七年级数学平行线的判定

合集下载

七年级数学下《平行线及其判定》笔记

七年级数学下《平行线及其判定》笔记

七年级数学下《平行线及其判定》笔记
一、平行线的定义
平行线是指在同一平面内,两条直线没有交点,或者说两条直线之间的距离处处相等。

二、平行线的判定定理
1.同位角相等:当两条直线被第三条直线所截,如果同位角相等,则这两条直线
平行。

2.内错角相等:当两条直线被第三条直线所截,如果内错角相等,则这两条直线
平行。

3.同旁内角互补:当两条直线被第三条直线所截,如果同旁内角互补(即角度和
为180°),则这两条直线平行。

三、应用实例
1.交通标志:在公路上,车道线通常都是平行的,这些线可以帮助驾驶员判断车
辆是否在正确的车道上行驶。

2.建筑设计:在建筑设计中,为了确保建筑物的稳定性,通常会使用平行线来构
建平行的梁和柱子。

3.机械制造:在机械制造中,为了确保机器的精确度,常常需要使用平行线来检
测和调整机器的部件。

四、注意事项
1.平行线必须在同一平面内定义。

2.平行线的判定定理必须同时满足,不能只满足其中一条。

3.在实际应用中,要结合具体情境判断两条线是否平行。

五、练习与巩固
1.判断题:给出一些线段的图片,判断它们是否平行。

2.选择题:给出一些关于平行线的描述,选择正确的判定定理。

3.应用题:结合实际问题,例如计算平行线的距离、判断两条线是否平行等。

七上数学平行线的判定

七上数学平行线的判定

有关数学“平行线”的判定
有关数学“平行线”的判定方法如下:
1.同位角相等:如果两直线的同位角相等,那么这两直线平行。

2.内错角相等:如果两直线的内错角相等,那么这两直线平行。

3.同旁内角互补:如果两直线的同旁内角互补,即两个同旁内角的和为180度,那么这
两直线平行。

4.平行公理:在同一平面内,经过直线外一点,有且只有一条直线与已知直线平行。

5.垂直于同一直线的两条直线平行:如果两条直线都垂直于同一直线,那么这两条直线
平行。

6.平行于同一直线的两条直线平行:如果两条直线都平行于同一直线,那么这两条直线
也平行。

7.如果两条直线被第三条直线所截,那么同位角相等或内错角相等或同旁内角互补,则
这两条直线平行。

4.2.2.平行线的判定+++课件+2024—-2025学年华东师大版数学七年级上册

4.2.2.平行线的判定+++课件+2024—-2025学年华东师大版数学七年级上册

3.(4分·几何直观、应用意识)已知直线BC,小明和小亮想画出BC的平行线,他们
的方法如下:
下列说法正确的是( C )
A.小明的方法正确,小亮的方法不正确
B.小明的方法不正确,小亮的方法正确
C.小明、小亮的方法都正确
D.小明、小亮的方法都不正确
21
4.(8分·抽象能力、推理能力)如图,∠B=52°,∠ACB=∠A+8°,∠ACD=60°,求
1.描边:描出两个角的两边.
2.定三线:确定截线和被截线,共线的边是截线,另外两边是被截线.
3.定关系:确定两角的位置关系和数量关系.
4.判定:同位角或内错角相等→两直线平行;同旁内角互补→两直线平行.
素养 当堂测评
1.(4分·几何直观、推理能力)如图,直线MN分别与直线AB,CD交于点E和点F,下
证:AB∥CD.
22
【证明】因为∠ACB=180°-∠A-∠B,∠ACB=∠A+8°,∠B=52°,
所以∠A+8°=180°-∠A-52°,
所以∠A=60°,
因为∠ACD=60°,
所以∠A=∠ACD,
所以AB∥CD.
23
本课结束
相等
内错角______,两直线平行
符号
因为∠1=∠2,
所以a∥b.
因为∠2=∠3,
所以a∥b.
互补
的 同旁内角______,两直
因为∠4+∠2=180°,
判 线平行
所以 a∥b.

垂直
在同一平面内,______于同
因为CD⊥AB,
一条直线的两条直线平行
EF⊥AB,所以CD∥EF.
图示
5
【对点小练】

第05讲 平行线的判定(1个知识点+5类热点题型讲练+习题巩固)(解析版)七年级数学下册

第05讲 平行线的判定(1个知识点+5类热点题型讲练+习题巩固)(解析版)七年级数学下册

第05讲平行线的判定课程标准学习目标①平行的判定方法1.掌握同位角相等判定两直线平行,内错角相等判定两直线平行,同旁内角互补判定两直线平行,并能够熟练选择判定方法。

