高等数学几种特殊类型函数的积分

合集下载

高等数学常用积分表

高等数学常用积分表

高等数学常用积分表(最新版)目录1.积分表的概念和作用2.积分表的主要内容3.积分表的使用方法4.积分表在高等数学中的地位和意义5.结论正文一、积分表的概念和作用积分表是高等数学中的一种重要工具,它主要用于帮助我们计算不定积分和定积分。

积分表包含了各种基本的初等函数的积分公式,通过查询积分表,我们可以快速地找到所需要的积分结果,从而大大简化了积分的计算过程。

二、积分表的主要内容积分表主要包括以下几类函数的积分公式:1.幂函数:如 x^n(n 为实数)的积分公式为 x^(n+1)/(n+1)。

2.三角函数:如 sinx、cosx、tanx 等的积分公式。

3.指数函数和对数函数:如 e^x、lnx 等的积分公式。

4.反三角函数:如 arctanx、arcosx、arsinx 等的积分公式。

5.其他常见函数:如|x|、x^3、1/x 等的积分公式。

以上这些函数的积分公式都是高等数学中常见的,掌握这些积分公式对于解题非常有帮助。

三、积分表的使用方法使用积分表时,首先需要确定所需求解的积分属于哪种类型的函数,然后根据函数类型在积分表中查找相应的积分公式。

找到公式后,将函数的参数代入公式,即可求得积分结果。

例如,对于函数 f(x)=x^3 的积分,我们可以在积分表中找到幂函数的积分公式,即 x^(n+1)/(n+1)。

将 n=3 代入公式,得到积分结果为x^4/4。

四、积分表在高等数学中的地位和意义积分表在高等数学中具有非常重要的地位和意义。

首先,积分表是求解微分方程的基础,微分方程的解法往往涉及到积分运算。

其次,积分表对于求解定积分和无穷级数也非常有帮助。

最后,掌握积分表可以提高我们的计算效率,使我们能够更快地解决实际问题。

五、结论总之,积分表是高等数学中一种非常重要的工具,掌握积分表对于解题具有非常重要的意义。

几种特殊类型函数的积分

几种特殊类型函数的积分

几种特殊类型函数的积分一、有理函数的积分定义:设()P x 和()Q x 是两个多项式,凡形如()()P x Q x 的函数称为有理函数。

重要结论:任何一个有理函数必定可以表示为若干个形如(称为简单分式):(1) a x A -; (2) ka x A )(-;)2(≥k (3))04(22<-+++q p q px x B Ax ; (4))04()(22<-+++q p q px x B Ax k )2(≥k 。

的简单分式之和,其中A ,B ,,,,q p a 为常数,k 为正整数。

因此,对有理函数的积分只要讨论上述四种形式的积分即可。

(1) C a x a x dx +-=-⎰ln 。

(2) C a x k a x dx k k +--=--⎰1))(1(1)(, )1(>k 。

(3) dx p q p x B Ax dx qpx x B Ax ⎰⎰-+++=+++44)2(222,令2p x t +=,并记4422p q r -=,2pA B N -=,则 dx p q p x B Ax dx q px x B Ax ⎰⎰-+++=+++44)2(222⎰+=22r t tdt A ⎰++22r t dt N C rt r N r t A +++=arctan )ln(222。

(4) 同(3)可得 )2(≥k , ⎰+++k q px x B Ax )(2⎰⎰+++=k k r t dt N r t tdt A )()(2222122))(1(2-+-=k r t k A ⎰++k r t dt N )(22。

记 ⎰+=k k r t dt I )(22,则 dt r t t r I r dt r t t r t r I k k k k ⎰⎰+-=+-+=-)(11)()(1222212222222 =))(1()1(2111212⎰--+-+k k r t td k r I r ])([)1(2111122212----+-+=k k k I r t t k r I r , 于是,有递推公式121222)1(232))(1(2----++-=k k k I k r k r t k r t I 。

高等数学积分公式大全

高等数学积分公式大全

高等数学积分公式大全高等数学是一门非常重要的学科,在很多领域都有应用。

其中,积分学是高等数学中的一个重要章节。

积分可以理解为求解曲线图形下面的面积,不同类型的积分公式有着不同的概念和应用,下面,就为大家整理了一份高等数学积分公式大全,让大家对这个知识点有一个更全面的认识。

1. 常数积分公式$$\int kdx=kx+C$$2. 幂函数积分公式$$\int x^ndx=\frac{x^{n+1}}{n+1}+C$$3. 指数函数积分公式$$\int e^xdx=e^x+C$$4. 对数函数积分公式$$\int \frac{1}{x}dx=\ln|x|+C$$5. 三角函数积分公式$$\int \sin xdx=-\cos x+C$$$$\int \cos xdx=\sin x+C$$6. 反三角函数积分公式$$\int \frac{1}{\sqrt{1-x^2}}dx=\arcsin x+C$$$$\int \frac{1}{1+x^2}dx=\arctan x+C$$$$\int \frac{1}{\sqrt{x^2-1}}dx=\ln|x+\sqrt{x^2-1}|+C$$7. 换元法积分公式$$\int f(u)du=\int f(u(x))\frac{du}{dx}dx$$8. 分部积分公式$$\int u(x)v'(x)dx=u(x)v(x)-\int v(x)u'(x)dx$$9. 定积分公式$$\int_a^bf(x)dx=F(b)-F(a)$$10. 积分中值定理$$\int_a^bf(x)dx=f(c)(b-a)$$这便是几种高等数学积分公式的介绍,这些公式是数学中不可或缺的知识点,掌握这些公式不仅有助于学生学好数学,还对应用数学的工作有相当多的帮助。

