液压传动系统介绍

合集下载

液压传动系统的组成及各部分作用

液压传动系统的组成及各部分作用

液压传动系统的组成及各部分作用一、引言液压传动系统是一种利用液体介质传递力和能量的系统,在工业和机械设备中得到广泛应用。

本文将深入探讨液压传动系统的组成以及各部分的作用,以期全面、详细、完整地解析这一任务主题。

二、液压传动系统的组成液压传动系统一般由以下几个基本组成部分构成:2.1 液压源液压源是液压传动系统的动力来源,通常由压力油泵、液压油箱等组成。

其中,压力油泵负责将液体介质加压并送入液压系统中,液压油箱则用于储存液体介质,并通过油管将液体运送到各个部件。

2.2 液压执行元件液压执行元件是液压传动系统中实现力和能量转换的部件,常见的有液压缸和液压马达。

液压缸通过液体介质的压力产生推动力,实现直线运动;液压马达则将液体介质的压力转化为旋转力,实现转动运动。

2.3 液压控制元件液压控制元件用于调节和控制液压系统的压力、流量和方向等参数,以实现系统的自动化控制。

常见的液压控制元件包括阀门、压力开关、流量阀、油缸等。

这些元件可以根据系统的需要进行灵活组合和调整。

2.4 液压传动介质液压传动介质是液压系统中传递力和能量的介质,通常采用液态的油作为传动介质。

液态油具有良好的密封性能、润滑性能和传递能力,可以在高压下传递大量的力和能量。

2.5 辅助部件液压传动系统还包括一些辅助部件,如滤清器、冷却器、油位显示器等。

这些部件主要用于提高系统的可靠性、安全性和维护性,保证系统的正常运行。

三、各部分的作用3.1 液压源的作用液压源主要负责产生并提供压力油,为整个液压传动系统提供动力。

压力油泵通过机械运动将液体介质加压,并将其送入液压系统中。

液压油箱则起到储存和供给液体介质的作用。

3.2 液压执行元件的作用液压执行元件主要负责将液压能转换为机械能,实现力和能量的传递。

液压缸通过液体介质的压力产生推动力,实现直线运动;液压马达将液压能转化为旋转能,实现转动运动。

3.3 液压控制元件的作用液压控制元件用于调节和控制液压系统的压力、流量和方向等参数,以实现系统的自动化控制。

液压传动理论知识

液压传动理论知识

干式
湿式
电磁换向阀
特点:
(1)动作迅速,操作轻便,便于远距离控制; (2)因受电磁铁尺寸与推力的限制,仅能控制小
流量(小于63 l/min)的液流;
(3)电磁铁通断电需电信号控制:如设备中的按 钮开关、限位开关、行程开关等; (4)换向快,易产生液压冲击。
④液动换向阀
工作原理:
利用控制油路的油液压力来改变阀芯位置的换向阀。
四、常用的控制液压液污染的措施
1)严格清洗元件和系统。 2)防止污染物从外界侵入。 3)采用高性能的过滤器。 4)控制液压液的温度。 5)保持系统所有部位良好的密封性。 6)定期检查和更换液压液并形成制度。
第三章:液压泵
液压泵是一种能量转换装置,它把驱动 电机的机械能转换成输到系统中去的油液的 压力能,供液压系统使用。 液压泵按其在单位时间内所能输出油液 体积可否调节而分为定量泵和变量泵两类; 按结构形式可以分为齿轮式、叶片式和柱塞 式三大类。
按阀的安装方式分类 :管式、板式、法兰式
按操纵方式分类:重点记住有助于看懂图纸 手动、机动、电动、弹簧控制、液动、液压先导控制 电液动等。

3、 换 向 阀 主 体 结 构 与 工 作 原 理
结 构 图 和 图 形 符 号
二位二通
二位三通
二位四通
4、几种典型换向阀的结构
①手动换向阀
②机动换向阀(又称行程阀)
第二章:液压液
在液压系统中,液压液是传递动力和信号的工 作介质,有的还起到润滑、冷却和防锈的作用。液 压系统能否可靠、有效地工作,在很大程度上取决 于系统中所用的液压液。 目前90%以上的液压设备采用石油基液压液。基 油为精致的石油润滑油馏分。为了改善液压液的性 能,以满足液压设备的不同要求,往往在基油中加 入各种添加剂。添加剂有两类:一类是改善油液化 学性能的,如抗氧化剂、防腐剂、防锈剂等;另一 类是改善油液物理性能的,如增粘剂、抗磨剂、防 爬剂等。

液压系统

液压系统

-液压系统————————————————————————————————作者:————————————————————————————————日期:ﻩ6液压系统6.1 液压传动概述液压传动主要是利用液体的压力能来传递能量和进行控制的一种液体传动。

本节将简述液压传动系统的基本原理和组成。

6.1.1 液压传动基本概念液压传动的理论基础是帕斯卡原理。

根据帕斯卡原理,这种传动借助于处在密封容积内的液体可以将压力由一处传递到另一处,实现能量或动力的传递。

液压传动具有两个主要工作特征。

●力(或者力矩)的传递靠“液体压力”来实现,而液体压力的大小取决于负载;●运动速度(或者转速)的传递靠液体“容积变化相等”的原则进行。

6.1.2 液压系统基本组成一个完整的液压系统一般包括五个组成部分:●动力元件:即液压泵,其作用是将原动机输出的机械能转换成液压能,并向液压系统供给压力油;●控制元件:包括压力控制阀、流量控制阀和方向控制阀等,其作用是控制液压系统的压力、流量和液流方向,以保证执行元件能够得到所要求的力(或扭矩)、速度(或转速)和运动方向(或旋转方向);●执行元件:包括液压缸和液压马达,前者实现往复运动,后者实现旋转运动,其作用是将液压能转换为机械能,输出到工作机构上去;●辅助元件:包括油箱、油管、管接头、滤油器以及各种仪表等。

