《矩形的性质》公开课 PPT

合集下载

矩形的性质与判定知识点总结ppt课件.pptx

矩形的性质与判定知识点总结ppt课件.pptx

直角三角形斜边上的中线等于斜边的一半
如果一个三角形一边上的中线等于这边的一半,那么这个三角形会是直角三角形
知识延伸
(1)“直角三角形斜边中线定理”与“含30°角的直角三角形性质” 及“三角形中位线性质”是解决线段倍分问题的重要依据;
(2)①“三角形中位线性质”适用于任何三角形; ②“直角三角形斜边上的中线性质”适用于任何直角三角形; ③“含30°角的直角三角形性质”仅适用于含30°角的特殊 直角三角形;
(3)直角三角形还具有以下性质: ①两锐角互余;②两直角边的平方和等于斜边平方.
知识点 2 矩形的判定
两组对边分别平行 两组对边分别相等 一组对边平行且相等 两组对角分别相等 对角线互相平分
有一个角是直角 对角线相等
有三个角是直角
知识点 3 矩形的性质与判定的综合运用
本小节知识点常结合上学期《平行四边形》《三角形的 证明》《图形的平移与旋转》等相关内容进行考查。
知识点 1 矩形的定义、性质、推论
矩 形
定义 有一个角是直角的平行四边形叫做矩形
性质 推论
边 矩形的对边平行且相对称性
矩形的对角线平分且相等;
矩形被两条对角线分成四个面积相等的小等腰三角形
矩形既是中心对称图形, 又是轴对称图形
邻边不相等的矩形有两条对称轴,对称轴在各边的中垂线上
考查角度较广,如线段关系(位置与数量)、角度问题、 确定图形形状、面积问题、坐标点问题、动点问题、折 叠问题等,注意数形结合、分析推理以及转化思想。
上学期知识点若不熟悉请及时复习准备课课件,此节注 意和菱形的性质与判定相区分,相关定理切勿混用

矩形的性质ppt课件

矩形的性质ppt课件
矩形的对称性可以用来解决一些几何问题。
05
矩形的面积和周长计算
矩形的面积计算公式
公式
如果矩形的长为a,宽为b,那么矩形的 面积S=a×b。
VS
解释
矩形的面积是其长和宽的乘积,这是因为 矩形的长和宽代表了平行四边形的底和高 。
矩形的周长计算公式
公式
如果矩形的长为a,宽为b,那么矩形的周 长P=2×(a+b)。
。如果四边形的对角线相等且互相平分,则该四边形为矩形。
02
三个角是直角的四边形是矩形
如果一个四边形的三个角都是直角,则该四边形为矩形。
03
对角线相等的平行四边形是矩形
如果一个平行四边形的对角线相等,则该四边形为矩形。
矩形的证明方法
综合法
利用综合法证明三角形全等、平 行线性质等基本定理,以及利用 这些基本定理推导出其他定理,
矩形的边长关系
总结词
矩形的两边长度相等,相对的两边长度也相等。
详细描述
矩形的定义决定了其具有两边长度相等的特点。相对的两边长度也相等,这是由 于矩形的对称性所决定的。这种边长关系在几何学中有着重要的应用和意义。
04
矩形的判定和证明方法
矩形的判定方法
01
定义法
根据矩形的定义,通过测量四条边的长度来判断一个四边形是否为矩形
解释
矩形的周长是矩形四条边的长度之和,两条 长边各为a,两条短边各为b,所以周长 P=2×(a+b)。
矩形面积和周长的关系
关系
矩形的面积和周长之间没有直接的关系,但是它们都与矩形 的长和宽有关。
解释
矩形的面积和周长是两个不同的属性,面积关注的是矩形的 占据的空间大小,而周长关注的是矩形四条边的长度之和。 虽然它们都受到矩形长和宽的影响,但它们之间并没有直接 的关系。

九年级上册数学(北师大版)第一章1.2矩形的性质与判定公开课PPT课件

九年级上册数学(北师大版)第一章1.2矩形的性质与判定公开课PPT课件

知识小结
两组对边 四边形 分别平行
平行
一个角
四边形 是直角
矩形
四边形集合
平行四边形集合
矩形集合
深入探究
如果四边形ABCD的对角线AC=BD,
这样的四边形是不是矩形?
A
D
B
AC=BD C
都 不
A
D
是 矩
AC=BD