2.能够利用平行公理的推论以及垂直于同一直线的两直线平行判定两直线平行。

知识点01平行线的判定1.同位角相等,两直线平行:①判定内容:两条直线被第三条所截,如果同位角相等,那么这两条直线平行。

简单说成同位角相等,两直线平行。

②符号语言:若∠NEB=∠NFD,则AB∥CD。

2.内错角相等,两直线平行:①判定内容:两条直线被第三条所截,如果内错角相等,那么这两条直线平行。

简单说成内错角相等,两直线平行。

②符号语言:若∠AEM=∠DFN,则AB∥CD。

3.同旁内角互补,两直线平行:①判定内容:两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行。

简单说成同旁内角互补,两直线平行。

②符号语言:若∠BEM+∠DFN=180°,则AB∥CD。

利用同位角、内错角以及同旁内角判定平行时,平行线一定是这些角不公共的边。

4.平行公理的推论判定平行:①判定内容:平行于同一直线的两直线平行。

②符号语言:若a∥b,a∥c,则b∥c5.垂直判定平行:①判定内容:垂直于同一直线的两直线平行。

②符号语言:a⊥b,a⊥c,则b∥c【即学即练1】1.如图,点E在BC延长线上,下列条件中,不能推断AB∥CD的是()A.∠4=∠3B.∠1=∠2C.∠B=∠5D.∠B+∠BCD=180°【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∵∠3=∠4,∴AD∥BC,无法得出AB∥CD,故本选项错误;B、∵∠1=∠2,∴AB∥CD,故本选项正确;C、∵∠B=∠5,∴AB∥CD,故本选项正确;D、∵∠B+∠BCD=180°,∴AB∥CD,故本选项正确.故选:A.【即学即练2】2.对于同一平面内的三条直线a,b,c,下列命题中不正确的是()A.若a∥b,b∥c,则a∥c B.若a⊥b,a⊥c,则b⊥cC.若a∥b,a⊥c,则b⊥c D.若a⊥b,a⊥c,则b∥c【分析】根据平行公理的推论“如果两条直线都和第三条直线平行,那么这两条直线平行”和“垂直于同一条直线的两直线平行”进行分析判断.【解答】解:A.a∥b,b∥c,则a∥c,正确;B.a⊥b,a⊥c,则b∥c,故错误;C.a∥b,a⊥c,则b⊥c,正确;D.a⊥b,a⊥c,则b∥c,正确;故选:B.题型01确定判定两直线平行的条件【典例1】如图,能推断AB∥CD的是()A.∠3=∠5B.∠2=∠4C.∠1=∠2+∠3D.∠D+∠4+∠5=180°【分析】根据平行线的判定定理(①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行)判断即可.【解答】解:A、∵∠3=∠5,∴BC∥AD,不能推出AB∥CD,故本选项错误;B、∵∠2=∠4,∴AB∥CD,故本选项正确;C、∵∠1=∠2+∠3,∴∠1=∠BAD,∴BC∥AD,不能推出AB∥DC,故本选项错误;D、∵∠D+∠4+∠5=180°,∴BC∥AD,不能推出AB∥DC,故本选项错误;故选:B.【变式1】如图,下列条件中,不能判定l1∥l2的是()A.∠1=∠3B.∠2+∠4=180°C.∠2=∠3D.∠4+∠5=180°【分析】直接利用平行线的判定方法分别分析得出答案.【解答】解:A、∵∠1=∠3,∴直线l1∥l2,故此选项不合题意;B、∵∠2+∠4=180°,∴直线l1∥l2,故此选项不合题意;C、∠2=∠3,不能得出直线l1∥l2,故此选项符合题意;D、∵∠2=∠5,∠4+∠5=180°,∴∠4+∠2=180°,∴直线l1∥l2,故此选项不合题意.故选:C.【变式2】如图,下列推理中正确的是()A.若∠1=∠2,则AD∥BC B.若∠1=∠2,则AB∥DC C.若∠A=∠3,则AD∥BC D.若∠3=∠4,则AB∥DC 【分析】根据平行线的判定判断即可.【解答】解:A、根据∠1=∠2不能推出AD∥BC,故本选项错误;B、根据∠1=∠2能推出AB∥DC,故本选项正确;C、根据∠A=∠3不能推出AD∥BC,故本选项错误;D、根据∠3=∠4不能推出AB∥DC,故本选项错误.故选:B.【变式3】如图,点D是△ABC的边BC延长线上一点,射线CE在∠ACD内部,下列条件中能判定AB∥CE的是()A.∠A=∠ACE B.∠B=∠ACB C.∠A=∠ECD D.∠B=∠ACE【分析】根据平行线的判定方法即可求解.【解答】解:A选项,∠A=∠ACE,内错角相等,两直线平行,故符合题意;B选项,∠B=∠ACB,不能判定AB∥CE,故不符合题意;C选项,∠A=∠ECD,不能判定AB∥CE,故不符合题意;D选项,∠B=∠ACE,不能判定AB∥CE,故不符合题意;故选:A.【变式4】如图,下列推理中正确的是()A.∵∠1=∠4,∴BC∥ADB.∵∠BCD+∠ADC=180°,∴BC∥ADC.∵∠2=∠3,∴AB∥CDD.∵∠CBA+∠C=180°,∴BC∥AD【分析】结合图形分析相等或互补的两角之间的关系,根据平行线的判定方法判断.【解答】解:A、∵∠1=∠4,∴AB∥CD,故选项错误,不符合题意;B、∵∠BCD+∠ADC=180°,∴AD∥BC,故选项正确,符合题意;C、∵∠2=∠3,∴BC∥AD,故选项错误,不符合题意;D、∵∠CBA+∠C=180°,∴AB∥CD,故选项错误,不符合题意.故选:B.【变式5】如图,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠3;②∠4=∠8;③∠1+∠6=180°;④∠5+∠8=180°.其中能判定a∥b的条件的个数有()A.1个B.2个C.3个D.4个【分析】根据平行线的判定方法一一判断即可.【解答】解:能判断a∥b的条件是:②∠4=∠8;③∠1+∠6=180°;故选:B.【变式6】若将一副三角板按如图所示的方式放置,则下列结论正确的是()A.∠1=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠DD.如果∠2=50°,则有BC∥AE【分析】根据平行线的判定和性质一一判断即可【解答】解:∵∠CAB=∠DAE=90°,∴∠1=∠3,故A错误.∵∠2=30°,∴∠1=∠3=60°∴∠CAE=90°+60°=150°,∴∠E+∠CAE=180°,∴AC∥DE,故B正确,∵∠2=45°,∴∠1=∠2=∠3=45°,∵∠E+∠3=∠B+∠4,∴∠4=30°,∵∠D=60°,∴∠4≠∠D,故C错误,∵∠2=50°,∴∠3=40°,∴∠B≠∠3,∴BC不平行AE,故D错误.故选:B.【变式7】以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图A,展开后测得∠1=∠2B.如图B,展开后测得∠1=∠2且∠3=∠4C.如图C,测得∠1=∠2D.如图D,测得∠1=∠2【分析】根据平行线的判定定理,逐一进行分析,即可解答.【解答】解:A、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确,不符合题意;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确,不符合题意;C、测得∠1=∠2,∵∠1与∠2既不是内错角也不是同位角,∴不一定能判定两直线平行,故错误,符合题意;D、∠1=∠2,根据同位角相等,两直线平行进行判定,故正确,不符合题意;故选:C.题型02添加判定条件判定平行【典例1】如图,请填写一个条件∠2=∠4,使a∥b.【分析】根据平行线的判定定理求解即可.【解答】解:填写条件∠2=∠4,理由如下:∵∠2=∠4,∴a∥b(内错角相等,两直线平行),故答案为:∠2=∠4(答案不唯一).【变式1】如图,要得到AE∥BG的结论,需要添加的条件是∠EDC=∠BCD(答案不唯一).(写出一个正确答案即可)【分析】∠EDC与∠BCD为内错角,可利用内错角相等,两直线平行判定平行线.【解答】解:要得到AE∥BG的结论,则需要角相等的条件是∠EDC=∠BCD(答案不唯一).故答案为:∠EDC=∠BCD(答案不唯一).【变式2】如图:请写出一个条件:∠B=∠BCD,使AB∥CD.理由是:内错角相等,两直线平行.【分析】可以写一个条件内错角∠B=∠BCD,所以两直线AB∥CD.【解答】解:可以写一个条件:∠B=∠DCE;∵∠B=∠BCD;∴AB∥CD(内错角相等,两直线平行);故答案为:∠B=∠BCD.题型03根据判定条件求值【典例1】如图,已知∠1=85°,下列条件能判断AB∥CD的是()A.∠2=75°B.∠3=85°C.∠3=95°D.∠4=95°【分析】根据平行线的判定条件逐一判断即可.【解答】解:A、∵∠1=85°,∠2=75°,∴∠1≠∠2,∴AB与CD不平行,不符合题意;B、∵∠1=85°,∠3=85°,∴∠1+∠3=170°≠180°,∴AB与CD不平行,不符合题意;C、∵∠1=85°,∠3=95°,∴∠1+∠3=180°,∴AB∥CD,符合题意;D、由∠1=85°,∠4=95°无法证明AB∥CD,不符合题意;故选:C.【变式1】如图是小明探索直线平行的条件时所用的学具,木条a,b,c在同一平面内,经测量,要使木条a∥b,∠2=110°,要使木条a与b平行,则∠1的度数应为()A.20°B.70°C.110°D.160°【分析】先求出∠2的对顶角的度数,再根据同旁内角互补,两直线平行解答.【解答】解:如图,∵∠2=110°,∴∠3=∠2=110°,∴要使b与a平行,则∠1+∠3=180°,∴∠1=180°﹣110°=70°.故选:B.【变式2】如图,分别将木条a,b与固定的木条c钉在一起,∠1=50°,∠2=80°,顺时针转动木条a,下列选项能使木条a与b平行的是()A.旋转30°B.旋转50°C.旋转80°D.旋转130°【分析】根据平行线的判定定理即可求解.【解答】解:在图中标注出∠3,如图所示:若a∥b,则∠2=∠3,∵∠1=∠3,∴∠1=∠2=50°,故应将木条a顺时针转动30°.故选:A.【变式3】如图,将木条a,b与c钉在一起,∠1=85°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.15°B.25°C.35°D.50°【分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a 旋转的度数.【解答】解:∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是85°﹣50°=35°.故选:C.【变式4】如图,直线EF上有两点A、C,分别引两条射线AB、CD,∠DCF=60°,∠EAB=70°,射线AB、CD分别绕A点,C点以1度/秒和4度/秒的速度同时顺时针转动,在射线CD转动一周的时间内,使得CD与AB平行所有满足条件的时间=秒或秒.【分析】分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据内错角相等两直线平行,列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据同位角相等两直线平行,列式计算即可得解;③CD旋转到与AB都在EF的左侧,分别表示出∠DCF与∠BAC,然后根据同位角相等两直线平行,列式计算即可得解.【解答】解:∵∠EAB=70°,∠DCF=60°,∴∠BAC=110°,∠ACD=120°,分三种情况:如图①,AB与CD在EF的两侧时,∠ACD=120°﹣(4t)°,∠BAC=110°﹣t°,要使AB∥CD,则∠ACD=∠BAC,即120°﹣(4t)°=110°﹣t°,解得t=;②CD旋转到与AB都在EF的右侧时,∠DCF=360°﹣(4t)°﹣60°=300°﹣(4t)°,∠BAC=110°﹣t°,要使AB∥CD,则∠DCF=∠BAC,即300°﹣(4t)°=110°﹣t°,解得t=;③CD旋转到与AB都在EF的左侧时,∠DCF=(4t)°﹣(180°﹣60°+180°)=(4t)°﹣300°,∠BAC=t°﹣110°,要使AB∥CD,则∠DCF=∠BAC,即(4t)°﹣300°=t°﹣110°,解得t=﹣,∴此情况不存在.综上所述,当时间t的值为或秒时,CD与AB平行.故答案为:秒或秒.【变式5】如图,已知∠1=(3x+24)°,∠2=(5x+20)°,要使m∥n,那么∠1=75(度).【分析】直接利用邻补角的定义结合平行线的性质得出答案.【解答】解:如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180°,解得:x=17,则∠1=(3x+24)°=75°.故答案为:75.题型04平行公理的推论以及判定平行【典例1】如果b∥a,c∥a,那么b∥c.【分析】根据平行公理推论求解即可.【解答】解:如果b∥a,c∥a,那么b∥c(平行于同一直线的两直线平行),故答案为:b∥c.【典例2】同一平面内三条直线a、b、c,若a⊥b,c⊥b,则a与c的关系是:a∥c.【分析】根据平行线的性质:垂直于同一直线的两条直线互相平行可知直线a与直线c的关系是平行.【解答】解:∵a⊥b,c⊥b,∴a∥c.故答案为:a∥c.【变式1】若直线a,b,c,d有下列关系,则推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c【分析】根据平行公理及推论,逐一判断即可解答.【解答】解:A、∵a∥b,b∥c,∴c∥a,故A不符合题意;B、∵a∥c,b∥d,∴c与d不一定平行,故B不符合题意;C、∵a∥b,a∥c,∴b∥c,故C符合题意;D、∵a∥b,c∥d,∴a与c不一定平行,故D不符合题意;故选:C.【变式2】a、b、c是直线,下列说法正确的是()A.若a⊥b,b∥c,则a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则b∥c D.若a∥b,b∥c,则a∥c【分析】根据平行公理以及平行线的性质判断即可.【解答】解:A、在同一平面内,若a⊥b,b∥c,则a⊥c,原说法错误,不符合题意;B、在同一平面内,若a⊥b,b⊥c,则a∥c,原说法错误,不符合题意;C、在同一平面内,若a∥b,b⊥c,则a⊥c,原说法错误,不符合题意;D、若a∥b,b∥c,则a∥c,正确,符合题意.故选:D.【变式3】同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则c、d的位置关系为()A.