这些元件也是液压系统所必不可少的;●工作介质:油液或水基液压液,用以传递能量。

液压油应具有适当的粘度,良好的粘温特性和润滑性能,抗氧化,无锈蚀性,不易乳化,不破坏密封材料和有一定的消除泡沫的能力。

6.2 液压系统介绍6.2.1液压原理图H车的液压系统分为液压泵站、大臂起升部分、小臂起升部分、回转锁定部分、马达驱动部分、上车阀组以及手动泵组。

它们之间由液压管路连接为一体。

图4.18为H车的液压原理图。

图4.18:液压原理图6.2.1.1液压泵站液压泵站包括电机、齿轮泵、溢流阀、二位二通换向阀、单向阀、截止阀、压力继电器、吸油过滤器、空气滤清器、回油过滤器、压力表、电解点温度计、液位计、电加热器(另配)、油箱及连接管路等部件。

液压传动基础知识

液压传动基础知识

第一章概论液压传动是以液体作为工作介质对能量进行传动和控制的一种传动形式,液压传动相对于电力拖动和机械传动而言,其输出力大、重量轻、惯性小、调速方便以及易于控制等优点而广泛应用于工程机械、建筑机械和机床等设备上。

近几十年来,随着微电子技术的迅速发展及液压传动许多突出的优点,其应用领域遍及各个工业部门。

第一节液压传动的工作原理及系统组成一、液压传动系统的工作原理(一)液压千斤顶图1-1是液压千斤顶的工作原理图。

大油缸9和大活塞8组成举升液压缸。

杠杆手柄1、小油缸2、小活塞3、单向阀4和7组成手动液压泵。

如提起手柄使小活塞向上移动,小活塞下端油腔容积增大,形成局部真空,这时单向阀4打开,通过吸油管5从油箱12中吸油;用力压下手柄,小活塞下移,小活塞下腔压力升高,单向阀4关闭,单向阀7打开,下腔的油液经管道6输入举升油缸9的下腔,迫使大活塞8向上移动,顶起重物。

再次提起手柄吸油时,单向阀7自动关闭,图1-1液压千斤顶工作原理图使油液不能倒流,从而保证了重物不会自行下落1—杠杆手柄2—小油缸3—小活塞不断地往复扳动手柄,就能不断地把油液压入举4、7—单向阀5—吸油管6、10—管道升缸下腔,使重物逐渐地升起。

如果打开截止8—大活塞9—大油缸11—截止阀12—油箱11,举升缸下腔的油液通过管道10、截止阀11流回油箱,重物就向下移动。

这就是液压千斤顶的工作原理。

通过对上面液压千斤顶工作过程的分析,可以初步了解到液压传动的基本工作原理。

(1)液压传动以液体(一般为矿物油)作为传递运动和动力的工作介质,而且传动中必须经过两次能量转换。

首先压下杠杆时,小油缸2输出压力油,是将机械能转换成油液的压力能,压力油经过管道6及单向阀7,推动大活塞8举起重物,是将油液的压力能又转换成机械能。

(2)油液必须在密闭容器(或密闭系统)内传送,而且必须有密闭容积的变化。

如果容器不密封,就不能形成必要的压力;如果密闭容积不变化,就不能实现吸油和压油,也就不可能利用受压液体传递运动和动力。

液压传动——百度百科

液压传动——百度百科

液压传动液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整液压传动装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。

液压传动的基本原理:液压系统利用液压泵将原动机的机械能转换为液体的压力能,通过液体压力能的变化来传递能量,经过各种控制阀和管路的传递,借助于液压执行元件(液压缸或马达)把液体压力能转换为机械能,从而驱动工作机构,实现直线往复运动和回转运动。

其中的液体称为工作介质,一般为矿物油,它的作用和机械传动中的皮带、链条和齿轮等传动元件相类似。

在液压传动中,液压油缸就是一个最简单而又比较完整的液压传动系统,分析它的工作过程,可以清楚的了解液压传动的基本原理。

一、系统的组成液压系统主要由:动力元件(油泵)、执行元件(油缸或液压马达)、控制元件(各种阀)、辅助元件和工作介质等五部分组成。

1.动力元件(油泵)它的作用是利用液体把原动机的机械能转换成液压力能;是液压传动中的动力部分。

2.执行元件(油缸、液压马达)它是将液体的液压能转换成机械能。

其中,油缸做直线运动,马达做旋转运动。

3.控制元件包括压力阀、流量阀和方向阀等。

它们的作用是根据需要无级调节液动机的速度,并对液压系统中工作液体的压力、流量和流向进行调节控制。

4.辅助元件除上述三部分以外的其它元件,包括压力表、滤油器、蓄能装置、冷却器、管件各种管接头(扩口式、焊接式、卡套式)、高压球阀、快换接头、软管总成、测压接头、管夹等及油箱等,它们同样十分重要。

