比数列的必要不充分条件。

要点三、等比数列的通项公式首相为1a ,公比为q 的等比数列{}n a 的通项公式为:11n n a a q -=⋅(*1N 0n a q ∈⋅≠,)推导过程:(1)归纳法: 根据等比数列的定义1nn a q a -=可得1(2)n n a a q n -=≥: ∴21211a a q a q -==;23132111()a a q a q q a q a q -====; 234143111()a a q a q q a q a q -====;……111(2)n n n a a q a q n --===≥L当n=1时,上式也成立∴归纳得出:111(*n n a a q n N a q -=⋅∈⋅≠,(2)累乘法: 根据等比数列的定义1nn a q a -=可得: 21a q a =,32a q a =,43aq a =,…,1n n a q a -=, 把以上1n -个等式的左边与右边分别相乘(累乘),并化简得:11n na q a -=,即11(2)n n a a q n -=≥又1a 也符合上式∴111(*0)n n a a q n N a q -=⋅∈⋅≠,.要点诠释:①通项公式由首项1a 和公比q 完全确定,首项和公比确定,该等比数列就唯一确定了。

2.4等比数列

2.4等比数列

已知无穷数列
1 5 2 5 n 1 5
10 , 10 , 10 , L ,10 求证: (1)这个数列是等比数列 ;
, L,
1 (2)这个数列中的任意一 项是它后面第 5 项的 10 (3)这个数列中任意两项的积仍然在这个数列中.
分析:这是等比数列定义与性质的应用.
n
证明:(
1)因为
a n 1 an
2
(1)求证:数列{bn+2}是公比为2的等比数列; (2)求 a n 分析:此题是两个数 列相结合的问题.首先要明 白关系.
解: (1)由
b n 1 2b n 2

b n 1 2 bn 2

2b
n
4
bn 2
2
{b n 2}
是公比为2的等比数列.
(2)由(1)可知
5
10
5
10
5

q 1 5
( p q 1)1
10
5
.
∵p ,q N* ,所以 p + q – 1 N*,
( p q 1)1
a 数列的第
p
a q 10
5
是这个数列中的一项
,是
pq 1 项 .
例4
已知数列 {a n } , {b
n
}
满足
n
a 1 2, a 2 4, b n a n 1 a n , b n 1 2b
2 *
数 定
列 义
等 差 数 列 an+1-an=d d 叫公差 an+1=an+d
等 比 数 列
a n1 an q
公差(比)

课件5:2.4 等比数列

课件5:2.4 等比数列

所以 a5+a9=178, a5·a9=1.
所以a5>0 a9>0.
又因为 a7 是 a5,a9 的等比中项, 所以 a72=a5·a9=1. 由于 a7=a5·q2,故 a7 与 a5 同号,∴a7=1.

列方程组aa44+·a6a=6=25460., 解得aa46==382,, 或aa46==83,2.
∴q2=aa46=382=14或 q2=382=4. ∴q=±12或 q=±2. 【答案】±12或±2
4.已知数列{an}为等比数列,若a1+a2+a3=7,a1·a2·a3 =8,求数列{an}的通项公式. 解:∵a22=a1a3,代入已知,得 a23=8,∴a2=2.
(2)∵{an}成等比数列,∴a2,a6,a10 仍成等比数列, ∴a62=a2a10,∴a10=aa622=16222=13 122. (3)∵{an}成等比数列, ∴a3·a4·a5,a6·a7·a8,a9·a10·a11 仍成等比数列,
此数列公式 q=aa63aa74aa85=234=8, a9a10a11=(a6a7a8)·q=24×8=192.
新知讲解:等比数列的常用性质
性质1 性质2
性质3
性质4 性质5
通项公式的推广:an=am·qn-m (n,m∈N*) 若{an}为等比数列,且k+l=m+n(k,l,m,n∈N*), 则ak·al=__a_m_·a_n__. 若{an},{bn}(项数相同)是等比数列,则{λan},a1n,{an2},
解得ab= =36 或ab= =744455

∴这四个数为 3,6,12,18 或745,445,247,94.
题后感悟:合理地设出所求数中的三个,根据题意得出另一 个是解决这类问题的关键.一般来说,三个数成等比数列时 可设aq,a,aq;三个数成等差数列时可设 a-d,a,a+d; 四个数成等差数列时,可设为 a-3d,a-d,a+d,a+3d, 但当四个数成等比数列时,不能设成qa3,aq,aq,aq3,这样 隐含了公比 q2>0 这一条件,可能会产生失根.

高中数学 第二章 数列 2.4 等比数列(二)课件 新人教A版必修5

高中数学 第二章 数列 2.4 等比数列(二)课件 新人教A版必修5
根据等比数列的性质 a5a6=a1a10=a2a9=a3a8=a4a7=9, ∴a1a2…a9a10=(a5a6)5=95, ∴log3a1+log3a2+…+log10.
名师点评
抓住各项序号的数字特征,灵活运用等比数列的性质,可以顺利地 解决问题.
1234
4.an=2n+3n,判断数列{an}是不是等比数列? 不是等比数列. ∵a1=21+31=5,a2=22+32=13,a3=23+33=35, ∴a1a3≠a22, ∴数列{an}不是等比数列.
1234
课堂小结
1.解题时,应该首先考虑通式通法,而不是花费大量时间找简便方法. 2.所谓通式通法,指应用通项公式,前n项和公式,等差中项,等比中 项等列出方程(组),求出根本量. 3.巧用等比数列的性质,减少计算量,这一点在解题中也非常重要.
探究点2 等比数列的性质
命题角度1 序号的数字特征 例2 {an}为等比数列. (1)假设an>0,a2a4+2a3a5+a4a6=25,求a3+a5;
a2a4+2a3a5+a4a6=a23+2a3a5+a25 =(a3+a5)2=25, ∵an>0, ∴a3+a5>0, ∴a3+a5=5.
(2)假设an>0,a5a6=9,求log3a1+log3a2+…+log3a10的值.
方法二 设这四个数依次为2qa-a,aq,a,aq(q≠0),
2qa-a+aq=16, 由条件得aq+a=12,
解得aq==82,
a=3, 或q=13.
当a=8,q=2时,所求的四个数为0,4,8,16;
当 a=3,q=13时,所求的四个数为 15,9,3,1. 故所求的四个数为0,4,8,16或15,9,3,1.
2.等比数列项的运算性质 在等比数列{an}中,若 m+n=p+q(m,n,p,q∈N*),则 am·an= ap·aq . ①特别地,当 m+n=2k(m,n,k∈N*)时,am·an= a2k . ②对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的 积 ,