B
C
7
知识探究
如果一个平行四边形的对角线变成相等呢?
A
D
A
D
O
O
B
C
B
C
将AC同时向两边拉长,使AC=BD
∴AD∥BC,AB∥CD.
B
C
∴四边形ABCD是平行四边形.
∴四边形ABCD是矩形.
矩形的判定方法:
有三个角是直角的四边形是矩形 。
A
几何语言:
∵ ∠A=∠B=∠C=90° ∴四边形ABCD是矩形
B
D C
16
知识小结
四边形
三个角 是直角
四边形集合 平行四边形集合
矩形集合
矩形
归纳小结 矩形的三种判定方法
有两个角是直角 的 四边形是矩形吗?
有三个角是直角
C
C
D
C
D
D
A
B
A
B
A
B
(有一个角是直角) (有二个角是直角) (有三个角是直角)
13
情境一:李芳同学用“边—
—直角、边——直角、边—— 直角、边”这样四步,画出了 一个四边形,她说这就是一个 矩形,她的判断对吗?为什么?
猜想:有三个角是直角的四边形是矩形 。
随堂练习

《矩形的性质与判定》PPT课件 (公开课)2022年北师大版 (5)

《矩形的性质与判定》PPT课件 (公开课)2022年北师大版 (5)

3
43
知识加油站:
(1)进行单项式乘法,应先确定结果的符 号,再把同底数幂分别相乘,这时容易出 现的错误是将系数相乘与相同字母指数相 加混淆;
(2)不要遗漏只在一个单项式中出现的字 母,要将其连同它的指数作为积的一个因式;
(3)单项式乘法法则对于三个以上的 单项式相乘同样适用;
(4)单项式乘以单项式,结果仍为单项式。
8
(1) 第一幅画的画面面积是多少平方米? 第二幅呢?你是怎样做的?
(2) 若把图中的x改为mx,其他不变,则 两幅画的面积又该怎样表示呢?
探索规律:
1、 3a2b ·2ab3 和 (xyz) ·y2z又等于什么? 你是怎样计算的?
2、如何进行单项式乘单项式的运算?
3、在你探索单项式乘法运算法则的过 程中,运用了哪些运算律和运算法则?
求证:四边形OCMD是矩形.
A
D
O
M
B
C
课堂小结
矩形的判定方法: 有一个角是直角的平行四边形是矩形.
对角线相等的平行四边形是矩形.
有三个角是直角的四边形是矩形.
堂清作业
课本P16 1,2,3.
第一章 整式的乘除
4 整式的乘法(第1课时)
温故育新:
运用幂的运算性质计算下列各题:
(1)(a5)5
探索规律:
单项式乘法的法则: 单项式与单项式相乘,把它们的系
数、相同字母的幂分别相乘,其余字母 连同它的指数不变,作为积的因式。
例题解析:
例1 计算:
(1)2 xy 2 ( 1 xy ) 3
(2) 2a2b3 (3a)
(3)7xy2z(2xyz)2
(4)(2a2bc3)(3c5)(1ab2c)

矩形的定义及性质课件ppt.ppt

矩形的定义及性质课件ppt.ppt
平行四边形 有一个角 是直角
由此可以知 道矩形有些 什么性质?
矩形
★矩形具有平行四边形的一切性质!
矩形是一个特殊的平行四边形,除了具有 平行四边形的所有性质外,还有哪些特殊性质呢?想
命题
证明
定理
探究1
矩形的对称性:
O
中心对称图形 轴对称图形
探究2
如图,当□ABCD的一个角变为直角,我们知道,
矩形的四个角都相等, 都是900。
探究3
如图,当□ABCD的一个角变为直角,我们知道,
此时,四边形变为一个矩形。它的两条对角线有什么 关系?
猜测: 矩形的两条对角线相等。
证一证
已知:如图,矩形ABCD的对角线AC、BD相交于点O。
求证:AC=BD。
A
D
证明:在矩形ABCD中
∵∠ABC = ∠DCB = 90° 又∵AB = DC , BC = CB
D OC
D O AC
3.直角三角形中,两直角边分别是 12和5,则斜边上的中线长是( )
A.34 B.26 C.8.5 D.6.5
D
B
C
4、下面性质中,矩形不一定具有的是( D )
A.对角线相等
B.四个角都相等
C.是轴对称图形
D.对角线垂直
5. 矩形ABCD中,AB=2BC,E在CD上,AE=AB,则∠BAE等于(A )
求证:BE⊥DE E
A
D
O
B
C
三、反馈练习
1.如图,在矩形ABCD中,对角 线AC、BD相交于点O,若OA=2,
A
则BD的长为( )
A.4 B .3 C .2 D.1
B
2.已知矩形的一条对角线与一边 A

