有限差分法求解偏微分方程

合集下载

有限差分法解偏微分方程式

有限差分法解偏微分方程式

有限差分法解偏微分方程式第一節偏微分方程已知二階偏微分方程0,,,,22222=⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂+∂∂∂+∂∂t u x u u t x f t u C t x u B x u A 若042=-AC B ,則稱上式為拋物線型偏微分方程。

若042>-AC B ,則稱上式為雙曲線型偏微分方程。

若042<-AC B ,則稱上式為橢圓型偏微分方程。

第二節Heat conduction 偏微分方程之數值解Heat Conduction Equation :t u x u ∂∂=∂∂2221α,L x <<0,0>t 邊界條件與初始條件必須給定。

將x 分成n 段n L h x ==∆,並取t 方向增量tk ∆=【方法一】顯性近似法:考慮節點()j i ,處之差分公式:grid points:()j i t x ,,()ji ij t x u u ,=二階偏微分為中央差分近似2,1,,12,1,,12222h u u u x u u u x u j i j i j i j i j i j i +-+-+-≈∆+-≈∂∂一階偏微分為前向差分近似ku u t u u t u j i j i j i j i ,1,,1,-≈∆-≈∂∂++代入熱傳方程t u x u ∂∂=∂∂2221α,得k u u h u u u j i j i j i j i j i ,1,22,1,,112-=+-++-α移項整理得()j i j i j i j i j i u u u u u hk ,1,,1,,1222-=+-++-α令22*hk αα=代入,得節點()j i ,之有限差分近似公式()j i j i j i j i j i u u u u u ,1,,1,1,2*+-++-+=α,n i ,,2,1,0 =, ,2,1,0=j 其中0=j 為初始條件,0,i u 為給定。

移項得PDE finite difference formula for the heat equation:()ji j i j i j i u u u u ,1,,11,**21*+-++-+=ααα0=i 及n i =為邊界條件,j u ,0,j n u ,為給定。

有限差分法的原理与计算步骤

有限差分法的原理与计算步骤

有限差分法的原理与计算步骤有限差分法(Finite Difference Method)是一种常用的数值计算方法,用于求解偏微分方程的数值解。

其基本原理是将连续的偏微分方程转化为差分方程,通过逼近导数,使用离散的点代替连续的点,从而将问题转化为代数问题。

下面将详细介绍有限差分法的原理和计算步骤:一、基本原理:有限差分法基于Taylor级数展开,通过利用函数在其中一点附近的导数信息来逼近函数在该点处的值。

该方法将连续的偏微分方程转化为差分方程,使用离散的点代替连续的点,从而将问题转化为代数问题。

在有限差分法中,常用的差分逼近方式有前向差分、后向差分和中心差分。

二、计算步骤:1.网格划分:将求解区域划分为有限个离散点,并定义网格上的节点和网格尺寸。

通常使用等距离网格,即每个网格点之间的间距相等。

2.离散化:将偏微分方程中的各个导数项进行逼近,利用差分近似来替代和求解。

一般采用中心差分逼近方式,即通过函数值在两侧点的差来逼近导数。

3.代数方程系统:利用离散化的差分方程,将偏微分方程转化为代数方程系统。

根据问题的边界条件和初值条件,构建代数方程系统的系数矩阵和常数向量。

4. 求解代数方程:利用求解线性方程组的方法求解代数方程系统,常用的方法有直接法(如高斯消元法、LU分解法)和迭代法(如Jacobi迭代法、Gauss-Seidel迭代法)。

求解得到各个离散点的解。

5.后处理:根据求解结果进行后处理,包括结果的插值和可视化。

将离散点的解通过插值方法进行平滑处理,并进行可视化展示,以得到连续的函数解。

三、优缺点:1.直观:有限差分法基于网格划分,易于理解和实现。

2.精度可控:可通过调整网格大小和差分逼近方式来控制计算的精度。

3.广泛适用性:可用于求解各种偏微分方程,适用于不同的边界条件和初值条件。

然而,有限差分法也存在一些缺点:1.精度依赖网格:计算结果的精度受到网格划分的影响,因此需要谨慎选择网格大小。

2.限制条件:有限差分法适用于边界对应点处导数有定义的问题,不适用于奇异点和非线性问题。

偏微分方程的数值方法

偏微分方程的数值方法

偏微分方程的数值方法偏微分方程(Partial Differential Equations,简称PDEs)是数学中研究的重要分支,广泛应用于物理学、工程学等领域中。