简述液压传动系统的组成

简述液压传动系统的组成

简述液压传动系统的组成液压传动系统是一种利用液体作为传动介质,通过压力的传递来实现机械运动的系统。

它具有传动效率高、可靠性好、工作平稳等优点,在各种机械和工业设备中得到广泛应用。

本文将从液压传动系统的组成、工作原理、应用领域等方面进行详细介绍。

一、液压传动系统的组成1. 液压能源装置:包括液压泵、电机和控制阀等组件。

液压泵是将机械能转化为流体能的装置,它通常由电机驱动,将油液从油箱中吸入并送至液压缸或马达中。

控制阀则可以通过调节油路和流量来控制系统的工作状态。

2. 液力变矩器:主要用于汽车和船舶等交通运输设备中,它可以通过调节转矩输出来实现变速。

3. 液压缸:是一种将流体能转化为机械能的装置,通常由活塞和缸筒两部分组成。

当油液进入缸筒时,活塞会被推动产生线性运动。

4. 液压马达:与液压缸类似,也是一种将流体能转化为机械能的装置。

不同的是,它可以通过旋转产生动力输出。

5. 油箱:主要用于存储液压油,并保持系统的油位和温度稳定。

6. 液压管路:将液压泵、控制阀、液压缸、马达等组件连接在一起,形成一个完整的传动系统。

液压管路通常由钢管或软管制成,具有良好的耐压性和耐腐蚀性。

7. 液压油:是液压传动系统中最重要的组成部分之一。

它具有良好的密封性、稳定性和润滑性能,在系统中起到传递能量、降低摩擦和冷却等作用。

二、液压传动系统的工作原理1. 原理概述液压传动系统通过控制油路和流量来实现机械运动。

当电机带动液压泵旋转时,泵内部会产生负压,将油液从油箱中吸入并送至控制阀。

控制阀通过调节油路和流量来控制液压缸或马达的工作状态,从而实现机械运动。

2. 工作过程液压传动系统的工作过程可以分为吸油、压油、控制和回油四个阶段。

具体过程如下:(1)吸油阶段:当液压泵旋转时,泵内部会产生负压,将油液从油箱中吸入。

(2)压油阶段:当泵内部产生正压时,将油液送至控制阀。

控制阀通过调节油路和流量来控制液压缸或马达的工作状态。

(3)控制阶段:根据需要调节控制阀,使液压缸或马达产生相应的机械运动。

液压传动

液压传动

液压传动一、液压传动基本概念:液压传动是在流体力学、工程力学和机械制造技术基础上发展起来的一门较新的应用技术,它是现代基础技术之一,被广泛地应用于各工业部门。

液压传动和液力传动都是利用液体为工作介质传递能量的,总称液体传动。

但二者的根本区别在于:液压传动是以液体的压力能进行工作的;而液力传动是以液体的动能传递能量的,如液力联轴器。

二者的传动原理完全不同。

二、液压传动工作原理:液压传动是利用液体的压力能传递能量的传动方式。

其工作原理是:液压泵将输入的机械能变为液压能,经密封的管道传给液压缸(或液压马达),再转变为机械能输出.带动工作机构做功,通过对液体的方向、压力和流量的控制,可使工作机构获得所需的运动形式。

由于能量的转换是通过密封工作容积的变化实现的,故又称容积式液压传动。

图示的液压千斤顶为例说明液压传动的工作原理液压千斤顶是一个简单而又较完整的液压传动装置。

手柄1带动柱塞2做往复运动。

当柱塞上行时,液压泵3内的工作容积扩大,形成负压,油箱5中的液体在大气压作用下推开吸液阀4进入泵内,排液阀关闭;当柱塞下行时,吸液阀关闭,液体被挤压产生压力,当压力升高到足以克服重物10时,泵内工作容积缩小,排液阀6被推开,压力液体经管路进入液压缸.推动活塞8举起重物做功。

反复上下摇动手柄,则液体不断从油箱经液压泵输入液压缸,使重物逐渐上升。

当手柄不动时,排液阀关闭,重物稳定在上升位置。

工作时截止阀7应关闭,工作完毕打开截止阀,液压缸的液体便流回油箱。

三、液压传动系统的组成:液压传动系统简称液压系统。

它是由若干液压元件组合起来并能完成一定动作的整体。

液压元件是由若干零件构成的专门单元,一般是可以通用的、标准化的.如泵、马达、阀等。

不论是简单的液压千斤顶装置,还是复杂的液压系统,都可归纳为五个组成部分。

(一) 液压泵它将原动机供给的机械能转变为液压能输出,是系统的动力部分。

图示为液压泵原理图(二) 液动机(液压缸或液压马达)液动机又称液压执行机构。

液压传动课件ppt

液压传动课件ppt
详细描述
液压传动广泛应用于工程机械、农业机械、汽车工业、船舶工业、航空航天等领域。例如,挖掘机、起重机、推 土机等工程机械采用液压传动系统来实现各种动作;航空航天领域的飞行器也采用液压传动系统来进行姿态控制 和起落架收放等操作。
02 液压传动的基本原理
液压油的特性
01
液压油是液压传动系统中的工作介质,具有不可压缩性 、粘性和润滑性等特性。
液压系统的调试与检测
总结词
液压系统的调试与检测是确保系统性能和稳定性的必 要步骤,有助于及时发现和解决潜在问题。
详细描述
在液压系统安装完成后,应对其进行全面的调试和检测 ,以确保各元件工作正常、系统性能稳定。调试过程中 ,应对系统的压力、流量、温度等参数进行监控和调整 ,确保其在正常范围内。同时,应定期对液压系统进行 检测,可以采用振动、噪声、油温等手段,以及专业的 检测设备,对系统的性能和状态进行全面评估。对于发 现的问题,应及时进行处理和修复,以避免对系统造成 更大的损害。
液压泵有齿轮泵、叶片泵、柱 塞泵和螺杆泵等多种类型,根 据不同的应用场景选择合适的 液压泵。
液压阀的工作原理
液压阀是液压传动系统中的控制元件,用于控制液体的流动方向、压力和流量等参 数。
液压阀通过控制阀芯的位置来改变液体的流动状态,从而实现不同的控制功能。
液压阀有方向控制阀、压力控制阀和流量控制阀等多种类型,根据不同的控制需求 选择合适的液压阀。
液压缸的工作原理
液压缸是液压传动系统中的执行元件 ,能够将液体的压力能转换为机械能 。
液压缸有单作用缸和双作用缸等多种 类型,根据不同的应用场景选择合适 的液压缸。
液压缸通过密封工作腔的容积变化来 实现活塞的往复运动,从而输出机械 能。
03 液压传动的系统组成