2.4.2等比数列的基本性质及其应用

2.4.2等比数列的基本性质及其应用

2.4.2 等比数列的基本性质及其应用三维目标一、知识与技能1.了解等比数列更多的性质2.能将学过的知识和思想方法运用于对等比数列性质的进一步思考和有关等比数列的实际问题的解决中3.能在生活实际的问题情境中,抽象出等比数列关系,并能用有关的知识解决相应的实际问题二、过程与方法1.继续采用观察、思考、类比、归纳、探究、得出结论的方法进行教学2.对生活实际中的问题采用合作交流的方法,发挥学生的主体作用,引导学生探究问题的解决方法,经历解决问题的全过程3.当好学生学习的合作者的角色三、情感态度与价值观1.通过对等比数列更多性质的探究,培养学生的良好的思维品质和思维习惯,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力2.通过生活实际中有关问题的分析和解决,培养学生认识社会、了解社会的意识,更多地知道数学的社会价值和应用价值重难点教学重点1.探究等比数列更多的性质2.解决生活实际中的等比数列的问题教学难点渗透重要的数学思想教具准备多媒体课件、投影胶片、投影仪等教学过程导入新课师教材中第59页练习第3题、第4题,请学生课外进行活动探究,现在请同学们把你们的探究结果展示一下生 由学习小组汇报探究结果 师 对各组的汇报给予评价师 出示多媒体幻灯片一:第3题、第4题详细解答: 第3题解答:(1)将数列{a n }的前k 项去掉,剩余的数列为a k+1,a k+2,….令b i =a k+i则数列a k+1,a k+2,…,可视为b 1,b 2,因为q a a b b ik i k i i ==++++11 (i≥1),所以,{b n }是等比数列,即a k+1,a k+2,…是等比数列 (2){a n }中每隔10项取出一项组成的数列是a 1,a 11,a 21,…,则109101101121111......q a a a a a a k k =====-+所以数列a 1,a 11,a 21,…是以a 1为首项,q 10为公比的等比数列猜想:在数列{a n }中每隔m(m 是一个正整数)取出一项,组成一个新数列,这个数列是以a 1为首项、q m为公比的等比数列◇本题可以让学生认识到,等比数列中下标为等差数列的子数列也构成等比数列,可以让学生再探究几种由原等比数列构成的新等比数列的方法第4题解答:(1)设{a n }的公比是q ,则a 52=(a 1q 4)2=a 12q 8而a 3·a 7=a 1q 2·a 1q 6=a 12q 8所以a 52=a 3·a 7同理,a 52=a 1·a 9(2)用上面的方法不难证明a n 2=a n -1·a n +1(n >1).由此得出,a n 是a n -1和a n +1的等比中项,同理可证a n 2=a n -k ·a n +k (n >k >0).a n 是a n -k 和a n +k 的等比中项(n >k >师 和等差数列一样,等比数列中蕴涵着许多的性质,如果我们想知道的更多,就要对它作进一步的探究推进新课 [合作探究] 师 出示投影胶片1例题1 (教材P 61B 组第3题)就任一等差数列{a n },计算a 7+a 10,a 8+a 9和a 10+a 40,a 20+a 30,你发现了什么一般规律,能把你发现的规律用一般化的推广吗?从等差数列和函数之间的联系的角度来分析这个问题.在等比数列中会有怎样的类似结论?师 注意题目中“就任一等差数列{a n }”,你打算用一个什么样的等差数列来计算? 生 用等差数列1,2,3,师 很好,这个数列最便于计算,那么发现了什么样的一般规律呢? 生 在等差数列{a n }中,若k+s=p+q(k,s,p,q∈N *),则a k +a s =a p +a q师 题目要我们“从等差数列与函数之间的联系的角度来分析这个问题”,如何做?生 思考、讨论、交流师 出示多媒体课件一:等差数列与函数之间的联系[教师精讲]师 从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{a n }的图象,可以看出qs a a p k a a q s p k ==,根据等式的性质,有1=++=++qp sk a a a a q p s k所以a k +a s =a p +a q师 在等比数列中会有怎样的类似结论?生 猜想对于等比数列{a n },类似的性质为:k+s=p+t(k,s,p,t∈N *),则a k ·a s =a p ·a t师 让学生给出上述猜想的证明证明:设等比数列{a n }公比为q ,则有a k ·a s =a 1q k-1·a 1q s-1=a 12·qk+s-2a p ·a t =a 1q p-1·a 1q t-1=a 12·q p+t-2因为所以有a k ·a s =a p ·a t师 指出:经过上述猜想和证明的过程,已经得到了等比数列的一个新的性质即等比数列{a n }中,若k+s=p+t(k,s,p,t∈N *),则有a k ·a s =a p ·a t师 下面有两个结论:(1)与首末两项等距离的两项之积等于首末两项的积; (2)与某一项距离相等的两项之积等于这一项的平方你能将这两个结论与上述性质联系起来吗?生 思考、列式、合作交流,得到:结论(1)就是上述性质中1+n =(1+t)+(n -t)时的情形; 结论(2)就是上述性质中k+k=(k+t)+(k-t)时的情形 师 引导学生思考,得出上述联系,并给予肯定的评价 师 上述性质有着广泛的应用师 出示投影胶片2:例题2例题(1)在等比数列{a n }中,已知a 1=5,a 9a 10=100,求a 18(2)在等比数列{b n }中,b 4=3,求该数列前七项之积; (3)在等比数列{a n }中,a 2=-2,a 5=54,求a 8.例题2 三个小题由师生合作交流完成,充分让学生思考,展示将问题与所学的性质联系到一起的思维过程解答:(1)在等比数列{a n }中,已知a 1=5,a 9a 10=100,求a 18解:∵a 1a 18=a 9a 10,∴a 18=51001109=a a a(2)在等比数列{b n }中,b 4=3,求该数列前七项之积解:b 1b 2b 3b 4b 5b 6b 7=(b 1b 7)(b 2b 6)(b 3b 5)b 4∵b 42=b 1b 7=b 2b 6=b 3b 5,∴前七项之积(32)3×3=37(3)在等比数列{a n }中,a 2=-2,a 5=54,求a 8解:.∵a 5是a 2与a 8的等比中项,∴542=a 8×(-∴a 8=-另解:a 8=a 5q 3=a 5·2545425-⨯=a a =-[合作探究]师 判断一个数列是否成等比数列的方法:1、定义法;2、中项法;3、通项公式法例题3:已知{a n }{b n }是两个项数相同的等比数列,仿照下表中的例子填写表格.从中你能得出什么结论?证明你的结论师 请同学们自己完成上面的表师 根据这个表格,我们可以得到什么样的结论?如何证明?生 得到:如果{a n }、{b n }是两个项数相同的等比数列,那么{a n ·b n }也是等比数列证明如下:设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的第n 项与第n +1项分别为a 1pn -1b 1q n -1与a 1p n b 1q n ,因为pq qb p a q b p a b a b a n n nn n n n n ==∙--++11111111它是一个与n 无关的常数,所以{a n ·b n }是一个以pq 为公比的等比数列[教师精讲]除了上面的证法外,我们还可以考虑如下证明思路: 证法二:设数列{a n }的公比是p ,{b n}公比是q ,那么数列{a n ·b n }的第n 项、第n -1项与第n +1项(n >1,n ∈N *)分别为a 1p n -1b 1q n -1、a1pn -2b 1q n -2与a 1p n b 1q n ,因为(a n b n )2=(a 1pn -1b 1q n -1)2=(a 1b 1)2(pq) 2(n -1)(a n -1·b n -1)(a n +1·b n +1)=(a 1p n -2b 1q n -2)(a 1p nb 1q n)=(a 1b 1)2(pq)2(n -1)即有(a n b n )2=(a n -1·b n -1)(a n +1·b n +1)(n >1,n ∈N *所以{a n ·b n }是一个等比数列师 根据对等比数列的认识,我们还可以直接对数列的通项公式考察:证法三:设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的通项公式为a nb n =a 1p n -1b 1q n -1=(a 1b 1)(pq) n-1设c n =a n b n ,则c n =(a 1b 1)(p q)n-1所以{a n ·b n }是一个等比数列课堂小结本节学习了如下内容: 1.等比数列的性质的探究2.证明等比数列的常用方法布置作业课本第60页习题2.4 A 组第3题、B 组第1题.板书设计习题详解(课本第60页习题2.4)组1.(1)a 7=a 4·q 3=27×(-3)3=-(2)设等比数列{a n }的公比是⎪⎩⎪⎨⎧=-=-⇔⎩⎨⎧=-=-②①.6)1(,15)1(61521412415q q a q aa a a a ②÷①,整理得6q 2- 解方程得q=2或21=q由a 4-a 2=6,得a 3(q-q -1)=6,所以,当q=2时,由③得,a 3=4当21=q 时,由③得a 3=-2.设n 年后,需退耕a n ,则{a n }是一个等比数列,其中a 1=8,q=0.1.那么2005年需退耕a 5=a 1(1+q)5=8(1+0.1)5=13(万公顷3.若{a n }是各项均为正数的等比数列,则首项a 1和公比q 都是正数, 由a n =a 1qn -1,得121121111)(---===n n n n q a qa qa a ,所以数列{a n }是以a 1为首项,21=q 为公比的等比数列4.这张报纸的厚度为0.05 mm ,对折一次后厚度为0.05×2 mm,再对折后厚度为0.05×22mm ,再对折后厚度为0.05×23mm ,设a 0=0.05,对折n 次后报纸的厚度为a n ,则{a n }是一个等比数列,公比q=2,对折50次后,报纸的厚度为a50=a 0q 50=0.05×250≈5.63×1013=5.63×1010这时报纸的厚度已经超过地球和月球之间的平均距离(约3.84×108m),所以能够在地球和月球之间建一座桥5.设年平均增长率为q ,a 1=105,n 年后空气质量为良的天数为a n ,则{a n }是一个等比数列,由a 3=240,得a 3=a 1(1+q)2=105(1+q)2=240,解得q=105240-6.由已知条件,知2b a A +=,G=ab,且2)(222b a ab b a ab b a G A -=-+=-+=-≥0, 所以有A ≥G,等号成立的条件是a =b .而a ,b 是互异正数,所以一定有A >7.(1)±2 (2)±ab (a 2+b 28.略组1.证明略2.(1)设生物死亡时,体内每克组织中的碳14的含量为1,每年的衰变率为q ,n 年后的残留量为a n ,则{a n }是一个等比数列,由碳14的半衰期为5 730,则a n =a 1q5 730=q5 730=21,解得57301)21(=q(2)设动物约在距今n 年前死亡,由a n =0.6,得a n =a 1q n=0.999 879n解得n ≈4 221,所以动物约在距今4 221年前死亡3.略备课资料备用例题1.已知无穷数列5010,5110,5210 ,…, 5110-n求证:(1)这个数列成等比数列;(2)这个数列中的任一项是它后面第五项的101; (3)这个数列的任意两项的积仍在这个数列中证明:(1)101101010154511===-+--n n n n a a (常数),∴该数列成等比数列(2)101101010154515===-+-+n n n n a a ,即:5101+=n n aa(3)a p a q =525151101010-+--=q p q p ,∵p,q∈N,∴p+q -1≥1且(p+q-1)∈N .∴5210-+q p ∈⎭⎬⎫⎩⎨⎧-5110n (第p+q-1项2.设a ,b ,c,d 均为非零实数,(a 2+b 2)d 2-2b (a +c)d +b 2+c2求证:a ,b ,c 成等比数列且公比为d证法一:关于d 的二次方程(a 2+b 2)d 2-2b (a +c)d +b 2+c 2=0有实根, ∴Δ=4b 2(a +c)2-4(a 2+b 2)(b 2+c 2)≥0.∴-4(b 2-a c)2≥0.∴-(b 2-a c)2则必有:b 2-a c=0,即b 2=a c ,∴a ,b ,c成等比数列设公比为q ,则b =a q,c=a q 2代入 (a 2+a 2q 2)d 2-2a q(a +a q 2)d +a 2q 2+a 2q4∵(q 2+1)a 2≠0,∴d 2-2q d +q 2=0,即d证法二:∵(a 2+b 2)d 2-2b (a +c)d +b 2+c 2=0, ∴(a 2d 2-2abd +b 2)+(b 2d 2-2b c d +c2∴(ad -b )2+(bd -c)2=0.∴ad =b ,且bd∵a ,b ,c,d 非零,∴d bca b ==d .∴a ,b ,c 成等比数列且公比为d。

2.4等比数列(2)

2.4等比数列(2)
2.4 等比数列
(第2课时)
旧知回顾
1、等比数列的定义 一般的,如果一个数列从第2项起,每一项与它的前 一项的比等于同一个常数,那么这个数列就叫做等比数 列,这个常数叫做等比数列的公比,公比通常用字母q 表示(q≠0)。
an an 1 q(q 0, n 2) (或 q) 定义式: an 1 an
(2)c是不为0的常数,则{ c · an }呢?
san rbn 呢?
san 呢? rbn
完成课本第53页练习3
思考题:
比数列吗?
an {2 } 是不是等 (1) 已知等差数列 {an },试判断数列
(2) 已知等比数列 {an } ,试判断数列{log 2 an } 是不是等 差数列吗?
pq
它是一个与n无关的常数,
所以an bn 是一个以pq为公比的等比数列。
例 3、
已知数列an 、 bn 是项数相同的等比数列, 求证 an bn 是等比数列。
你能利用本例的条件,构造其他数列吗?并判断 该数列是不是等比数列?
an ( 1) 呢? bn
an a1 (n 1)d
(1)an am (n m)d
a1 0, q 0
an a1q
n 1
通项 公式
(1)an am q n m
则 am· an=as· ar .
(3) an2=an-1· an+1 . (等比中项)
主要 性质
(2)若m+n=s+r (m,n,s,r∈N*) (2)若m+n=s+r (m,n,s,r∈N*)
练习:
(1)在等比数列an 中,若a4 a8 9, 则 a2 a10 9 ,a6 ±3 .