由于一些复杂的PDEs难以找到解析解,因此需要借助数值方法进行求解。

本文将介绍偏微分方程的数值解法,包括有限差分法、有限元法和谱方法等。

一、有限差分法(Finite Difference Method)有限差分法是解偏微分方程最常用的数值方法之一。

它将偏微分方程中的导数用差商来近似,将空间离散成若干个小区间和时间离散成若干个小时间步长。

通过求解离散化后的代数方程,可以得到原偏微分方程的数值解。

以二维的泊松方程为例,偏微分方程可以表示为:∂²u/∂x² + ∂²u/∂y² = f(x, y)其中,u(x, y)为未知函数,f(x, y)为已知函数。

我们可以将空间离散成Nx × Ny个小区间,时间离散成Nt个小时间步长。

利用中心差分法可以近似表示导数,我们可以得到离散化的代数方程组。

二、有限元法(Finite Element Method)有限元法是一种重要的数值解PDEs的方法。

它将求解区域离散化成一系列的单元,再通过插值函数将每个单元上的未知函数近似表达。

然后,利用加权残差方法,将PDEs转化成代数方程组。

在有限元法中,采用形函数来近似未知函数。

将偏微分方程转化为弱形式,通过选取适当的形函数和权函数,可以得到离散化后的代数方程组。

有限元法适用于求解各种各样的偏微分方程,包括静态和动态、线性和非线性、自由边界和固定边界等问题。

三、谱方法(Spectral Method)谱方法是一种基于特殊函数(如正交多项式)的数值方法,用于解PDEs。

谱方法在求解偏微分方程时,利用高阶连续函数拟合初始条件和边界条件,通过调整特殊函数的系数来近似求解解析解。

谱方法具有高精度和快速收敛的特点,适用于各种偏微分方程求解。

偏微分方程数值求解方法

偏微分方程数值求解方法

偏微分方程数值求解方法偏微分方程数值求解方法是使用计算机算法来近似求解偏微分方程的过程。

偏微分方程是描述物理现象和自然现象的主要工具,但大多数偏微分方程不能通过解析方式求解,因此需要使用数值方法进行近似求解。

常用的偏微分方程数值求解方法包括有限差分法、有限元法、谱方法、边界元法和逆时空方法等。

1. 有限差分法有限差分法是一种最简单的数值求解方法,它将偏微分方程中的导数离散化为差分的形式,然后通过有限差分公式求解。

在有限差分法中,将求解区域离散化为网格,然后在每个节点上求解方程,通过节点之间的连通关系建立系数矩阵,最终利用线性代数方法求解线性方程组。

2. 有限元法有限元法是一种广泛运用的数值求解方法,它将求解区域离散化为有限个子域,然后在每个子域内近似求解方程。

有限元法是一种基于变分原理的方法,通过将偏微分方程转化为变分问题,然后在有限维的函数空间中建立逼近函数,最终利用变分方法求解方程。

3. 谱方法谱方法是一种基于傅里叶变换的数值求解方法,它将求解域上的函数表示为傅里叶级数的形式,然后通过求解系数来近似求解方程。

谱方法具有高精度、高效率的优点,但对于非周期边界和奇异性问题可能不适用。

4. 边界元法边界元法是一种基于积分方程的数值求解方法,它将偏微分方程转化为边界积分方程,然后在求解区域表面上求解方程。

边界元法不需要离散化求解区域,仅需在求解区域表面上采集节点,并通过节点之间的关系建立系数矩阵。

5. 逆时空方法逆时空方法是一种利用观测数据反演偏微分方程的数值求解方法,它通过最优化算法将观测数据反演为偏微分方程的参数。

逆时空方法对模型假设和观测数据的噪声较为敏感,但可以应用于各种偏微分方程的求解。

偏微分方程的数值求解方法

偏微分方程的数值求解方法

偏微分方程的数值求解方法偏微分方程是描述自然现象的重要工具,例如描述热传导、电磁波传播、流体运动等。

然而大多数情况下,这些方程很难通过解析方式求解,因此需要数值求解方法。

本文将介绍偏微分方程的数值求解方法及其应用。

一、有限差分法有限差分法是一种常见的偏微分方程数值求解方法。

它将原本连续的区域离散化,将偏微分方程转化为差分方程。

例如对于一维热传导方程:$$\frac{\partial u}{\partial t} = \alpha\frac{\partial^2 u}{\partial x^2} $$其中 $u(x, t)$ 是温度,$\alpha$ 是热扩散系数。

我们可以选择将空间分成 $N$ 个网格,时间分成 $M$ 个步骤。

则有:$$u_i^{m+1} = u_i^m + \frac{\alpha\Delta t}{\Deltax^2}(u_{i+1}^m - 2u_i^m + u_{i-1}^m)$$其中 $u_i^m$ 表示在位置 $i\Delta x$,时间 $m\Delta t$ 时的温度值。

这是一个显式求解方程,可以直接按照时间步骤迭代计算。

不过由于它的误差可能会增长,因此需要小心选择时间步长和空间步长,以保证误差不会过大。

二、有限元法有限元法是一种更加通用的偏微分方程数值求解方法。

它将连续区域离散化成一些小段,称为单元。

然后针对每个单元,将其上的偏微分方程转化为局部插值函数的方程求解。

例如对于一维波动方程:$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partialx^2}$$我们可以选择将空间分成 $N$ 个网格,用有限元方法将每个网格分成若干个单元。

则对于每个单元 $i$,我们可以得到一个局部插值函数 $u^i(x, t)$ 来近似解该单元上的偏微分方程。

这里不再赘述该函数的形式。

另外,我们还需要满足界面上的连续性和斜率匹配条件,以保证整体解是连续的。

科学计算中的偏微分方程有限差分法

科学计算中的偏微分方程有限差分法

科学计算中的偏微分方程有限差分法
偏微分方程是描述自然界中许多现象的重要工具,例如流体力学、电磁学和量子力学等。

然而,解析解通常只能得到一些简单的特例,因此需要使用数值方法来求解偏微分方程。

有限差分法是求解偏微分方程的一种常用数值方法。

它的主要思想是将偏微分方程中的连续空间变量离散化为有限个离散点,然后使用差分近似求解。

这样得到的数值解与真实解的误差随着离散化的细度逐渐减小,可以得到足够精确的近似解。

有限差分法的基本步骤包括网格生成、差分近似、边界条件处理和迭代求解。

其中,网格生成是将空间变量离散化的过程,差分近似是将偏微分方程中的微分算子用有限差分算子替代的过程,边界条件处理是将问题的边界情况考虑进来的过程,迭代求解是使用差分方程求解数值解的过程。

有限差分法在科学计算中有着广泛的应用,例如在流体力学中求解Navier-Stokes方程、在地球物理学中求解地震波方程、在量子力学中求解薛定谔方程等。

通过有限差分法,科学家可以得到更加精确的数值解,进一步深入理解自然界的规律。

- 1 -。

有限差分法解偏微分方程

有限差分法解偏微分方程

有限差分法解偏微分方程综述绪论有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。

有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。

该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。

有限差分法以Taylor 级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。

从差分的空间形式来考虑,可分为中心格式和逆风格式。

考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。

目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。

差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。

其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。

通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

fdm有限差分法不能求解的方程

fdm有限差分法不能求解的方程

有限差分法(Finite Difference Method, FDM)是一种常见的数值方法,用于求解偏微分方程。

然而,并非所有的方程都可以通过有限差分法来求解。

本文将讨论有限差分法不能求解的方程,并探讨其原因。

一、有限差分法求解的方程类型有限差分法主要用于求解偏微分方程,尤其是常见的热传导方程、扩散方程和波动方程等。

这些方程通常可以通过有限差分法离散化空间和时间,从而转化为代数方程组,再通过迭代等方法求解。

二、有限差分法不能求解的方程类型然而,并非所有的偏微分方程都适合用有限差分法求解。

以下是一些有限差分法不能求解的方程类型:1. 非线性偏微分方程:有限差分法主要适用于线性偏微分方程,对于非线性偏微分方程,由于其复杂的性质和解的多样性,有限差分法往往难以适用。