液压传动的工作原理

液压传动的工作原理

液压传动的工作原理
液压传动是利用液体作为传动介质的一种传动方式。

它通过调节液体的压力来实现机械装置的传递和控制动作。

液压传动的工作原理可以概括为以下几个步骤:
1. 液体供应:液压传动系统中通常会有一个液体供应装置,如液压泵。

当液体被泵送到系统中时,会形成一定的压力。

2. 压力传递:液压传动系统中通过管道将液体压力传递给执行元件,如液压缸或液压马达。

传递过程中液体会受到管道和部件的阻力影响,从而导致液体压力下降。

3. 压力控制:为了实现传动和控制动作,液压传动系统通常会使用液压阀来调节液体压力。

液压阀可以改变液体通道的开闭程度,从而控制液体的流动和压力。

4. 动力转换:当液体压力传递到执行元件时,它们会转换为机械能。

例如,液压缸会将液体压力转变为线性运动,液压马达会将液体压力转变为旋转动力。

5. 执行工作:执行元件根据液体压力的变化进行相应的工作。

例如,液压缸可以推动工作物体进行线性运动,液压马达可以驱动机械设备进行旋转。

总的来说,液压传动通过调节液体压力来实现传动和控制。

通过控制液压系统中的液体流动,可以实现各种复杂的运动和动
作控制。

这种传动方式在工程领域中广泛应用,具有传动效率高、传动力大、传动平稳等优点。

液压传动系统的工作原理

液压传动系统的工作原理

k油 = 100~150 k钢
在静态下工作时,不考虑液体的可压缩性。
3.黏性
• 附着力 液体与固体表面 • 内聚力 液体分子与分子之间
(1).黏性
液体在外力作用下流动(或有流动 趋势)时,分子间的内聚力要阻止分 子相对运动而产生的一种内摩檫力, 它使液体各层间的运动速度不等,这 种现象叫做液体的粘性。 静止液体不呈现粘性。
黏性示意图
• 下板固定 • 上板以u0运动 • 附着力 A点:u = 0 B点:u = u0 • 内摩擦力 两板之间液流速 度逐渐减小
B
A
内摩擦力:
Ff du ——两液层的速度差 A dy ——两液层间的距离
式中:η—粘性系数(粘度) A —液层接触面积 du /dy—速度梯度
切应力:
p V0
压力变化
初始体积
即单位压力变化下的体积相对变化量
体积弹性模量K (体积压缩系数的倒数)
K 1 k pV 0 V
V0一定,在同样Δp下, K 越大, ΔV 越小
说明K 越大,液体的抗压能力越强 矿物油 K = (1.4~2.0)×10 9 N/m 2
钢 K = 2.06 ×10 11 N/m 2
• 当前液压技术正向着高压、高速、大功率、高 效率、低噪声、长寿命、高度集成化、复合化、 小型化以及轻量化等方向发展;同时,新型液 压元件和液压系统的计算机辅助测试(CAT)、 计算机直接控制(CDC)、机电一体化技术、 计算机仿真和优化设计技术、可靠性技术以及 污染控制方面,也是当前液压技术发展和研究 的方向。 • 我国的液压技术开始于20世纪50年代,液压元 件最初应用于机床和锻压设备,后来又用于拖 拉机和工程机械。
• 思考题 • 1、何谓液压传动? • 2、液压传动系统由哪几部分组成?