除了这些基本的积分公式之外,高等数学还涉及到一些比较复杂的积分公式,如多重积分、线性代数积分、微积分方程等等。

1. 多重积分公式多重积分是指对多元函数的积分,通常被用于几何问题、概率论问题和物理学问题中。

高等数学七类积分总结 -回复

高等数学七类积分总结 -回复

高等数学七类积分总结 -回复
高等数学中,常见的七类积分总结如下:
1. 一般函数的积分:对于给定函数,可以通过积分求解其不定
积分和定积分,其中不定积分得到的是一个具有任意常数项的解。

2. 有理函数的积分:有理函数指的是多项式函数之比,可以通
过分解成部分分式来求解其积分。

常见的部分分式分解包括线性因子
和二次因子。

3. 幂函数的积分:幂函数的积分分为两种情况,一是指数不等
于-1的幂函数,可以通过幂函数的求导逆运算来求解其不定积分;二
是指数等于-1的幂函数,即倒数函数,可以通过换元法或利用对数函
数的性质来求解。

4. 三角函数的积分:常见的三角函数包括正弦函数、余弦函数、正切函数等,可以通过利用三角函数的反函数和三角函数的恒等式来
求解其积分。

5. 反三角函数的积分:反三角函数包括反正弦函数、反余弦函数、反正切函数等,可以通过换元法和利用反三角函数的恒等式来求
解其积分。

6. 指数函数和对数函数的积分:指数函数的积分可以通过利用
指数函数和自然对数函数之间的关系得到;对数函数的积分可以通过
部分积分法和适当的换元法来求解。

7. 特殊函数的积分:包括双曲函数、高斯函数、伽马函数等,
对于这些特殊函数的积分,可以通过利用其定义和相关的性质来求解。

以上是高等数学中常见的七类积分的总结,通过熟练掌握这些积
分方法,可以更好地解决数学问题。

高等数学 4-4几种特殊类型函数的积分

高等数学 4-4几种特殊类型函数的积分
2u 1− u2 2 , cos x = , dx = du , 2 2 1+ u 1+ u 1+ u2
sin x
解:由万能置换公式 sin x =
sin x 2u 2u + 1 + u 2 − 1 − u 2 dx = ∫ du = ∫ du ∫ 1 + sin x + cos x (1 + u )(1 + u 2 ) (1 + u )(1 + u 2 )
A1 A2 A + + L + k , 其中 k k −1 A1, A2 , L, Ak 都是常数. ( x − a) ( x − a) x−a
特殊地: k = 1, 分解后为
A ; x−a
(2)分母中若有因式 ( x 2 + px + q ) k ,其中 p 2 − 4q < 0 则分解后为
M 1 x + N1 M x + N2 M x + Nk + 2 2 +L+ 2 k k k −1 ( x + px + q ) ( x + px + q ) x + px + q
∫ sin 3x + sin x dx.
A+ B A− B cos 2 2
1 + sin x
sin A + sin B = 2 sin
6
∫ sin 3x + sin x dx = ∫ 2 sin 2 x cos x dx = ∫ 4 sin x cos
=
1 + sin x
1 + sin x
1 + sin x

几种特殊函数的积分

几种特殊函数的积分
1 arctan u ln(1 u2 ) ln | 1 u | C 2
x x x ln sec ln 1 tan C 2 2 2
数学分析(上)
注意 万能代换不一定是最佳方法, 故三角有理式 的计算先考虑其它方法, 不得已才用万能代换.
1 cos x 例如 d sin x dx 1 sin x 1 sin x
dx d cot x 又如 2 2 3 si n x 3 csc x 1
dx 1 C . (a sinx b cos x)2 a(a tan x b)
数学分析(上)Leabharlann 例5dx (1) 1 s i nx
dx ( 2) 2 cos x
dx ( 3) 2 si n x
A B 1 A 5 (3 A 2B ) 3 B 6 x3 5 6 2 (待定系数法) x 5x 6 x 2 x 3 x3 x 2 5 x 6 dx 5 ln x 2 6 ln x 3 C
数学分析(上)
dx 例3 求 I 1 x3 1 1 3 2 1 x (1 x )(1 x x )
1 A Bx C 2 2 (1 x )(1 x x ) 1 x 1 x x
1 1 2 , B ,C 可求得 A 3 3 3 1 1 1 1 2 I ln1 x ln(x x 1) arctan (2 x 1) C 3 6 3 3
Ak A1 A2 2 k x a ( x a) ( x a)
数学分析(上)
2)分母中若有因式 ( x
2
2
px q) ,其中

几种特殊函数的积分

几种特殊函数的积分
2 2
p p x px q x q , 2 4 p 令 x t 2
记 x 2 px q t 2 a 2 ,

Mx N Mt b,
p2 2 a q , 4
Mp b N , 2
Mx N 2 dx n ( x px q ) Mt b 2 dt 2 dt 2 n 2 n (t a ) (t a )
真分式化为部分分式之和的待定系数法
x3 x3 A B 例1 2 , x 5 x 6 ( x 2)( x 3) x 2 x 3
x 3 A( x 3) B( x 2), x 3 ( A B ) x ( 3 A 2 B ),
1 dx . 例4 求积分 2 x( x 1) 1 1 1 1 dx 解 2 2 dx x ( x 1) x ( x 1) x 1 1 1 1 dx dx dx 2 x ( x 1) x 1
1 ln x ln x 1 C. x 1
三、简单无理函数的积分
ax b 讨论类型 R( x, ax b ), R( x , ), cx e
n
n
解决方法 作代换去掉根号.
1 1 x 例10 求积分 dx x x

1 x 2 1 x 令 t t , x x
1 sin x dx. 例9 求积分 sin 3 x sin x A B A B 解 sin A sin B 2 sin cos 2 2 1 sin x 1 sin x sin 3 x sin x dx 2 sin 2 x cos x dx 1 sin x dx 2 4 sin x cos x 1 1 1 1 dx dx 2 2 4 sin x cos x 4 cos x