2. 高阶偏微分方程:有限差分法通常只适用于一阶和二阶偏微分方程,对于高阶偏微分方程,需要进行更复杂的离散化处理,难以直接通过有限差分法求解。

3. 变系数偏微分方程:对于系数随空间或时间变化的偏微分方程,有限差分法往往难以准确描述其变化规律,因此难以求解。

4. 非线性边值问题:对于带有非线性边值条件的偏微分方程,有限差分法的稳定性和收敛性难以保证,因此难以求解。

三、原因分析有限差分法不能求解某些偏微分方程的原因主要包括以下几点:1. 离散化处理困难:一些复杂的方程很难通过简单的差分离散化处理转化为代数方程组,从而难以应用有限差分法求解。

2. 解的多样性:对于非线性偏微分方程和非线性边值条件,解的多样性导致有限差分法往往无法准确描述其解的特性。

3. 稳定性和收敛性难以保证:对于一些特殊的偏微分方程,由于有限差分法的稳定性和收敛性难以保证,因此难以求解。

四、解决方法针对有限差分法不能求解的方程,可以考虑以下解决方法:1. 使用其他数值方法:对于非线性偏微分方程和高阶偏微分方程,可以考虑使用有限元法、有限体积法等其他数值方法进行求解。

2. 手工推导精确解:对于一些特殊的偏微分方程,可以尝试手工推导其解析解,从而获得准确的解。

偏微分方程数值求解方法

偏微分方程数值求解方法

偏微分方程数值求解方法引言偏微分方程是数学中研究复杂现象的重要工具之一,它在许多领域都有广泛的应用,例如物理学、工程学和生物学等。

通过求解偏微分方程,我们可以获得系统的解析解或数值解,从而揭示底层的物理规律或实现工程设计。

在本文中,我们将介绍偏微分方程数值求解的常见方法,包括有限差分法、有限元法和谱方法等。

我们将详细介绍这些方法的基本原理、数值算法和实际应用。

有限差分法基本原理有限差分法是偏微分方程数值求解中最常用的方法之一。

它将连续的偏微分方程离散化为差分方程,通过计算差分方程的解来近似原方程的解。

有限差分法的基本思想是将求解域划分为离散的网格,然后在网格点上近似表示原方程。

数值算法有限差分法的数值算法主要包括离散化、边界条件处理和迭代求解三个步骤。

首先,我们将连续的偏微分方程在空间和时间上进行离散化,将其转化为差分方程。

然后,我们需要确定边界条件,即在边界上如何近似表示原方程。

最后,通过迭代计算差分方程的解,直到满足收敛条件。

实际应用有限差分法在许多领域都有广泛的应用。

例如,在流体力学中,它可以用来模拟气体或液体的流动。

在热传导方程中,它可以用来求解物体的温度分布。

此外,有限差分法还可以用来模拟结构力学中的弹性变形和振动问题等。

有限元法基本原理有限元法是一种基于分片线性函数空间的数值方法,用于求解偏微分方程。

它将求解域划分为离散的小单元,然后在每个单元上构造局部基函数,通过组合这些基函数来近似表示原方程的解。

数值算法有限元法的数值算法主要包括离散化、单元刚度矩阵的计算和全局方程的组装三个步骤。

首先,我们将连续的偏微分方程在空间上进行离散化,将其转化为离散的代数方程。

然后,针对每个单元,我们需要计算其对应的刚度矩阵和载荷向量。

最后,通过组装所有单元的刚度矩阵和载荷向量,得到全局方程,并通过求解全局方程来计算原方程的近似解。

实际应用有限元法在结构力学、固体力学和流体力学等领域有广泛的应用。

例如,在结构力学中,它可以用来计算材料的应力和变形分布。

有限差分法解方程

有限差分法解方程

有限差分法(Finite Difference Method)是一种数值方法,用于求解偏微分方程(PDEs)的近似解。

这种方法通过将连续的微分方程离散化,将其转化为一系列代数方程,从而在计算机上进行求解。

有限差分法特别适用于求解具有固定边界条件和初始条件的偏微分方程。

以下是有限差分法求解偏微分方程的基本步骤:1. 网格划分:首先,将问题的连续域划分为离散的网格点。

对于二维问题,这通常涉及到在空间和时间上进行网格划分,形成网格点的集合。

2. 离散化:使用差分公式将微分方程中的导数替换为差分。

例如,一阶导数可以用前向差分或后向差分近似,而二阶导数可以用中心差分近似。

3. 构建差分方程:在每个网格点上应用差分公式,将微分方程转化为代数方程。

对于边界条件,也需要进行相应的离散化处理。

4. 求解线性方程组:差分方程通常会导致一个线性方程组。

对于大型问题,这可能需要使用迭代方法或直接求解器来找到解。

5. 稳定性分析:在求解过程中,需要确保数值解的稳定性。

这涉及到对时间步长和空间步长的选择,以满足CFL(Courant-Friedrichs-Lewy)条件。

6. 迭代求解:对于时间依赖的问题,如热传导或波传播,可以通过时间步进方法(如显式或隐式方法)来迭代求解。

7. 结果分析:最后,分析数值解以验证其准确性,并与解析解(如果存在)进行比较。

有限差分法在处理规则区域和简单边界条件的问题时非常有效。

然而,对于具有复杂几何形状或边界条件的问题,可能需要更高级的数值方法,如有限元方法(FEM)或边界元方法(BEM)。

在实际应用中,有限差分法通常与计算机软件结合使用,如MATLAB、Python的SciPy库等,以便于高效地处理大规模问题。

偏微分方程数值解法初步分析

偏微分方程数值解法初步分析

偏微分方程数值解法初步分析偏微分方程(Partial Differential Equation, PDE)是数学中的一类重要方程,广泛应用于物理学、工程学、经济学等众多领域。