《矩形》PPT课件

《矩形》PPT课件
(3)若已知BC=8,O到BC的距离为3,求矩形的面积,周长,对角线的长度。
解:OA=OB=OC=OD
∵在矩形ABCD中
∴AC=BD,OA=OC,OD=OB
∴ OA=OB=OC=OD
(3)若∠AOD=120度,AB=4厘米,求矩形的对角线长,周长,面积。
问题2:如图,矩形ABCD的两条对角线相交于点O
矩 形
- .
两组对边分别平行的四边形是平行四边形
平行四边形的性质:
平行四边形的对边平行;
平行四边形的对边相等;
平行四边形的对角相等;
平行四边形的邻角互补;
平行四边形的对角线互相平分;
温故知新
一个角是直角
两组对边分别平行
矩形
情景创设
我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说有特殊情况即特殊的平行四边形,也,这堂课我们就来研究一种恃殊的平行四边形——
对边平行且相等
对角线互相平分且相等
性质1:矩形的四个角都是直角;
已知:四边形ABCD是矩形,∠C= 90°求证:∠A=∠B=∠C=∠D=90°
证明:∵四边形ABCD是矩形, 令∠C=90° ∴∠A=∠C=90° ∠B+∠C=180 ° ∴∠B=180-∠C=90° ∴∠D=∠B=90° 即∠A=∠B=∠C=∠D=90°
应用格式:∵ ∠A= ∠ B= ∠ C=90°, ∴四边形ABCD是矩形 (有三个角是直角的四边形是矩形)
③对角线相等的平行四边形是矩形
说理证明:已知如图:在平行四边形ABCD中,AC=BD.试说明:四边形ABCD是矩形。证明:∵在平行四边形ABCD中 ∴AD=CB, ∠DAB+ ∠CBA=180° 在△DAB和△CBA中

矩形及其性质PPT课件(北师大版)

矩形及其性质PPT课件(北师大版)
第一章 特殊平行四边形
1.2
矩形的性质与判定
第1课时 矩形及其性质
学习目标
1 课时讲授 2 课时流程
矩形的定义 矩形的边角性质 矩形的对角线性质 直角三角形斜边上中线的性质
逐点 导讲练
课堂 小结
作业 提升
课时导入
下面图片中都含有一些特殊的平行四边形.视察这些特 殊的平行四边形,你能发现它们有什么样的共同特征?
知1-练
感悟新知
证明:∵四边形ABCD 是平行四边形, ∴ AB=CD,∠ B+∠C = 180° . ∵ BE=CF,∴ BE+EF=CF+EF,即BF=CE. 又∵ AF=DE, ∴△ ABF ≌△ DCE. ∴∠ B= ∠ C=90° . ∴ ABCD 是矩形.
知1-练
感悟新知
方法
知1-讲
解题秘方:紧扣条件“N 为DE 的中点”和结 论“MN ⊥ DE”,建立等腰三角 形“三线合一”模型,结合直角 三角形斜边上中线的性质求解.
感悟新知
知3-练
解法提醒: 1. 若题目中出现了一边的中点,往往需要用到中线;若又
有直角,往往需要用到直角三角形斜边上的中线等于斜 边的一半的性质. 2. 在直角三角形中,若遇斜边的中点,则常作斜边的中线 ,从而利用直角三角形斜边上的中线的性质把问题转化 为等腰三角形的问题,利用等腰三角形的性质解决.
(3)你认为矩形还具有哪些特殊
的性质?与同伴交流.
感悟新知
方法
矩形的性质: (1)矩形的四个角都是直角. (2)矩形具有平行四边形的所有性质. (3)矩形是轴对称图形,如图所示,
邻边不相等的矩形有两条对称轴.
知1-讲
感悟新知
知识点 3 矩形的对角线性质

