几种特殊类型函数的积分
几种特殊类型函数的积分

x 6
1+ e2 + e3 + e6 1 3 3t + 3 6 dt = ∫ − = 6∫ dt − 2 2 t (1 + t )(1 + t ) t 1+ t 1+ t
3 3t + 3 6 dt = ∫ − − 2 t 1+ t 1+ t 2 1 3 d (1 + t ) dt − 3∫ = 6 ln t − 3 ln(1 + t ) − ∫ 2 2 1+ t 2 1+ t 3 2 = 6 ln t − 3 ln(1 + t ) − ln(1 + t ) − 3 arctan t + C 2
A B C 1 , = + + 例2 2 2 x ( x − 1) x − 1 x ( x −1 )
1 = A( x − 1) 2 + Bx + Cx ( x − 1)
代入特殊值来确定系数 A, B , C 取 x = 0, ⇒ A = 1 取 x = 1, ⇒ B = 1 取 x = 2, 并将 A, B 值代入 (1) ⇒ C = −1
2u + 1 + u2 − 1 − u2 du =∫ 2 (1 + u)(1 + u )
(1 + u)2 − (1 + u 2 ) 1+ u 1 du = ∫ =∫ du − ∫ du 2 2 (1 + u)(1 + u ) 1+ u 1+ u
1 = arctan u + ln(1 + u 2 ) − ln | 1 + u | + C 2 x Q u = tan 2 x x = + ln | sec | − ln | 1 + tan x | + C . 2 2 2
特殊类型函数积分

1)
Q(x)中如果含有因式
( x a)
k
则
要分解成称 k 个部分之和。且
A1 、 A2 、….
An 为常数,特别的
k=1 时,分解后得到:
A ( x a )
A3 Ak A1 A2 .... ( x a) k ( x a) k 1 ( x a) k 2 ( x a)
P( x) a0 x n a1 x n1 a2 x n2 ....... an Q( x) b0 x m b1 x m1 b2 xห้องสมุดไป่ตู้m2 ...... bn
=
A3 A A1 A2 .... k k k 1 k 2 ( x a) ( x a) ( x a) ( x a)
2
x 2 x 2 x 2
2
cos x
2
三、 简单无理式的积分
这里只讨论 R ( x ,
n
ax b ) 及
R (x,
n
ax b ) cx e 这两类函数的积分
3) 最后求 A、 M、 N、 最后用待定系数法 带入特殊 x 值 特殊有理式分解:
1】 2】 3】
A B 1 x2 x3 x 2 5x 6 1 A B C x ( x 1) 2 x ( x 1) 2 x 1
1 A Bx c 2 2 (1 2 x )( x 1) (1 2 x ) 1 x2
特殊类型函数积分
一、 有理函数的积分 1)有理式的定义:
由两个多项式的商所表示的函数:
P( x) a0 x n a1 x n1 a2 x n2 ....... an Q( x) b0 x m b1 x m1 b2 x m2 ...... bn
几种特殊类型的函数的积分

dt dt 6 原式 6 3 2 (1 t t t ) t (t 1)(t 2 1) t
dt 3 2 ln( t 1) 3 arctan t C 6 ln t 3 ln t 1 2
山东农业大学
高等数学
主讲人: 苏本堂
解 原式
1 [ln x 10 ln( x 10 2)] C 20 1 1 ln x ln( x 10 2) C . 2 20
山东农业大学
高等数学
主讲人: 苏本堂
例16 求
3
3
dx . 2 4 ( x 1) ( x 1)
2 4 3
x 1 4 ) ( x 1) 2 . 解 ( x 1) ( x 1) ( x1 2 x 1 则有 dt dx , 令t , 2 ( x 1) x1 4 1 dx 原式 t 3 dt x 1 4 2 2 3 ( ) ( x 1) x1 33 x 1 3 1 3 C. t C 2 x 1 2
ln 2 ln 3
C
山东农业大学
高等数学
主讲人: 苏本堂
例2
计算
x2 dx 6 6 a x
3 3 1 1 3 1 x a 解:原式 3 2 dx ln 3 C 3 2 3 3 3 ( x ) (a ) 6a x a 例3 计算 1 cos x dx x sin x d ( x sin x ) ln | x sin x | C 解:原式 x sin x
x1 例10 求 2 dx. 2 x x 1 1 解 令x , (倒代换)
1 1 1 1 t t 原式 ( 2 )dt dt 2 1 12 t 1 t ( ) 1 t2 t 1 d (1 t 2 ) 2 arcsin t 1 t C dt 2 2 1 t 2 1 t
常用积分公式