然而,由于其复杂性,解析解往往难以求得,因此需要借助数值方法进行求解。

本文将初步分析偏微分方程的数值解法。

一、有限差分法有限差分法(Finite Difference Method, FDM)是一种常用的数值解法,通过将偏微分方程中的导数用差商代替,将偏微分方程转化为代数方程组进行求解。

这种方法的基本思想是将求解区域进行网格化,将偏微分方程中的导数用网格点上的函数值表示,然后利用差商逼近导数,将偏微分方程离散为代数方程组。

二、有限元法有限元法(Finite Element Method, FEM)是一种广泛应用的数值解法,尤其适用于复杂几何形状的求解。

该方法将求解区域划分为有限个小区域,称为单元,然后在每个单元上建立近似函数,通过将偏微分方程转化为变分问题,并将变分问题进行离散化处理,得到一个代数方程组进行求解。

三、特征线方法特征线方法(Method of Characteristics)是一种适用于一阶偏微分方程的数值解法。

该方法通过求解偏微分方程的特征线方程,将偏微分方程转化为常微分方程,在每条特征线上求解,然后将各个特征线上的解进行拼接得到整个解。

四、谱方法谱方法(Spectral Method)是一种数值解法,它利用特定的基函数,如傅里叶级数、切比雪夫级数等,对偏微分方程进行展开,通过系数的求解来得到数值解。

谱方法具有高精度和高收敛速度的优点,尤其适用于解析解存在的情况。

五、数值实验与误差分析在选择适用于某个具体偏微分方程的数值解法时,通常需要进行数值实验和误差分析。

数值实验是指通过计算机模拟的方式,求解偏微分方程并验证数值解的准确性;误差分析是指对数值解与解析解的差异进行分析,从而评估数值解的精度和收敛性。

总结:本文初步分析了偏微分方程数值解法的几种常见方法,包括有限差分法、有限元法、特征线方法和谱方法。

有限差分法求解偏微分方程

有限差分法求解偏微分方程

南京理工大学课程考核论文课程名称:高等数值分析论文题目:有限差分法求解偏微分方程姓名:罗晨学号:成绩:有限差分法求解偏微分方程一、主要内容1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程:22(,)()u uf x t t xαα∂∂-=∂∂其中为常数具体求解的偏微分方程如下:22001(,0)sin()(0,)(1,)00u u x t x u x x u t u t t π⎧∂∂-=≤≤⎪∂∂⎪⎪⎪=⎨⎪⎪==≥⎪⎪⎩2.推导五种差分格式、截断误差并分析其稳定性;3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析;4.结论及完成本次实验报告的感想。

二、推导几种差分格式的过程:有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。

有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。

推导差分方程的过程中需要用到的泰勒展开公式如下:()2100000000()()()()()()()......()(())1!2!!n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+-(2-1)求解区域的网格划分步长参数如下:11k k k kt t x x h τ++-=⎧⎨-=⎩ (2-2)古典显格式2.1.1 古典显格式的推导由泰勒展开公式将(,)u x t 对时间展开得2,(,)(,)()()(())i i k i k k k uu x t u x t t t o t t t∂=+-+-∂ (2-3)当1k t t +=时有21,112,(,)(,)()()(())(,)()()i k i k i k k k k k i k i k uu x t u x t t t o t t tuu x t o tττ+++∂=+-+-∂∂=+⋅+∂ (2-4)得到对时间的一阶偏导数1,(,)(,)()=()i k i k i k u x t u x t uo t ττ+-∂+∂ (2-5) 由泰勒展开公式将(,)u x t 对位置展开得223,,21(,)(,)()()()()(())2!k i k i k i i k i i u uu x t u x t x x x x o x x x x∂∂=+-+-+-∂∂(2-6)当11i i x x x x +-==和时,代入式(2-6)得2231,1,1122231,1,1121(,)(,)()()()()(())2!1(,)(,)()()()()(())2!i k i k i k i i i k i i i i i k i k i k i i i k i i i iu uu x t u x t x x x x o x x x x u u u x t u x t x x x x o x x x x ++++----⎧∂∂=+-+-+-⎪⎪∂∂⎨∂∂⎪=+-+-+-⎪∂∂⎩(2-7)因为1k k x x h +-=,代入上式得2231,,22231,,21(,)(,)()()()2!1(,)(,)()()()2!i k i k i k i k i k i k i k i ku uu x t u x t h h o h x xu u u x t u x t h h o h x x +-⎧∂∂=+⋅+⋅+⎪⎪∂∂⎨∂∂⎪=-⋅+⋅+⎪∂∂⎩(2-8)得到对位置的二阶偏导数2211,22(,)2(,)(,)()()i k i k i k i k u x t u x t u x t u o h x h+--+∂=+∂ (2-9)将式(2-5)、(2-9)代入一般形式的抛物线型偏微分方程得21112(,)(,)(,)2(,)(,)(,)()i k i k i k i k i k i k u x t u x t u x t u x t u x t f x t o h h αττ++---+⎡⎤-=++⎢⎥⎣⎦(2-10)为了方便我们可以将式(2-10)写成11122k kk k k k i i i i i i u u u u u f h ατ++-⎡⎤--+-=⎢⎥⎣⎦(2-11) ()11122k k k k k k i i i i i i u u uu u f hτατ++----+=(2-12)最后得到古典显格式的差分格式为()111(12)k k k k k i i i i i u ra u r u u f ατ++-=-+++(2-13)2r h τ=其中,古典显格式的差分格式的截断误差是2()o h τ+。

偏微分方程的数值解法

偏微分方程的数值解法

偏微分方程的数值解法偏微分方程(Partial Differential Equation, PDE)是数学和物理学中的重要概念,广泛应用于工程、科学和其他领域。