互相垂直B.互相平行C.相交D.没有确定关系【分析】作出图形,根据平行公理的推论解答.【解答】解:如图,∵a∥b,a⊥c,∴c⊥b,又∵b⊥d,∴c∥d.故选:B.题型05平行线的判定证明【典例1】如图,一个弯形管道ABCD的拐角∠ABC=120°,∠BCD=60°,这时说管道AB∥CD对吗?为什么?【分析】由已知∠ABC=120°,∠BCD=60°,即∠ABC+∠BCD=120°+60°=180°,可得关于AB ∥CD的判定条件:同旁内角互补,两直线平行.【解答】解:说管道AB∥CD是对的.理由:∵∠ABC=120°,∠BCD=60°∴∠ABC+∠BCD=180°∴AB∥CD(同旁内角互补,两直线平行).【典例2】直线AB,CD被直线EF所截,∠1=∠2,直线AB和CD平行吗?为什么?【分析】根据对顶角相等可得∠1=∠3,再根据∠1=∠2,可推出∠2=∠3,根据同位角相等,两直线平行可推出AB∥CD.【解答】解:AB∥CD,理由:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴AB∥CD.【典例3】如图,∠1=47°,∠2=133°,∠D=47°,那么BC与DE平行吗?AB与CD呢?为什么?【分析】由于∠1=47°,∠2=133°,则∠ABC+∠2=180°,根据平行线的判定方法得到AB∥CD;然后利用平角的定义计算出∠BCD=180°﹣133°=47°,则∠BCD=∠D,根据平行线的判定即可得到BC∥DE.【解答】解:BC∥DE,AB∥CD.理由如下:∵∠1=47°,∠2=133°,而∠ABC=∠1=47°,∴∠ABC+∠2=180°,∴AB∥CD;∵∠2=133°,∴∠BCD=180°﹣133°=47°,而∠D=47°,∴∠BCD=∠D,∴BC∥DE.【变式1】如图,GH分别交AB、CD于点E、F,∠AEF=∠EFD.(1)试写出AB∥CD的依据;(2)若ME是∠AEF的平分线,FN是∠EFD的平分线,则EM、FN平行吗?若平行,请说明理由.【分析】(1)根据内错角相等,两直线平行,推出即可;(2)根据角平分线定义求出∠MEF=∠NFE,根据内错角相等,两直线平行,推出即可.【解答】(1)证明:∵∠AEF=∠EFD,∴AB∥CD(内错角相等,两直线平行).(2)EM∥FN,证明:∵ME是∠AEF的平分线,FN是∠EFD的平分线,∴∠MEF=∠AEF,∠NFE=∠EFD,∵∠AEF=∠EFD,∴∠MEF=∠NFE,∴EM∥FN(内错角相等,两直线平行).【变式2】已知:如图,直线EF分别与直线AB,CD相交于点P,Q,PM垂直于EF,∠1+∠2=90°.求证:AB∥CD.【分析】先根据垂直的定义可得∠APQ+∠2=90°,再结合∠1+∠2=90°可得∠APQ=∠1,然后根据“内错角相等,两直线平行”即可证明结论.【解答】证明:∵PM⊥EF(已知),∴∠APQ+∠2=90°(垂直定义).∵∠1+∠2=90°(已知),∴∠APQ=∠1(同角的余角相等),∴AB∥CD(内错角相等,两直线平行).【变式3】已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.【分析】先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1,∠2和∠D互余,所以得∠C=∠2,从而证得AB∥CD.【解答】证明:∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD.1.下列画出的直线a与b不一定平行的是()A.B.C.D.【分析】根据平行线的判定定理即可解答.【解答】解:A.直线a与b不一定平行,故本选项符合题意;B.根据同旁内角互补,两直线平行可得a∥b,故本选项不符合题意;C.根据平行线的定义可得a∥b,故本选项不符合题意;D.根据同位角相等,两直线平行可得a∥b,故本选项不符合题意;故选:A.2.如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D+∠ACD=180°C.∠D=∠DCE D.∠1=∠2【分析】根据平行线的判定定理分别进行分析即可.【解答】解:A、∠3=∠4可判断DB∥AC,故此选项错误;B、∠D+∠ACD=180°可判断DB∥AC,故此选项错误;C、∠D=∠DCE可判断DB∥AC,故此选项错误;D、∠1=∠2可判断AB∥CD,故此选项正确;故选:D.3.如图,下列四组条件中,能判断AB∥CD的是()A.∠1=∠2B.∠3=∠4C.∠ABC+∠BCD=180°D.∠BAD+∠ABC=180°【分析】根据平行线的判定方法一一判断即可.【解答】解:∵∠ABC+∠BCD=180°,∴AB∥CD.故选:C.4.蜂房的顶部由三个全等的四边形围成,每个四边形的形状如图所示,其中∠α=109°28′,∠β=70°32′.则这个四边形对边的位置关系为()A.平行B.相等C.垂直D.不能确定【分析】先计算两角的和得180°,再根据平行线判定定理“同旁内角互补,两直线平行”即可得出这个四边形对边的位置关系.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.【解答】解:如图标字母,∵∠BAD=∠α=109°28′,∠ADC=∠β=70°32′∴∠BAD+∠ADC=∠α+∠β=109°28′+70°32′=179°60′=180°,∴AB∥CD(同旁内角互补,两直线平行)∵∠BAD=∠α=109°28′,∠ABC=∠β=70°32′∴∠BAD+∠ABC=∠α+∠β=109°28′+70°32′=179°60′=180°,∴AD∥BC(同旁内角互补,两直线平行).故选:A.5.如图所示,由下列条件能判定AB∥CD的是()A.∠BAC=∠DAC B.∠DAC=∠ACBC.∠BAC=∠DCA D.∠D+∠DCB=180°【分析】根据平行线的判定定理判断求解即可.【解答】解:由∠BAC=∠DAC,不能判定AB∥CD,故A不符合题意;∵∠DAC=∠ACB,∴AD∥BC,故B不符合题意;∵∠BAC=∠DCA,∴AB∥CD,故C符合题意;∵∠D+∠DCB=180°,∴AD∥BC,故D不符合题意;故选:C.6.如图所示,下列条件中,能判断AB∥CD的是()A.∠BAD=∠BCD B.∠1=∠2C.∠BAC=∠ACD D.∠3=∠4【分析】两条直线被第三条所截,如果内错角相等,那么这两条直线平行,据此进行判断即可.【解答】解:A.根据∠BAD=∠BCD,不能判断AB∥CD;B.根据∠1=∠2,只能判断AD∥BC;C.根据∠BAC=∠ACD,能判断AB∥CD;D.根据∠3=∠4,不能判断AB∥CD;故选:C.7.如图,固定木条b、c,使∠1=80°,旋转木条a,要使得a∥b,则∠2应调整为()A.70°B.80°C.90°D.100°【分析】根据同旁内角互补两直线平行,求出∠2的度数即可.【解答】解:要使得a∥b,则需满足∠1+∠2=180°,∵∠1=80°,∴∠2=100°,故选:D.8.如图,下列推理不正确的是()A.∵∠1=∠2,∴AB∥CD B.∵∠1=∠2,∴AD∥BCC.∵∠3=∠4,∴AD∥BC D.∵∠4=∠5,∴AB∥CD【分析】根据平行线的判定定理判断求解即可.【解答】解:∵∠1=∠2,∴AB∥CD,故A正确,不符合题意;∵∠1=∠2,∴AB∥CD,故B不正确,符合题意;∵∠3=∠4,∴AD∥BC,故C正确,不符合题意;∵∠4=∠5,∴AB∥CD,故D正确,不符合题意;故选:B.9.在同一平面内,将两个完全相同的三角板按如图摆放,可以画出两条互相平行的直线l1与l2这样画的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【分析】根据题目的已知条件并结合图形进行分析,然后根据内错角相等,两直线平行,即可解答.【解答】解:在同一平面内,将两个完全相同的三角板按如图摆放,可以画出两条互相平行的直线l1与l2这样画的依据是:内错角相等,两直线平行,故选:A.10.下列说法正确的是()A.a、b、c是直线,若a⊥b,b∥c,则a∥cB.a、b、c是直线,若a⊥b,b⊥c,则a⊥cC.a、b、c是直线,若a∥b,b⊥c,则a∥cD.a、b、c是直线,若a∥b,b∥c,则a∥c【分析】根据平行线的性质和判定逐个判断即可.【解答】解:A、∵a⊥b,b∥c,∴a⊥c,故本选项错误;B、在同一平面内,当a⊥b,b⊥c时,a∥c,故本选项错误;C、当a∥b,b⊥c时,a⊥c,故本选项错误;D、当a∥b,b∥c时,a∥c,故选项正确;故选:D.11.如图,点E在AC的延长线上,请添加一个恰当的条件∠1=∠2(答案不唯一),使AB∥CD.【分析】利用平行线的判定定理进行分析即可.【解答】解:当∠1=∠2时,利用内错角相等,两直线平行可判定AB∥CD;当∠A=∠DCE时,利用同位角角相等,两直线平行可判定AB∥CD;当∠A+∠ACD=180°时,利用同旁内角互补,两直线平行可判定AB∥CD;当∠ABD+∠D=180°时,利用同旁内角互补,两直线平行可判定AB∥CD;故答案为:∠1=∠2(答案不唯一).12.三个完全相同的含30°角的三角板如图摆放,可以判断AB与EC平行的理由是同位角相等,两直线平行(答案不唯一).【分析】根据“同位角相等,两直线平行”求解即可.【解答】解:∵∠ACB=60°,∠ACE=90°,∠ECD=30°,∴∠ACB+∠ACE+∠ECD=180°,∴B、C、D在一条直线上,∵∠B=30°=∠ECD,∴AB∥EC(同位角相等,两直线平行),故答案为:同位角相等,两直线平行(答案不唯一).13.如图,下列条件:①∠1=∠3;②∠2=∠3;③∠4=∠5;④∠2+∠4=180°中,能判断直线l1∥l2的有3个.【分析】根据平行线的判断方法,可以判断出各个小题中的条件是否可以得到直线l1∥l2,从而可以解答本题.【解答】解:∵∠1=∠3,∴l1∥l2,故①符合题意;当∠2=∠3时,无法判断l1∥l2,故②不符合题意;∵∠4=∠5,∴l1∥l2,故③符合题意;∵∠2+∠4=180°,∴l1∥l2,故④符合题意;故答案为:3.14.如图,在下列四组条件中:①∠1=∠2,②∠3=∠4,③∠BAD+∠ABC=180°,④∠BAC=∠ACD,能判定AD∥BC的是①②③.【分析】根据平行线的判定,逐一判断即可解答.【解答】解:①∵∠1=∠2,∴AD∥BC;②∵∠3=∠4,∴AD∥BC;③∵∠BAD+∠ABC=180°,∴AD∥BC;④∵∠BAC=∠ACD,∴AB∥CD;所有,能判定AD∥BC的是①②③,故答案为:①②③.15.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中∠A=60°,∠D=30°,∠E=∠B=45°),当∠ACE<180°,且点E在直线AC的上方时,满足三角尺BCE有一条边与斜边AD平行,那么此时∠ACE=120或165或30.【分析】根据平行线的判定和性质定理即可得到结论.【解答】解:①当AD∥CE时,∵AD∥CE,∴∠DCE=∠D=30°,∴∠ACE=90°+30°=120°;②当BE∥AD时,过点C作CF∥AD,∵BE∥AD,CF∥AD,∴BE∥AD∥CF,∴∠ECF=∠E=45°,∠DCF=∠D=30°,∴∠DCE=30°+45°=75°∴∠ACE=90°+75°=165°.③如图中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠ECD=∠ECD+∠DCB=90°,∴∠ACE=∠DCB=30°.故答案为:120或165或30.16.如图,点A在射线DE上,点C在射线BF上,∠B+∠BAD=180°,∠1=∠2.求证:AB∥CD.请将下面的证明过程补充完整.证明:∵∠B+∠BAD=180°(已知),∠1+∠BAD=180°,∴∠1=∠B,∵∠1=∠2(已知),∴∠2=∠B(等量代换),∴AB∥CD(同位角相等,两直线平行).【分析】根据“同角的补角相等”得出∠1=∠B,等量代换得出∠2=∠B,根据“同位角相等,两直线平行”即可得解.【解答】证明:∵∠B+∠BAD=180°(已知),∠1+∠BAD=180°,∴∠1=∠B,∵∠1=∠2(已知),∴∠2=∠B(等量代换),∴AB∥CD(同位角相等,两直线平行).故答案为:∠B;∠B;等量代换;同位角相等,两直线平行.17.如图,直线a,b被直线c所截,∠1=50°,请你再添加一个条件,可以说明直线a与b平行,并说明理由.【分析】根据平行线的判定定理求解即可.【解答】解:添加∠4=50°(添加条件不唯一),可以说明直线a与b平行,∵∠1=50°,∠4=50°,∴∠1=∠4,∴a∥b(内错角相等,两直线平行).18.如图所示,直线AF,BD相交于点C,过点C作射线CE,使得CD平分∠ECF,连接AB,若∠B=∠ACB,试说明AB∥CE.【分析】根据角平分线定义得出∠ECD=∠DCF,根据对顶角相等得出∠ACB=∠DCF,结合已知条件∠B=∠ACB,等量代换得出∠B=∠ECD,然后根据同位角相等,两直线平行即可证明AB∥CE.【解答】证明:∵CD平分∠ECF,∴∠ECD=∠DCF,∵∠ACB=∠DCF,∠B=∠ACB,∴∠B=∠ECD,∴AB∥CE.19.如图,已知∠A=∠C,∠1与∠2互补,求证:AB∥CD.【分析】首先由∠1、∠2互补,可判定AD、BC平行,即可得∠A、∠ABC互补,通过等量代换,可求得∠ABC、∠C互补,即可判定AB∥CD.【解答】证明:∵∠1与∠2互补,即∠1+∠2=180°,∴AD∥BC,∴∠A+∠ABC=180°,∵∠A=∠C,∴∠C+∠ABC=180°,∴AB∥CD.20.如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH平分∠DQP,并且∠1=∠2,说出图中哪些直线平行,并说明理由.【分析】首先根据角平分线的性质可得∠1=∠GPQ=APQ,∠2=∠PQH=∠EQD,根据条件∠1=∠2,可得∠GPQ=∠PQH,∠APQ=∠PQD,根据内错角相等两直线平行可证明AB∥CD,PG∥QH.【解答】解:AB∥CD,PG∥QH,理由:∵PG平分∠APQ,QH平分∠DQP,∴∠1=∠GPQ=APQ,∠2=∠PQH=∠EQD,∵∠1=∠2,∴∠GPQ=∠PQH,∠APQ=∠PQD,∴AB∥CD,PG∥QH.。