液压与气压传动系统的组成

液压与气压传动系统的组成

液压与气压传动系统的组成液压与气压传动系统是现代工程中常用的两种传动系统。

液压传动系统通过液体传递力和能量,而气压传动系统通过气体传递力和能量。

它们在工业生产、机械设备以及汽车等领域都有广泛的应用。

本文将详细介绍液压与气压传动系统的组成。

一、液压传动系统的组成液压传动系统主要由以下几个组成部分构成:1. 液压能源装置:液压能源装置主要由液压泵、液压马达或液压发电机等组成。

液压泵通过机械或电动驱动,将机械能转化为液压能。

液压泵有多种类型,常见的有齿轮泵、柱塞泵和液压泵等。

2. 液压执行元件:液压执行元件主要由液压缸和液压马达等组成。

液压缸将液压能转化为机械能,通过液压缸的伸缩来实现力的传递和工作的执行。

液压马达则将液压能转化为机械能,通过旋转来实现力的传递和工作的执行。

3. 液压控制元件:液压控制元件主要由液压阀、液压缸和液压马达等组成。

液压阀用于控制液压系统的压力、流量和方向等参数,实现对液压系统的控制。

液压缸和液压马达则用于实现对液压执行元件的控制,以实现工作的执行。

4. 液压传动介质:液压传动介质主要是液体,通常使用的是油作为液压传动介质。

液压传动介质具有良好的润滑性和密封性能,能够在液压系统中有效地传递力和能量。

二、气压传动系统的组成气压传动系统主要由以下几个组成部分构成:1. 气压能源装置:气压能源装置主要由气压泵和气压发生器等组成。

气压泵通过机械或电动驱动,将机械能转化为气压能。

气压发生器则通过压缩空气,将空气转化为气压能。

2. 气压执行元件:气压执行元件主要由气缸和气动马达等组成。

气缸将气压能转化为机械能,通过气缸的伸缩来实现力的传递和工作的执行。

气动马达则将气压能转化为机械能,通过旋转来实现力的传递和工作的执行。

3. 气压控制元件:气压控制元件主要由气动阀和气缸等组成。

气动阀用于控制气压系统的压力、流量和方向等参数,实现对气压系统的控制。

气缸则用于实现对气压执行元件的控制,以实现工作的执行。

简单说明液压传动系统的组成

简单说明液压传动系统的组成

简单说明液压传动系统的组成液压传动系统是一种结合液压力的特性以及机械装置的作用而产生的能量输送系统。

液压传动系统由以下几个部分组成:1、液压泵:充当液压传动系统当中液压介质的转化,液压泵能够将机械能转换为液压能。

液压泵由动力输入源、液压截止阀或可调节膜片式叶轮、液壁式腔体、液室膜片以及其他的控制机构等组成。

2、液压缸:液压缸是液压传动系统当中,用于转换液压能量的重要组成部分。

液压缸的结构由活塞、缸体、活塞杆及活塞密封件等组成。

液压缸将液压能转化为机械能,其由外螺纹式液压缸、螺母式液压缸以及卡簧式液压缸等几种不同类型。

3、液压油箱:液压油箱是液压传动系统当中用于储存液压油的组成部分,其能够对液压系统当中产生的热量进行冷却及除泡,从而起到保护液压系统的作用。

4、液压元件:液压元件是液压传动系统当中承担控制作用的重要组成部分。

液压元件的总体结构可以分为计量元件、控制元件、安全保护元件以及执行元件等几大类别。

这些元件就是液压传动系统当中控制工作的最基本单元。

5、液压控制器:液压控制器是液压传动系统当中最重要的部分,它起到液压传动系统控制的作用。

液压控制器可以由计量器、继电器、压力控制器、湿度控制器以及压力表等几大部分构成。

6、油管:油管是将液压传动系统当中各个组件连接起来的重要组成部分,将液压油从一个组件向另一个组件输送的重要组合单元。

一般来说,其油管分为钢铜油管和聚乙烯酯油管两种材料,其具有耐高温、耐酸碱等优点。

液压传动系统是一种用可变液压能量来控制和驱动机械装置的能量传递系统。

它既方便又节能,应用范围十分广泛,它是机械设备、飞机发动机、核工厂等领域当中不可缺少的组成部分。

第一讲 液压传动系统的组成及特点

第一讲  液压传动系统的组成及特点

第一讲液压传动系统的组成及特点(基础知识)液压传动是:先通过动力元件(液压泵)将原动机(如电动机)输入的机械能转换为液体压力能,再经密封管道和控制元件等输送至执行元件(如液压缸),将液体压力能又转换为机械能以驱动工作部件。

1.液压传动系统的组成液压传动系统除工作介质外,应由以下四个主要部分组成:(1)动力元件它是将原动机输入的机械能转换为液体压力能的装置,其作用是为液压系统提供压力油,是系统的动力源。

如各类液压泵。

(2)执行元件它是将液体压力能转换为机械能的装置,其作用是在压力油的推动下输出力和速度(或转矩和转速),以驱动工作部件。

如各类液压缸和液压马达。

(3)控制调节元件它是用以控制液压传动系统中油液的压力、流量和流动方向的装置。

如溢流阀、节流阀和换向阀等。

(4)辅助元件上述几部分以外的其它装置,分别起储油、输油、过滤和测压力等作用。

如油箱、油管、过滤器和压力计等。

2.液压传动系统的图形符号一般液压传动系统图都应按照GB/T7861.1-93所规定的液压图形符号来绘制。

液压传动的特点1.液压传动的优点(1)液压传动可在运行过程中进行无级调速,调速方便且调速范围大;(2)在相同功率的情况下,液压传动装置的体积小、重量轻、结构紧凑;(3)液压传动工作比较平稳、反应快、换向冲击小,能快速启动、制动和频繁换向;(4)液压传动的控制调节简单,操作方便、省力,易实现自动化。

当其与电气控制结合,更易实现各种复杂的自动工作循环;(5)液压传动易实现过载保护,液压元件能够自行润滑,故使用寿命较长;(6)液压元件已实现了系列化、标准化和通用化,故制造、使用和维修都比较方便。

2.液压传动的缺点(1)液体的泄漏和可压缩性使液压传动难以保证严格的传动比;(2)液压传动在工作过程中能量损失较大,不宜作远距离传动;(3)液压传动对油温变化比较敏感,不宜在很高和很低的温度下工作;(4)液压传动出现故障时,不易查找出原因。