等比数列的性质与应用

等比数列的性质与应用

等比数列的性质与应用等比数列是数学中的一种特殊数列,它的性质和应用十分广泛。

在本文中,我将介绍等比数列的性质及其在实际问题中的应用。

1. 等比数列的定义与性质等比数列是指一个数列中的每一项与它的前一项的比相等的数列。

假设数列的首项为a,公比为r,那么它的第n项可表示为an = ar^(n-1)。

等比数列具有以下性质:a) 公比为零或正数时,数列递增;公比为负数时,数列递减;b) 数列中的任意项可以通过前一项与公比的乘积得到;c) 等比数列的前n项和可以用公式Sn = a(1-r^n)/(1-r)计算。

2. 等比数列的应用等比数列的性质在各个领域中都有着广泛的应用。

以下是其中几个重要的应用:2.1. 财务与投资在财务与投资领域,等比数列的应用尤为突出。

例如,计算利息、年金、股票投资等等,都可以基于等比数列的概念进行计算。

根据等比数列的定义以及性质,可以推导出各种金融公式,为理财人员提供便捷的计算方法。

2.2. 自然科学等比数列在自然科学领域中也有着广泛的应用。

例如,在生物学中,细胞的分裂、种群的增长等往往可以用等比数列来描述。

在物理学中,声音的强度、光的强度等都可以用等比数列来衡量。

2.3. 工程与建筑在工程与建筑领域,等比数列常被用于设计与构建过程中的各种问题。

例如,设计方密切关注物体的尺寸、比例是否满足等比关系;建筑师在设计建筑物的时候,也需要考虑材料的长宽比、高度比等等。

2.4. 统计学在统计学中,等比数列可用于描述人口增长、物品销售情况、市场份额等。

利用等比数列的性质,统计学家可以更准确地预测未来的趋势,做出科学的决策。

3. 等比数列问题的解决方法为了解决等比数列问题,通常可以采用以下几种方法:3.1. 直接计算法对于已知首项和公比的等比数列问题,可以直接使用等比数列的公式进行计算。

通过计算每一项的值或者前n项的和,可以得到问题的答案。

3.2. 求比方式有时候,问题给出的信息不够明确,无法直接使用等比数列的公式。

2.4.2《等比数列(第二课时)

2.4.2《等比数列(第二课时)
1、若m, n, p, q N ,且m n p q,
则a m a n a p aq 2、a1.an a2 .an1 a3 .an2 ...
3.如果 an bn 是项数相同的等比数列,那
么 an bn 也是等比数列.
结论:如果 a
n
b n 是项数相同的等
比数列,那么an bn也是等比数列.
证明:设数列an的公比为p,bn 的公比为
q,那么数列an bn 的第n项与第n+1项分
别与为a1ba11(ppnq1)n.b1qn1 与 a1pn b1qn ,即 a b1 1(pq)n1
因为
a b n1 n1 a b1 1(pq)n pq,
an bn
a b1 1 (pq)n1
它是一个与n无关的常数,所以是一个以pq
解:由等比数列的通项公式可知
an a1qn1
am a1qm1
两式相除,得 an am
qnm
an amqnm
试比较 an =a1qn-1 与上式
练习
已知等比数列 an ,a5 20,a15 5,求a20.
解:由a15 =a5q10
得 q10 1 4
q5 1 2
a20
A. 11项 B. 12项 C. 13项 D. 10项
2.在等比数列 {an } 中, a3a4a5 3,a6a7a8 24, 则 a9a10a11 D
A. 48 B. 72 C. 144
D. 192
3.在等比数列 an 中, 2a4 a6 a5 则公比q等于: C
A. 1或2 B. -1或-2 C. 1或-2 D. -1或2
证明:设数列an的公比为p,bn 的公比为
q,那么数列an bn 的第n项与第n+1项分

2.4等比数列

2.4等比数列

人教A版数学 ·必修5
(1) (2)
(4)
练 习 判断下列各组数列中哪些是等比数列,哪 些不是?如果是,写出首项a1和公比q, 如 果不是,说明理由。 是 a =1, q=3
1,3,9,27,…
1 1 1 1 , , , , 2 4 8 16

1 1 a1 2
1 ,q 2
(3)
5, 5, 5 , 5, … 1,-1,1,-1,… 1,0,1,0,…
三、典例分析
例4累乘法求通项公式 1 a1 ,前n项和Sn=n2an,求an 已知数列{an}中, 2
an1 an f (n) 对于
an1 f ( n) 型的递推关系,先变成 an
再用等比数列通项公式的求法求其通项公式。
人教A版数学 ·必修5
三、典例分析

2 n an 1 an ,求a 。 a1 已知数列{an}满足 n n2 3
不完全 归纳法
an q an an 1q an 1
……
an a1q
n1
人教A版数学 ·必修5
二、新知讲解
3.等比数列的通项公式
a2 q a1 a3 q a2 a4 q a3
…… an q an 1

•累乘法
•将左边n-1个等式的 n-1 an n 1 得 q , 个式子 两边分别相乘 a1 n 1
思考: 如果在a与b的中间插入一个数G,使a, G, b 成等比数列,那么G应该满足什么条件? 分析: 由a, G, b成等比数列得:
G b G 2 ab G ab a G 2 G ab , (ab>0) 反之,若 G b , 则 a G
2
即a,G,b成等比数列. ∴a, G, b成等比数列 G ab (ab>0)