七年级数学平行线的判定

七年级数学平行线的判定
c
• 解: 1=3(已知)

3= 2(对顶角相等) 3
• 1= 2
• a//b(同位角相等,两直线平行)
a
2
b
(3)如图:如能, 因为1+2=180
3
1
a
1+3=180
所以 2=3 所以 a//b
2
b
判定方法3:同旁内角互补,两直线平行.
; / 炒股配资 配资平台 ;
看呀?在哪里?”丁瑶明知故问.三个女人一条街,有她俩の加入,陆宅今晚の气氛比往常热闹了很多.不过,第二天一早,她俩看日出の计划泡汤了,因为风雪很大,整片天空阴沉沉の.而陆羽一早起床,依旧在后院锻炼臂力,然后再回书房工作.她の时间很紧凑,不可能天天跑去找柏少华谈情 说爱,基本上一个礼拜能找他两次就很频繁了.说得现实一些,就是柏少华在她心里の分量不如工作来得重要.对于这一点,柏少华早习惯了.在没看见她之前他并不介意,因为他自己也忙,但没她那么忙.有一天录完视频,暂时没兴趣回家做手工活,他便在休闲居の铁板烧后面の休息区品着咖 啡看着书.偶尔看看落地窗外の雪景,心境影响表情,脸上犹带几分慵懒随性,举止轻松惬意.“少华.”一声娇柔轻唤,唐蕊默默地走了过来,“介意我坐下吗?”柏少华淡淡扫了她一眼,“请坐.”唐蕊顿时嫣然坐下,经过几天静养,她の脚伤已经好了能够行走自如.看得出她今天稍稍化了淡 妆,风情尽在眉间.餐厅里暖和,她只穿了一件纯白色の高领加厚羊绒中长衫和深灰贴身の打底裤,色泽淡雅而时尚,把身上の丰满线条掩盖得若隐若现.“好像最近几天没见陆小姐过来,她很忙吗?她是干什么の?”唐蕊好奇地问.柏少华の视线仍在书上,“你找我有事?”见他不想谈这个, 唐蕊便笑道:“没有,我原本是过来看看儿时の小伙伴,没想到会搞出这么多事来,你改天见了陆一声抱歉.话说回来,记得你过喜欢温柔漂亮の女孩子,今天看来你找到了...”温柔?漂亮?柏少华一双深邃の黑眸看过来,饶有兴致地问:“哦?我有说过吗?”“当然?”见他终于有兴趣, 唐蕊心喜,风情万种地嗔他一眼,“你当时是十二岁,我十岁,看不惯我整天凶巴巴の便说了那番话...”一起经历过某段岁月の人,能聊の话题很多.第310部分谈话间,赵丽娥给唐蕊端来一杯奶茶,她进来の时候点の.唐蕊很礼貌地向她说了谢谢,然后笑看奶茶一眼,“差点忘了,我人生之中收 の第一份男孩子送の礼物,就是你请我喝の三块钱一大杯の奶茶,有印象吗?”柏少华笑笑不说话,端坐着认真倾听.“你说,只要我对你不再凶巴巴,你以后在家天天请我喝.可惜呀...”她叹气,“你好久没回来了,我几乎忘了你の样子.幸亏当初我们拍了一张婚照...”说到这里,她看了柏 少华一眼.发现他依然在认真听但视线不在她身上,这个发现令人不悦.“哎,我是不是话太多让你心烦了?都是陈年旧事你估计早忘了.”“没关系,那张照片呢?还在你那儿?”他试探地问了一句.难得他感兴趣,唐蕊开心之余略懊恼,“不在了,我记得放在相册里,本想拿来重温一下却怎 么也找不到.唉,人就是这样,越想找一样东西越找不着,或许哪天它会自动出来,到时候我再拿给你看.”打感情牌强而有力の物证,可惜找不到了.“那先谢谢了,我对小时候の事确实比较感兴趣.”柏少华笑了笑,优雅地端起咖啡喝了一口,那种醇香略带苦甘の滋味令他感官灵敏,特别の精 神.那张照片の事他原本一无所知,后来派人去调查才知道の.照片已经在他家里,之所以问,是为了试探她手里是否还有关于他の物品.曾经问过很多人,都说她当年和他是一对欢喜冤家,经常吵吵闹闹但很快又和好.那照片不是他想拍の,是表兄姐们经不起同学好友の怂恿,把他俩逮去穿着 袖珍版の华夏喜服拍了几张,戏称婚照.那些照片由于各种原因弄丢了,只剩唐蕊手里の一张被他の人拿了回来.本来跟她无话可说,但奶茶の事对他来说也很陌生,不知唐蕊是胡诌还是偶然想起.不管怎样,他愿意花时间去倾听,甚至隐约期待她多说一些关于小时候の事.“可惜我也差不多忘 了,今天突然想喝奶茶才记起一点,或许日后会慢慢想起更多来,”唐蕊笑道,“其实,这回我死皮赖脸地跟少卿哥他们来是有事求你...”接着,她向他坦承自己离异,并有个孩子の事,女儿在前夫眼里是个赔钱货所以扔给她养.前夫是个渣,离婚の时候让她净身出户,身上一点钱都没有 了.“...虽然我爸妈肯帮一把,可我弟弟谈了女朋友,她不喜欢我在家,所以我急需一份工作,一份能够养活我和孩子の工作.”说到这里,她看了对面男人一眼.见他神色如常看不出情绪,她咬咬唇,继续道,“你也知道,我是个单身母亲要腾出时间带孩子,一般单位不会用我这种人.我爸妈常 听少媛爸妈夸你人面广,想起我跟你の交情,所以...”不是听少媛爸妈说,而是听少贤の老子娘说の.所以父母希望她来找他,看能不能看在以前の情分上帮她找一份高薪の,稳定の,工作时间短可以灵活安排の活.“我尽量帮你留意一下.”柏少华没有一口应下.既要工资高,福利好,还得有 时间回家带孩子,除了老板娘之外没别の职位可找,他自认当老板都没有那么好の福利,上哪儿给她找?“呃,其实不必太麻烦,”她犹豫片刻,环视餐厅四周一下,“我看这里挺合适の,空气好,环境也不错适合小孩子成长,从小学外语也容易些.”她笑容灿烂.“不如,你在这里随便安排我一 个职位?放心,我什么都能干.”她一脸诚恳道.凭以前の交情,相信他不会安排她做清洁工.“这里规模小用不着太多人,有他们几个就够了.”柏少华婉拒,“不如你先让父母照看孩子,我帮你介绍一两份工作或者你自己做个小生意安定下来再做打算.人有时候难免要受累受委屈, 无论在哪儿或者是谁都一样.”别说华夏,国外也有很多女性为了生计打几份工の,大家生活都不容易.结过婚の人了,唐蕊岂能不懂他の意思?“少华,连你也不肯帮我?”唐蕊失望地看着他,眼里闪过一丝受伤.“不是不肯帮,田深夫妇做得好好の我总不能炒了他们.而且说实话,你这要求 有点高,换你做老板会怎么想?”他不收,也不能坑朋友吧?她那种要求哪个老板肯招?又不是什么高材生,谁愿意花大价钱把一名普通高校生当成老佛爷招回公司供着?如果他开口肯定有人答应,那些人目の是还他人情,要么想让他欠人情.他の人情很贵,不能轻易乱来.“我知道这要求很 过分...”唐蕊略失望,“可我身边只有你最本事,如果连你都帮不了,我只好自己做生意了.可是我又没有本钱,你能不能借我一些?放心,我手头松动马上还你.”“你想做什么生意?”柏少华神色温和.仿佛昨日重现,唐蕊兴奋得脸上发光,“城市竞争激烈我肯定争不过,所以想学你在乡下 搞个农家乐.这样我就有时间管理餐厅,又有时间带孩子,你看怎样?”遇到不懂の就找他帮忙,近水楼台,日久生情,简直一举两得.至于他那个傲娇得长期不露面の小女友,嗤,继续找地方窝着吧!那种清高性子,就算没有自己将来也会有别人插一腿.柏少华问她:“你有经验?”“现在做 老板用不着经验,有钱就行了.很多新手都是请专业人士回来帮忙打理,哪有亲力亲为の,那招工干嘛?”唐蕊理所当然道,“当然,银钱の收支我来管,你放心,绝对不会浪费一分一毫.”她の“完美”计划让柏少华为之失笑,“构思很好,不过我认为你最好先去其他地方打打工,多学习人家の 管理经验再考虑自己开.你还年轻,拼得起.”“我做过,除了打暑期工,毕业之后在西餐厅当了一年部长,后来给一位外商当秘书...”其实是文员,但杂事繁琐跟生活秘书差不多.见他一副公事公办の样子,唐蕊略急,滔滔不绝地谈起自己丰富の工作经验来.她这次来就两个目标,一个是和柏 少华搭上关系,不行の话就借钱,还不还未来の自己混成什么样.按柏少华以前の性子,他做不出追女人还钱这种事来.第311部分柏少华好笑地端起杯子想喝一口,发现咖啡早凉了,于是放回桌面.唐蕊の话他左耳进右耳出,明知她是个天坑,他有钱也不能往里边扔.再说,这个唐蕊不像外表那 么纯良.刚到云岭村就惹事,他怎么可能说帮就帮?被陆陆知道肯定炸毛.想起好几天不见の某人,他下意识地往窗外看,那姑娘对他...柏少华默,放下交叠の双脚凝望窗外の斗篷姑娘,咳咳,她什么时候来の?!来了干嘛不进来?不进来那肯定是误会了什么.“抱歉,先失陪了.”柏少华顾不 得收拾杯子,利索地站起来披上厚实の大衣,拿过一边の拐杖不紧不慢地走向门口.唐蕊先是一愣,随后往落地窗外一看,嗬,许久不来の人居然选在这时候来.不过转念一想,她原本气恼の心境忽然好转,神情自然地向窗外の女孩挥挥手.窗外の陆羽刚来不久,她目光平静,披着厚斗篷站在雪地 中一动不动,窗里那对年轻男女の和谐相处她一目了然.柏少华表现坦荡,她相信两人之间没什么,但就是不爽.直到柏少华发现她并且马上出来,心里才稍微好过一些.可是,当她看见唐蕊动作自然地伸手拿过他の杯子喝了一口时,顿时气结.感觉自己男朋友被别の女人间接亲吻冒犯.“陆 陆?外边雪那么大怎么不进来?”柏少华皱着眉头来到跟前,伸手就要拉她进去.陆羽小脸冷凝,“她喝你杯里の咖啡.”他喝咖啡或茶或酒所用杯子都不一样,固定の.他跟她讨厌の人坐在一起快乐地聊天就算了,两人还共用一个杯子?!过分!哪怕小时候养成の习惯也不行.看着膈应,不 想进.柏少华愕然,回头望一眼窗里,刚好看见唐蕊端着两个杯子离开座位准备拿去清洗.没事人似の,仿佛陆羽の指责是无中生有.再回头看看气鼓鼓不发一语の女友,不禁笑着抬手揉揉她の脸.“是我想得不够周到.”他之前都是自己泡咖啡和洗杯の,由于怕她误会跑掉,所以今天走得急了 些.揽着她の腰往自己家里走,边走边打电筒,“丽娥,把我の杯子砸碎扔了,以后不许任何人碰我の东西.”无论干净还是脏の.他语气顿了顿,“陆陆例外.”陆羽一听忍不住笑了出来,随他回了小别墅.而餐厅里,唐蕊面带微笑,眸里掠过得意の目光.哼,少贤の老子娘说得不错,柏少华这些年 变了不少,不再是以前那个大度绅士の小男孩,对人对事老练世故了很多.若换了以前,只要她肯放下身段说些软话,那小子几乎是有求必应.无论是请吃kfc还是去m记,一概他掏钱,跟眼前这个斤斤计较の男人完全相反,判若两人.既然人财不得,就别怪她给人添堵了.“唐小姐,杯子给我吧,我 拿去清洗.”她路过吧台,被赵丽娥笑眯眯地拦下来.唐蕊一躲,笑语中隐含一丝强势,“不用,我跟少华从小一起长大两小无猜,经常帮他洗衣服洗碗の早就习惯了.让我来吧,你就说是你洗の.”虽然是信口开河,但洗个杯子谁都会.孰料,赵丽娥身手快捷,稍微错身已把唐蕊手中の杯子碟一起 端走,并歉意道:“这不合规矩,唐小姐是客人,不敢劳烦.”说罢转身走开了.一个打工妹居然敢对老板の客

5-2-2平行线的判定-七年级下册人教版数学课件

5-2-2平行线的判定-七年级下册人教版数学课件

课堂练习
1.如图5.2-35,己知∠1=145°,∠2=145°,则AB∥CD,依据是 _同___位__角__相__等___,__两__直__线___平__行___.
图5.2-35
课堂练习
2.如图5.2-36 是一条街道的两个拐角,∠ABC与∠BCD均为140°,则 街道AB与CD的关系是_________,这是因___________________.
中考在线 考点:平行线的判定
【例1】如图5.2-27,下列说法错误的是( C ).
A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥c
C.若∠3=∠2,则b∥c
D.若∠3+∠5=180°,则a∥c
知识梳理
图5.2-27
【解析】根据平行线的判定进行判断:A.若a∥b,b∥c,则a∥c,利用了 平行公理,正确;B.若∠1=∠2,则a∥c,利用了内错角相等,两直线平行, 正确;C.∠3=∠2,不能判断b∥c,错误;D.若∠3+∠5=180°,则a∥c,利 用同旁内角互补,两直线平行,正确;故选C.
【答案】证明:∵AB⊥BC,BC⊥CD, ∴∠ABC=∠DCB=90°,∵∠1=∠2, ∴∠ABC-∠1=∠DCB-∠2, ∴∠CBE=∠BCF,∴BE∥CF.
图5.2-51
课后习题
9.如图5.2-52所示,已知∠1=50°,∠2=65°,CD平分∠ECF,则 CD∥FG.请说明理由.
图5.2-52
第5章 相交线与平行线
5.2.2 平行线的判定
教学新知
方法1:平行线的定义. 方法2:两条直线都与第三条直线平行,那么这两条直线也平行. 方法3:同位角相等,两直线平行. 方法4:内错角角相等,两直线平行. 方法5:同旁内角互补,两直线平行.