高等数学中的奇异积分

高等数学中的奇异积分

高等数学中的奇异积分高等数学是数学学科中的重要分支,它包括微积分、线性代数、微分方程等多个方面。

在这些学科中,奇异积分是一个非常重要的内容。

奇异积分主要指的是在积分区间的某些单点或多点上,被积函数没有定义或不连续的情况下的积分。

本文将分析奇异积分的基本概念、性质以及应用。

一、奇异积分的基本概念奇异积分主要包括两种:柯西主值积分和广义牛顿-莱布尼茨公式式中的无穷限积分。

下面对这两种积分进行简要介绍。

1.柯西主值积分柯西主值积分指的是当函数在积分区间中某些点的左右极限存在时,将积分区间在此点附近割成两个小区间,分别在该点的两侧进行积分,然后将两个积分的和除以二,所得到的就是该函数在此点的柯西主值。

其计算公式如下:<center>$ PV \int_{a}^{b}f(x)dx = \lim_{\epsilon \rightarrow 0^+} [ \int_{a}^{c-\epsilon} f(x)dx + \int_{c+\epsilon}^{b} f(x)dx ]/2$</center>其中,a、b分别为积分区间的下界和上界,c为积分区间中的奇异点,f(x)为被积函数。

2.广义牛顿-莱布尼茨公式式中的无穷限积分广义牛顿-莱布尼茨公式指的是在函数f(x)在积分范围内无限趋近于正无穷或负无穷的情况下,其积分的值的变化情况。

如果积分的值为无穷大,则称积分为发散积分;如果积分的值为有限值,则称积分为收敛积分。

二、奇异积分的性质在高等数学中,奇异积分具有几个重要性质:1.奇异积分的存在性奇异积分在奇异点附近可能不存在,但在奇异点之外积分区间内存在。

因此,奇异积分的存在性需要视情况而定。

2.奇异积分的唯一性如果被积函数在奇异点附近是有界的,则奇异积分在任何一种计算方式下都具有唯一性。

3.奇异积分的线性性奇异积分具有线性性质,即在相同的积分区间内,对于任何两个可积函数f(x)和g(x),以及任何两个实数a和b,都有:$PV\int_{a}^{b}[af(x)+bg(x)]dx = aPV\int_{a}^{b}f(x)dx +bPV\int_{a}^{b}g(x)dx$三、奇异积分的应用奇异积分在数学和物理领域都有广泛的应用,下面列举其中几个:1.非线性偏微分方程的数值解法非线性偏微分方程的求解通常需要进行数值计算。

几种特殊类型的函数积分

几种特殊类型的函数积分

反三角函数积分公式
∫sin⁡xdx=−cos⁡x+Cint sin x , dx = -cos x + C∫sin⁡xdx=−cos⁡x+C
∫cos⁡xdx=sinx⁡+Cint cos x , dx = sin x + C∫cos⁡xdx=sinx⁡+C
∫tan⁡xdx=ln⁡|sec⁡x|+Cint tan x , dx = ln |sec x| + C∫tan⁡xdx=ln∣secx∣+C
底数小于1的对数函数积分公式
∫logₐ(x) dx = xlogₐ(x) - ∫x/lna dx = xlogₐ(x) x/lna + C,其中C为积分常数。
对数函数积分应用
解决对数方程
计算对数值
通过积分的方法,可以将对数方程转 化为代数方程,从而更容易求解。
利用对数函数的积分公式,可以计算 对数值,例如计算ln(e)、lg(10)等。
积分性质
对于三角函数的积分,有基本的 积分公式,如∫sin(x)dx = -cos(x) + C,∫cos(x)dx = sin(x) + C等。
三角函数的积分具有一些重要的 性质,如∫[sin(x)]^2dx = ∫[1 cos(2x)]/2dx = x/2 - sin(2x)/4 + C。
积分变换
底数小于1的对数函 数
如以0.5为底的对数函数,记作 logₐ(x),其定义域为(0, +∞), 其中a为正实数且a≠1。
对数函数积分公式
自然对数函数积分公式
∫ln(x) dx = xln(x) - x + C,其中C为积分常数。
常用对数函数积分公式

高等数学:5.6 几种特殊类型函数的积分

高等数学:5.6 几种特殊类型函数的积分
目录 上页 下页 返回 结束
3o x4 2x2 x 1 A(x2 1)2 (Bx C)x (x2 1) (Dx E)x
令x 0得A 1,代入上式,化简得 1 (Bx C)(x2 1) (Dx E) Bx3 Cx2 (B D)x C E
比较系数得 B=0,C 0, D 0, E 1
三角函数有理式
三角代换
简单无理函数
2. 特殊类型的积分按上述方法虽然可以积出, 但不一定 简便 , 要注意综合使用基本积分法 , 简便计算 .
目录 上页 下页 返回 结束
5.1 定积分的概念及性质 5.2 微积分基本定理与牛顿-莱布尼兹公式 5.3 不定积分的概念与性质 5.4 换元积分法 5.5 分部积分法 5.6 几种特殊类型函数的积分 5.7 反常积分
目录 上页 下页 返回 结束
5.6 几种特殊类型函数的积分
一、有理函数的积分 二、三角函数有理式的积分 三、简单无理根式的积分
A x
Bx x2
C 1
Dx E (x2 1)2
通分,去分母得
x4 2x2 x 1 A(x2 1)2
(Bx C)x(x2 1) (Dx E)x 1o x4 2x2 x 1 ( A B)x4 Cx3 (2A B
D)x2 (C E)x A 比较两端系数,得
A B=1,C 0,2A B D 2,C E 1, A 1
原式
(t
2
1)
t
(t
2t 2 1)2
d
t
2
t
t
2
2
1
d
t
2 t ln t 1 C t 1
目录 上页 下页 返回 结束
注:很多初等函数的不定积分无法用有限个初等函 数表示(“积不出来”),如