2.4 等比数列的性质

2.4 等比数列的性质

第2课时等比数列的性质学习目标1.灵活应用等比数列的通项公式推广形式及变形.2.理解等比数列的有关性质,并能用相关性质简化计算.知识点一 等比数列通项公式的推广和变形 等比数列{a n }的公比为q ,则 a n =a 1q n -1① =a m q n -m ② =a 1q·q n ③ 其中当②中m =1时,即化为①.当③中q >0且q ≠1时,y =a 1q ·q x为指数型函数.知识点二 等比数列常见性质(1)对称性:a 1a n =a 2a n -1=a 3a n -2=…=a m ·a n -m +1(n >m 且n ,m ∈N *); (2)若k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n ; (3)若m ,p ,n 成等差数列,则a m ,a p ,a n 成等比数列;(4)在等比数列{a n }中,连续取相邻k 项的和(或积)构成公比为q k(或2k q )的等比数列;(5)若{a n }是等比数列,公比为q ,则数列{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n }都是等比数列,且公比分别是q ,1q,q 2.(6)若{a n },{b n }是项数相同的等比数列,公比分别是p 和q ,那么{a n b n }与⎩⎨⎧⎭⎬⎫a nb n 也都是等比数列,公比分别为pq 和pq.1.a n =a m q n -m (n ,m ∈N *),当m =1时,就是a n =a 1q n -1.( √ ) 2.等比数列{a n }中,若公比q <0,则{a n }一定不是单调数列.( √ ) 3.若{a n },{b n }都是等比数列,则{a n +b n }是等比数列.( × )4.若数列{a n }的奇数项和偶数项分别成等比数列,且公比相同,则{a n }是等比数列.( × )题型一 等比数列通项公式的推广应用 例1 等比数列{a n }中. (1)已知a 4=2,a 7=8,求a n ;(2)若{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,求通项公式a n . 解 (1)∵a 7a 4=q 7-4=82,即q 3=4,∴q =34,∴a n =a 4·q n -4=2·(34)n -4=2·4232n -⎛⎫ ⎪⎝⎭=25332n -(n ∈N *).(2)由a 25=a 10=a 5·q 10-5,且a 5≠0, 得a 5=q 5,即a 1q 4=q 5, 又q ≠0,∴a 1=q .由2(a n +a n +2)=5a n +1得,2a n (1+q 2)=5qa n , ∵a n ≠0,∴2(1+q 2)=5q , 解得q =12或q =2.∵a 1=q ,且{a n }为递增数列,∴⎩⎪⎨⎪⎧a 1=2,q =2.∴a n =2·2n -1=2n (n ∈N *).反思感悟 (1)应用a n =a m q n -m ,可以凭借任意已知项和公比直接写出通项公式,不必再求a 1. (2)等比数列的单调性由a 1,q 共同确定,但只要单调,必有q >0.跟踪训练1 已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7等于( ) A .21 B .42 C .63 D .84 答案 B解析 设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42,故选B. 题型二 等比数列的性质及其应用 例2 已知{a n }为等比数列.(1)若a n >0,a 2a 4+2a 3a 5+a 4a 6=25,求a 3+a 5;(2)若a n >0,a 5a 6=9,求log 3a 1+log 3a 2+…+log 3a 10的值.解 (1)a 2a 4+2a 3a 5+a 4a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25, ∵a n >0,∴a 3+a 5>0, ∴a 3+a 5=5.(2)根据等比数列的性质,得 a 5a 6=a 1a 10=a 2a 9=a 3a 8=a 4a 7=9, ∴a 1a 2…a 9a 10=(a 5a 6)5=95, ∴log 3a 1+log 3a 2+…+log 3a 10 =log 3(a 1a 2…a 9a 10) =log 395=10.反思感悟 抓住各项序号的数字特征,灵活运用等比数列的性质,可以顺利地解决问题. 跟踪训练2 设各项均为正的等比数列{a n }满足a 4a 8=3a 7,则log 3(a 1a 2…a 9)等于( ) A .38 B .39 C .9 D .7 答案 C解析 ∵a 4·a 8=a 5·a 7=3a 7且a 7≠0,∴a 5=3,∴log 3(a 1a 2…a 9)=log 3a 95=log 339=9.题型三 由等比数列衍生的新数列例3 已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6等于( ) A .4 2 B .6 C .7 D .5 2 答案 D解析 ∵{a n }为等比数列,∴a 1a 2a 3,a 4a 5a 6,a 7a 8a 9也成等比数列, ∴(a 4a 5a 6)2=(a 1a 2a 3)(a 7a 8a 9) =5×10,又{a n }各项均为正数, ∴a 4a 5a 6=5 2.反思感悟 借助新数列与原数列的关系,整体代换可以减少运算量. 跟踪训练3 等比数列{a n }中,若a 12=4,a 18=8,求a 36的值.解 由等比数列的性质可知,a 12,a 18,a 24,a 30,a 36成等比数列,且a 18a 12=2,故a 36=4×24=64.等比数列的实际应用典例某人买了一辆价值13.5万元的新车,专家预测这种车每年按10%的速度贬值.(1)用一个式子表示n(n∈N*)年后这辆车的价值.(2)如果他打算用满4年时卖掉这辆车,他大概能得到多少钱?解(1)从第一年起,每年车的价值(万元)依次设为:a1,a2,a3,…,a n,由题意,得a1=13.5,a2=13.5(1-10%),a3=13.5(1-10%)2,….由等比数列定义,知数列{a n}是等比数列,首项a1=13.5,公比q=(1-10%)=0.9,∴a n=a1·q n-1=13.5×(0.9)n-1.∴n年后车的价值为a n+1=13.5×0.9n万元.(2)由(1)得a5=a1·q4=13.5×0.94≈8.9(万元),∴用满4年时卖掉这辆车,大概能得到8.9万元.[素养评析](1)等比数列实际应用问题的关键是:建立数学模型即将实际问题转化成等比数列的问题,解数学模型即解等比数列问题.(2)发现和提出问题,建立和求解模型,是数学建模的核心素养的体现.1.在等比数列{a n }中,若a 2=8,a 5=64,则公比q 为( ) A .2 B .3 C .4 D .8 答案 A解析 由a 5=a 2q 3,得q 3=8,所以q =2.2.等比数列{a n }中,若a 2a 6+a 24=π,则a 3a 5等于( ) A.π4 B.π3 C.π2 D.4π3 答案 C解析 a 2a 6=a 24=a 3a 5,∴a 3a 5=π2. 3.已知等比数列{a n }共有10项,其中奇数项之积为2,偶数项之积为64,则其公比是( ) A.32 B. 2 C .2 D .2 2 答案 C解析 奇数项之积为2,偶数项之积为64,得a 1a 3a 5a 7a 9=2,a 2a 4a 6a 8a 10=64,则a 2a 4a 6a 8a 10a 1a 3a 5a 7a 9=q 5=32,则q =2.4.在1与2之间插入6个正数,使这8个数成等比数列,求插入的6个数的积的值. 解 设这8个数组成的等比数列为{a n },则a 1=1,a 8=2. 插入的6个数的积为a 2a 3a 4a 5a 6a 7=(a 2a 7)·(a 3a 6)·(a 4a 5) =(a 1a 8)3=23=8.5.已知a n =2n +3n ,判断数列{a n }是不是等比数列? 解 不是等比数列.∵a1=21+31=5,a2=22+32=13,a3=23+33=35,∴a1a3≠a22,∴数列{a n}不是等比数列.1.解题时,应该首先考虑通式通法,而不是花费大量时间找简便方法.2.所谓通式通法,指应用通项公式,前n项和公式,等差中项,等比中项等列出方程(组),求出基本量.3.巧用等比数列的性质,减少计算量,这一点在解题中也非常重要.一、选择题1.对任意等比数列{a n},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列 答案 D解析 由等比数列的性质得,a 3·a 9=a 26≠0,因此a 3,a 6,a 9一定成等比数列.故选D. 2.在等比数列{a n }中,若a 2 019=8a 2 016,则公比q 的值为( ) A .2 B .3 C .4 D .8 答案 A解析 ∵a 2 019=8a 2 016=a 2 016·q 3,∴q 3=8,∴q =2.3.已知各项均为正数的等比数列{a n }中,lg(a 3a 8a 13)=6,则a 1·a 15的值为( ) A .100 B .-100 C .10 000 D .-10 000答案 C解析 ∵lg(a 3a 8a 13)=lg a 38=6, ∴a 38=106,∴a 8=102=100.∴a 1a 15=a 28=10 000.4.等比数列{a n }中,a 1+a 2=3,a 2+a 3=6.则a 8等于( ) A .64 B .128 C .256 D .512 答案 B解析 a 2+a 3=q (a 1+a 2)=3q =6, ∴q =2,∴a 1+a 2=a 1+2a 1=3a 1=3, ∴a 1=1.∴a 8=27=128.5.已知公差不为0的等差数列的第2,3,6项依次构成一个等比数列,则该等比数列的公比q 为( )A.13 B .3 C .±13 D .±3 答案 B解析 设等差数列为{a n },公差为d ,d ≠0. 则a 23=a 2·a 6,∴(a 1+2d )2=(a 1+d )(a 1+5d ), 化简得d 2=-2a 1d ,∵d ≠0,∴d =-2a 1,∴a 2=-a 1,a 3=-3a 1,∴q =a 3a 2=3.6.(2018·长春模拟)公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( )A .8B .9C .10D .11 答案 C解析 由题意得,2a 5a 6=18,a 5a 6=9,∵a 1a m =9,∴a 1a m =a 5a 6,∴m =10.7.(2018·济南模拟)在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( )A .12B .13C .14D .15 答案 C解析 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12,可得q 9=3,a n -1a n a n +1=a 31q3n -3=324,因此q 3n -6=81=34=q 36,所以n =14.二、填空题8.设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程4x 2-8x +3=0的两根,则a 6+a 7= . 答案 18解析 由题意得a 4=12,a 5=32,∴q =a 5a 4=3.∴a 6+a 7=(a 4+a 5)q 2=⎝⎛⎭⎫12+32×32=18.9.已知数列{a n }是等比数列,且a n >0,a 3a 5+2a 4a 6+a 5a 7=81,则a 4+a 6= . 答案 9解析 因为数列{a n }为等比数列,且a 3a 5+2a 4a 6+a 5a 7=81,所以a 24+2a 4·a 6+a 26=81,所以(a 4+a 6)2=81,又a n >0,所以a 4+a 6=9.10.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9= . 答案 8解析 由等比数列的性质,得a 3a 11=a 27,∴a 27=4a 7. ∵a 7≠0,∴a 7=4,∴b 7=a 7=4. 再由等差数列的性质知b 5+b 9=2b 7=8.11.在等比数列{a n }中,若a 1a 2a 3a 4=1,a 13a 14a 15a 16=8,则a 41a 42a 43a 44= . 答案 1 024解析 设等比数列{a n }的公比为q ,a 1a 2a 3a 4=a 1·a 1q ·a 1q 2·a 1q 3=a 41·q 6=1,① a 13a 14a 15a 16=a 1q 12·a 1q 13·a 1q 14·a 1q 15=a 41·q 54=8,②②÷①得q 48=8,q 16=2,∴a 41a 42a 43a 44=a 1q 40·a 1q 41·a 1q 42·a 1q 43=a 41·q 166=a 41·q 6·q 160=(a 41·q 6)(q 16)10=210=1 024. 三、解答题12.已知数列{a n }是等比数列,a 3+a 7=20,a 1a 9=64,求a 11的值.解 ∵{a n }为等比数列,∴a 1·a 9=a 3·a 7=64.又∵a 3+a 7=20,∴a 3=4,a 7=16或a 3=16,a 7=4.①当a 3=4,a 7=16时,a 7a 3=q 4=4,此时a 11=a 3q 8=4×42=64. ②当a 3=16,a 7=4时,a 7a 3=q 4=14,此时a 11=a 3q 8=16×⎝⎛⎭⎫142=1. 13.在等比数列{a n }(n ∈N *)中,a 1>1,公比q >0.设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0.(1)求证:数列{b n }是等差数列;(2)求{b n }的前n 项和S n 及{a n }的通项a n .(1)证明 因为b n =log 2a n ,所以b n +1-b n =log 2a n +1-log 2a n =log 2a n +1a n=log 2q (q >0)为常数,所以数列{b n }为等差数列且公差d =log 2q .(2)解 因为b 1+b 3+b 5=6,所以(b 1+b 5)+b 3=2b 3+b 3=3b 3=6,即b 3=2.又因为a 1>1,所以b 1=log 2a 1>0,又因为b 1·b 3·b 5=0,所以b 5=0,即⎩⎪⎨⎪⎧ b 3=2,b 5=0,即⎩⎪⎨⎪⎧ b 1+2d =2,b 1+4d =0,解得⎩⎪⎨⎪⎧b 1=4,d =-1, 因此S n =4n +n (n -1)2(-1)=9n -n 22.又因为d =log 2q =-1,所以q =12,b 1=log 2a 1=4, 即a 1=16,所以a n =25-n (n ∈N *).14.在等比数列{a n }中,若a 7a 11=6,a 4+a 14=5,则a 20a 10= . 答案 23或32解析 ∵{a n }是等比数列,∴a 7·a 11=a 4·a 14=6,又a 4+a 14=5, ∴⎩⎪⎨⎪⎧ a 4=2,a 14=3或⎩⎪⎨⎪⎧ a 4=3,a 14=2.∵a 14a 4=q 10,∴q 10=32或q 10=23.而a 20a 10=q 10,∴a 20a 10=23或32. 15.在等差数列{a n }中,公差d ≠0,a 1,a 2,a 4成等比数列,已知数列a 1,a 3,1k a ,2k a ,…,n k a ,…也成等比数列,求数列{k n }的通项公式.解 由题意得a 22=a 1a 4,即(a 1+d )2=a 1(a 1+3d ),得d (d -a 1)=0,又d ≠0,∴a 1=d .又a 1,a 3,1k a ,2k a ,…,n k a ,…成等比数列,∴该数列的公比q =a 3a 1=3d d=3,∴n k a =a 1·3n +1. 又n k a =a 1+(k n -1)d =k n a 1, ∴数列{k n }的通项公式为k n =3n +1(n ∈N *).。