在很多情况下,准确解析解并不容易获得,因此需要利用数值方法求解偏微分方程。

本文将介绍几种常用的数值解法。

1. 有限差分法(Finite Difference Method)有限差分法是最常见和经典的数值解法之一。

基本思想是将偏微分方程在求解域上进行离散化,然后用差分近似代替微分运算。

通过求解差分方程组得到数值解。

有限差分法适用于边界条件简单且求解域规则的问题。

2. 有限元法(Finite Element Method)有限元法是适用于不规则边界条件和求解域的数值解法。

将求解域划分为多个小区域,并在每个小区域内选择适当的形状函数。

通过将整个域看作这些小区域的组合来逼近原始方程,从而得到一个线性代数方程组。

有限元法具有较高的灵活性和适用性。

3. 有限体积法(Finite Volume Method)有限体积法是一种较新的数值解法,特别适用于物理量守恒问题。

它通过将求解域划分为多个控制体积,并在每个体积内计算守恒量的通量,来建立离散的方程。

通过求解这个方程组得到数值解。

有限体积法在处理守恒律方程和非结构化网格上有很大优势。

4. 局部网格法(Local Grid Method)局部网格法是一种多尺度分析方法,适用于具有高频振荡解的偏微分方程。

它将计算域划分为全局细网格和局部粗网格。

在全局细网格上进行计算,并在局部粗网格上进行局部评估。

通过对不同尺度的解进行耦合,得到更精确的数值解。

5. 谱方法(Spectral Method)谱方法是一种基于傅里叶级数展开的高精度数值解法。

通过选择适当的基函数来近似求解函数,将偏微分方程转化为代数方程。

谱方法在处理平滑解和周期性边界条件的问题上表现出色,但对于非平滑解和不连续解的情况可能会遇到困难。

6. 迭代法(Iterative Method)迭代法是一种通过多次迭代来逐步逼近精确解的求解方法。

非线性偏微分方程数值解法

非线性偏微分方程数值解法

非线性偏微分方程数值解法非线性偏微分方程是研究自然界中许多现象的重要数学模型,其解析解往往难以获得。

因此,数值解法成为解决非线性偏微分方程问题的一种有效手段。

本文将介绍几种常用的非线性偏微分方程的数值解法。

一、有限差分法有限差分法是求解偏微分方程的一种常见数值方法。

其核心思想是将求解区域离散化为有限个网格点,并利用中心差分公式来近似替代微分运算。

对于非线性偏微分方程,可以采用迭代的方法进行求解。

具体步骤如下:1. 将求解区域离散化为有限个网格点,确定网格的步长。

2. 利用中心差分公式将偏微分方程离散化为差分方程。

3. 将差分方程转化为非线性代数方程组,采用迭代方法求解。

二、有限元法有限元法是求解偏微分方程的一种重要数值方法。

其核心思想是将求解区域划分为无重叠的小单元,通过在每个单元内构造适当的试探函数和加权函数,将问题转化为求解代数方程组。

对于非线性偏微分方程,可以采用Newton-Raphson迭代方法进行求解。

具体步骤如下:1. 将求解区域进行网格剖分,确定单元的形状和大小。

2. 构造试探函数和加权函数,并利用加权残差法将偏微分方程离散化为代数方程组。

3. 对于非线性方程组,采用Newton-Raphson迭代方法求解。

三、有限体积法有限体积法是求解偏微分方程的一种常用数值方法。

其核心思想是将求解区域划分为有限个体积单元,通过对单元内偏微分方程进行积分,将方程转化为守恒形式。

对于非线性偏微分方程,可以采用显式或隐式方法进行求解。

具体步骤如下:1. 将求解区域进行网格剖分,确定体积单元的大小和形状。

2. 对体积单元内的偏微分方程进行积分,建立守恒形式的方程。

3. 将方程离散化为代数方程组,采用显式或隐式方法进行时间步进求解。

四、谱方法谱方法是求解偏微分方程的一种高效数值方法。

其核心思想是采用特定的基函数展开待求解的函数,通过选取合适的基函数,可以有效地提高求解效率。

对于非线性偏微分方程,可以采用谱方法进行求解。

偏微分方程数值解的计算方法

偏微分方程数值解的计算方法

偏微分方程数值解的计算方法偏微分方程是研究自然和社会现象的重要工具。

然而,大多数偏微分方程很难用解析方法求解,需要用数值方法求解。

本文将介绍偏微分方程数值解的计算方法,其中包括有限差分方法、有限体积法、谱方法和有限元方法。

一、有限差分方法有限差分法是偏微分方程数值解的常用方法,它将偏微分方程中的空间变量转换为网格点上的差分近似。

例如,对于一个二阶偏微分方程:$$\frac{\partial^{2}u}{\partialx^{2}}+\frac{\partial^{2}u}{\partial y^{2}}=f(x,y,u)$$可以使用中心差分方法进行近似:$$\frac{\partial^{2}u}{\partial x^{2}}\approx \frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{(\Delta x)^{2}}$$$$\frac{\partial^{2}u}{\partial y^{2}}\approx \frac{u_{i,j+1}-2u_{i,j}+u_{i,j-1}}{(\Delta y)^{2}}$$其中,$u_{i,j}$表示在第$i$行第$j$列的网格点上的函数值,$\Delta x$和$\Delta y$表示网格步长。

将差分近似代入原方程中,得到如下的差分方程:$$\frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{(\Deltax)^{2}}+\frac{u_{i,j+1}-2u_{i,j}+u_{i,j-1}}{(\Deltay)^{2}}=f_{i,j,u_{i,j}}$$该方程可以用迭代法求解。

有限差分方法的优点是易于实现,但在均匀网格下准确性不高。

二、有限体积法有限体积法是将偏微分方程中的积分形式转换为求解网格单元中心值的方法。

例如,对于如下的扩散方程:$$\frac{\partial u}{\partial t}=\frac{\partial}{\partialx}\left(D(u)\frac{\partial u}{\partial x}\right)$$可以使用有限体积法进行近似。

偏微分方程的数值方法

偏微分方程的数值方法

偏微分方程的数值方法偏微分方程(Partial Differential Equation, PDE)是描述自然现象和物理规律的一种重要的数学模型,常见的应用如流体力学、热传导、电磁场等领域。

在实际应用中,由于很多偏微分方程无法解出解析解,因此需要采用数值方法进行求解。

一、常见的偏微分方程数值方法1.有限差分法有限差分法是最为常见的数值求解偏微分方程的方法,它的基本思想是将求解区域离散化成有限的网格,通过数值近似替代偏微分运算,这样就可以将原问题转化为求解一个大型的代数方程组。