高等数学积分公式大全

高等数学积分公式大全

高等数学积分公式大全在高等数学中,积分是一个非常重要的概念,它在许多领域都有着广泛的应用,如物理学、工程学、经济学等。

积分公式则是解决积分问题的有力工具。

下面,我们就来详细介绍一下高等数学中的积分公式。

一、不定积分的基本公式1、常数的积分:∫k dx = kx + C (k 为常数,C 为积分常数)2、幂函数的积分:∫x^n dx =(1/(n + 1))x^(n + 1) + C (n ≠ -1)3、指数函数的积分:∫e^x dx = e^x + C∫a^x dx =(1 / lna)a^x + C (a > 0,a ≠ 1)4、对数函数的积分:∫lnx dx = xlnx x + C∫log_a x dx =(1 / lna)x(log_a x 1) + C (a > 0,a ≠ 1)二、三角函数的积分公式1、∫sinx dx = cosx + C2、∫cosx dx = sinx + C3、∫tanx dx = ln|cosx| + C4、∫cotx dx = ln|sinx| + C5、∫secx dx= ln|secx + tanx| + C6、∫cscx dx = ln|cscx + cotx| + C三、反三角函数的积分公式1、∫arcsinx dx = xarcsinx +√(1 x^2) + C2、∫arccosx dx =xarccosx √(1 x^2) + C3、∫arctanx dx = xarctanx (1 / 2)ln(1 + x^2) + C4、∫arccotx dx = xarccotx +(1 / 2)ln(1 + x^2) + C四、有理函数的积分有理函数是指两个多项式的商。

对于形如P(x) /Q(x) 的有理函数,其中 P(x) 和 Q(x) 都是多项式,可以通过多项式的除法将其化为一个多项式和一个真分式之和。

真分式可以通过部分分式分解的方法化为较简单的分式,然后再进行积分。

高等数学方明亮44几种特殊类型函数的积分.ppt

高等数学方明亮44几种特殊类型函数的积分.ppt

,
1 A(1 x2 ) (Bx C)(1 2x),
整理得 1 ( A 2B)x2 (B 2C)x C A,
A 2B 0,
B A
(1
2C 0, C 1,
1 2x)(1
x2)
A 4, 5 4
5 1 2
B 2,C 52xx来自5 1 x21 5
1 5.
,
2024年9月27日星期五
一、 有理函数的积分
(Integration of Rational Function)
有理函数的定义:两个多项式的商表示的函数.
P(x) Q( x)
a0 xn b0 x m
a1 x n1 b1 x m1
an1 x an bm1 x bm
其中m、n都是非负整数;a0 ,a1 ,,an及b0 ,b1,,bm 都是实数,并且a0 0,b0 0.
1 6a3
ln
x3 a3 x3 a3
C
(2) 原式
sin2 x sin3
x
cos2 cos x
x
dx
dx sin x cos x
cos sin 3
x x
dx
d tan x tan x
d sin sin 3
x x
2024年9月27日星期五
29
目录
上页
下页
返回
2. 求
(a
sin
x
1 b
解法 2 令
a sin ,
a2 b2
b cos
a2 b2
原式
a2
1
b2
dx
cos2 (x )
a
2
1
b2
tan(x
)