课件《矩形的性质》教学PPT课件【初中数学】公开课

课件《矩形的性质》教学PPT课件【初中数学】公开课

课堂小结
有一个角是直角的平行四边形叫做矩形
矩形的相 关概念及
性质
具有平行四边行的一切性质
四个内角都是直角, 两条对角线互相平分且相等
轴对称图形
有两条对称轴
直角三角形斜边上的 中线等于斜边的一半
课外练习 如图,四边形ABCD是矩形,对角线AC,BD相
交于点O,BE∥AC交DC的延长线于点E.
(1)求证:BD=BE, (2)若∠DBC=30° , BO=4 ,求四边形ABED的面积.
∠ABC=∠BCD=∠CDA=∠DAB =90°,AC=DB.
A
D
O
B
C
例1 如图,在矩形ABCD中,两条对角线AC,BD相交于
点O,∠AOB=60°,AB=4 ,求矩形对角线的长.
解:∵四边形ABCD是矩形.
A
D
∴AC = BD,
OA= OC= AC,OB = OD = BD ,
O
∴OA = OB.
18.2.1矩形的性质
A
D
平行四边形有哪些性质?
①边: 对边平行且相等.
B
②角: 对角相等. C ③对角线: 互相平分.
我们在推动平行四边形的变 化过程中,你有没有发现一种熟 悉的、更特殊的图形?
归纳总结
定义:有一个角是直角的平行四边形叫做矩形. 也叫做长方形.
平行四边形
有一个角 是直角
矩形
矩形是特殊的平行四边形. 平行四边形不一定是矩形.
(1)证明:∵四边形ABCD是矩形,
∴AC= BD,AB∥CD.
A
D
又∵BE∥AC,
O
∴四边形ABEC是平行四边形,
B
C
∴AC=BE,

18 矩形的性质 公开课一等奖课件

18 矩形的性质 公开课一等奖课件
第十八章
平行四边形
矩形
矩形的性质
当堂练习 课堂小结
18.2.1
第1课时
导入新课 讲授新课
学习目标
1.理解矩形的概念,知道矩形与平行四边形的区别与
联系.(重点)
2.会证明矩形的性质,会用矩形的握直角三角形斜边中线的性质,并会简单的运用.
(重点)
导入新课
情景引入
学习目标
1.掌握勾股定理逆定理的概念并理解互逆命题、定
理的概念、关系及勾股数.(重点)
2.能证明勾股定理的逆定理,能利用勾股定理的逆 定理判断一个三角形是直角三角形.(难点)
导入新课
复习引入
问题1 勾股定理的内容是什么?
B
a
c
A b C 问题2 求以线段a、b为直角边的直角三角形的斜 边c的长: ① a=3,b=4; c=5
A.对角线相等
C.对角相等 的中线长为 A.13 B.6
B.对边相等
D.对角线互相平分 ( C) C.6.5 D.不能确定 (C ) D.10°
2.若直角三角形的两条直角边分别5和12,则斜边上
3.若矩形的一条对角线与一边的夹角为40°,则两 条对角线相交的锐角是 A.20 ° B.40° C.80 °
A D O
BD ,
B
C
矩形的对角线相 等且互相平分
例2 如图,在矩形ABCD中,E是BC上一点,AE=AD,DF⊥AE ,
垂足为F.求证:DF=DC. 证明:连接DE. ∵AD =AE,∴∠AED =∠ADE. ∵四边形ABCD是矩形, ∴AD∥BC,∠C=90°. A
D
B
F E
C
又∵DE=DE, ∴∠ADE=∠DEC, ∴△DFE≌△DCE, ∴∠DEC=∠AED. ∴DF=DC. 又∵DF⊥AE, ∴∠DFE=∠C=90°.

矩形的性质ppt课件

矩形的性质ppt课件


∴BP=BA-AP=10- = .
10-5=5.


÷2= ;


综上所述,符合要求的t值为2或

③当PE=PA时,如图,

或 .
过点E作EM⊥AB.