其中,最为关键的是离散化方法,常见的有三点、五点和七点等差分格式,其精度和稳定性会受到网格步长的影响。

2.有限体积法有限体积法与有限差分法相似,在求解偏微分方程时同样需要将求解区域离散化成网格,但它强调的是以控制体积为基本单元来进行近似,对于网格内的量采用平均值来计算体积积分。

相比有限差分法,它更加自然的满足质量守恒和积分守恒等物理原理,同时也更容易实现高阶精度。

3.有限元法有限元法是一种通过建立变分原理来进行数值求解的方法,其基本思想是将求解区域分解成有限数量的小区域,每个小区域内的方程通过分部积分得到弱形式。

然后将偏微分方程转化为求解一个弱形式的方程组,采用有限元基函数来近似解,最终得到数值解。

二、数值方法的误差和稳定性对于任何数值方法而言,其误差和稳定性都是重要的考虑因素。

误差包括离散化误差和舍入误差,其中离散化误差可以通过减小网格步长来减小,而舍入误差则与计算机精度有关。

稳定性则是指数值解的数值振荡,如果数值振荡太大,将会使数值解失去物理意义,因此需要使用稳定的数值方法来得到合理的数值解。

三、常用软件和库在实际应用中,有很多现成的数值求解软件和库,其中最为著名的包括MATLAB、Python的NumPy和SciPy库、C++的deal.II 和FEniCS等,这些软件和库都提供了很多常见偏微分方程数值求解方法的实现,使用这些工具可以方便快捷地求解偏微分方程。

偏微分方程的数值解法

偏微分方程的数值解法

偏微分方程的数值解法在科学和工程领域中,偏微分方程(Partial Differential Equations,简称PDEs)被广泛应用于描述自然现象和工程问题。