总的说来,液压传动的优点十分突出,其缺点将随着科学技术的发展逐渐得到克服。

液压传动系统完整版

液压传动系统完整版

七.制动缓冲回路 为了减少液压冲击,除了在液压元件结构本 身采取措施,还可以在系统中采去缓冲回来 了。可以采用单向行程节流阀和溢流阀的缓 冲制动回路。
第节 速度控制回路
速度控制回路是关于系统的速度调节和 变换的问题。是使执行元件从一种速度到另 一种速度的回路,有增速回路、减速回路和 二次速度转换回路。
一.插装阀方向控制回路 图2-54是二通插装阀方向控制基本回路。 其中a与b为单向节流阀,c为液控单向阀。d 为二位二通的方向控制阀。 一个插装阀只能控制两个油口的通断。
图2-54 手绘
图2-55是插装阀三位四通换向回路。图示位 置先导阀失电时,插装阀1、2、3、4的控制 腔在压力油的作用下,阀芯均关闭,P、A、B、 T均不相同;1Y得电,插装阀2、4控制油腔失 压而开启,1、3关闭,P和A接通,B和T接通; 2Y得电时,P和B、A和T接通,构成相当于O型 机能的三维四通电液换向回路。
2 1 1 2
图2-6a
图2-6b中,增压回路可使液压缸1共作行程 加长,活塞向右运动时遇到负载时,单向阀4 由于系统压力升高而开启,压力油进入增压 器2 才起到增压作用。 系统实现快进,并低速工作要求。 液控单向阀6是为了增压时隔开高低压力 油。
图2-6b
四.卸荷回路 液压系统工作时,执行元件短时间的停止 工作,不需要输入油,此时可以让液压泵卸 荷。 液压泵卸荷:让液压泵以很小的出输出功 率运转,或以很低的压力运转,或让液压泵 输出很小流量的压力油。
图2-36
图2-37
第四节 顺序动作回路
顺序动作回路是实现多个执行元件按预定 的次序动作的液压回路。按顺序动作控制方 法可分为压力控制和行程控制两大类。
一.压力控制顺序回路 图2-37是顺序阀控制的顺序动作回路。 当手动换向阀4左位接入回路,液压缸1活塞 向右运动,完成动作1后,压力升高,3开启, 液压缸2的活塞向右运动,完成动作2。退回 时,换向阀右位接入回路,一次完成3、4。

液压传动

液压传动
另外,要进行动力传输 必须借助液压传动介质。
手动油泵 (油源)
油缸 (执行元件)
液压传动系统的组成
从千斤顶的液压系统组成和工作原理可以看出,液 压系统一般有以下几个部分组成:
传动介质
动力元件
控制元件
执行元件
辅助元件
液压传动系统的组成
从图可以看出,液压传动是以液体作为工作介质来进行工作的, 一个完整的液压传动系统由以下几部分组成:
常用的液压油(液)可分为三大类:石油型、合成型和乳化性。
液压油(液)的牌号是以粘度的大小来划分的。标称粘度等级是用40ºC时的运动粘度中心值 的近似值表示,单位为mm2/s。
液压油(液)代号示例:L-HM46 含义:L—润滑剂类;H—液压油(液)组;M—防锈、抗氧和抗磨型;46—粘度等 级为46mm2/s。
(4)辅助元件:上述三个组成部分以外的其它元件,如:管 道、管接头、油箱、滤油器等为辅助元件。
(5)传动介质:传递能量的流体,即液压油。
液压传动系统的图形符号
• 平面磨床工作时, 其工作台需要频 繁地作直线往复 运动,而且要根 据加工工件的实 际情况,对工作 台的运动行程和 运行速度进行调 节,只有采用液 压传动才能方便 地实现这种运动 的自动控制。
液压传动
液压传动是以液体作为工作介质,并利用液体的压力实现机械设 备的运动或能量传递和控制功能,随着现代科技的发展,液压传动在 机床、工程机械、交通运输机械、农业机械、化工机械、船舶及航空 航天等领域都得到了广泛的应用。
一、 液压传动的基本知识 二、 液压系统的组成 三、 液压基本回路
液压传动基本知识
1.液压油的性质 (1)密度 单位体积油液的质量称为密度,单位为 kg m3 ,用ρ表示 常用液压油的密度为850~960 kg m3 。密度随压力的增加而提高,随温度的升高而减小, 但变化很小,一般可以忽略不计。 (2)粘性 是指液体在外力作用下流动时,由于液体分子间的内聚力而产生阻止液体内部相 对运动而产生的一种内摩擦力,这种现象叫做液体的粘性。粘性的大小用粘度来表示。粘度大, 液层间内摩擦力就大,油液就稠,流动时阻力就大,功率损失也大;反之油液就稀,易泄漏。 粘度随温度升高而下降。

液压传动是以液体为工作介质

液压传动是以液体为工作介质

液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。

首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。

二.液压系统的组成液压传动系统通常由以下五部分组成。

1.动力装置部分。

其作用是将电动机(或其它原动机)提供的机械能转换为液体的压力能。

简单地说,就是向系统提供压力油的装置。

如各类液压泵。

2.控制调节装置部分。

包括压力、流量、方向控制阀,是用以控制和调节液压系统中液流的压力、流量和流动方向,以满足工作部件所需力(或力矩)、速度(或转速)和运动方向(或运动循环)的要求。

3.执行机构部分。

其作用是将液体的压力能转化为机械能以带动工作部件运动。

包括液压缸和液压马达。

4.自动控制部分。

主要是指电气控制装置。

5.辅助装置部分。

除上述四大部分以外的油箱、油管、集成块、滤油器、蓄能器、压力表、加热器、冷却器等等。

它们对于保证液压系统工作的可靠性和稳定性是不可缺少的,具有重要的作用。

三.液压缸液压缸是把液压能转换为机械能的执行元件。

液压缸常见故障有:液压缸爬行、液压外泄漏、液压缸机械别劲、液压缸进气、液压缸冲击等。

1.液压缸爬行故障分析及处理(1)缸或管道内存有空气,处理方法:设置排气装置;若无排气装置,可开动液压系统以最大行程往复数次,强迫排除空气;对系统及管道进行密封。