【变式2】如图,在△ABC中,∠ACB=90°,点D,E,F分别为
10
AB,BC,CA的中点.若EF的长为10,则CD的长为_____.
知识点3 利用矩形的性质证明
【例3】如图,在矩形ABCD中,AC与BD交
于点O,BE⊥AC,CF⊥BD,垂足分别为点E,
F.求证:BE=CF.
证明:∵四边形ABCD是矩形,
∴AB=CD,AC=BD,AC=2OC,BD=2OB.
∴OB=OC.
∵BE⊥AC,CF⊥BD,
∴∠OEB=∠OFC=90°.
∵∠BOE=∠COF,
∴△BOE≌△COF.
∴BE=CF.
【变式3】如图,在矩形ABCD中,BE⊥ AC,DF⊥AC,垂足分别
为点E,F.求证:AF=CE.
证明:∵四边形ABCD是矩形,
B.
C.3
D.
( B )
7.如图,矩形ABCD的对角线AC,BD相交于点O,DE∥AC,
CE∥BD.
(1)求证:四边形OCED是菱形;
解:(1)证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形.
在矩形ABCD中,OC=OD.
∴平行四边形OCED是菱形.
7 . 如 图 , 矩 形 ABCD 的 对 角 线 AC , BD 相 交 于 点 O , DE∥AC ,
CE∥BD.
(2)若BC=3,DC=2,求四边形OCED的面积.

矩形的性质课件.ppt

矩形的性质课件.ppt
矩形是轴对称图形吗?对称轴有几条?
矩形是轴对称图形 对称轴是经过对边中点的直线(2条)
A
D
O
B
C
活动
(1)请同学们以小组为单位,测量手中的矩形的四条边长度、 四个角度数和对角线的长度及夹角度数,并记录测量结果;
(2)根据测量的结果,提出关于矩形形的四个角都是直角
这节课你学到了什么? 还有什么困惑吗?
※ 矩形的性质1
矩形的四个角都是直角.
※ 矩形的性质2
矩形的对角线相等.
※ 矩形的对称性
矩形是轴对称图形
A
D 一个角是直角 A
D
平行四边形
矩形
B
C
(1)矩形的定义:
B
C
有一个角是直角的平行四边形叫做矩形。
(2)实质上:矩形是特殊的平行四边形。
问题1:
既然矩形是平行四边形,那么它具有平行四边形的哪些性质?
性质 边

对角线
对称 性
平行 四边 形
对边平行 且相等
对角相等
对角线互 相平分
中心 对称 图形
探索矩形的对称性:
已知:四边形ABCD是矩形
求证:∠A=∠B=∠C=∠D=900A
D
B
C
矩形特殊性质: 猜想2.矩形的对角线相等
已知:如图,四边形ABCD是矩形, ∠ABC=90°对角线AC与DB相交于点 O
求证: AC=BD
矩形性质归纳:
从边来说,矩形的对边平行且相等;
从角来说,矩形的四个角都是直角;
从对角线来说,矩形的对角线相等且 互相平分;
从对称性来说,矩形既是轴对称图形, 又是中心对称图形。
定理:直角三角形斜 边上的中线等于斜边 的一半.

矩形的定义及性质课件

矩形的定义及性质课件
主题和情感。
矩形可以用于设计画布、画框 和展示板,提供稳定的支撑。
在平面设计和排版中,矩形常 被用于布局和组织内容。
在平面设计和排版中,矩形常 被用于布局和组织内容,提高
视觉效果。
其他应用场景
在包装和运输中,矩形纸箱和托 盘被广泛使用,便于堆叠和搬运

在科学实验中,矩形玻璃器皿常 被用于盛放液体或气体。
近代的矩形研究
近代数学家对矩形的深入 研究
随着数学的发展,人们对矩形的研究更加深 入。例如,矩形的一些重要性质被发现,如 矩形的对角线相等、矩形的面积等于长乘以 宽等。
近代的应用
在工业生产和建筑设计等领域中,矩形的应 用更加广泛。例如,在制造机器时,人们会 使用矩形的零件来确保机器的稳定性和精度

特殊情况下矩形的判定
总结词
在特殊情况下,如矩形的一条对角线被另一条对角线平分,则该四边形为矩形。
详细描述
如果一个四边形的一条对角线被另一条对角线平分,则该四边形的两条对角线长度相等,因此该四边 形为矩形。此外,如果一个四边形的两条对角线互相平分且相等,则该四边形也一定是矩形。
04
矩形在实际生活中的 应用
详细描述
轴对称性意味着矩形沿一条垂直或水平的直线对折后两部分能够完全重合,而中 心对称性则意味着矩形关于其中心点对称。这两种对称性在建筑设计、图案设计 等领域有着广泛的应用,使得矩形成为一种非常受欢迎的几何图形。
03
矩形的判定
根据定义判定矩形
总结词
根据矩形定义,矩形是四个角都是直 角的平行四边形。
总结词
矩形的对角线长度相等,这是由矩形的基本性质推导出的一 个重要结论。
详细描述
由于矩形的两组相对边分别平行且等长,根据勾股定理,矩 形的两条对角线长度相等。这一性质在解决几何问题时非常 有用,特别是在证明和计算与矩形相关的定理和公式时。