由于许多复杂的PDE难以找到解析解,数值方法成为了求解这些方程的重要途径之一。

本文将介绍几种常见的偏微分方程数值解法,并探讨其应用。

一、有限差分法有限差分法是求解偏微分方程最常用的数值方法之一。

其基本思想是将空间和时间连续区域离散化成有限个点,通过差分逼近偏微分方程中的导数,将偏微分方程转化为差分方程。

然后,利用差分方程的迭代计算方法,求解近似解。

以一维热传导方程为例,其数值解可通过有限差分法得到。

将空间区域离散化为若干个网格点,时间区域离散化为若干个时间步长。

通过差分逼近热传导方程中的导数项,得到差分方程。

然后,利用迭代方法,逐步更新每个网格点的数值,直到达到收敛条件。

最终得到近似解。

二、有限元法有限元法是另一种常用于求解偏微分方程的数值方法。

它将连续的空间区域离散化为有限个单元,将PDE转化为每个单元内的局部方程。

然后,通过将各个单元的局部方程组合起来,构成整个区域的方程组。

最后,通过求解这个方程组来获得PDE的数值解。

有限元法的优势在于可以适应复杂的几何形状和边界条件。

对于二维或三维的PDE问题,有限元法可以更好地处理。

同时,有限元法还可以用于非线性和时变问题的数值求解。

三、谱方法谱方法是利用一组基函数来表示PDE的解,并将其代入PDE中得到一组代数方程的数值方法。

谱方法具有高精度和快速收敛的特点,在某些问题上比其他数值方法更具优势。

谱方法的核心是选择合适的基函数,常用的基函数包括Legendre多项式、Chebyshev多项式等。

通过将基函数展开系数与PDE的解相匹配,可以得到代数方程组。

通过求解这个方程组,可以得到PDE的数值解。

四、有限体积法有限体积法是将空间域划分为有限个小体积单元,将PDE在每个小体积单元上进行积分,通过适当的数值通量计算来近似描述流体在边界上的净流量。

偏微分方程的数值解法

偏微分方程的数值解法

偏微分方程的数值解法偏微分方程(Partial Differential Equations, PDEs)是描述自然界中各种物理现象的重要数学工具。

它们广泛应用于物理学、工程学、生物学等领域,并且在科学研究和工程实践中起着重要的作用。

然而,解析解并不总是容易获得,这就需要借助数值解法来近似求解其中的解。

数值解法是一种利用计算机方法来求解偏微分方程的有效途径。

本文将介绍几种常见的数值解法,包括有限差分法、有限元法和谱方法。

一、有限差分法有限差分法是最直接、最常用的一种数值解法。

它将偏微分方程中的导数用差分形式进行近似,然后将问题转化为一个线性方程组求解。

其中,空间和时间都被离散化,通过选取合适的网格间距,可以得到对原偏微分方程的近似解。

有限差分法的优点在于简单易懂,便于实现。

然而,该方法对于复杂边界条件和高维问题的适用性存在一定的局限性。

二、有限元法有限元法是一种更加通用和灵活的数值解法,尤其适用于复杂几何形状和非结构化网格的问题。

该方法将求解域划分为多个小区域,称为有限元,通过构建适当的试验函数和加权残差方法,将原偏微分方程转化为求解线性方程组的问题。

有限元法的优点在于适用范围广,可以处理各种边界条件和复杂几何形状,但相对较复杂,需要考虑网格生成、积分计算等问题。

三、谱方法谱方法是一种基于特定基函数展开的数值解法。

它利用特定的基函数,如Chebyshev多项式、Legendre多项式等,将偏微分方程的未知函数在特定区域内进行展开,然后通过求解系数来得到近似解。

谱方法具有高精度和快速收敛的特点,适用于光滑解和高阶精度要求的问题。

然而,谱方法对于非线性和时变问题的处理相对困难,需要一些特殊策略来提高计算效率。

总结:本文简要介绍了偏微分方程的数值解法,包括有限差分法、有限元法和谱方法。

这些方法在实际应用中各有优势和限制,选择合适的数值解法需要考虑问题的性质、几何形状以及计算资源等因素。

此外,还有其他一些高级数值方法,如边界元法、间断有限元法等,可以根据具体问题的需要进行选择。

求解偏微分方程三种数值方法

求解偏微分方程三种数值方法

求解偏微分方程三种数值方法偏微分方程是数学中研究包含多个变量及其偏导数的方程。

解决偏微分方程的数值方法有很多,但本文将重点介绍三种常用的数值方法,分别是有限差分法、有限元法和谱方法。

一、有限差分法:有限差分法是一种常用的数值方法,用于求解偏微分方程的数值解。

其基本思想是通过建立网格来离散化偏微分方程中的空间变量,并近似替代导数,将偏微分方程转化为代数方程组,进而求解。

常见的有限差分格式有向前差分、向后差分和中心差分。

有限差分法主要包括以下步骤:1.空间离散化:将区域划分为网格点,在每个网格点上计算方程中的函数值。

2.近似代替导数:使用差分公式,将导数近似替代为函数在相邻网格点上的差分。

3.建立代数方程组:根据近似的导数和偏微分方程的形式,可以建立相应的代数方程组。

4.求解方程组:使用求解线性方程组的方法,如高斯消元法或迭代法,求解代数方程组。

5.恢复连续解:通过插值或者其他方法,将离散解恢复为连续解。

二、有限元法:有限元法是一种广泛应用的数值方法,用于求解偏微分方程的数值解。

其基本思想是将区域划分为有限个小区域,称为单元,通过求解单元上的局部方程,最终得到整个区域上的数值解。

有限元法主要包括以下步骤:1.离散化:将区域划分为单元,并选择适当的有限元空间。

2.建立局部方程:在每个单元上,根据选择的有限元空间和边界条件,建立局部方程。

3.组装全局方程:将所有单元上的局部方程组装成整个区域上的全局方程。

4.施加边界条件:根据问题的边界条件,施加适当的边界条件。

5.求解方程组:使用求解线性方程组的方法,求解全局方程组,得到数值解。

6.后处理:通过插值等方法,将离散解恢复为连续解,并进行后续的分析。

三、谱方法:谱方法是一种高精度的数值方法,适用于求解偏微分方程的数值解。

其基本思想是将区域上的函数展开为一组基函数的线性组合,通过选取适当的基函数和系数,来逼近求解方程。

谱方法主要包括以下步骤:1. 选择基函数:根据问题的性质,选择合适的基函数,如Legendre多项式、Chebyshev多项式等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这些离散点称作网格的节点; 近似替代,即采用有限差分公式替代每一个格点的导数; 逼近求解,换而言之,这一过程可以看作是用一个插值多项式及其微分来代
替偏微分方程的解的过程。 从原则上说,这种方法仍然可以达到任意满意的计算精度。因为方程的连续 数值解可以通过减小独立变量离散取值的间格,或者通过离散点上的函数值进行 插值计算来近似得到。理论上,当网格步长趋近于零时,差分方程组的解应该收 敛于精确解,但由于机器字节的限制,网格步长不可能也没有必要取得无限小,
对于狄氏条件而言,给出了边界上各节点出的函数计算公式,直接代入节点
值计算即可,如下所示为矩形区域的边界点计算:
(左边界)
(右边界) (下边界)
(25)
(上边界)
导数边界条件: 以右边界点为例,对于右边界点,根据 Neumann 条件可得下式:
(26) 对于拉普拉斯方程,根据计算公式(22),对于边界上的点可得:
2 有限差分法理论基础
2.1 有限差分法的基本思想
当系统的数学模型建立后,我们面对的主要问题就是微分积分方程的求解。 基本思想是用离散的只含有限个未知量的差分方程组去近似地代替连续变量的 微分方程和定解条件,并把差分方程组的解作为微分方程定解问题的近似解。将 原方程及边界条件中的微分用差分来近似,对于方程中的积分用求和或及机械求 积公式来近似代替,从而把原微分积分方程和边界条件转化成差分方程组。有限 差分法求解偏微分方程的步骤主要有以下几步: 区域离散,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格,
2.3 有限差分方程的数学基础
2.3.1 一元函数导数的差分公式