第 8 讲 2.4等比数列

第 8 讲  2.4等比数列
5.若 是等差数列,公差 , 成等比数列,则公比为()
A.1B.2C.3D.4
6、 和 的等比中项是()
A. 1 B. C. D. 2
7、在3和9之间插入两个正数,使前3个数成等比数列,后3个数成等差数列,则这两个正数之和为()
A. B. C. D.
8、在等比数列 中, 且 ,则 的值为()
A. 16 B. 27 C. 36 D. 81
A. B. C. D.
3、若 、 、 成等比数列,则函数 的图象与 轴交点的个数为()
A. B. C. D.不确定
4、已知一个等比数列的各项为正数,且从第三项起的任意一项均等于前两项之和,则此等比数列的公比为
A. B. C. D. ()
5、设 , , , 成等比数列,其公比为 ,则 的值为()
A. B. C. D.
例3、①在等比数列 中 , 则
②设 是由正数组成的等比数列,公比q=2,且 ,
那么 =
③在等比数列 中,若 ,则 ;若 ,则
④在等比数列 中, ,则
待定系数法(构造法)
求递推式如 (p、q为常数)的数列通项,可用待定系数法转化为我们熟知的数列求解,相当如换元法。
例4、已知数列{an}满足a1=1,且an+1= +4,求 .
A.16 B.15 C.14 D.12
12、若正数 组成等比数列,则 一定是()
A.等差数列B.既是等差数列有是等比数列
C.等比数列D.既不是等差数列也不是等比数列
13、在等比数列 中,已知 ,则 =()
A. 8 B.-8 C. D. 16
14、若正项等比数列 的公比为 ,且 , 成等差数列,则 。
A. B. C. D.
13、在等比数列 中,若 , ,则 的值为()

2.4.2 等比数列的性质及应用

2.4.2 等比数列的性质及应用
(2)是否存在m,使得数列{bn}中存在某项bt满足b1, b4,bt(t∈N*,t≥5)成等差数列?若存在,请指出符 合题意的m的个数;若不存在,请说明理由. 审题指导 (1)由an=Sn-Sn-1(n≥2)求得an→b=b1b8求 得 m. (2)由2b4=b1+bt可得以m为变量,t为函数的关系式→ 由t≥5,t∈N*可得m的取值.
课前探究学习 课堂讲练互动
(2)若存在 m,使 b1,b4,bt 成等差数列, 则 2b4=b1+bt, 2t-1 7 1 ∴ ×2= + , 7+ m 1+m 2t-1+m 7m+1 7m-5+36 36 ∴ t= = = 7+ ,(9 分) m- 5 m- 5 m- 5 由于 m、t∈N*且 t≥5. 令 m-5=36,18,9,6,4,3,2,1, 即 m=41,23,14,11,9,8,7,6 时,t 均为大于 5 的整数. ∴存在符合题意的 m 值,且共有 8 个数.(12 分)
从而错选 D.
课前探究学习 课堂讲练互动
对等差数列1,3,…,2n-1的项数没
数清. [正解] ∵a5· a2n-5=22n=an2,an>0, ∴an=2n,∴log2a1+log2a3+…+log2a2n-1 =log2(a1a3…a2n-1)=log221+3+…+(2n-1) =log22n2=n2.故选B. 答案 B
课前探究学习
课堂讲练互动
【例1】 已知数列{an}为等比数列. (1)若an>0,且a2a4+2a3a5+a4a6=36,求a3+a5的值; (2)若a1+a2+a3=7,a1a2a3=8,求数列{an}的通项公式. 解 (1)法一 ∵an>0,∴a1>0,q>0. 又∵a2a4+2a3a5+a4a6=36, ∴a1q· a1q3+2a1q2· a1q4+a1q3· a1q5=36, 即a12q4+2a12q6+a12q8=36,

高一数学 第二章 2.4(二)等比数列(二)

高一数学  第二章 2.4(二)等比数列(二)

§2.4 等比数列(二)1.一般地,如果m ,n ,k ,l 为正整数,且m +n =k +l ,则有a m ·a n =a k ·a l ,特别地,当m +n =2k 时,a m ·a n =a 2k .2.在等比数列{a n }中,每隔k 项(k ∈N *)取出一项,按原来的顺序排列,所得的新数列仍为等比数列.3.如果{a n },{b n }均为等比数列,且公比分别为q 1,q 2,那么数列{1a n },{a n ·b n },{b n a n},{|a n |}仍是等比数列,且公比分别为1q 1,q 1q 2,q 2q 1,|q 1|.一、选择题1.在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5,则m 等于( )A .9B .10C .11D .12答案 C解析 在等比数列{a n }中,∵a 1=1,∴a m =a 1a 2a 3a 4a 5=a 51q 10=q 10.∵a m =a 1q m -1=q m -1, ∴m -1=10,∴m =11.2.已知a ,b ,c ,d 成等比数列,且曲线y =x 2-2x +3的顶点是(b ,c ),则ad 等于( )A .3B .2C .1D .-2 答案 B解析 ∵y =(x -1)2+2,∴b =1,c =2.又∵a ,b ,c ,d 成等比数列,∴ad =bc =2.3.若a ,b ,c 成等比数列,m 是a ,b 的等差中项,n 是b ,c 的等差中项,则a m +c n=( ) A .4 B .3 C .2 D .1答案 C解析 设等比数列公比为q .由题意知:m =a +b 2,n =b +c 2, 则a m +c n =2a a +b +2c b +c =21+q +2q 1+q=2. 4.已知各项为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6等于( )A .5 2B .7C .6D .4 2答案 A解析 ∵a 1a 2a 3=a 32=5,∴a 2=35.∵a 7a 8a 9=a 38=10,∴a 8=310.∴a 25=a 2a 8=350=5013, 又∵数列{a n }各项为正数,∴a 5=5016. ∴a 4a 5a 6=a 35=5012=5 2. 5.在由正数组成的等比数列{a n }中,若a 4a 5a 6=3,log 3a 1+log 3a 2+log 3a 8+log 3a 9的值为( )A.43B.34 C .2 D .343答案 A解析 ∵a 4a 6=a 25,∴a 4a 5a 6=a 35=3,得a 5=313. ∵a 1a 9=a 2a 8=a 25,∴log 3a 1+log 3a 2+log 3a 8+log 3a 9=log 3(a 1a 2a 8a 9)=log 3a 45=log 3343=43. 6.在正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7等于( ) A.56 B.65 C.23 D.32答案 D解析 设公比为q ,则由等比数列{a n }各项为正数且a n +1<a n 知0<q <1,由a 2·a 8=6,得a 25=6.∴a 5=6,a 4+a 6=6q+6q =5. 解得q =26,∴a 5a 7=1q 2=(62)2=32. 二、填空题7.在等比数列{a n }中,a 1=1,a 5=16,则a 3=________.答案 4解析 由题意知,q 4=a 5a 1=16,∴q 2=4,a 3=a 1q 2=4. 8.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2=________. 答案 -6解析 由题意知,a 3=a 1+4,a 4=a 1+6.∵a 1,a 3,a 4成等比数列,∴a 23=a 1a 4,∴(a 1+4)2=(a 1+6)a 1,解得a 1=-8,∴a 2=-6.9.在1与2之间插入6个正数,使这8个数成等比数列,则插入的6个数的积为________. 答案 8解析 设这8个数组成的等比数列为{a n },则a 1=1,a 8=2.插入的6个数的积为a 2a 3a 4a 5a 6a 7=(a 2a 7)·(a 3a 6)·(a 4a 5)=(a 1a 8)3=23=8.10.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则a 2-a 1b 2的值是________.答案 12解析 ∵-1,a 1,a 2,-4成等差数列,设公差为d ,则a 2-a 1=d =13[(-4)-(-1)]=-1, ∵-1,b 1,b 2,b 3,-4成等比数列,∴b 22=(-1)×(-4)=4,∴b 2=±2.若设公比为q ,则b 2=(-1)q 2,∴b 2<0.∴b 2=-2,∴a 2-a 1b 2=-1-2=12. 三、解答题11.有四个数,前三个数成等比数列,后三个数成等差数列,首末两项和为21,中间两项和为18,求这四个数.解 设这四个数分别为x ,y,18-y,21-x ,则由题意得⎩⎪⎨⎪⎧y 2=x (18-y )2(18-y )=y +(21-x ), 解得⎩⎪⎨⎪⎧ x =3y =6或⎩⎨⎧ x =754,y =454.故所求的四个数为3,6,12,18或754,454,274,94. 12.设{a n }、{b n }是公比不相等的两个等比数列,c n =a n +b n ,证明数列{c n }不是等比数列.证明 设{a n }、{b n }的公比分别为p 、q ,p ≠0,q ≠0,p ≠q ,c n =a n +b n .要证{c n }不是等比数列,只需证c 22≠c 1·c 3成立即可. 事实上,c 22=(a 1p +b 1q )2=a 21p 2+b 21q 2+2a 1b 1pq ,c 1c 3=(a 1+b 1)(a 1p 2+b 1q 2)=a 21p 2+b 21q 2+a 1b 1(p 2+q 2).由于c 1c 3-c 22=a 1b 1(p -q )2≠0,因此c 22≠c 1·c 3,故{c n }不是等比数列. 能力提升13.若互不相等的实数a 、b 、c 成等差数列,c 、a 、b 成等比数列,且a +3b +c =10,则a 等于( )A .4B .2C .-2D .-4答案 D解析 依题意有⎩⎪⎨⎪⎧ 2b =a +c , ①a 2=bc , ②a +3b +c =10, ③①代入③求得b =2.从而⎩⎪⎨⎪⎧ a +c =4,a 2=2c ⇒a 2+2a -8=0, 解得a =2或a =-4.当a =2时,c =2,即a =b =c 与已知不符,∴a =-4.14.等比数列{a n }同时满足下列三个条件:①a 1+a 6=11 ②a 3·a 4=329 ③三个数23a 2,a 23,a 4+4a依次成等差数列,试求数列{a n }的通项公式.解 由等比数列的性质知a 1a 6=a 3a 4=329∴⎩⎪⎨⎪⎧ a 1+a 6=11a 1·a 6=329解得⎩⎨⎧ a 1=13a 6=323求⎩⎨⎧ a 1=323a 6=13当⎩⎨⎧ a 1=13a 6=323时q =2 ∴a n =13·2n -1 23a 2+a 4+49=329,2a 23=329 ∴23a 2,a 23,a 4+49成等差数列, ∴a n =13·2n -1 当⎩⎨⎧ a 1=323a 6=13时q =12,a n =13·26-n 23a 2+a 4+49≠2a 23, ∴不符合题意,∴通项公式a n =13·2n -1.1.等比数列的基本量是a 1和q ,依据题目条件建立关于a 1和q 的方程(组),然后解方程(组),求得a 1和q 的值,再解决其它问题.2.如果证明数列不是等比数列,可以通过具有三个连续项不成等比数列来证明,即存在a n ,a n +1,a n +2,使a 2n +1≠a n ·a n +2.3.巧用等比数列的性质,减少计算量,这一点在解题中也非常重要.。