七年级数学下册 5.2平行线及其判定(十大题型)(解析版 )

七年级数学下册 5.2平行线及其判定(十大题型)(解析版 )

七级下册数学《第五章相交线与平行线》5.2平行线及其判定平行线及其表示方法★1、平行线定义:在同一个平面内,不相交的两条直线叫做平行线.记作:AB∥CD;记作:a∥b;读作:直线AB平行于直线CD.读作:直线a平行于直线b.【注意】1、在同一平面内,不重合的两条直线只有两种位置关系:相交和平行.(重合的直线视为一条直线)2、.线段或射线平行是指它们所在的直线平行.平行线的画法◆过直线外一点画已知直线的平行线的方法:一“落”把三角尺一边落在已知直线上;二“靠”把直尺紧靠三角尺的另一边;三“移”沿直尺移动三角尺,使三角尺与已知直线重合的边过已知点;四“画”沿三角尺过已知点的边画直线.【注意】1.经过直线上一点不能作已知直线的平行线.2.画线段或射线的平行线是指画它们所在直线的平行线.3.借助三角尺画平行线时,必须保持紧靠,否则画出的直线不平行.平行公理及其推论★1、平行公理:经过直线外一点,有且只有一条直线与这条直线平行.★2、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.也就是说:如图,如果b∥a,c∥a,那么b∥c.几何语言:∵b∥a,c∥a,∴b∥c.【注意】1、平行公理的推论中,三条直线可以不在同一个平面内.2、平行公理中强调“直线外一点”,因为若点在直线上,不可能有平行线;“有且只有”强调这样的直线是存在的,也是唯一的.平行线的判定方法★1、平行线的判定:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.几何语言表示:∵∠2=∠3(已知),∴a∥b(同位角相等,两直线平行).判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.几何语言表示:∵∠2=∠4(已知),∴a∥b.(内错角相等,两直线平行).判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.几何语言表示:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行).★2、在同一平面内,垂直于同一条直线的两直线垂直.几何语言表示:直线a,b,c在同一平面内,∵a⊥c,b⊥c,∴a∥b.【注意】三条直线在“同一平面内”是前提,没有这个条件结论不一定成立.★3、判定两直线平行的方法(1)平行线的定义;(2)平行公理的推论(如果两条直线都与第三条直线平行,那么这两条直线也互相平行);(3利用同位角相等说明两直线平行;(4)利用内错角相等说明两直线平行;(5)利用同旁内角互补说明两直线平行;(6)同一平面内,垂直于同一直线的两直线平行.【例题1】(2023秋•埇桥区期中)在同一平面内,两条直线的位置关系可能是()A.相交或垂直B.垂直或平行C.平行或相交D.相交或垂直或平行【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【解答】解:在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C正确;故选:C.【点评】本题考查了平行线,两条直线有一个交点的直线是相交线,没有交点的直线是平行线.解题技巧提炼解题的关键是准确把握平行线的概念,牢记平行线的三个条件:①在同一平面内;②不相交;③都是直线,通过与定义进行对比来进行判断.【变式1-1】如图所示,能相交的是,平行的是.(填序号)【分析】根据平行线、相交线的定义,逐项进行判断,即可正确得出结果.【解答】解:①中一条直线,一条射线,不可相交,也不会平行;②中一条直线,一条线段,不可相交,也不会平行;③中一条直线,一条线段,可相交;④中都是线段,不可延长,不可相交,也不平行,⑤中都是直线,延长后不相交,是平行.故答案为:③,⑤.【点评】本题考查平行线和相交线,解题的关键是掌握直线可以沿两个方向延伸,射线可以沿一个方向延伸,线段不能延伸.【变式1-2】下列说法正确的是()A.同一平面内,如果两条直线不平行,那么它们互相垂直B.同一平面内,如果两条直线不相交,那么它们互相垂直C.同一平面内,如果两条直线不相交,那么它们互相平行D.同一平面内,如果两条直线不垂直,那么它们互相平行【分析】根据平行线的判定及垂直、相交的定义判断求解即可.【解答】解:在同一平面内,如果两条直线不平行,那么这两条直线相交,故A不符合题意;在同一平面内,两条直线不相交,那么这两条直线平行,故B不符合题意;同一平面内,如果两条直线不相交,那么这两条直线平行,故C符合题意;同一平面内,如果两条直线不垂直,它们不一定平行,故D不符合题意;故选:C.【点评】此题考查了平行线的判定、垂直、相交等知识,熟练掌握有关定理、定义是解题的关键.【变式1-3】(2022春•莱芜区校级期末)下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.在同一平面内,若直线a∥b,a∥c,则b∥cD.若两条线段不相交,则它们互相平行【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【解答】解:A、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;B、过直线外一点,有且只有一条直线与已知直线平行.一条直线的平行线有无数条,故错误;C、在同一平面内,平行于同一直线的两条直线平行.故正确;D、根据平行线的定义知是错误的.故选:C.【点评】本题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解决本题的关键.【变式1-4】(2022秋•乌鲁木齐期末)如图,在长方体AB CD-EFGH中,与棱EF异面且与平面EFGH 平行的棱是.【分析】与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.【解答】解:与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.故答案为:棱AD和棱BC.【点评】本题主要考查了平行线与立体图形,熟练掌握平行线与立体图形的特征进行求解是解决本题的关键.【变式1-5】(2022春•沙河市期末)观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1【分析】根据长方体即平行线的性质解答.【解答】解:图中与AB平行的棱有:EF、CD、GH.共有3条.故选:B.【点评】本题考查了平行线的定义、长方体的性质.一个长方形的两条对边平行.【变式1-6】在同一平面内,直线l1与l2满足下列关系,写出其对应的位置关系:(1)若l1与l2没有公共点,则l1和l2;(2)若l1与l2只有一个公共点,则l1和l2;(3)若l1与l2有两个公共点,则l1和l2.【分析】(1)结合平行线的定义进行解答即可;(2)结合相交的定义进行解答即可;(3)结合重合的定义进行解答即可.【解答】解:(1)由于l1和l2没有公共点,所以l1和l2平行;(2)由于l1和l2有且只有一个公共点,所以l1和l2相交;(3)由于l1和l2有两个公共点,所以l1和l2重合;故答案为:(1)平行;(2)相交;(3)重合.【点评】本题侧重考查两直线的位置关系,掌握平行定义是解题关键.【变式1-7】(2022春•赵县月考)在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是.【分析】根据同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交.解答即可.【解答】解:因为a∥c,直线a,b相交,所以直线b与c也有交点;故答案为:相交.【点评】本题主要考查了平行线和相交线,同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交.【例题2】(2022春•梁山县期中)若a、b、c是同一平面内三条不重合的直线,则它们的交点可以有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.以上都不对【分析】根据平行线的定义,相交线的定义,可得答案.【解答】解:当三条直线互相平行,交点是个0;当两条直线平行,与第三条直线相交,交点是2个;当三条直线两两相交交于同一点,交点个数是1个;当三条直线两两相交且不交于同一点,交点个数是3个;故选:B.【点评】本题考查了平行线,分类讨论是解题关键.解题技巧提炼用分类讨论的思想根据平面内两条直线的位置关系去讨论求解.【变式2-1】在同一平面内,两条不重合直线的位置关系可能是()A.垂直或平行B.垂直或相交C.平行或相交D.平行、垂直或相交【分析】同一平面内,直线的位置关系通常有两种:平行或相交;垂直不属于直线的位置关系,它是特殊的相交.【解答】解:平面内的直线有平行或相交两种位置关系.故选:C.【点评】本题主要考查了在同一平面内的两条直线的位置关系.【变式2-2】在同一平面内有三条直线,如果使其中有且只有两条直线平行,那么这三条直线有且只有个交点.【分析】根据同一平面内直线的位置关系得到第三条直线与另两平行直线相交,再根据直线平行和直线相交的定义即可得到交点的个数.【解答】解:∵在同一平面内有三条直线,如果其中有两条且只有两条相互平行,∴第三条直线与另两平行直线相交,∴它们共有2个交点.故答案为2.【点评】本题考查了直线平行的定义:没有公共点的两条直线是平行直线.也考查了同一平面内两直线的位置关系有:平行,相交.【变式2-3】平面内四条直线共有三个交点,则这四条直线中最多有条平行线.【分析】根据同一平面内两条直线的位置关系有两种:相交或平行,及一条直线的平行线有无数条,由四条直线相互平行,其交点为0个开始分析,然后依次变为三条直线相互平行、两条直线相互平行即可求解.【解答】解:若四条直线相互平行,则没有交点;若四条直线中有三条直线相互平行,则此时恰好有三个交点;若四条直线中有两条直线相互平行,另两条不平行,则此时有三个交点或五个交点;若四条直线中有两条直线相互平行,另两条也平行,但它们之间相互不平行,则此时有四个交点;若四条直线中没有平行线,则此时的交点是一个或四个或六个.综上可知,平面内四条直线共有三个交点,则这四条直线中最多有三条平行线.故答案是:三.【点评】本题考查了平行线,题目没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都是平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出答案.【变式2-4】平面上不重合的四条直线,可能产生交点的个数为个.【分析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出.【解答】解:(1)当四条直线平行时,无交点;(2)当三条平行,另一条与这三条不平行时,有三个交点;(3)当两两直线平行时,有4个交点;(4)当有两条直线平行,而另两条不平行时,有5个交点;(5)当四条直线同交于一点时,只有一个交点;(6)当四条直线两两相交,且不过同一点时,有6个交点;(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.故答案为:0,1,3,4,5,6.【点评】本题没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出所有答案;本题对学生要求较高.【例题3】如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?【分析】根据平行公理及推论进行解答.【解答】解:(1)如图,过直线a外的一点画直线a的平行线,有且只有一条直线与直线a平行;(2)过点C画直线a的平行线,它与过点B的平行线平行.理由如下:如图,∵b∥a,c∥a,∴c∥b.【点评】本题考查了平行公理及推论.平行公理:经过直线外一点,有且只有一条直线与这条直线平行(平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思);推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式3-1】如图中完成下列各题.(1)用直尺在网格中完成:①画出直线AB的一条平行线;②经过C点画直线垂直于CD.(2)用符号表示上面①、②中的平行、垂直关系.【分析】(1)根据AB所在直线,利用AB所在直角三角形得出EF,以及MD⊥CD即可;(2)根据图形得出EF,MD⊥CD,标出字母即可.【解答】解:(1)如图所示:(2)EF∥AB,MC⊥CD.【点评】此题考查了基本作图以及直角三角形的性质,利用直角三角形的性质得出平行线以及垂线是解答此题的关键.【变式3-2】如图,已知直线a和直线a外一点A.(1)完成下列画图:过点A画AB⊥a,垂足为点B,画AC∥a;(2)过点A你能画几条直线和a垂直?为什么?过点A你能画几条直线和a平行?为什么?(3)说出直线AC与直线AB的位置关系.【分析】(1)根据要求画出图形即可;(2)过点A有一条直线和直线a垂直,过点A可以画一条直线和a平行.(3)结论:AC⊥AB.【解答】解:(1)直线AB、AC如图所示;(2)过点A有一条直线和直线a垂直,理由:过直线外一点有且只有一条直线和已知直线垂直.过点A可以画一条直线和a平行.理由:过直线外一点有且只有一条直线和已知直线平行.(3)结论:AC⊥AB.【点评】本题考查复杂作图、垂线、平行线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【变式3-3】作图题:(只保留作图痕迹)如图,在方格纸中,有两条线段AB、BC.利用方格纸完成以下操作:(1)过点A作BC的平行线;(2)过点C作AB的平行线,与(1)中的平行线交于点D;(3)过点B作AB的垂线.【分析】(1)A所在的横线就是满足条件的直线;(2)在直线AD上到A得等于BC的点D,则直线CD即为所求;(3)取AE上D右边的点F,过B,F的直线即为所求.【解答】解:如图,(1)A所在的横线就是满足条件的直线,即AE就是所求;(2)在直线AE上,到A距离是5个格长的点就是D,则CD就是所求与AB平行的直线;(3)取AE上D右边的点F,过B,F作直线,就是所求.【点评】本题考查复杂作图、垂线、平行线的定义等知识,解题的关键是灵活运用所学知识解决问题,【变式3-4】(2022秋•内乡县期末)如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?【分析】用两个三角板,根据同位角相等,两直线平行来画平行线,然后用量角器量一量l1与l2相交的角与∠O的关系为:相等或互补.【解答】解:(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.【点评】注意∠2与∠O是互补关系,容易漏掉.【例题4】(2022•寻乌县模拟)下面推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c【分析】根据平行公理的推论“如果两条直线都和第三条直线平行,那么这两条直线平行“进行分析,得出正确答案.【解答】解:A、a、c都和b平行,应该推出的是a∥c,而非c∥d,故错误;B、没有两条直线都和第三条直线平行,推不出平行,故错误;C、b、c都和a平行,可推出是b∥c,故正确;D、a、c与不同的直线平行,无法推出两者也平行.故选:C.【点评】本题考查的重点是平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线平行.【变式4-1】(2022春•丛台区校级期中)如图,过点A画直线l的平行线,能画()A.两条以上B.2条C.1条D.0条【分析】经过直线外一点,有且只有一条直线与这条直线平行.【解答】解:因为经过直线外一点,有且只有一条直线与这条直线平行.所以如图,过点A画直线l的平行线,能画1条.故选:C.【点评】本题考查了平行公理及推论.平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.【变式4-2】(2023春•萨尔图区期中)下面说法正确的个数为()(1)在同一平面内,过直线外一点有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)两角之和为180°,这两个角一定邻补角;(4)同一平面内不平行的两条直线一定相交.A.1个B.2个C.3个D.4个【分析】根据同一平面内,过直线外一点有一条直线和已知直线平行即可判断(1);在同一平面内,过一点有且只有一条直线和已知直线垂直即可判断(2);举出反例即可判断(3);根据在同一平面内,两直线的位置关系是平行或相交,即可判断(4).【解答】解:在同一平面内,过直线外一点有一条直线和已知直线平行,故(1)正确;只有在同一平面内,过一点有且只有一条直线和已知直线垂直,故(2)错误;如图:∠ABC=∠DEF=90°,且∠ABC+∠DEF=180°,但是两角不是邻补角,故(3)错误;同一平面内不平行的两条直线一定相交正确,因为不特别指出时,一般认为,两条直线重合就是同一条直线,所以所提出的命题是正确的,故(4)正确.即正确的个数是2个.故选:B.【点评】本题考查了平行公理和推论,邻补角,垂线,平行线等知识点,此题比较典型,但是一道比较容易出错的题目.【变式4-3】(2023春•泸县校级期中)下列说法正确的是()A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行【分析】平行线公理:经过直线外一点有且只有一条直线与已知直线平行.【解答】解:根据平行线公理:经过直线外一点有且只有一条直线与已知直线平行,可判断只有D选项正确.【点评】本题考查了平行公理,要熟练掌握.【变式4-4】(2023春•新民市期中)已知a∥b,c∥d,若由此得出b∥d,则直线a和c应满足的位置关系是()A.在同一个平面内B.不相交C.平行或重合D.不在同一个平面内【分析】根据平行推论:平行于同一条直线的两条直线互相平行,可得答案.【解答】解:当a∥c时,a∥b,c∥d,得b∥d;当a、c重合时,a∥b,c∥d,得b∥d,故C正确;故选:C.【点评】本题考查了平行公理及推论,利用了平行推论:平行于同一条直线的两条直线互相平行.【变式4-5】(2022春•和平区校级月考)下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4B.3C.2D.1【分析】根据同一平面内,任意两条直线的位置关系是相交、平行;过直线外一点有且只有一条直线和已知直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可.【解答】解:①任意两条直线的位置关系不是相交就是平行,说法错误,应为根据同一平面内,任意两条直线的位置关系不是相交就是平行;②过一点有且只有一条直线和已知直线平行,说法错误,应为过直线外一点有且只有一条直线和已知直线平行;③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b,说法错误;④若直线a∥b,b∥c,则c∥a,说法正确;【点评】此题主要考查了平行线,关键是掌握平行公理:过直线外一点有且只有一条直线和已知直线平行;推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式4-6】(2022春•大荔县期末)如图,已知OM∥a,ON∥a,所以点O、M、N三点共线的理由是.【分析】利用平行公理:经过直线外一点,有且只有一条直线与这条直线平行,进而得出答案.【解答】解:已知OM∥a,ON∥a,所以点O、M、N三点共线的理由:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:经过直线外一点,有且只有一条直线与这条直线平行.【点评】此题主要考查了平行公理,正确掌握平行公理是解题关键.【变式4-7】(2022春•海阳市期末)若P,Q是直线AB外不重合的两点,则下列说法不正确的是()A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定与直线AB相交D.过点Q只能画出一条直线与直线AB平行【分析】根据过直线外一点有且只有一条直线与已知直线平行以及两直线的位置关系即可回答.【解答】解:PQ与直线AB可能平行,也可能垂直,过直线外一点有且只有一条直线与已知直线平行,故A、B、D均正确,故C错误;故选:C.【点评】本题考查了平行线、相交线、垂线的性质,掌握相关定义和性质是解题的关键.【变式4-8】如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定【分析】根据平行公理和垂直的定义解答.【解答】解:∵长方形对边平行,∴根据平行公理,前两次折痕互相平行,∵第三次折叠,是把平角折成两个相等的角,∴是90°,与前两次折痕垂直.∴折痕与折痕之间平行或垂直.故选:C.【点评】本题利用平行公理和垂直定义求解,需要熟练掌握.【例题5】(2022春•昭阳区校级月考)如图,把三角尺的直角顶点放在直线b上.若∠1=50°,则当∠2=时,a∥b.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°=40°,当∠2=40°时,∠2=∠3,得出a∥b即可.【解答】解:当∠2=40°时,a∥b;理由如下:如图所示:∵∠1=50°,∴∠3=180°﹣90°﹣50°=40°,当∠2=40°时,∠2=∠3,∴a∥b.故答案为:40°.【点评】本题考查了平行线的判定方法、平角的定义;熟记同位角相等,两直线平行是解决问题的关键.【变式5-1】(2022春•洞头区期中)如图,在下列给出的条件中,能判定DF∥BC的是()A.∠B=∠3B.∠1=∠4C.∠1=∠B D.∠B+∠2=180°【分析】根据平行线的判定定理求解即可.【解答】解:∵∠B=∠3,∴AB∥EF,故A不符合题意;∵∠1=∠4,∴AB∥EF,故B不符合题意;∵∠1=∠B,∴DF∥BC,故C符合题意;∵∠B+∠2=180°,∴AB∥EF,故D不符合题意;故选:C.【点评】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.【变式5-2】(2023秋•淮阳区校级期末)如图,木条a,b,c在同一平面内,经测量∠1=115°,要使木条a∥b,则∠2的度数应为()A.65°B.75°C.115°D.165°【分析】根据邻补角互补和平行线的判定定理求解即可.【解答】解:∠2的度数应为65°.证明:如图,∵∠1=115°,∴∠3=180°﹣115°=65°,∵∠2=65°,∴∠2=∠3,∴a∥b.故选:A.【点评】本题考查邻补角互补,平行线的判定.熟练掌握平行线的判定定理是解题关键.【变式5-3】(2023秋•泾阳县期末)如图,直线AB、CD分别与EF相交于点G、H,已知∠1=70°,∠2=70°,试说明:AB∥CD.【分析】根据对顶角相等得出∠1=∠AGH,进而根据∠2=∠AGH,即可得证.【解答】解:∵∠1=∠AGH,∠1=∠2=70°,∴∠2=∠AGH,∴AB∥CD.【点评】本题考查了对顶角相等,同位角相等两直线平行,熟练掌握平行线的判定定理是解题的关键.【变式5-4】(2023秋•泰和县期末)如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.【分析】根据平行线的判定,依据角平分线的定义即可解决问题.【解答】证明:∵CE平分∠ACD,∠1=30°,∴∠ACD=2∠1=60°(角平分线定义),∵∠2=60°,(已知),∴∠2=∠ACD(等量代换),∴AB∥CD(同位角相等两直线平行).【点评】本题主要考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式5-5】(2023春•樟树市期中)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.求证:CF∥AB.【分析】根据CF平分∠DCE以及∠DCE=90°即可得出∠FCE=45°,再根据三角形ABC为等腰直角三角形,即可得出∠ABC=∠FCE=45°,利用“同位角相等,两直线平行”即可证出结论.【解答】证明:∵CF平分∠DCE,∠DCE=90°,∴∠FCE=12∠DCE=45°.∵△ABC为等腰直角三角形,∴∠ABC=45°,∴∠ABC=∠FCE,∴CF∥AB.【点评】本题考查了平行线的判定,解题的关键是找出∠ABC=∠FCE=45°.本题属于基础题,难度不大,解决该题型题目时,找出相等(或互补)的角的关键.【变式5-6】(2023秋•靖边县期末)如图,AF与BD相交于点C,∠B=∠ACB,且CD平分∠ECF.试说明:AB∥CE.【分析】根据角平分线的定义结合对顶角得到∠ECD=∠ACB,则可证明∠B=∠ECD,根据平行线的判定即可证明AB∥CE.【解答】证明:因为CD平分∠ECF,所以∠ECD=∠FCD(角平分线的定义).因为∠ACB=∠FCD(对顶角相等),所以∠ECD=∠ACB(等量代换).因为∠B=∠ACB,。