一个函数在 x 点上的导数,可以近似地用它所临近的两点上的函数值的差分 来表示。函数在处的泰勒展式如下:
(2)
对一个单变量函数,以步长将区间等距划分,我们得到一系列节点:,,,(), 然后求出 在这些节点上的近似值。与节点相邻的节点有和,因此在点处可以构 造如下形式的展开式:
(1) 其中,为弹性体上的某一特征物理量(连续函数)。当 A、B、C 都是常数时, (1)式称为准线性,有三种准线性方程形式: 如果,则称为椭圆型方程; 如果,则称为抛物型方程; 如果,则称为双曲型方程。 椭圆型方程主要用来处理稳态或静态问题,如热传导等问题;抛物线方程主 要用来处理瞬态问题,如渗透、扩散等问题;双曲型方程主要用来处理振动问题, 如玄震动、薄膜震动等问题。 除了上述微分方程外,必须给出定解条件,通常有如下三类: 第一类边界条件(Dirichlet 条件):; 第二类边界条件(Neumann 条件):; 第三类边界条件(Robin 条件):; 其中,为求解域的边界,为的单位外法矢, 。第二类和第三类边界条件统 称为导数边界条件。
(27) 显然,上式中的在求解域外,是未知量。根据中心差分公式(10)可得到:
(28) 根据式(28)可得到逼近表示:,并且具有 2 阶逼近精度,代入式(27)可得下
式:
同理,对于其它边界可获得如下边界方程: (下边界) (上边界) (左边界)
(29) (30)
图 4 Neumann 条件算子
对于泊松方程和赫耳墨次方程同样根据上述方法,获得边界条件的线性方程, 然后将这些方程添加到式(22)~(24)所建立的方程组中,从而建立起个元的 线性方程组,解该方程组即可获得各节点的函数值。
有限差分法求解偏微分方程
摘要:本文主要使用有限差分法求解计算力学中的系统数学模型,推导了有限差分法的理
论基础,并在此基础上给出了部分有限差分法求解偏微分方程的算例验证了推导的正确性及 操作可行性。
关键词:计算力学,偏微分方程,有限差分法 Abstract:This dissertation mainly focuses on solving the mathematic model of computation
图 5 九点差分公式
3 有限差分法求解实例
根据上述推导有限差分法理论,对于不同类型的偏微分方程建立有限差分方 程组,采用 mat lab 编程给出一些计算实例如下: 1. 椭圆型方程 拉普拉斯方程:
;求解域: 下面分别给出拉普拉斯方程在不同的边界条件下的解。 a) 狄利克雷边界条件: 下边界: 上边界: 左边界: 右边界:
网 格 步 长 : h=0.05 10
0
u(x,y)
-10
-20
-30 1.5
1 0.5
1.5 1 0.5
y
00
x
图 6 狄利克雷边界条件下拉普拉斯方程的解
b) Neumann 边界条件:
下边界: 上边界: 左边界: 右边界:
u(x,y)
800
700
600
500
400
300
200
100
0 1.5
1 0.5 00
那么差分法的收敛性或者说算法的稳定性就显得至关重要。因此,在运用有限差 分法时,除了要保证精度外,还必须要保证其收敛性。
2.2 系统微分方程的一般形式
由于大多数工程问题都是二维问题,所以得到的微分方程一般都是偏微分方 程,对于一维问题得到的是常微分方程,解法与偏微分方程类似,故为了不是一 般性,这里只讨论偏微分方程。由于工程中高阶偏微分较少出现,所以本文仅仅 给出二阶偏微分方程的一般形式,对于高阶的偏微分,可进行类似地推广。二阶 偏微分方程的一般形式如下:
傅里叶变换(冯诺依曼条件)以及能量估计等方法来判断,下面给出常用的冯诺
依曼条件: 向前差分:,绝对收敛; 向后差分:,绝对收敛; 中心差分:对任何的对不收敛;
假设求解域内方向网格划分的步长为,方向网格划分的步长为,将偏微分方
程化为标准形式,具体来说标准形式如下: 双曲方程:
对于式(31)所示的双曲方程,冯诺依曼条件为:. 抛物方程:
对于上述过程建立的线性方程组的求解,可采用多种方法,比如 Jacob 迭代
法、Gauss-Seidel 迭代法、超松弛迭代法(SOR 法)、高斯消元法等方法求解。
2.4 有限差分法的收敛性和稳定性
由于迭代法必须保证收敛性,所以在解有限差分方程组时还应保证其收敛性,
也就是通常所说的算法稳定性。有限差分法的算法稳定性可以通过特征值方法、
但是,由于式(11)中的各阶导数均使用的是向前差分,导致用到的节点不 相邻,同时为了均衡误差,将节点处用到的一阶差分换成向后差分,则式(11) 修正为:
同理,根据上述推导过程,可得到任意阶的差分公式: n 阶向前差分:
(14)
n 阶向后差分:
(15)
n 阶中心差分:
(16)
(17) 说明,上述公式中各节点处前一阶导数的代入可能存在不一致,可能是向前 差分、向后差分或者中心差分,从而使最终的公式在系数上存在差别。当然,也 可以对各相邻节点进行需要阶数的泰勒展开,从而建立方程组直接求各阶导数。
y
网 格 步 长 : h=0.05
0.5
1
1.5
x
图 7 Neumann 边界条件下拉普拉斯方程的解
泊松方程: ;求解域:.
狄利克雷边界条件: 下边界: 上边界: 左边界: 右边界:
网 格 步ቤተ መጻሕፍቲ ባይዱ长 : h=0.05
u(x,y)
20 10
0 -10
-20 -30
-40 2 1.5
1 0.5
y
00
利用中心差分公式(18),由于式(18)在点处具有二阶精度(),所以式(18) 可近似改写成下式:
根据椭圆方程的具体形式可以将其分为以下三种形式: 拉普拉斯(Laplace)方程: 泊松(Poison)方程: 赫耳墨次(Helmholtz)方程:
根据式(21),可建立三种不同形式椭圆方程的代数方程如下: 拉普拉斯方程:
(18)
图 1 五点差分公式
式(18)也称为五点差分公式,同理根据式(12)和式(13)可分别得到向 前差分公式(19)和向后差分公式(20),如图(2 所示)。
向前差分 向后差分
(19) (20)
图 2 向前差分(左)和向后差分(右)
图 3 中心差分、向前差分和向后差分的拉普拉斯算子表示
求解这些数学模型的方法大致分为解析法和数值法两种,而解析法的局限性 众所周知,当系统的边界条件和受载情况复杂一点,往往求不出问题的解析解或 近似解。另一方面,计算机技术的发展使得计算更精确、更迅速。因此,对于绝 大多数工程问题,研究其数值解法更具有实用价值。对于微分方程而言,主要分 为差分法和积分法两种,本论文主要讨论差分法。
(4) (3) (5) (6) (7)
(8) (9) (10)
(11) (12) (13)
差分公式(13)是以相隔 2h 的两结点处的函数值来表示中间结点处的一阶 导数值,可称为中点导数公式。式(11)和式(12)是以相邻三结点处的函数值 来表示一个端点处的一阶导数值,可称为端点导数公式。应当指出:中点导数公 式与端点导数公式相比,精度较高。因为前者反映了结点两边的函数变化,而后 者却只反映了结点一边的函数变化。因此,我们总是尽可能应用前者,而只有在 无法应用前者时才不得不应用后者。
Key words:Computation Mechanics, Partial Differential Equations, Finite-Difference Method
1 引言
机械系统设计常常需要从力学观点进行结构设计以及结构分析,而这些分析 的前提就是建立工程问题的数学模型。通过对机械系统应用自然的基本定律和原 理得到带有相关边界条件和初始条件的微分积分方程,这些微分积分方程构成了 系统的数学模型。
1 0.5
x
2 1.5
图 8 狄利克雷边界条件下泊松方程的解
2.3.2 微分方程转化为线性方程
由于三种类型的微分方程解法类似,故这里仅以椭圆型微分方程为例,将微 分方程转化为代数方程,对于双曲型和抛物型方程依次类推即可。不妨记:(称 为拉普拉斯算子),和是求解域上的连续函数。假设求解区域为:,将求解区域划 分成个网格,其中:,如图 1 所示。记,则根据式(14)可得到:
相关文档
最新文档