(2)缸某处形成负压,处理方法:找出液压缸形成负压处加以密封;并排气。

(3)密封圈压得太紧,处理方法:调整密封圈,使其不松不紧,保证活塞杆能来回用手拉动。

(4)活塞与活塞杆不同轴,处理方法:两者装在一起,放在V形块上校正,使同度误差在0.04mm以内;换新活塞。

(5)活塞杆不直(有弯曲),处理方法:单个或连同活塞放在V形块上,用压力机控直和用千分表校正调直。

(6)导轨或滑块夹得太紧或与液压缸不平行,处理方法:调整导轨或滑块的压紧(条)的松紧度,既保证运动部件的精度,又保证滑动阻力要小;若调整无效,应检查缸与导轨的平行度,并修刮接触面加以校正。

液压传动系统的概述

液压传动系统的概述

液压传动系统的概述液压传动系统是一种重要的机械传动方式,是通过液体将机械能转化为压力能,从而通过控制液压元件的开合以及回路的开关来进行机械传动的方式。

液压传动系统具有完整的功能,可以完成力、速、方向、动态调节和自动控制等多种功能。

因此,在机械传动中应用广泛,曾经引起了巨大的变革和进展。

液压传动系统由主控部分、执行部分、动力部分和辅助部分等组成。

主控部分是液压传动的控制中心,其中包括液压泵或者压力油源、油箱、压力表、压力开关、节流阀等部件。

执行部分是液压系统的执行器,其作用是将压力传递到液压缸、液压马达或其他液压设备上,通过压力的作用来完成相应的工作。

动力部分是液压系统的主要部分,由液压泵、执行机构和空气压力等作为驱动力,从而形成一种液压传动方式。

辅助部分包括各种类型的附件,如压力表、滤清器、检验口、防爆阀、冷却器等,它们的主要功能是保证液压传动的安全和高效性。

液压传动系统的工作原理主要是通过液体的压力和流量来进行传动的。

在液压传动系统中,压力是液体传递的关键,通常以油的压力来表达。

液压传动系统通过加压泵将油液压进压力管路中形成压力,流量的变化则通过节流阀来控制。

节流阀能够控制液压油液的流速,从而控制液压元件的作动速度。

当液压油进入液压元件中时,就可以控制液压元件的开合或者是其他动作,从而完成相应的机械传动工作。

液压传动系统的优点有很多,其中最显著的是具有大扭矩输出,通用性广、传动效率高、灵活性大、动作平稳等优点。

液压传动系统在应用时可以更加适应固定或移动式设备,通过变换各种液压传动比例来进行控制,以及通过管路的连接方式实现机器的移动和设计。

此外,液压传动系统还可以联合搭配使用,例如传动系统与电控系统相结合,可以实现更高级别的自动化、智能化控制,使得机械系统的智能化性能实现效果更加显著。

总的来说,液压传动系统是一种高效、安全的机械传动方案,可以应用于各种场合的机械传动系统中。

液压传动系统可以灵活地进行配置,从而实现各种应用场合的需要,并具有非常突出的优点和性能优势。

液压传动工作原理及维护

液压传动工作原理及维护

04 常见故障及排除方法
液压油污染故障及排除方法
01
总结词
液压油污染是液压传动系统中的常见故障,会导致系统性能下降和元件
损坏。
02 03
详细描述
液压油污染可能由于杂质、水分、空气等进入液压系统造成。这些污染 物会堵塞油路、磨损元件表面、影响油的润滑性能,进而导致系统效率 降低、元件寿命缩短。
排除方法
THANKS FOR WATCHING
感谢您的观看
自动化
通过集成自动化技术和人工智能算法,实现 液压系统的自动调节、优化控制和远程监控
,提高生产效率和降低人工成本。
环境友好型的液压油及添加剂
环保要求
随着环保意识的提高,对液压油及添加剂的环境友好 性要求也越来越严格,研发低污染、低挥发、可生物 降解的液压油及添加剂成为未来的发展趋势。
性能保障
在满足环保要求的同时,还需要保证液压油及添加剂 的性能稳定性和可靠性,以确保液压系统的正常运转 和延长设备使用寿命。
详细描述
液压缸常见的故障包括活塞杆弯曲、缸体抖动、爬行等。 这些故障可能是由于活塞密封件损坏、油液污染、缸体内 壁磨损等原因造成。
排除方法
检查活塞杆是否弯曲,如有问题及时校正;清洗缸体内部 ,清除残留的杂质和油污;检查活塞和缸体内壁接触面是 否平整,如有问题及时修复或更换;更换损坏的密封件; 调整缸的参数,确保其在正常的工作范围内运行。
液压传动的应用领域
01
02
03
工业领域
液压传动广泛应用于各种 机床、锻压设备、塑料机 械、印刷机械、纺织机械 等。
汽车领域
汽车转向系统、悬挂系统、 刹车系统等都采用了液压 传动技术。
军事领域
坦克、装甲车等军事装备 也大量采用液压传动技术, 以实现快速响应和精确控 制。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液压传动系统
(1)液压动力裝置
油泵的功率与油的压力和流量成正比。