矩形性质_公开课.ppt

矩形性质_公开课.ppt
全等三角形有:
Rt△ABC ≌ Rt△BCD ≌ Rt△CDA ≌ Rt△DAB
△OAB≌△OCD
△OAD≌△OCB
例1: 如图,矩形ABCD的两条对角线相交
于点O,∠AOB=60°,AB=4㎝,求矩形对
角线的长?
A
D
解:∵ 四边形ABCD是矩形
o
∴ OA=OB
B
C
∵ ∠AOB=60°
∴ △AOB是等边三角形
观察并思考
下面这些物体是什么形状,它 们是轴对称图形吗?是中心对 称图形吗?有几条对称轴?
平行四 边形
矩形


对角线 对称性
对边平行 对角相等 对角线互 中心对 且相等 邻角互补 相平分 称图形
对边平行 四个角 对角线互相 中心对称图形 且相等 为直角 平分且相等 轴对称图形
这是矩形所
O
特有的性质
即矩形的四个角都是直角
求证:矩形的对角线相等
已知:如图,四边形ABCD是矩形
求证:AC = BD
证明:∵四边形ABCD是矩形
A
D
∴∠ABC = ∠DCB = 90°
AB = DC 在△ABC与△DCB中
AB = DC
B
C
∠ABC = ∠DCB = 90°
BC = CB ∴△ABC≌△DCB ∴AC = BD 即矩形的对角线相等
课 (2)下面性质中,矩形不一定具有的是( D ) 堂 (A)对角线相等(B)四个角相等(C)是轴对称图形 练 (D)对角线垂直 习
3. 已知矩形的一条对角线与一边的夹角是40°,则两
条对角线所夹锐角的度数为
( D)
A.50° B.60° C.70° D.80°

1.1矩形的性质PPT课件(华师大版)

1.1矩形的性质PPT课件(华师大版)

矩形特征 A
D
O
B
C
对边:平行 (共性)
(1)边:
相等 (共性)
邻边:互相垂直 (个性)
(2)角:四个角都是直角 (个性)
(3)对角线:
互相平分 (共性) 相 等 (个性)
探究:
如图,矩形ABCD中,对角线AC、BD相交 于点O,请探讨OC与BD的关系
D A
O
B
C
直角三角形性质定理: 直角三角形斜边上的中线等于斜边的一半.
D
求证:∠A=∠B=∠C=∠D=90°
B
C
证明:∵四边形ABCD是平行四边形, ∠C=90° ∴∠A=∠C=90° ∠B+∠C=180 ° ∴∠B=180-∠C=90° ∴∠D=∠B=90° 即∠A=∠B=∠C=∠D=90°
命题2:矩形的对角线相等;
已知:四边形ABCD是矩形 求证:AC = BD
证明:在矩形ABCD中
A
D
∠ABC = ∠DCB = 90°
AB = DC
∵ BC = CB
∴△ABC≌△DCB(SAS) B
C
∴AC = BD
矩形与平行四边形的性质对照
平行四边形性质
矩形

两组对边平行且相 等
两组对边平行且相等
角 对角相等,邻角互补 每一个角都是90°
对角线
两条对角线互相平 分
两条对角线相等且互 相平分
推论:直角三角形斜边上的中线等于斜边的一半.
已知△ABC中∠ACB=90°,AD = BD
1
求证:CD = AB
2
A
E
D
证明:延长CD到E使DE=CD, C
B
连结AE、BE.

矩形的性质与判定ppt课件

矩形的性质与判定ppt课件

使得▱成为矩形.
2.如图,▱的对角线,相交于点,将△ 平移到
△ .已知 = , = , = ,求证:四边形是矩形.
证明:∵ 四边形是平行四边形,
∴ = = , = = , = = .
由平移,得 = = , = = .
∴ = , = .
∴ 四边形是平行四边形.