几种特殊类型函数地积分

几种特殊类型函数地积分

几种特殊类型函数的积分一、有理函数的不定积分1.化有理函数为简单函数两个多项式的商所表示的函数)(x R 称为有理函数,即mm m m m nn n n n b x b x b x b x b a x a x a x a x a x Q x P x R ++++++++++==------122110122110)()()( (1) 其中n 和m 是非负整数;n a a a a ,,,,210 及m b b b b ,,,,210 都是实数,并且0,000≠≠b a .当(1)式的分子多项式的次数n 小于其分母多项式的次数m ,即m n <时,称为有理真分式;当m n ≥时,称为有理假分式.对于任一假分式,我们总可以利用多项式的除法,将它化为一个多项式和一个真分式之和的形式.例如12)1(112224+++-=+++x x x x x x . 多项式的积分容易求得,下面只讨论真分式的积分问题.设有理函数(1)式中m n <,如果多项式)(x Q 在实数围能分解成一次因式和二次质因式的乘积:μλβα)()()()()(220s rx x q px x b x a x b x Q ++++--= .其中s r q p b a ,,,,,,, 为实数;042<-q p ,…,042<-s r ;,,,βα μλ,, 为正整数,那末根据代数理论可知,真分式)()(x Q x P 总可以分解成如下部分分式之和,即βααα)()()()()(1121b x B a x A a x A a x A x Q x P -++-++-+-=-λββ)()(21112q px x N x M b x B b x B ++++-++-+-μλλλ)()(21121222s rx x S x R q px x N x M q px x N x M ++++++++++++++-srx x S x R s rx x S x R +++++++++-21222)(μμμ . (2) 其中i i i i i i S R N M B A ,,,,,,, 都是待定常数,并且这样分解时,这些常数是唯一的.可见在实数围,任何有理真分式都可以分解成下面四类简单分式之和: (1)a x A - , (2)k a x A )(- (k 是正整数,2≥k ), (3)qpx x B Ax +++2(042<-q p ), (4)kq px x B Ax )(2+++ (k 是正整数,04,22<-≥q p k ).2. 有理函数的不定积分求有理函数的不定积分归结为求四类简单分式的积分.下面讨论这四类简单分式的积分.(1)C a x A a x d ax A dx a x A +-=--=-⎰⎰ln )(1,(2)C a x k A a x d a x A dx a x A k k k+-⋅--=--=---⎰⎰1)(11)()()(, (3)dx qpx x B Ax ⎰+++2(042<-q p ). 将分母配方得)4()2(222p q p x q px x -++=++,作变量代换2px u +=,则du dx p u x =-=,2;由于04,0422>-<-p q q p ,记224a p q =-,于是 du a u B pu A dx p q p x B Ax dx qpx x B Ax ⎰⎰⎰++-=-+++=+++22222)2()4()2( du au ApB du a u Au ⎰⎰+-++=22222C au a Ap B a u A +-++=arctan 2)ln(222 C pq p x p q Ap B q px x A +-+--+++=22242arctan 42)ln(2.(4)dx q px x B Ax k⎰+++)(2 (04,22<-≥q p k ).作变量代换2px u +=,并记224a p q =-,于是⎰⎰⎰+-++=+++du a u ApB du a u Au dx q px x B Ax k k k )(2)()(22222. 其中第一个积分C a u k A a u d a u A du a u Au k k k ++⋅--=++=+--⎰⎰122222222)(1)1(2)()(2)(. 第二个积分可通过建立递推公式求得.记 ⎰+=kk a u du I )(22 利用分部积分法有⎰⎰++++=+=12222222)(2)()(k kk k a u du u k a u u a u du I du a u a a u k a u u k k ⎰++-+++=12222222)()(2)(122222)(+-++=k k kkI a kI a u u .整理得 k k k I ka k a u u k a I 22221212)(21-++⋅=+. 于是可得递推公式]2232)()1(21[111222----++⋅-=k k k I k k a u u k a I . (3)利用(3)式,逐步递推,最后可归结为不定积分C a u aa u du I +=+=⎰arctan 1221. 最后由2px u +=全部换回原积分变量,即可求出不定积分⎰+++dx q px x B Ax k )(2. 例1 求⎰++-dx x x x 22)32(1. 解⎰⎰++-+=++-dx x x dx x x x 2222]2)1[(21)32(1 ⎰⎰+-++=2222)2(2)2(1u du du u u x u]2212121[212)2(21222⎰+++⋅⨯⨯-+-=u du u u uC u u u +-++-=2arctan 221)2(212`C x x x x ++-+++-=21arctan 221)32(222.例2 求dx x x ⎰-2)1(1. 解 因为2)1(1-x x 可分解为1)1()1(122-+-+=-x C x B x A x x . 其中A ,B ,C 为待定系数.可以用两种方法求出待定系数.第一种方法:两端去掉分母后,得)1()1(12-++-=x Cx Bx x A . (4)即 A x C A B x C A +--++=)2()(12由于(4)式是恒等式,等式两端2x 和x 的系数及常数项必须分别相等,于是有⎪⎩⎪⎨⎧==--=+1020A C A B C A , 从而解得 1=A ,1=B ,1-=C .第二种方法:在恒等式(4)中,代入特殊的x 值,从而求出待定系数.如令0=x ,得1=A ;令1=x ,得1=B ;把A ,B 的值代入(4)式,并令2=x ,得C 2211++=,即1-=C .于是⎰⎰---+=-dx x x x dx x x )11)1(11()1(122 ⎰⎰⎰---+=dx x dx x dx x 11)1(112C x x x +----=1ln 11ln . 例3 求⎰+-+dx x x x 22)1)(1(22. 解 因为1)1(1)1)(1(2222222++++++-=+-+x E Dx x C Bx x A x x x , 两端去分母得)1)(1)(()1)(()1(22222+-++-+++=+x x E Dx x C Bx x A x234)2()()(x B E D A x D E x D A +-++-++=)()(C E A x C B E D --++-+-+.两端比较系数得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=+-+-=+-+=-=+220200C E A C B ED BE D A D E D A ,解方程组得1=A ,2-=B ,0=C ,1-=D ,1-=E ,故dx x x x x x dx x x x )11)1(211()1)(1(2222222⎰⎰++-+--=+-+ dx x x dx x x dx x ⎰⎰⎰++-+--=11)1(211222C x x x x +-+-++-=arctan )1ln(21111ln 22 C x x x x +-+++-=arctan 1111ln22. 例4 求⎰+-+dx x x x 6532. 解 因为32)3)(2(36532-+-=--+=+-+x B x A x x x x x x ,两端去分母得 )2()3(3-+-=+x B x A x . 令2=x ,得5-=A ;令3=x ,得6=B .于是Cx x dx x x dx x x x +---=---=+-+⎰⎰2ln 53ln 6)2536(6532C x x +--=56)2()3(ln . 从理论上讲,多项式)(x Q 总可以在实数围分解成一次因式和二次质因式的乘积,从而把有理函数)()(x Q x P 分解为多项式与四类简单分式之和,而简单分式都可以积出.所以,任何有理函数的原函数都是初等函数.但我们同时也应该注意到,在具体使用此方法时会遇到困难.首先,用待定系数法求待定系数时,计算比较繁琐;其次,当分母的次数比较高时,因式分解相当困难.因此,在解题时要灵活使用各种方法.例5 求dx x x x x x ⎰+++++12232. 解dx x dx x dx x x x x dx x x x x x ⎰⎰⎰⎰+++=+++++=+++++1111)1)(1()1()1(12222232C x x +++=arctan 1ln .例6 求dx x x x x ⎰+-+-)54)(44(122 .解 dx x x x x x x x x dx x x x x ⎰⎰+-+-+--+-=+-+-)54)(44()44()54()54)(44(1222222dx x x dx x x ⎰⎰+--+-=54144122 ⎰⎰-+----=)2(1)2(1)2()2(122x d x x d xC x x +----=)2arctan(21.例7 求dx x ⎰+114. 解⎰⎰⎰+--++=+dx x x dx x x dx x 112111211142424dx x x x dx x x x ⎰⎰+--++=2222221112111121 )1(2)1(121)1(2)1(12122xx d xx x x d x x +-+--+-=⎰⎰C x x x x x x ++++---=1212ln 24121arctan 221222.二、三角函数有理式的积分由三角函数和常数经过有限次四则运算所构成的函数称为三角函数有理式.因为所有三角函数都可以表示为x sin 和x cos 的有理函数,所以,下面只讨论)cos ,(sin x x R 型函数的不定积分.由三角学知道,x sin 和x cos 都可以用2tan x 的有理式表示,因此,作变量代换2tan x u =,则222122tan12tan22sec 2tan22cos 2sin 2sin u u x xx x x x x +=+===, 22222222112tan 12tan 12sec 2tan 12sin 2cos cos u u x xx x x x x +-=+-=-=-=. 又由u x arctan 2=,得du u dx 212+=,于是 ⎰⎰++-+=du u u u u u R dx x x R 222212)11,12()cos ,(sin . 由此可见,在任何情况下,变换2tan x u =都可以把积分dx x x R )cos ,(sin ⎰有理化.所以,称变换2tan x u =为万能代换.例8 求dx xx ⎰++cos sin 11. 解 设2tan x u =,则du u du u u u u u dx x x ⎰⎰⎰+=+⋅+-+++=++1112111211cos sin 112222C xC u ++=++=2tan1ln 1ln . 例9 求dx xx ⎰-+cos 1sin 1.解 设2tan x u =,则du u u u u du u u u u u dx xx ⎰⎰⎰+++=+⋅+--++=-+)1(2)1(12111121cos 1sin 12222222du u u du u ⎰⎰++=)1(2122du u u u u du u ⎰⎰+-++=)1()1(212222⎰⎰⎰+-+=du u u du u du u 2212121C u u u ++-+-=)1ln(ln 212 C x x x +--=)2ln(sec 2cot 2tan ln 22.虽然利用代换2tan x u =可以把三角函数有理式的积分化为有理函数的积分,但是,经代换后得出的有理函数积分一般比较麻烦.因此,这种代换不一定是最简捷的代换.例10 求dx xx ⎰+sin 1sin . 解 dx x x x dx xx x dx x x ⎰⎰⎰-=--=+222cos sin sin sin 1)sin 1(sin sin 1sin dx xx dx x x ⎰⎰--=222cos cos 1cos sin ⎰⎰⎰+--=dx dx x x d x 22cos 1cos cos 1C x x x ++-=tan cos 1. 例11 求dx x ⎰+2cos 311. 解x d x dx x x dx xtan 4tan 13sec sec cos 3112222⎰⎰⎰+=+=+ C x +=)2tan arctan(21.三、简单无理函数的积分(一)),(nb ax x R +型函数的积分),(u x R 表示x 和u 两个变量的有理式.其中a ,b 为常数.对于这种类型函数的积分,作变量代换u b ax n=+,则a b u x n -=,du anu dx n 1-=,于是 du a nuu a b u R dx b ax x R n n n 1),(),(-⋅-=+⎰⎰ . (5)(5)式右端是一个有理函数的积分.例12 求⎰++dx x 3211. 解 令u x =+32,则23-=u x ,du u dx 23=,于是⎰⎰⎰++-=+=++du u u du u u dx x 111313211223 C u u u du u u +++-=++-=⎰)1ln 2(3)111(32C x x x +++++-+=333221ln 323)2(23.例13 求dx xx ⎰+31.解 为了同时去掉被积函数中的两个根式,取3和2的最小公倍数6,并作变量代换u x =6,则6u x =,du u dx 56=,23u x =,3u x =,于是du u u du u u dx xx⎰⎰⎰+=+=+1616128283u d uu u u ⎰++-+-=)111(62246 C u u u u u ++-+-=arctan 6625676357 C x x x x x x ++-+-=66656arctan 6625676.(二)),(ndcx b ax x R ++型函数的积分 这里),(u x R 仍然表示x 和u 两个变量的有理式.其中d c b a ,,,为常数.对于这种类型函数的不定积分,作变量代换u d cx b ax n=++,则nn cu a b du x --=,du cu a bc ad nu dx n n 21)()(--=-,于是du cu a bc ad nu u cu a b du R dx d cx b ax x R n n n nn21)()(),(),(--⋅--=++-⎰⎰. (6) (6)式右端是一个有理函数的积分.例14 求dx xx x ⎰+11. 解 令u x x =+1, 则112-=u x ,du u u dx 22)1(2--=,于是 duu u du u u du u u u u dx x x x ⎰⎰⎰⎰-+--=--=--⋅-=+111212)1(2)1(112222222C u u u du u ++---=-+-=⎰11ln 2)111(22C u u u +--++-=1ln )1ln(222 C x x xx x++++++-=ln )11ln(212.例15 求dx x x ⎰-+342)1()1(1.解 ⎰⎰+--+=-+dx x x x x dx x x 334211)1)(1(1)1()1(1,令ux x =+-311,则311u x x =+-,3311u u x -+=,du u u dx 232)1(6-=, 于是du u dx x x x dx x x ⎰⎰⎰=+--=-+23234212311)1(1)1()1(1C x x C u +-+-=+-=3112323.。