对同一油缸而言,油压越高,负载越大,流量越大,柱塞行程速度越快。

一般液庄电梯的油压为1〜6N/m㎡,流量为50〜1500L/H,电机功率为2-50kW。

用这个功率范围的油泵驱动直顶式电梯的能力为:载重量300—1000kg,额定速度0.1—1m/s液压动力装置的最大问翹是噪声大,一般泵站的声级为85〜90dB(A),为了降低机房噪声,在驱动部分设置隔音罩,或在机房四壁采取隔音措施。

目前国外较多地采用潜油型液压动力装置,将油泵和电动机轴直接相连并加以密封,然后全部悬挂或固_矛油箱内并沉浸于油中。

由于油的吸音及油箱铁板的隔音作用,机房噪声水平一般比(电机和油泵布置在油箱外部)的低10〜15 dB(A)),机房的噪声水平可控制在75 dB(A)以下。

(2)阀组
阀组是液压系:统中的控制元件,它们对电梯的起动、运行、减速、.停止及紧急情况起着控制作用。

下面介绍几种典型闽的作用。

溢流阀
安装在泵站和单向阀之间的管路上,其作用是当压力超过一定值时使油回流到油槽内/溢流阀动作的压力一般调节到满负荷的140%,考虑到系统内部损耗(如压头损耗、摩擦损耗),可将溢流阀的压力数值定得高一点,但不得高于满负荷压力的170%。

单向阀
单向阀的作用是,当油源的压力下降到最低工作压力时,必须能够把载有额定负荷的电梯在任一位置加以制停并保持静止。

单向阀应安装在联接液压泵和截流阀(截流阀应装在机房内)之间的管路上。

液控单向阀可以通过控制油压开启单向阀,使油在两个方向自由流动。

安全阀
为了防止电梯超速或自由坠落,应设置安全阀(应为限速切断阀),或称管道破裂安全阀。

该阀应满足:当液压系统出现较大的泄漏、轿厢速度达到了额定速度再加上0.3m/时,安全阀必须能够将超速的轿厢制停并保持静止状态。

当有多个油缸工作时,设置的数个安全阀能同时动作。

安全阀的安装可以采用下列方式:和油缸组成一个整体;用法兰盘直接将油缸固接;将安
全阀紧靠油缸,用一段较短的管子并采取焊接的方法,把法兰盘和油缸连接在一起;把安全阀和油缸直接用螺士连接。

不允许采用压紧装配等方法。

限速切断阀
对于未裝紧急安全制动装置的直顶式液压系统,应设置限速切断阀,防止轿厢超速。

限速切斯阀的安装可采用亨列四种方式:与油缸组成一个整体;用法兰盘直接与油缸作刚性连接;通过螺纹直接连接到油缸上;把它置于靠近油缸处,用一段较短的刚性菅,采用焊接、法兰连接或螺纹连接的方法与油缸相连。

多缸并行工作的液压电梯,允许共同使用一个限速切断阀,但若采用几个限速切断阀,则需将它们从内部连接起来,使其能同时关闭,以避免轿厢地板的磁斜度超过正常位置的5%。

设有限速切断阀的液压电梯,机房应设有使限速切断阀达到动作流量的手动试验装置,该装置应有防误动作的保护。

切断阀的最_动作速度应不超过额定速度再加上0.3m/s。

速度控制阀
通过调节阀的流量来改变油缸的速度。

这种阀与电气控制连在一起,可以连续控制电梯从起动到停止的全部速度变化。

如贝林格控制阀是将流量控制阀、安全阀、手动下降阀组成一种复合阀组,以适应电梯的上升和下降。

这种阀组内装有流量计,电梯在上行或下行时流量计反映出流量变化,流量变化转换成电信号再进行反馈控制。

这种闭环的伺服控制系统可以保证油流稳定。

手动下降阀和手动泵
当电源故障时,为了使乘客可以走出轿厢,应将电梯下降到最近的4个层站上。

手动阀门操纵电梯的轿厢速度不得超过0•3m/S。

在此过程中为了防止间接式液压电梯的驱动钢丝绳或链条出现松弛现象,当系统压力低于该阀的最小操作压力时,手动下降操作应无效。

手动下降阔必须在人力持续操作下才有效6手动控制的按钮(或其他操纵机构)均应$加以保护,避免误动作使机件损坏。

凡在轿厢上装有诸如安全钳夹紧装置等安全设施的,系统中还应设置^个手动泵,可使轿厢向上升起。

手动泵应当连接在单向阀或下向阀与截流阀之伺的管路上。

为了限制手动泵的超压工作,在手动泵的回路上应设一个溢流阀,使其压力限定在满负荷压力的2.3倍以下。

极限位置保护开关
在与轿厢行程上端相对应的柱塞位置应设有一个极限位置保护该开关应在柱塞缓冲制前作用,并在柱塞进入缓冲制动区期间保持动作状态。

极限开关动作后,郎使轿厢以爬行速
度运行而离开了动作区,液压电梯的呼梯及轿内运行指令仍应无效。

对:于间接驱动的液压电梯,极限开关应通过柱塞直接来操作,也可以利用一个与柱塞连接的装置(如钢丝绳、皮带或链条)间接来操作,但该间接操作装置上应安装一个电气开关,一连接件断裂或松弛,应使主机停转。

相关文档
最新文档