∵ + =

,即 + = ,
∴ + = . ∴ ∠ = ∘ .
∴ 四边形是矩形.
对角线相等的平行四边形是矩形
3.如图,在▱中,对角线,相交于点,且
∠的平分线,则四边形一定是(
A.菱形
B.正方形
C.矩形
C )
D.不能确定
第5题图
6.如图,在△ 中,∠ = ∘ ,是的中
点,,分别是∠,∠的平分线.
(1)求∠的度数.
解:∵ ∠ = ∘ ,是的中点,
∴ = .
∵ 是∠的平分线,
A.对角线互相平分
B.邻角互补
C.对角相等
D.对角线相等
3.如图,矩形为一个正在倒水的水杯的截面图,
杯中水面与的交点为,当水杯底面与水平面的
夹角为∘ 时,∠的大小为( D )
A.∘
B.∘
C.∘
D.∘
4.如图,矩形的周长为 ,与相交于
点,过点作的垂线,分别交,边于点
,,连接,则△ 的周长为(
A.
B.
C.
C )
D.
5.如图,矩形的对角线相交于点,过点的
直线交,于点,��,若 = , = ,
6
则图中阴影部分的面积为___.
6.如图,在矩形中,是边上一点,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Rt△ABC中,B0是Rt△ABC中斜边AC上的中线,BO与
AC有什么大小关系?
A
D
O
B
C
直角三角形斜边上的中线等于斜边的一半
小试身手
如图,矩形ABCD的两条对角线相交于 点O,∠AOB=60°,AB=4㎝,求矩形对角线 的长。
A
D
o
B
C
达标测评
1.已知△ABC是Rt△,∠ABC=900,
BD是斜边AC上的中线
矩形
对边平行 四个角 对角线互相 且相等 为直角 平分且相等
直角三角形斜边上的中线等于斜边的一半
布置作业
1、必做题 课本第53页练习第1题、第3题 2、提升题 同步第35页例2 同步第36页第10题
对边平行 四个角 对角线互相 且相等 为直角 平分且相等
这是矩形所 特有的性质
四个学生正在做投圈游戏,他们分别站在一 个矩形的四个顶点处,目标物放在对角线的交 点处,这样的队形对每个人公平吗?为什么?
A
D
O
B 公平,因为OA=OB=OC=OD C
探究:直角三角形的性质
如图,矩形ABCD的对角线AC与BD交于点O,那么,在
A D
(1)若BD=3㎝ 则AC= 6 ㎝

B
C
(2) 若∠C=30°,AB=5㎝,则AC= 10 BD= 5 ㎝.
㎝,
达标测评
2、已知:如图,过矩形ABCD的顶点作CE//BD,交AB的延长线于E。 求证:∠CAE=∠CEA
D
C
A
B
E


对角线
平行四 对边平行 对角相等 对角线互 边形 且相等 邻角互补 相平分
矩形是一个特殊的平行四边形,除了具有平行 四边形的所有性质外,还有哪些特殊性质呢?
A
D
B
C
猜想1:矩形的四个角都是直角.
猜想2:矩形的对角线相等.
求证:矩形的四个角都是直角.
已知:如图,四边形ABCD是矩形,∠B=90° 求证:∠A=∠B=∠C=∠D=90°
A
D
B
C
求证:矩形的对角线相等
已知:如图,四边形ABCD是矩形 求证:AC = BD
A
D
B
C
归纳:矩形的特殊性质
从角上看:
矩形的四个角都是直角. 从对角线上看:
矩形的对角线相等.
矩形的两组对边分别平行 边
矩形的两组对边分别相等
矩形的对角相等,邻角互补 角
矩形的四个角都是直角
对角线
矩形的对角线互相平分 矩形的对角线相等


对角线
平行四 边形
矩形
对边平行 对角相等 对角线互 且相等 邻角互补 相平分
矩形的性质
矩形的定义:
有一个角是直角
矩形是特殊的平行四边形
同学们,你还记得吗?

平行四边形性质

平行四边形的对边平行; 平行四边形的对边相等; 平行四边形的对角相等; 平行四边形的邻角互补;
对角线 平行四边形的对角线互相平分;
活动:探索矩形的特殊性质
相关文档
最新文档