2.4等比数列

2.4等比数列

数列 是一个与n无关的常数 ∵pq是一个与 无关的常数, 是一个与 无关的常数,
an bn
是不是也 是等比数 是以pq为公比的等比数列 ∴{anbn}是以 为公比的等比数列。 是以 为公比的等比数列。 列呢? 列呢?
已知三个数成等比数列, 例5 (1)已知三个数成等比数列,且其积为 已知三个数成等比数列 且其积为512,若第 , 一个数与第三个数各减2,则成等差数列,求这三数。 一个数与第三个数各减 ,则成等差数列,求这三数。 解:设这三数为 a/q, a, aq,
1 x-1 与函数y=( ) 与函数 2
qn-1
a3=a2q=(a1q)q=a1q2 a4=a3q=(a1q2)q=a1q3 … …
画出通项为a 画出通项为 n=2n-1的数列的图象
1 n-1 画出通项为a 画出通项为 n=( ) 的数列的图象 2
的图象比较
某种放射性物质不断变化为其他物质,每经 每经过一 例1 某种放射性物质不断变化为其他物质 每经过一 年剩留的这种物质是原来的84% 这种物质的半衰期 年剩留的这种物质是原来的 %.这种物质的半衰期 为多长(精确到 精确到1年 为多长 精确到 年)? 解:设这种物质最初的质量为1, 经过n年剩留量是 n, 设这种物质最初的质量为 , 经过 年剩留量是a 年剩留量是 则由条件可知,数列 则由条件可知,数列{an}是一个等比数列 设an=0.5, 是一个等比数列 , 其中a1=0.84,q=0.84, 其中 , 则0.84n=0.5,
即 nlg0.84=lg0.5 由计算器可算得 n≈4, 答:这种物质的半衰期大约为4年。 这种物质的半衰期大约为 年
开始
根据框图, 例2 根据框图,写出所打印数列的前 并建立数列的递推公式. 5项,并建立数列的递推公式.这个数 列是等比数列吗? 列是等比数列吗? 解:若将打印出来的数依次记为 a1,a2,a3,…, , a1=1, 1 1 于是可得递推公式 = a2=a1× 2 2

