水泵工变频运行特性曲线分析方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水泵工/变频运行特性曲线分析方法

(网络)

第一章引言 (2)

第二章水泵变频运行分析的误区 (2)

2.1 习惯引用风机水泵中的比例定律 (2)

2.2 绘制的性能特性曲线和管道阻力曲线与实际不符 (2)

2.3 对变频泵与工频泵并联的怀疑 (3)

第三章针对以上误区的分析 (3)

第四章单台水泵变频运行的图解分析 (3)

第五章相同性能曲线水泵工频并联运行时的图解分析 (5)

第六章不同性能水泵并联运行的图解分析 (5)

6.1关死点扬程相同,流量不同的水泵并联运行时的性能曲线 (5)

6.2 关死点扬程(或最大扬程)相同,流量不同的水泵并联运行的特点 (6)

6.3 关死点扬程(或最大扬程)不同,流量也不同的水泵运行时特点 (7)

第七章变频泵与工频泵并联运行时的图解分析 (7)

7.1 变频泵与工频泵并联运行时总的性能曲线 (7)

7.2 变频泵与工频泵并联运行时的特点 (7)

第八章水泵运行时的特例 (8)

8.1 变频泵与工频泵并联运行特例之一 (8)

8.2 变频泵与工频泵并联运行特例之二 (8)

8.3变频泵与工频泵并联运行特例之三 (9)

第九章结束语 (10)

第一章引言

水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。

第二章水泵变频运行分析的误区

2.1 习惯引用风机水泵中的比例定律

有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律

流量比例定律 Q1/Q2=n1/n2

扬程比例定律 H1/H2=(n1/n2)2

轴功率比例定律 P1/P2=(n1/n2)3

并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。

以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:

(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水?

(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高?

2.2 绘制的性能特性曲线和管道阻力曲线与实际不符

很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。

图1 水泵的特性曲线

图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ与流量Q成正比。采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。

按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这

与实际情况是不相符的。实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。

2.3 对变频泵与工频泵并联的怀疑

变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?

第三章针对以上误区的分析

(1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。而比例定律是相似定律作为特例演变而来的。即两台完全相同的泵在相同的工况条件下,输送相同的流体,且泵的直径和输送流体的密度不变,仅仅转速不同时,水泵的流量、扬程和功率与转速之间的关系。

(2) 在风机单机运行时,风门挡板不变且温度和密度不变时,管网阻力只与风机的流量有关,阻力系数为常数。因此其运行工况与标准工况相同,可以应用比例定律。但在风机并联运行时,由于出口风压受其它风机的风压的影响,出口流量也与总流量不同,造成工况变化,因此比例定律已经不再适用了。

(3) 相似定律在引风机中,如果挡板不变但介质温度和密度发生了变化时,作为特例,其形式也发生了变化,与上述比例定律不同,必须进行温度或密度的修正。

(4) 在水泵方面,比例定律仅适用于水泵的出水口和进水口之间没有高度差,即没有净扬程的情况。比如在没有落差的同一水平面上远距离输水,水泵的输出扬程(压力)仅用来克服管道的阻力,在这种情况下,当转速降到零时,扬程(压力)也降到零,流量也正好降到零,这是理想的水泵运行工况。图1中工作点A和C就完全适合这种工况,可以使用比例定律。

(5) 但实际水泵运行工况不可能达到理想工况,水泵的出水口和进水口之间是有高度差的,有时还很大。在水泵并联运行时,水泵的出水口压力还要受到其它水泵运行压力的影响。并联运行的泵要想出水,其扬程必须大于其它水泵当时的压力。水泵出口流量并不是总管网流量,总管网流量为所有运行的水泵的流量和。由于管网总流量增大和阻力增大,因此并联运行的水泵扬程更高,工况发生变化,因此比例定律在此也不再适用。

第四章单台水泵变频运行的图解分析

(1) 单台水泵变频运行分析的关键,在于水泵进出口水位的高度差,也就是水泵的净扬程H0。水泵的扬程只有大于净扬程时才能出水。因此管网阻力曲线的起始点就是该净扬程的高度,见图2。

图2 单台水泵变频运行特性曲线

图2中,额定工作点仍然为A,理想管网阻力曲线R1与流量成正比。变频后的特性曲线F2,工作点B。流量为零时的净扬程H0,变频运行实际工作点HB与净扬程的差△H=HB-H0,为克服管网阻力达到所需流量QB时的附加扬程。由于管网阻力曲线与图1不同,因此不满足相似定律。

(2) 图2中的工作点A为水泵额定工作点,满足水泵的额定扬程和额定流量。因此R1成为理想的管网阻力曲线。但是由于实际管网阻力曲线不可能为理想曲线,因此实际的最大工作点一定要偏离A点。如果实际最大工作点向A点右下方偏移,则由于流量增加较大,容易造成水泵过载。因此实际额定工作点应该向A点左上方偏移,见图3。

图3 实际工作点向A点偏移

(3) 图3中,在节流阀门全部打开,管网阻力曲线R2为实际管网阻力曲线。变频器在50Hz 下运行时的实际最大工作点C,实际最大流量QC(比水泵的额定流量QA小),最大流量时的扬程HC(比水泵实际额定扬程HA高)。实际工作点C的参数只能通过实际测试才能得出。当在变频器频率为F2时的特性曲线F2,实际工作点B。实际工作点与净扬程的差△

H=HB-H0=K2QB2,为克服实际管网阻力达到所需流量QB时的附加扬程。工作点B的实际扬程HB=K2QB2+H0。

相关文档
最新文档