高数 几种特殊类型函数的积分

高数 几种特殊类型函数的积分
一、有理函数的积分
有理函数的定义:
两个多项式的商表示的函数称之.
P ( x ) a0 x n a1 x n1 an1 x an m m 1 Q( x ) b0 x b1 x bm 1 x bm
其中m 、n 都是非负整数;a0 , a1 ,, a n 及
x x 3 x 3 ln(1 e ) ln(1 e 3 ) 3 arctan( e 6 ) C . 2 x 6
说明 将有理函数化为部分分式之和后,只出 现三类情况:
(1) 多项式; ( 2)
A Mx N ; ( 3) ; n 2 n ( x a) ( x px q ) Mx N dx , 讨论积分 2 n ( x px q )
2u 1 u 2 2 , du. 2 2 2 R(sin x, cos x ) dx R 1 u 1 u 1 u
sin x dx. 例7 求积分 1 sin x cos x 2u , 解 由万能置换公式 sin x 2 1 u 1 u2 2 cos x dx du, 2 2 1 u 1 u 2u sin x 1 sin x cos x dx (1 u)(1 u2 )du
2
,
2 t dt 1 1 x 2 t 1 t 2 dx 2 dt 2 2 x x t 1 t 1
1 dx . 例5 求积分 2 (1 2 x )(1 x ) 4 2 1 x 1 5 dx 5 5dx dx 解 1 2x 1 x2 (1 2 x )(1 x 2 )
2 1 2x 1 1 ln(1 2 x ) dx dx 2 2 5 5 1 x 5 1 x 2 1 1 2 ln(1 2 x ) ln(1 x ) arctan x C . 5 5 5