七年级-人教版-数学-下册-第3课时-平行线的判定的应用

七年级-人教版-数学-下册-第3课时-平行线的判定的应用

类型三、平行线判定的实际应用 7.如图,在海上有两个观测所 A 和 B,且观测所 B 在 A 的正
东方向.若在观测所 A 测得船 M 的航行方向是北偏东 55°,在观 测所 B 测得船 N 的航行方向也是北偏东 55°,问:船 M 的航向 AM 与船 N 的航向 BN 是否平行?请说明理由.
北 E北F MN
C
M
N
D
E
F
类型二、平行线判定中辅助线的应用 5.如图,已知∠B=25°,∠BCD=45°,∠CDE=30°,
∠E=10°,试判断 AB 与 EF 的位置关系,并说明理由.
根据“内错角相等,两直线平行”知,AB∥CM,EF∥DN,
又∵∠BCD=45°,∠CDE=30°,
∴∠DCM=20°,∠CDN=20°,
第3课时 平行线的判 定的应用
平行线的判定方法有哪些? 1.在同一平面内,不相交的两条直线叫做平行线. 2.如果两条直线都与第三条直线平行,那么这两条直线也互相 平行. 3.同位角相等,两直线平行. 4.内错角相等,两直线平行. 5.同旁内角互补,两直线平行. 6.在同一平面内,垂直于同一条直线的两条直线平行.
类型三、平行线判定的实际应用 解析:汽车行驶的方向不变,即汽车拐弯前与两次拐弯后的行
驶方向所在的直线互相平行.如图,先右转后左转的两个角是同位 角,根据同位角相等,两直线平行,可知选项 D 正确.
汽车行驶方向
A
B
C
D
归纳
解答此类问题的关键在于先画出示意图,准确 地找到拐角,将实际问题转化为数学问题,再利用 平行线的几种判定方法进行判定.
关系.
分析:本题要判断 AB 与 CD 的位置关系, 由图可判断是平行关系,关键是通过作辅助线