高中数学 第二章 数列 2.4 等比数列 第二课时 等比数列的性质学案(含解析)新人教A版必修5-新

高中数学 第二章 数列 2.4 等比数列 第二课时 等比数列的性质学案(含解析)新人教A版必修5-新

第二课时 等比数列的性质等比数列性质的应用[例1] (1)在等比数列{a n }中,若a 7+a 8+a 9+a 10=8,a 8a 9=-8,则1a 7+1a 8+1a 9+1a 10=________.(2)已知数列{a n }是等比数列,a 3+a 7=20,a 1a 9=64,求a 11的值.[解] (1)因为1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,由等比数列的性质知a 7a 10=a 8a 9,所以1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 8a 9=158÷⎝ ⎛⎭⎪⎫-98=-53. (2)∵{a n }为等比数列, ∴a 1·a 9=a 3·a 7=64. 又∵a 3+a 7=20,∴a 3,a 7是方程t 2-20t +64=0的两个根. ∵t 1=4,t 2=16,∴a 3=4,a 7=16或a 3=16,a 7=4. ①当a 3=4,a 7=16时,a 7a 3=q 4=4,此时a 11=a 3q 8=4×42=64. ②当a 3=16,a 7=4时,a 7a 3=q 4=14,此时a 11=a 3q 8=16×⎝ ⎛⎭⎪⎫142=1. [答案] (1) -53[类题通法] 等比数列常用性质(1)若m +n =p +q (m ,n ,p ,q ∈N *), 则a m ·a n =a p ·a q .特例:若m +n =2p (m ,n ,p ∈N *),则a m ·a n =a 2p . (2)a n a m=qn -m(m ,n ∈N *).(3)在等比数列{a n }中,每隔k 项取出一项,取出的项,按原来顺序组成新数列,该数列仍然是等比数列.(4)数列{a n }为等比数列,则数列{λa n }(λ为不等于0的常数)和⎩⎨⎧⎭⎬⎫1a n 仍然成等比数列.[活学活用]1.在等比数列{a n }中,若a 2=2,a 6=12,则a 10=________. 解析:法一:设{a n }的公比为q ,则⎩⎪⎨⎪⎧a 1q =2,a 1q 5=12,解得q 4=6,∴a 10=a 1q 9=a 1q ·(q 4)2=2×36=72. 法二:∵{a n }是等比数列, ∴a 26=a 2·a 10,于是a 10=a 26a 2=1222=1442=72.答案:722.在等比数列{a n }中,若a 7=-2,则此数列的前13项之积等于________. 解析:由于{a n }是等比数列,∴a 1a 13=a 2a 12=a 3a 11=a 4a 10=a 5a 9=a 6a 8=a 27, ∴a 1a 2a 3…a 13=()a 276·a 7=a 137,而a 7=-2,∴a 1a 2a 3…a 13=(-2)13=-213. 答案:-213灵活设元求解等比数列[例2] 已知三个数成等比数列,它们的积为27,它们的平方和为91,求这三个数. [解] 法一:设三个数依次为a ,aq ,aq 2,由题意知⎩⎪⎨⎪⎧a ·aq ·aq 2=27,a 2+a 2q 2+a 2q 4=91,∴⎩⎪⎨⎪⎧aq 3=27,a 21+q 2+q 4=91,即⎩⎪⎨⎪⎧aq =3,a 21+q 2+q 4=91,解得q 21+q 2+q 4=991, 得9q 4-82q 2+9=0,即得q 2=9或q 2=19,∴q =±3或q =±13.若q =3,则a 1=1; 若q =-3,则a 1=-1; 若q =13,则a 1=9;若q =-13,则a 1=-9.故这三个数为1,3,9,或-1,3,-9,或9,3,1,或-9,3,-1. 法二:设这三个数分别为a q,a ,aq .⎩⎪⎨⎪⎧aq·a ·aq =27,a 2q 2+a 2+a 2q 2=91⇒⎩⎪⎨⎪⎧a =3,a 2⎝ ⎛⎭⎪⎫1q2+1+q 2=91,得9q 4-82q 2+9=0,即得q 2=19或q 2=9,∴q =±13或q =±3.故这三个数为1,3,9,或-1,3,-9,或9,3,1,或-9,3,-1. [类题通法]三个数或四个数成等比数列的设元技巧(1)若三个数成等比数列,可设三个数为a ,aq ,aq 2或a q,a ,aq .(2)若四个数成等比数列,可设为a ,aq ,aq 2,aq 3;若四个数均为正(负)数,可设为a q3,a q,aq ,aq 3. [活学活用]在2和20之间插入两个数,使前三个数成等比数列,后三个数成等差数列,则插入的两个数的和为( )A .-4或1712B .4或1712C .4D .1712解析:选B 设插入的第一个数为a ,则插入的另一个数为a 22.由a ,a 22,20成等差数列得2×a 22=a +20.∴a 2-a -20=0,解得a =-4或a =5. 当a =-4时,插入的两个数的和为a +a 22=4.当a =5时,插入的两个数的和为a +a 22=1712.等比数列的实际应用[例3] 年2月起,每月生产总值比上一个月增长m %,那么到2017年8月底该厂的生产总值为多少万元?[解] 设从2015年1月开始,第n 个月该厂的生产总值是a n 万元,则a n +1=a n +a n m %, ∴a n +1a n=1+m %. ∴数列{a n }是首项a 1=a ,公比q =1+m %的等比数列. ∴a n =a (1+m %)n -1.∴2016年8月底该厂的生产总值为a 20=a (1+m %)20-1=a (1+m %)19(万元).[类题通法]数列实际应用题常与现实生活和生产实际中的具体事件相联系,建立数学模型是解决这类问题的核心,常用的方法有:①构造等差、等比数列的模型,然后用数列的通项公式或求和公式解;②通过归纳得到结论,再用数列知识求解.[活学活用](安徽高考)如图,在等腰直角三角形ABC 中,斜边BC =2 2.过点 A 作BC 的垂线,垂足为A 1 ;过点 A 1作 AC 的垂线,垂足为 A 2;过点A 2 作A 1C 的垂线,垂足为A 3 ;…,依此类推.设BA =a 1 ,AA 1=a 2 , A 1A 2=a 3 ,…, A 5A 6=a 7 ,则 a 7=________.解析:法一:直接递推归纳:等腰直角三角形ABC 中,斜边BC =22, 所以AB =AC =a 1=2,AA 1=a 2=2,A 1A 2=a 3=1,…,A 5A 6=a 7=a 1×⎝⎛⎭⎪⎫226=14. 法二:求通项:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,…,A n -1A n =a n +1=sin π4·a n =22a n =2×⎝ ⎛⎭⎪⎫22n,故a 7=2×⎝ ⎛⎭⎪⎫226=14. 答案:143.等差数列和等比数列的性质对比等差数列和等比数列从文字看,只是一字之差,但定义和性质相差甚远,下面对两类数列的性质作一比对,若等差数列{a n }的公差为d ,等比数列{b n }的公比为q .【性质1】 等差数列{a n },当d =0时,数列为常数列,当d >0时,数列为递增数列;当d <0时,数列为递减数列.等比数列{b n },当q >1,b 1>0或0<q <1,b 1<0时,数列{b n }是递增数列;当q >1,b 1<0或0<q <1,b 1>0时,数列{b n }是递减数列;当q =1时,数列{b n }是常数列.[例1] 设{a n }是首项大于零的等比数列,且a 1<a 2<a 3,则数列{a n }是________数列.(填“递增”“递减”或“摆动”)[解析] 设数列{a n }的公比为q (q ≠0),因为a 1<a 2<a 3,所以a 1<a 1q <a 1q 2,解得q >1,且a 1>0,所以数列{a n }是递增数列.[答案] 递增【性质2】 等差数列{a n }满足a n =a m +(n -m )·d (m ,n ∈N *),等比数列{b n }满足b n =b m ·q n -m (m ,n ∈N *).(当m =1时,上述式子为通项公式)[例2] 已知{a n }为等差数列,且a 3=-6,a 6=0,则{a n }的通项公式为________. [解析] ∵a 6=a 3+3d ,则0=-6+3d ,得d =2, ∴a n =a 3+(n -3)d =-6+(n -3)×2=2n -12. [答案] a n =2n -12【性质3】 若m +n =p +q (m ,n ,p ,q ∈N *),等差数列{a n }满足a m +a n =a p +a q ,特别地,若数列{a n }是有穷等差数列,则与首末两项等距离的两项之和都相等,且等于首末两项之和,即a 1+a n =a 2+a n -1=…=a i +1+a n -i =…(n ∈N *).等比数列{b n }满足b m b n =b p b q ,特别地,数列{b n }是有穷数列,则与首末两项等距离的两项的积相等,且等于首末两项之积,即b 1·b n =b 2·b n -1=b 3·b n -2=…=b m ·b n -m +1.[例3] (1)等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值是( ) A .55 B .95 C .100D .105(2)在等比数列{a n }中,若a 2·a 8=36,a 3+a 7=15,则公比q 值的个数可能为( ) A .1 B .2 C .3D .4[解析] (1)S 19=19a 1+a 192=19a 3+a 172=19×102=95.(2)∵a 2·a 8=a 3·a 7,∴由⎩⎪⎨⎪⎧a 3·a 7=36,a 3+a 7=15,解得a 3=3,a 7=12,或a 3=12,a 7=3. 若a 3=3,a 7=12,则有12=3×q 4, ∴q 4=4,∴q 2=2,q =± 2.若a 3=12,a 7=3,则有3=12×q 4, ∴q 4=14,q 2=12,q =±22.∴q 的值可能有4个. 答案:(1)B (2)D【性质4】 在等差(比)数列中,每隔k 项取出一项,按原来的顺序排列,所得新数列仍为等差(比)数列,公差为(k +1)d (公比为q k +1),若两个数列分别成等差(比)数列,则两数列对应项和(积)构成等差(比)数列.[例4] 在1和16之间插入三个正数a ,b ,c 使1,a ,b ,c,16成等比数列,求a +b +c 的值.[解] ∵1,a ,b ,c,16成等比数列, ∴1,b,16为等比数列.∴b =4.∴1,a ,b 也成等比数列,b ,c,16也成等比数列. ∴a =2,c =8.∴a +b +c =2+4+8=14.[随堂即时演练]1.将公比为q 的等比数列{a n }依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,….此数列( )A .是公比为q 的等比数列B .是公比为q 2的等比数列 C .是公比为q 3的等比数列 D .不一定是等比数列解析:选B 由于a n a n +1a n -1a n =a n a n -1·a n +1a n=q ·q =q 2,n ≥2且n ∈N *, ∴{a n a n +1}是以q 2为公比的等比数列,故选B.2.若1,a 1,a 2,4成等差数列;1,b 1,b 2,b 3,4成等比数列,则a 1-a 2b 2的值为( ) A .-12B.12 C .±12D.14解析:选A ∵1,a 1,a 2,4成等差数列,∴3(a 2-a 1)=4-1, ∴a 2-a 1=1.又∵1,b 1,b 2,b 3,4成等比数列,设其公比为q , 则b 22=1×4=4,且b 2=1×q 2>0, ∴b 2=2,∴a 1-a 2b 2=-a 2-a 1b 2=-12. 3.在等比数列{a n }中,a 888=3,a 891=81,则公比q =________. 解析:∵a 891=a 888q 891-888=a 888q 3,∴q 3=a 891a 888=813=27. ∴q =3. 答案:34.在等比数列{a n }中,各项都是正数,a 6a 10+a 3a 5=41,a 4a 8=4,则a 4+a 8=________. 解析:∵a 6a 10=a 28,a 3a 5=a 24, ∴a 24+a 28=41, 又a 4a 8=4,∴(a 4+a 8)2=a 24+a 28+2a 4a 8=41+8=49. ∵数列各项都是正数, ∴a 4+a 8=7. 答案:75.已知数列{a n }为等比数列.(1)若a 1+a 2+a 3=21,a 1a 2a 3=216,求a n ; (2)若a 3a 5=18,a 4a 8=72,求公比q . 解:(1)∵a 1a 2a 3=a 32=216,∴a 2=6, ∴a 1a 3=36.又∵a 1+a 3=21-a 2=15,∴a 1,a 3是方程x 2-15x +36=0的两根3和12. 当a 1=3时,q =a 2a 1=2,a n =3·2n -1;当a 1=12时,q =12,a n =12·⎝ ⎛⎭⎪⎫12n -1.(2)∵a 4a 8=a 3q ·a 5q 3=a 3a 5q 4=18q 4=72,∴q 4=4,∴q =± 2.[课时达标检测]一、选择题1.(重庆高考)对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列解析:选D 由等比数列的性质得,a 3·a 9=a 26≠0, 因此a 3,a 6,a 9一定成等比数列,选D.2.已知等比数列{a n }中,a 4=7,a 6=21,则a 8的值为( ) A .35 B .63 C .21 3D .±21 3解析:选B ∵{a n }是等比数列, ∴a 4,a 6,a 8成等比数列, ∴a 26=a 4·a 8,即a 8=2127=63.3.在等比数列{a n }中,a 1=1,a 10=3,则a 2a 3a 4a 5a 6a 7a 8a 9等于( ) A .81 B .27327 C .3D .243解析:选A 因为数列{a n }是等比数列,且a 1=1,a 10=3,所以a 2a 3a 4a 5a 6a 7a 8a 9=(a 2a 9)·(a 3a 8)·(a 4a 7)·(a 5a 6)=(a 1a 10)4=34=81.故选A. 4.设数列{a n }为等比数列,则下面四个数列: ①{a 3n };②{pa n }(p 为非零常数);③{a n ·a n +1}; ④{a n +a n +1}.其中是等比数列的有( ) A .1个 B .2个 C .3个D .4个解析:选D ①∵a 3n +1a 3n =⎝ ⎛⎭⎪⎫a n +1a n 3=q 3,∴{a 3n}是等比数列;②∵pa n +1pa n =a n +1a n=q ,∴{pa n }是等比数列;③∵a n ·a n +1a n -1·a n =a n +1a n -1=q 2,∴{a n ·a n +1}是等比数列;④∵a n +a n +1a n -1+a n =q a n -1+a na n -1+a n=q ,∴{a n +a n +1}是等比数列.5.已知等比数列{a n }中,a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( ) A .2 B .4 C .8D .16解析:选C 等比数列{a n }中,a 3a 11=a 27=4a 7,解得a 7=4,等差数列{b n }中,b 5+b 9=2b 7=2a 7=8.二、填空题6.公差不为零的等差数列{a n }中,2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.解析:∵2a 3-a 27+2a 11=2(a 3+a 11)-a 27=4a 7-a 27=0, ∵b 7=a 7≠0, ∴b 7=a 7=4. ∴b 6b 8=b 27=16. 答案:167.画一个边长为2厘米的正方形,再以这个正方形的对角线为边画第2个正方形,以第2个正方形的对角线为边画第3个正方形,这样一共画了10个正方形,则第10个正方形的面积等于________平方厘米.解析:这10个正方形的边长构成以2为首项,2为公比的等比数列{a n }(1≤n ≤10,n ∈N *),则第10个正方形的面积S =a 210=22·29=211=2 048(平方厘米). 答案:2 0488.在等比数列{a n }中,a 7·a 11=6,a 4+a 14=5,则a 20a 10=________. 解析:∵{a n }是等比数列, ∴a 7·a 11=a 4·a 14=6, 又a 4+a 14=5, ∴⎩⎪⎨⎪⎧a 4=2,a 14=3或⎩⎪⎨⎪⎧a 4=3,a 14=2.∵a 14a 4=q 10,∴q 10=23或q 10=32. 而a 20a 10=q 10,∴a 20a 10=23或a 20a 10=32. 答案:23或32三、解答题9.在83和272之间插入三个数,使这五个数成等比数列,求插入的这三个数的乘积. 解:法一:设这个等比数列为{a n },公比为q ,则a 1=83,a 5=272=a 1q 4=83q 4, ∴q 4=8116,q 2=94. ∴a 2·a 3·a 4=a 1q ·a 1q 2·a 1q 3=a 31·q 6=⎝ ⎛⎭⎪⎫833×⎝ ⎛⎭⎪⎫943=63=216. 法二:设这个等比数列为{a n },公比为q ,则a 1=83, a 5=272,由题意知a 1,a 3,a 5也成等比数列且a 3>0,∴a 23=83×272=36,∴a 3=6, ∴a 2·a 3·a 4=a 23·a 3=a 33=216.10.始于2007年初的美国次贷危机,至2008年中期,已经演变为全球金融危机.受此影响,国际原油价格从2008年7月每桶最高的147美元开始大幅下跌,9月跌至每桶97美元.你能求出国际原油价格7月到9月之间平均每月下降的百分比吗?若按此计算,到什么时间跌至谷底(即每桶34美元)?解:设每月平均下降的百分比为x ,则每月的价格构成了等比数列{a n },记a 1=147(7月份价格),则8月份价格a 2=a 1(1-x )=147(1-x ),9月份价格a 3=a 2(1-x )=147(1-x )2.∴147(1-x )2=97,解得x ≈18.8%.设a n =34,则34=147·(1-18.8%)n -1,解得n =8.即从2008年7月算起第8个月,也就是2009年2月国际原油价格将跌至34美元每桶.11.从盛满a (a >1)升纯酒精的容器里倒出1升,然后添满水摇匀,再倒出1升混合溶液后又用水添满摇匀,如此继续下去,问:第n 次操作后溶液的浓度是多少?当a =2时,至少应倒几次后才能使酒精的浓度低于10%?解:设开始时溶液的浓度为1,操作一次后溶液浓度a 1=1-1a .设操作n 次后溶液的浓度为a n ,则操作(n +1)次后溶液的浓度为a n +1=a n ⎝ ⎛⎭⎪⎫1-1a . ∴{a n }是以a 1=1-1a 为首项,q =1-1a为公比的等比数列, ∴a n =a 1q n -1=⎝ ⎛⎭⎪⎫1-1a n , 即第n 次操作后酒精的浓度是⎝ ⎛⎭⎪⎫1-1a n . 当a =2时,由a n =⎝ ⎛⎭⎪⎫12n <110(n ∈N *),解得n ≥4. 故至少应操作4次后才能使酒精的浓度小于10%.12.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且前后两数的和是16,中间两数的和是12.求这四个数.解:法一:设这四个数依次为a -d ,a ,a +d ,a +d 2a, 由条件得⎩⎪⎨⎪⎧ a -d +a +d 2a =16,a +a +d =12.解得⎩⎪⎨⎪⎧ a =4,d =4,或⎩⎪⎨⎪⎧ a =9,d =-6.所以当a =4,d =4时,所求四个数为0,4,8,16;当a =9,d =-6时,所求四个数为15,9,3,1.故所求四个数为0,4,8,16或15,9,3,1.法二:设这四个数依次为2a q -a ,a q,a ,aq (a ≠0), 由条件得⎩⎪⎨⎪⎧ 2a q -a +aq =16,a q +a =12.解得⎩⎪⎨⎪⎧ q =2,a =8,或⎩⎪⎨⎪⎧ q =13,a =3.所以当q =2,a =8时,所求四个数为0,4,8,16;当q =13,a =3时,所求四个数为15,9,3,1. 故所求四个数为0,4,8,16或15,9,3,1.法三:设这四个数依次为x ,y,12-y,16-x ,由已知得⎩⎪⎨⎪⎧ 2y =x +12-y ,12-y 2=y 16-x . 解得⎩⎪⎨⎪⎧ x =0,y =4,或⎩⎪⎨⎪⎧ x =15,y =9.故所求四个数为0,4,8,16或15,9,3,1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