几种特殊类型函数的积分

几种特殊类型函数的积分

假分式总可以化成一个多项式与一个真分式之和的形式.例如,
x3 x 1 x(x2 1) 1
x
1

x2 1
x2 1
x2 1
求真分式的不定积分时,如果分母可因式分解,则先因式分解,然后化成部分分式再积分.
1.1 有理函数的积分
例1

x2
x
3 5x
6
dx

解 设 x 3 x 3 A B ,则
x ln sec x ln 1 tan x C .
2
2
2
1.2 三角函数有理式的积分
说明 并非所有三角函数有理式积分计算都要通过变换化为有理函数的积分.例如,
1
cos x sin
x
dx
1
1 sin
x
d(1
sin
x)
ln(1
sin
x)
C

高等数学
x2 5x 6 (x 2)(x 3) x 2 x 3
A(x 3) B(x 2) (A B)x 3A 2B x 3 ,
即 A B 1, 3A 2B 3,
解得 A 5 , B 6 ,所以
x2
x
3 5x
6
dx
5 x2
x
6
3
dx
5
x
1
2
dx
6
x
1
3
dx
5ln | x 2 | 6ln | x 3| C .
7
7
1.2 三角函数有理式的积分
三角函数有理式是指由三角函数和常数经过有限次四则运算所构成的函数,其特点是分子 分母都包含三角函数的和差与乘积运算.由于各种三角函数都可以用 sin x 及 cos x 的有理式表 示,故三角函数有理式也就是 sin x , cos x 的有理式.

高等数学各类积分总结

高等数学各类积分总结

关于各类积分的一些总结一、定积分实质:直线上函数的积分,积分对象是直线元 dx 。

二、二重积分实质:平面区域上的二元函数的积分,积分对象是dxdy 。

方法:累次积分,即先固定一个变量,对另一个变量积分,再对另一个变量积分。

三、三重积分实质:对空间上的三元函数积分,积分对象是dxdydz 。

方法:累次积分,可以化成三个一次积分(如球坐标代换),也可化成一个二重积分和一个一次积分(如柱坐标代换)。

四、第一型曲线积分实质:对曲线上的一元函数积分,积分对象是曲线元ds 。

方法:转化成定积分曲线r=(x(t),y(t),z(t)),则dt z y x t z t y t x f ds z y x f s dt t t ⎰⎰⎰⎰'+'+'=222))(),(),((),,(。

五、第一型曲面积分实质:对曲面上的二元函数积分,曲面元dS.方法:转化为二重积分。

曲面r=(x(u,v),y(u,v),z(u,v)), 则(,,)((,),(,),(,))s D dr dr f x y z dS f x u v y u v z u v dudv du dv=⨯⎰⎰⎰⎰特别的dr dr dx dy ⨯= 六、第二型曲线积分实质:变力在曲线上作功,或是对有向线元的积分,即对坐标的积分。

形式:⎰++LRdz Qdy Pdx ①方法:1、拆 ①=⎰⎰⎰++L L L Rdz Qdy Pdx =⎰⎰⎰++121212z z y y x x Pdz Pdy Pdx εεε(化成三个定积分)2、合 用定义化成第一形曲线积分①=dl v dz dy dx R Q P LL τ⋅=⋅⎰⎰),,(),,(3、对于环路积分,一般用斯托克斯公式化去做①=dl v dz dy dx R Q P τ⋅=⋅⎰⎰),,(),,(=⎰⎰⋅Dnds rotv ε七、第二形曲面积分实质:通量,或是对有向面积元的积分,即对坐标的曲面积分。

指数函数与对数函数的积分与面积

指数函数与对数函数的积分与面积

指数函数与对数函数的积分与面积指数函数与对数函数是高等数学中常见的两种特殊函数类型。

本文将探讨指数函数与对数函数的积分与面积计算方法。

1. 指数函数的积分与面积指数函数形如f(x)=a^x,其中a为常数且a>0且a≠1。

对于指数函数的积分与面积计算,可以通过如下步骤进行:步骤一:确定积分区间选择积分的区间[a,b],其中a和b为常数,a<b。

步骤二:求导数首先求出指数函数f(x)的导函数f'(x),根据指数函数的导数性质,得到f'(x)=a^x * ln(a)。

步骤三:确定不定积分根据不定积分的定义,将指数函数的导函数f'(x)积分得到不定积分F(x)。

步骤四:计算定积分根据定积分的定义,计算出积分区间[a,b]内的定积分值,即∫[a,b]f(x) dx = F(b) - F(a)。

步骤五:计算面积通过计算定积分值,可以得到指数函数在积分区间[a,b]内的面积。

2. 对数函数的积分与面积对数函数形如g(x)=logₐx,其中a为常数且a>0且a≠1。

对于对数函数的积分与面积计算,可以通过如下步骤进行:步骤一:确定积分区间选择积分的区间[a,b],其中a和b为常数,a<b。

步骤二:求导数由对数函数的导数性质,可以得到g'(x)=1 / (x * ln(a))。

步骤三:确定不定积分将对数函数的导函数g'(x)积分得到不定积分G(x)。

步骤四:计算定积分计算积分区间[a,b]内的定积分值,即∫[a,b] g(x) dx = G(b) - G(a)。

步骤五:计算面积通过计算定积分值,可以得到对数函数在积分区间[a,b]内的面积。

综上所述,指数函数与对数函数的积分与面积计算方法可以通过以上步骤进行。

对于更复杂的指数函数与对数函数的积分与面积计算,可借助换元积分法、分部积分法等数学方法进行求解。

熟练掌握这些计算方法有助于我们更好地理解和应用指数函数与对数函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