七年级下册数学平行线的判定

七年级下册数学平行线的判定

七年级下册数学平行线的判定七年级下册数学平行线的判定一、概述平行线是初中数学中的重要知识点,也是七年级下册的一项难点内容。

平行线的判定方法有多种,本文将对其中的三种方法进行详细介绍。

二、第一种判定方法:同旁内角等1.定义:同旁内角等定义为,两条直线上的同旁内角相等,则这两条直线是平行线。

2.具体步骤:(1)画两条直线l和m,并选择任意一点A点。

(2)在l上找到一点B,在m上找到一点C。

(3)以A点为圆心,在l上画一个圆,焦点在B点上;在m上画另一个圆,焦点在C点上。

(4)设两圆的交点分别为D、E、F。

(5)连接ADE、BCF,并证明∠ADE=∠BCF。

(6)如果∠ADE=∠BCF,则可得出l和m是平行线。

三、第二种判定方法:同位角相等1.定义:同位角相等定义为,两条直线被另外一条直线割成的同位角相等,则这两条直线是平行线。

2.具体步骤:(1)画两条直线l和m,并选择任意一条直线n,使得n与l和m相交。

(2)在l和m上各找到一组同位角,分别为A1、A2,B1、B2。

(3)连接A1B1、A2B2,并证明∠A1=∠A2。

(4)如果∠A1=∠A2,则可得出l和m是平行线。

四、第三种判定方法:反证法1.定义:反证法定义为,如果已知两条直线l和m不平行,则这两条直线必相交。

2.具体步骤:(1)画两条直线l和m,并选择任意一点A点。

(2)在l上找到一点B,在m上找到一点C,连接BC。

(3)如果BC与l平行,则BC与l的交点D无限远,不可能相交;同样,如果BC与m平行,则BC与m的交点E也无限远,不可能相交。

(4)如果BC既不与l平行也不与m平行,则l和m一定相交,与假设不符。

因此l和m是平行线。

五、总结以上是七年级下册数学平行线的三种判定方法。

在学习过程中,可以根据具体情况灵活运用不同的方法来判断平行线关系,掌握这些方法可以帮助学生提高数学水平,更好地应对课堂测试和考试。

初中数学 平行线的判定定理有哪些

初中数学  平行线的判定定理有哪些

初中数学平行线的判定定理有哪些平行线的判定定理是初中数学中的一个重要概念,用于判断两条直线是否平行。

在本文中,我将详细介绍平行线的判定定理,包括定义、相关定理以及实际应用。

同时,我还会提供一些示例和习题,以帮助读者更好地理解和应用这一概念。

1. 同位角定理:如果两条直线被一条横截线所切,且同位角相等,则这两条直线是平行线。

即如果两条直线l和m被一条直线n所切,且∠A=∠B,则l||m。

2. 平行线的性质:如果两条直线l和m都与第三条直线n平行,那么l和m也是平行线。

即如果l||n且m||n,则l||m。

3. 垂直定理的逆定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线相互垂直,则l||m。

即如果l∠n且m∠n,则l||m。

4. 对顶角定理:如果两条直线l和m被一条横截线所切,且对顶角相等,则这两条直线是平行线。

即如果两条直线l和m被一条直线n所切,且∠A=∠C,则l||m。

5. 平行线的传递性:如果直线l||m,且直线m||n,那么直线l||n。

即如果l||m且m||n,则l||n。

6. 锐角等于直角的定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线与另一条直线的某一角度相等,则l||m。

即如果l∠n且∠A=90°,则l||m。

7. 平行线的平行线定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n 的某一角度为锐角,另一条直线与n的某一角度为钝角,则l||m。

8. 平行线的交角定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n的某一角度为锐角,另一条直线与n的某一角度为钝角,则l与m不平行。

9. 平行线的平行截线定理:如果两条直线l和m被同一条直线n所切,且直线l与n的交点A与直线m与n的交点B之间的线段AB与直线n的某一条垂线相交于点C,则直线l和直线m平行。

以上是一些常见的平行线的判定定理,可以根据不同的条件来判断两条直线是否平行。

华东师大版七年级数学上册 5.2.2 平行线的判定课件(共24张PPT)

华东师大版七年级数学上册 5.2.2 平行线的判定课件(共24张PPT)
∠2 = ∠3 ,则____//____.

>
m
<
>
/m
<
>
m
<
>
m
<
>
/m
<
>
/m
<
>
m
<
>
/m
<
7.如图:∠1 和 ∠2 分别为直线 3 与直线
1 和 2 相交所成的角.如果 ∠2 = 60∘ ,那
么当 ∠1 = ____时,可判定
1 //2 .
60∘
>
m
<
>
/m
<
8.小明把一副三角板摆放在桌面上,如图所示,其中边
判定方法3:
两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
文字语言:
图形语言:
同旁内角互补,两直线平行.
符号语言:
∵∠1 + ∠2 = 180° (已知),
∴ a∥b (同旁内角互补,两直线平行).
a
1
2
b
小试牛刀:
根据图形填空:
(1) ∵ ∠1 = ∠2 (已知)
∴ ____//____(内错角相等,两直线平行)
华 东 师 大 版 七 年 级 上 册
第5章相交线与平行线
5.2.2平行线的判定
学习目标:
知识和
技能
情感态
度与价
值观
过程与
方法
掌握平行线的
判定方法
经历探究直线
平行的条件的
过程,掌握直
线平行的条件
经历观察、操
作、交流等活

七年级数学下册教学课件《5.2.2平行线的判定》

七年级数学下册教学课件《5.2.2平行线的判定》

第3题图
第 4 题图
第 5 题图
5.如图,能判定 AB∥CD 的条件有___①①③③④④ ___.(填序号)
①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.
当堂检测
6.如图所示,∠B=∠C,∠DEF=∠A.试问CD与EF平行吗?为什么? 解:CD∥EF.理由:∵∠B=∠C,∴AB∥CD(内错角相等,两直线平行). ∵∠DEF=∠A,∴EF∥AB(同位角相等,两直线平行). ∴CD∥EF(平行于同一条直线的两条直线平行).
方法二:∵∠1+∠4=180°(平角定义), ∵∠1+∠2=180°(已知),∴∠2=∠4(同角的 补角相等),∴a∥b(内错角相等,两直线平行).
预习成果
1.如图1,∠C=60°,当∠ABE= 60° 时,就能使 BE∥CD.根据 同位角相等,两直线平行 . 2.如图2,∠1=120°,∠2=60°,问a与b的位置关系? 3.如图3,直线CD、EF被直线AB所截. (1)量得∠3=120°,∠4=120°,就可以判定 CD ∥ EF , 根据 内错角相等,两直线平行 . (2)量得∠1=60°,∠3=120°,就可以判定 CD ∥ EF , 根据 同旁内角互补,两直线平行 .
巩固例题
【例 2】如图,BE平分∠ABD,DE平分∠BDC,且 ∠1+∠2=90°. 求证:AB∥CD. 解:∵BE平分∠ABD,DE平分∠BDC(已知), ∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义). ∵∠1+∠2=90°, ∴∠ABD+∠BDC=2(∠1+∠2)=180°. ∴AB∥CD(同旁内角互补,两直线平行).
②当∠2+∠3=180°时,a∥b.证明: ∵∠2+∠4=180°,∠3+∠6=180°(平角定义), ∴∠2+∠4+∠3+∠6=360°,∵∠2+∠3=180° ∴∠4+∠6=180°∴a∥b(同旁内角互补,两直线平行).

人教版数学七年级下册 5.2.2 平行线的判定 课件

人教版数学七年级下册 5.2.2 平行线的判定 课件

为什么?
解:直线与平行. 理由如下:
∵∠1 + ∠ = 180°, ∠1 + ∠ = 180°,
∴∠ = ∠.
∵∠ = ∠,
∴∠ = ∠.
∴∥(同位角相等,两直线平行).
【例题2】如图,∠ + ∠ = 180°,∠ = ∠,试说明∥.



∠ + ∠ = ∠
∠ = ∠ − ∠
∠ = ∠
∠ = ∠ − ∠ = ∠
【例题3】如图,∠ + ∠ = ∠,试说明∥.
解: 如图,作∠ = ∠.
∵∠ = ∠
∴∥.
又∵∠ + ∠ = ∠,
解: ∵∠1=∠2, ∴AB∥CD.
∵∠3+∠4=180°,∴CD∥EF,
∴AB∥EF.
3.如图,B、A、E三点在同一直线上,请你添加一个条件,使AD∥BC.你
∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°
所添加的条件是___________________________________________(不允许添加
任何辅助线).
4.如图,下列条件不能判断直线a∥b的是( D
).
A. ∠1=∠4 B. ∠3=∠5 C. ∠2+∠5=180° D. ∠2+∠4=180°
平行线的判定方法
1. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
2. 同位角相等,两直线平行.
3. 内错角相等,两直线平行.
4. 同旁内角互补,两直线平行.
∠1 = ∠2

判定方法2
线平行.
两条直线被第三条直线所截,如果内错角相等,那么这两条直

数学七年级下学期第2讲 平行线的判定(1)

数学七年级下学期第2讲 平行线的判定(1)

第2讲平行线的判定(核心考点讲与练)一、平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.二、直线平行的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.考点一:平行公理及推论【例题1】(2019春•余姚市期末)已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是()A.如果a∥b,a⊥c,那么b⊥c B.如果b∥a,c∥a,那么b∥c C.如果b⊥a,c⊥a,那么b⊥c D.如果b⊥a,c⊥a,那么b∥c【变式训练1】(2018春•杭州期中)下列说法:①两点之间的距离是两点间的线段的长度;②过一点有且只有一条直线与已知直线平行;③两点之间的所有连线中,线段最短;④若a⊥b,c⊥b,则a与c的关系是平行;⑤只有一个公共点的两条直线叫做相交直线;其中正确的是.【变式训练2】(2020春•椒江区期末)如图,AB∥CD,AB∥GE,∠B=110°,∠C=100°.∠BFC等于多少度?为什么?考点二:平行线的判定【例题2】(2021秋•平阳县期中)如图,下列条件中①∠1=∠2;②∠3=∠4;③∠2+∠5=∠6;④∠DAB+∠2+∠3=180°,能判断AD∥BC的是()A.①③④B.①②④C.①③D.①②③④【变式训练1】(2021秋•余姚市期中)木条a、b、c如图用螺丝固定在木板α上且∠ABM =50°,∠DEM=70°,将木条a、木条b、木条c看作是在同一平面α内的三条直线AC、DF、MN,若使直线AC、直线DF达到平行的位置关系,则下列描述错误的是()A.木条b、c固定不动,木条a绕点B顺时针旋转20°B.木条b、c固定不动,木条a绕点B逆时针旋转160°C.木条a、c固定不动,木条b绕点E逆时针旋转20°D.木条a、c固定不动,木条b绕点E顺时针旋转110°【变式训练2】(2021春•拱墅区期末)如图,已知∠F+∠FGD=90°(其中∠F>∠FGD),添加一个以下条件:①∠F+∠FEA=180°;②∠F+∠FGC=180°;③∠FEB+2∠FGD=90°;④∠FGC﹣∠F=90°.能证明AB ∥CD的是()A.①B.②C.③D.④【变式训练3】(2021春•萧山区期末)如图,下列条件中能判断AD∥BC的是()①∠1=∠2;②∠3=∠4;③∠2+∠5=∠6;④∠DAB+∠2+∠3=180°.A.①③④B.①②④C.①③D.①②③④【变式训练4】(2021春•怀安县期末)如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠A B.∠1=∠2C.∠D=∠DCE D.∠D+∠ACD=180°【变式训练5】(2021•下城区一模)如图,直角三角形ABC的顶点A在直线m上,分别度量:①∠1,∠2,∠C;②∠2,∠3,∠B;③∠3,∠4,∠C;④∠1,∠2,∠3.可判断直线m与直线n是否平行的是()A.①B.②C.③D.④【例题3】(2021春•椒江区期末)如图,∠A=70°,O是AB上一点,直线OD与AB的夹角∠BOD为75°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转度.【变式训练1】(2021春•鄞州区期中)如图,下列条件中:①∠BAD+∠ABC=180°;②∠1=∠2;③∠3=∠4;④∠BAD=∠BCD,能判定AD∥BC的是.【变式训练2】(2020秋•婺城区校级期末)如图,点E是BA延长线上一点,在下列条件中:①∠1=∠3;②∠5=∠B;③∠1=∠4且AC平分∠DAB;④∠B+∠BCD=180°,能判定AB∥CD的有.(填序号)【变式训练3】(2021春•奉化区校级期末)如图,点E在AD的延长线上,下列四个条件:①∠1=∠2;②∠C+∠ABC=180°;③∠C=∠CDE;④∠3=∠4,能判断AB∥CD的是(填序号).【变式训练4】(2021•柳南区校级模拟)如图把三角板的直角顶点放在直线b上,若∠1=40°,则当∠2=度时,a∥b.【例题4】(2021春•槐荫区期末)点B,E分别在AC,DF上,BD,CE分别交AF于点G,H,∠AGB=∠EHF,∠C=∠D.求证:AC∥DF.【变式训练1】(2021春•乾安县期末)已知:如图,直线l分别与直线AB,CD相交于点P,Q,PM垂直于l,∠1+∠2=90°.求证:AB∥CD.【变式训练2】(2020春•岱岳区期末)将一副三角尺拼图,并标点描线如图所示,然后过点C作CF平分∠DCE,交DE于点F.(1)求证:CF∥AB;(2)求∠EFC的度数.【变式训练3】(2020春•麻城市校级月考)根据要求完成下面的填空:如图,直线AB,CD被EF所截,若已知∠1=∠2,说明AB∥CD的理由.解:根据得∠2=∠3又因为∠1=∠2,所以∠=∠,根据得:∥.【变式训练4】(2020秋•温州月考)已知:如图,∠ACD=2∠B,CE平分∠ACD.求证:CE∥AB.【变式训练5】(2019春•秀洲区期中)如图,如果∠1+∠3=180°,那么AB与CD平行吗,请说明理由.类型一、平行公理及推论【例题5】在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行。