猜想3:
性质4:从原数列中取出偶数项组成的 猜想4: 新数列公差为2d.(可推广) 性质5: 若{cn}是公差为d′的等差数列, 猜想5: 则数列{an+cn}是公差为d+d′的等差数 列。
由等差数列的性质,猜想等比数列的性质 {an}是公差为d的等差数列 {bn}是公比为q的等比数列 性质1: an=am+(n-m)d 猜想1:bm b n q m n
若数列{an}是公比为q的等比数列,则
(1)当q>1,a1>0或0<q<1,a1<0时, {an}是递增数列; 当q>1, a1<0,或0<q<1,a1>0时, {an}是递减数列; 当q=1时, {an}是常数列; 当q<0时, {an}是摆动数列;
(2)an≠0,且anan+2>0 (3)an=amqn-m(n,m∈N*). (4)当n+m=p+q(n,m,p,q∈N*)时,有anam=apaq, (5)当{an}是有穷数列时,与首末两项等距离的两项 的积都相等,且等于首末两项的积
b4 b1b7 b2 b6 b3b5
2
∴前七项之积 3

2 3
3 37 2187
3、在等比数列 a n 中,a2
3
2, a5 54 ,求 a 8
a5 54 解:a8 a5 q a5 54 1458 a2 2
另解:∵
a 5 是 a 2 与 a 8 的等比中项,
性质2:若an-k,an,an+k 是{an}中的三项 , 则2an=an+k+ an-k
性质3: 若n+m=p+q 则am+an=ap+aq
猜想2: bn-k,bn,bn+k 若 是{bn}中的三项 则 2
bn bnk bnk
猜想3:若n+m=p+q 则bn·m=bp· q b b
由等差数列的性质,猜想等比数列的性质
1 或 既这三个数为2,4,8或8,4,2。 2
补充:三数成等比数列,若将第三个数减去 32,则成等差数列,若再将这等差数列的第二个数 减去4,则又成等比数列,求原来三个数。
解:设原来的三个数是:a, aq, aq ① 2aq a (aq 2 32) 则必有 ② (aq 4) 2 a(aq2 32)
性质3: 若n+m=p+q 则am+an=ap+aq 猜想3:若n+m=p+q 则bn·m=bp· q, b b
性质4:从原数列中取 猜想4:从原数列中 出偶数项组成的新数列 取出偶数项,组成的 公差为2d. 新数列公比为 q 2 . (可推广) (可推广) 性质5: 若{cn}是公差为 d′的等差数列,则数 列{an+cn}是公差为 d+d′的等差数列。 猜想5:若{dn}是公比 为q′的等比数列,则数 列{bn•dn}是公比为 q· q′的等比数列.
1、在等比数列
a n,已知 a
1
5,a9 a10 100 ,求
a18 。
解:∵ ∴
a1a18 a9 a10
a9 a10 a18 a1
100 5 20
2、在等比数列 bn 中,b4 3,求该数列前七项之积。 解: b1b2b3b4b5b6b7 b1b7 b2b6 b3b5 b4

⒋在等比数列{an}中,a1+a2 =30, a3+a4 =120, 480 则a5+a6=_____ .
解题技巧的类比应用: 三个数成等比数列,它们的和等于14,它们的积 等于64,求这三个数。

分析:若三个数成等差数列,则设这三个数 为a-d,a,a+d.由类比思想的应用可得, 若三个数成等比数列,则设这三个数 a 再由方程组可得:q=2 为:, a,a • q. q
复习:等比数列概念
一、定义:如果一个数列从第2项起,每一项与
它的 前一项的比等于同一个常数(指与n无关的数) 这个数列就叫做等比数列,这个常数叫做等比数列 的公比,公比通常用字母q表示。
an q (是与n无关的数或式子, 且q 0) an 1
二、等比数列 an 的通项公式为
an a1 q ,它的图象又是怎样?
n 1
4a n 2 , S n 2 4an1 2
a n 2 4a n 1 a n
n2
2an1 2(an1 2a n )
∵b
a n 1 2a n
∴ bn1 2bn
即 bn 是公比为2的等比数列 2 ∵
an cn n 2
bn 3 2 n 1
64
பைடு நூலகம் 练习:

⒈在等比数列{an}中,a2=-2,a5=54,a8= -1458 . ⒉在等比数列{an}中,且an>0,
6 a2 a4+2a3a5+a4a6=36,那么a3+a5= _ . ⒊在等比数列{an}中, a15 =10, a45=90,则 270 或-270 a60 =__________.
三、如果在a与b中间插入一个数G,使a,G,b
n 1
成等比数列,那么G叫做a与b的等比中项。
G ab
{ n}是公差为d的等差数列
a
{bn}是公比为q的等比数 列 猜想1: 猜想2:
性质1: an=am+(n-m)d 性质2:若an-k,an,an+k是{an}中的三 项, 则2an=an-k+an+k 性质3: 若n+m=p+q 则am+an=ap+aq
由①得:
q
2
代入②得: a 2 , q 5 或
5 a 9
4a 2 a
38 ,q 5
5 38 1444 , , 故原来的三个数是:2,10,50. 或 9 45 9
S 练习:已知数列 a n 中, n 是它的前 n 项和,并且
a1 1, S n 1 4an 2.
1 2
设 bn an1 2an ,求证数列 bn 是等比数列; 设 cn
an , n 2
求证数列 cn 是等差数列。 ∴ a1 a 2 S 2 4 a1 1 a 2 5 ,
,两式相减得:
n
证:1 ∵ ∵S 即: a
a1 1
b1 a 2 2a1 3

n 1
cn1 cn
a n 1 a n a n 1 2a n b n nn 1 2 n1 2 2 n 1 2
将bn 3 2
代入得:cn1 cn
3 4
∴ cn 成等差数列
2
54 a8 (2)
a8 1458
4: (1).在等比数列an 中,an 0,若a5 a7 2a6 a8 a7 a9 49 则a6 a8
7
(2).在正项等比数列中, a1, a99是方程x 10 x 16 0
2
•的两个根,则 a40a50a60
(6)数列{λ an}(λ 为不等于零的常数)仍是公比为q的 等比数列.
(7)若{bn}是公比为q′的等比数列,则数列{an• bn } 是公比为qq′的等比数列.
1 1 (8)数列 { } 是公比为 的等比数列. an q
(9)若m、n、p(m、n、p∈N*)成等差数列时, am , an , a p 成等比数列。
相关文档
最新文档