(
x
1 − 1)2
dx


x
1 −
dx 1
= ln | x | − 1 − ln | x −1| +C. x −1
2009年7月3日星期五
10
目录
上页
下页
返回
∫1
例5 求积分 (1 + 2x)(1 + x2 ) dx.
例3
解:∫
(1
+
2
1 x)(1
+
x2
)
dx
=

⎡4
⎢ ⎢⎢1
5 +2
x
+
− 2 x+ 5 1+ x2
2 tan x 2
1− tan2 x 2
u
=
tan
x 2
1
2u − u2
2009年7月3日星期五
19
目录
上页
下页
返回
令u = tan x x = 2arctan u 2
dx
=
1
2 + u2
du
∫ ∫ R(sin x,cos x)dx =
R⎜⎛ ⎝
1
2u +u
2
,
1 1
− +
u2 u2
⎞⎟ ⎠
1
2 + u2
1 5
⎤ ⎥ ⎥dx ⎥
4
−2x+1⎣

=

1
5 +2
x
dx
+

5 1+
x2
5dx
=
2 5
ln(1
+
2x)

1 5

1
2x + x2
dx
+
1 5

1
1 +x
2
dx
= 2 ln(1 + 2x) − 1 ln(1 + x2 ) + 1 arctan x + C .
5
5
5
2009年7月3日星期五
11
目录
上页
B = −2,C 5
−2x+
+ x
5 1+ x2
=1 5
1 5.
,
2009年7月3日星期五
9
目录
上页
下页
返回
∫ 例4 求积分
1
x3

2
x2
+
dx. x
解:∫
1 dx =
x3 − 2x2 + x

x(
1 x−
1)2dx
=

⎡1 ⎣⎢ x
+
(x
1 − 1)2

x
1 −
⎤ 1⎥⎦
dx
例2
=

1dx x
+

⎧A+ B ⎩⎨− (3A
= 1, + 2B)
=
3,

⎧ ⎨ ⎩
A B
= =
−5 ,
6

x2
x+3 −5x +
= 6
−5 x−2
+
x
6 −
. 3
2009年7月3日星期五
6
目录
上页
下页
返回
例2
x(
1 x−1)2
=
A+ x
(x
B − 1)2
+
C, x−1
通分以后比较分子得:
1= (A+C)x2 + (B − 2A−C)x + A
dt
+
∫ (t2
b +a
2
)n
dt
第三节 例9
∫ =

2(n

M 1)(t 2
+
a
2
)n−1+
b
(t
2
1 + a2
)n
dt .
结论: 有理函数的原函数都是初等函数.
2009年7月3日星期五
15
目录
上页
下页
返回
说明: 将有理函数分解为部分分式进行积分虽可行,
但不一定简便 , 因此要注意根据被积函数的结构寻求
p2 ,
⎝ 2⎠
4
令 x+ p=t 2
并记
x2 + px + q = t 2 + a2 ,
Mx + N = Mt + b,
其中
a2 = q − p2 , 4
b = N − Mp , 2
2009年7月3日星期五
14
目录
上页
下页
返回


(
x
Mx + 2 + px
N + q)n
dx
=
∫ (t2
Mt + a2 )n
x)
dx
=
1 2
u2 + 2u + 1 du
u
=
1
u2 (
+
2u
+
ln u) +
C
22
=
tan2
x 2
+
tan
x
+
1
ln tan
x
+C
4
22
2
2009年7月3日星期五
21
目录
上页
下页
返回
例10(补充题)


1
cos x + sin
x
dx.
1− u2 2du
∫ = ∫ ∫ 解: =
cos x dx = 1 + sin x
1)利用多项式除法, 假分式可以化成一个多项式和
一个真分式之和.
例如,我们可将 x 3 + x + 1
x2 +1
化为多项式与真分式之和
x
+
1
x2
. +1
2009年7月3日星期五
3
目录
上页
下页
返回
2)在实数范围内真分式总可以分解成几个最简式之和
最简分式是下面两种形式的分式
A (x − a)k
Ax + B ( x2 + px + q)k ;
令 t = p a x + b , p为m , n的最小公倍数 .
2009年7月3日星期五
24
目录
上页
下页
返回
例12(课本 例7)求

1
+
dx 3x
+
2
.
解: 令 u = 3 x + 2 , 则 x = u3 − 2, dx = 3u2 du
∫ 原式
=

3u 1+
2
u
du
=3
(u2 −1) +1du 1+ u
,
1 = A(1 + x2 ) + (Bx + C )(1 + 2x), 整理得 1 = ( A + 2B)x2 + (B + 2C )x + C + A,
⎧ A + 2B = 0,
⎪⎨B ⎪⎩ A
∴ (1
+ +
+
2C = 0, C = 1,
1 2x)(1 +
⇒ x2)
A= 4, 5 4
=5 1+ 2
简便的方法.
例7(补充题)

I
=

2x3 + x4
2x2 + 5x + + 5x2 + 4
5 dx.
∫ ∫ 解:
I=
2x3 + 5x x4 + 5x2 +
4
dx
+
x
4
2x2 + + 5x2
5 +
4
dx
∫ ∫ = 1 2
d(x4 + 5x2 + 5) + x4 + 5x2 + 4
(x2 +1) + (x2 + 4) (x2 +1)(x2 + 4)
2(1 − u)
1+u2 1+u2
1
+
1
2u +u
2
(1
+
u)(1
+
u
2
du )
一直做下去,一定可以积出来,只是太麻烦。

cos x 1 + sin x
dx=

d(1 + sin x) 1 + sin x
=
ln(1 +
sin
x) +
C
由此可以看出,万能代换法不是最简方法,
能不用尽量不用。
2009年7月3日星期五
2−x 2+x
+21 +21
+
C
(x ≠ 0)
2009年7月3日星期五
17
目录
上页
下页
返回
二 、可化为有理函数的积分举例
1. 三角函数有理式的积分
设 R(sin x , cos x) 表示三角函数有理式 , 则
∫ R(sin x , cos x) dx
相关文档
最新文档