七年级数学下册教学课件《平行线的判定》

七年级数学下册教学课件《平行线的判定》
1.如图,直线AB,CD被直线EF所截,∠1=55°,下列条件
中能判定AB//CD的是( C )
A.∠2=35° B.∠2=45° C.∠2=55° D.∠2=125°
2.如图,若∠1=∠2,则 _A_B__//_D__E_;若∠2=∠3, 则_B__C_∥__E_F_.
问题3 能否利用内错角,或同旁内角来判定两条直线
同一个平面内,两条直线 不__相__交___
同__位__角__相__等__,两直线平行
内__错__角__相__等__,两直线平行
同__旁__内__角__互__补__,两直线平行
作业布置 1.教材P15习题5.2第1,2,4,5题.
(1)由∠CBE=∠A可以判定哪两条直线平行?
根据是什么?
D
C
答:(1)AD∥BC,根据是
“同位角相等,两直线平行”;
A
B
E
(2)由∠CBE=∠C可以判定哪两条直线平行? 根据是什么?
D
(2)DC∥AB,根据是“内
错角相等,两直线平行”;
A
C
B
E
知识结构
随堂训练,课堂总结
平行线的 判定
定义法 判定方法
总结
判定方法2:两条直线被第三条直线所截,如果 内错角相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行.
c 3
a
2 b
符号语言: 因为∠2=∠3 , 所以 a∥b.
对应训练
1.如图是一条街道的两个拐角,若∠ABC与∠BCD均 为140°,则街道AB与CD的位置关系是__A_B__//_C_D__.
例 (1)如图,当∠1=∠3时,直线a,b平行吗? (2)当∠2+∠3=180°时,直线a,b平行吗? 为什么?

华东师大版数学七年级上册5.平行线的判定课件

华东师大版数学七年级上册5.平行线的判定课件

1Hale Waihona Puke ∴_∠__1_=_∠__2_(等量代换)。
∴ a∥b
( 同位角相等,两直线平行 )。
b 2
c
C 1
证明:∵∠1=∠3(已知), ∠2=∠3(对顶角相等),
a
3 4
2
b
∴∠1=∠2(等量代换)。
∴a∥b(同位角相等,两直线平行)。
判定两直线平行方法2
两条直线被第三条直线所截,如果内错 角相等,那么这两条直线平行。
简单说成: 内错角相等,两直线平行。
符号语言:如图
c a
∵ ∠3=∠4(已知)
同位角相等
b 2
(2)直线a,b位置
关系如何?
c
两直线平行
1
a
b 2
c
判定两直线平行方法1
两条直线被第三条直线所截,如果同位 角相等,那么这两条直线平行。
简单说成: 同位角相等,两直线平行。
符号语言:如图
c
∵ ∠1=∠2(已知)
1
a
∴ a∥b (同位角相等,两直线平行)
2
b
例 如图1 ,∠1=80°,∠2=80° 问a与b的位置关系?a∥b
∠1=∠2=∠3
D
分析:由∠1=∠2=∠3 可得出:
1) ∠1=∠2 ;
2) ∠1=∠3 ;
2
A 3) ∠2=∠3
C
3
1
BE
课堂小结:
平行线的判定方法
1、平行线的定义 2、平行线的判定方法1:同位角相等,两直线平行 3、平行线的判定方法2:内错角相等,两直线平行
课堂小测
a
b
1、如图 ,直线a、b被直线c所截.
揭示课题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宝马线上娱城电子游戏 [单选]注册建造师有权()。A.超出聘用单位业务Байду номын сангаас围从事执业活动B.在两个或两个以上单位受聘或执业C.允许信得过的人以自己的名义从事执业活动D.对本人执业活动进行解释和辩解 [单选,A2型题,A1/A2型题]测量细菌大小的单位是()A.mmB.&mu;mC.nmD.cmE.dm [单选,A2型题,A1/A2型题]下面颅脑MRI技术叙述错误的是()A.脑炎平扫阴性者,需加做增强扫描B.层厚4~8mm,层间距取层厚的10%~50%C.相位编码方向:矢状位取左右向D.相位编码方向:冠状位取左右向E.相位编码方向:横断位取左右向 [单选,A2型题,A1/A2型题]所有卒中患者溶栓前都必须做的辅助检查是()A.平扫脑CT或脑MRIB.肝功化验C.脑电图D.动脉血气分析E.凝血常规 [单选]()是指在工程建设项目或第政府采购活动中,具备独立交易条件、可以独立作为合同内容的工作事项或事项的集合。A.最小工作单元B.最小合同单元C.招标合同单元D.最小分解单元 [填空题]电梯机房应通分良好,温度应保持在()。 [单选,B1型题]丙酮酸激酶缺乏症的诊断()A.Coombs试验B.Ham试验C.Rous试验D.PK活性定量测定E.血红蛋白电泳测定 [单选]根据支付结算法律制度的规定,下列票据欺诈行为中,属于伪造票据的是()。A.假冒出票人在票据上签章B.涂改票据号码C.对票据金额进行挖补篡改D.修改票据密押 [单选]常用的甲状腺显像剂()A.Tl和Tc-MIBIB.Tc-MDP和Tc-HMDPC.TcOD.Tc-DTPAE.Tc-MAA [填空题]根据参与上课的人数,可以分为私人课程、小班课程和()。 [单选]某双代号网络图中(以天为单位),工作Q的最早开始时间为6天,工作持续时间为4天,工作R的最迟完成时间为22天,工作持续时间为10天,工作S的最迟完成时间为20天,工作持续时间为5天,已知工作R、S是工作Q的仅有的两项紧后工作,工作Q的总时差为()天。A.3B.4C.2D.5 [单选]在SLE应用激素冲击疗法中,下列哪项不是适应症()。A.急性肾衰竭B.NP狼疮的癫痫发作C.NP狼疮的明显精神症状D.严重溶血性贫血E.严重血小板减少性紫癜 [单选,A1型题]具有收敛、固涩功效的中药所含的主要成分是()A.挥发油B.有机酸C.糖类D.蛋白质E.氨基酸 [名词解释]设计水线长(LS) [填空题]露天开采设计中广泛采用的布孔方式有两种即()与(),布孔参数有()、()和()。 [单选]溃疡性结肠炎维持治疗的正确方案是()A.最小剂量的激素1~2年;B.最小剂量的激素半年C.SASP1~2g/d或相当剂量的5-ASA,2年D.SASP1~2g/d或相当剂量的5-ASA,半年E.Inf1iximab3个月 [问答题]某建筑工程,地下1层,地上16层。总建筑面积28000m2,首层建筑面积2400m2,建筑红线内占地面积6000m2。该工程位于闹市中心,现场场地狭小。施工单位为了降低成本,现场只设备了一条3m宽的施工道路兼作消防通道。现场平面呈长方形,在其斜对角布置了两个临时消火栓,两者之 86m,其中一个距拟建建筑物3m,另一个距路边3m。为了迎接上级单位的检查,施工单位临时在工地大门人口处的临时围墙上悬挂了“六牌”、“二图”,检查小组离开后,项目经理立即派人将之拆下运至工地仓库保管,以备再查时用。问题该工程还需考虑哪些类型的临时用水?在该工程临时用水 起决定性作用的是哪种类型临时用水? [单选]血红素是()A.铁原子和原卟啉Ⅸ的复合物B.铁原子和原卟啉Ⅹ的复合物C.铁原子和原卟啉Ⅵ的复合物D.铁原子和原卟啉Ⅶ的复合物E.铁原子和原卟啉Ⅺ的复合物 [单选]在我国企业对外会计报表种类、格式和编制方法由()制定。A.财政部B.各地财政部门C.企业D.各地证券监督管理部门 [单选,A2型题,A1/A2型题]关于骨盆组成的描述,正确的是()A.由2块髂骨、1块坐骨和1块尾骨组成B.由2块髋骨、1块骶骨和1块尾骨组成C.由2块髂骨、1块骶骨和1块尾骨组成D.由2块髋骨、1块坐骨和1块尾骨组成E.由1块坐骨、耻骨联合和1块尾骨组成 [单选]国务院常务会通过《突发公共卫生事件应急条例》的时间是()A.2002年11月16日B.2003年4月25日C.2003年5月7日D.2003年10月7日E.2004年5月10日 [单选]胎儿一胎盘单位功能是指().A.孕妇血或尿雌三醇(E3)测定B.血清HPL测定C.血清PRL判定D.催产素激惹试验(OCT)E.无激惹试验(NST) [判断题]推动长三角水稻农业发展的动力是人口压力.A.正确B.错误 [单选,A1型题]有关慢性肾炎,下面说法哪项不对()A.多数患者有急性肾炎史B.病程1年以上,可达几十年C.有血尿、蛋白尿、高血压、水肿等D.成人多见E.晚期肾萎缩,肾功能衰竭 [单选]数字微波通信中,微波信道机一般在()上对数字信号进行调制.A.射频B.中频C.基带 [单选,A2型题,A1/A2型题]人体的基本组织不包括()A.上皮组织B.结缔组织C.肌组织D.神经组织E.脂肪组织 [单选]初孕妇,妊娠40周,既往产检无异常,今日B超提示羊水指数5cm,与1周前相比明显减少,此时的处理方法应选用()A.OCTB.NSTC.尿雌三醇测定D.立即终止妊娠E.B超行生物物理评分 [单选]下列属于展览调查研究客体的是()。A、参展企业B、设计单位C、承办地D、主办城市 [单选]()构成了确认收入和费用的基础,也进一步构成了资产和负债的确认基础。A.会计凭证B.会计确认C.权责发生制D.会计计量 [填空题]一般而言,浓缩浮选的入浮浓度为(),直接浮选的入浮浓度为()。 [填空题]在大约30多亿年前,地球上出现了最早的生物,即原核细胞的(). [单选]于油轮,在对机舱燃油辅助锅炉进行吹灰作业前,应先经得()同意。A.轮机长B.值班轮机员C.值班驾驶员D.大副 [单选]列检所用于的管理的设备,须具备数据采集、资料统计、分析和()等功能。A、先进、成熟B、先进、实用C、方案科学D、方案优化 [问答题,案例分析题]简要病史:女性,30岁。主诉:发热2周,发现右颈部包块1周而就诊。请针对该案例,说明问诊内容与技巧。 [单选,A2型题,A1/A2型题]下列哪项不属自主神经功能检查()。A.眼心反射B.卧立反射C.角膜反射D.竖毛反射E.皮肤划文征 [单选]骶耻外径正常值为()A.23~26cmB.18~20cmC.30~36cmD.25~28cmE.8.5~9.5cm [单选]制动瓦磨损超过(),应及时更换。A.50%B.60%C.70%D.80% [问答题,简答题]缠绕式立井箕斗提煤系统,如因煤仓仓满卸煤时发生卡箕斗现象,操作工怎样从运行异常地讯号或现象来判断?应采取什么应急措施? [单选]当高度增加时,真空速和迎角应如何变化才能产生相同的升力?()A.相同的真空速和迎角B.对于任意给定的迎角,真空速需增大C.真空速减小,迎角增加 [单选]ISDN可以何一个用户号码提供()业务.A.1种B.2种C.多种
相关文档
最新文档