常用积分公式积分公式是微积分中常用的一种工具,用于求解函数的定积分。
通过积分公式,我们可以将复杂的函数积分转化为简单的数学形式,从而更容易求解。
1. 基本积分公式基本积分公式是求解不同类型函数的基础,下面列举了一些常见的基本积分公式:(1) ∫kdx = kx + C (k为常数)(2) ∫x^ndx = (1/(n+1)) * x^(n+1) + C (n 不等于-1)(3) ∫1/x dx = ln|x| + C (x不等于0)(4) ∫e^x dx = e^x + C(5) ∫a^x dx = (1/ln(a)) * a^x + C (a不等于0且a不等于1)(6) ∫sin(x) dx = -cos(x) + C(7) ∫cos(x) dx = sin(x) + C(8) ∫sec^2(x) dx = tan(x) + C(9) ∫csc^2(x) dx = -cot(x) + C(10) ∫sec(x)*tan(x) dx = sec(x) + C(11) ∫csc(x)*co t(x) dx = -csc(x) + C以上是一些基本的积分公式,对于这些公式的求解,可以根据具体的函数形式进行运算。
2. 特殊类型函数的积分公式除了基本积分公式,对于一些特殊类型的函数,常常需要使用相应的积分公式进行求解,下面列举了几个常见的特殊类型函数的积分公式:(1) ∫e^ax*sin(bx) dx = (a*sin(bx) - b*cos(bx)) / (a^2 + b^2) + C(2) ∫e^ax*cos(bx) dx = (a*cos(bx) + b*sin(bx)) / (a^2 + b^2) + C(3) ∫sin^2(x) dx = (1/2) * x - (1/4) * sin(2x) + C(4) ∫cos^2(x) dx = (1/2) * x + (1/4) * sin(2x) + C(5) ∫sin^3(x) dx = -(1/3) * cos(x) + (1/12) * cos(3x) + C(6) ∫cos^3(x) dx = (1/3) * sin(x) + (1/12) * sin(3x) + C(7) ∫sec(x) dx = ln|se c(x) + tan(x)| + C(8) ∫csc(x) dx = ln|csc(x) + cot(x)| + C需要注意的是,某些特殊类型的函数的积分公式可能没有明确的表达式,此时需要进行适当的变量替换或其他数学技巧来求解。
求不定积分的基本方法

1 例13. 求不定积分 ∫ dx . (2 + cos x) sin x sin x 解: 原式 = ∫ (令 u = cos x) dx 2 (2 + cos x ) sin x 1 =∫ du 2 ( 2 + u )(u − 1) A=1
1 ( 2+u )(u −1)
习题课 不定积分的计算方法
一、 求不定积分的基本方法 二、几种特殊类型的积分
第四章
机动
目录
上页
下页
返回
结束
一、 求不定积分的基本方法
1. 直接积分法 通过简单变形, 利用基本积分公式和运算法则 求不定积分的方法 . 2. 换元积分法
∫ f ( x ) dx
第一类换元法 第二类换元法
∫ f [ϕ (t )]ϕ ′(t ) dt
分部积分
机动
目录
上页
下页
返回
结束
1 dx . 例4. 设 y ( x − y ) = x , 求积分 ∫ x − 3y 解: y ( x − y ) 2 = x 令 x − y = t, 即 y = x −t
2
t3 x= 2 , t −1
t t 2 (t 2 − 3) y = 2 , 而 dx = 2 dt 2 t −1 (t − 1)
=
x x − 3 ln(e 6
+ 1) − 2
x 3 ln(e 3
x + 1) − 3 arctan e 6
+C
返回 结束
机动
目录
上页
下页
3 cos x − sin x dx . 例11. 求 ∫ cos x + sin x
八种类型积分的特征与异同

八种类型积分的特征与异同八种类型积分是指对不同的函数进行积分时所得到的不同类型的结果。
这些类型包括了常数积分、幂函数积分、指数函数积分、对数函数积分、三角函数积分、反三角函数积分、分式积分以及特殊函数积分。
每一种类型的积分都有其独特的特征与异同。
首先,常数积分是最简单的一种积分类型,其特征是对常数函数求积分时所得到的结果是该常数与积分变量的乘积。
常数积分的计算非常直观,只需要将常数移到积分符号外即可。
幂函数积分是指对幂函数进行积分时所得到的结果。
幂函数积分的特征是对幂函数求积分时,指数部分加一后再除以新的指数,再乘以一个常数。
例如,对x^n进行积分时,积分结果为x^(n+1)/(n+1)。
指数函数积分是指对指数函数进行积分时所得到的结果。
指数函数积分的特征是对指数函数求积分时,结果仍然是指数函数,只是指数部分除以一个常数。
例如,对e^x进行积分时,积分结果为e^x。
对数函数积分是指对对数函数进行积分时所得到的结果。
对数函数积分的特征是对对数函数求积分时,结果是对数函数的积分函数。
例如,对ln(x)进行积分时,积分结果为xln(x) - x。
三角函数积分是指对三角函数进行积分时所得到的结果。
三角函数积分的特征是对不同的三角函数求积分时,结果是其他三角函数的积分函数。
例如,对sin(x)进行积分时,积分结果为-cos(x)。
反三角函数积分是指对反三角函数进行积分时所得到的结果。
反三角函数积分的特征是对不同的反三角函数求积分时,结果是其他反三角函数的积分函数或者常数乘反三角函数的积分函数。
例如,对arcsin(x)进行积分时,积分结果为xarcsin(x) + sqrt(1-x^2)。
分式积分是指对分式函数进行积分时所得到的结果。
分式积分的特征是对分式函数进行部分分式分解后,对每一项进行积分。
分式积分通常需要运用部分分式分解的技巧,并结合其他类型的积分来求解。
例如,对1/(x(x-1))进行积分时,需要首先进行部分分式分解,然后对每一项进行积分。
几种特殊函数的积分

p p x px q x q , 2 4 p 令 x t 2
记 x 2 px q t 2 a 2 ,
则
Mx N Mt b,
p2 2 a q , 4
Mp b N , 2
Mx N 2 dx n ( x px q ) Mt b 2 dt 2 dt 2 n 2 n (t a ) (t a )
真分式化为部分分式之和的待定系数法
x3 x3 A B 例1 2 , x 5 x 6 ( x 2)( x 3) x 2 x 3
x 3 A( x 3) B( x 2), x 3 ( A B ) x ( 3 A 2 B ),
1 dx . 例4 求积分 2 x( x 1) 1 1 1 1 dx 解 2 2 dx x ( x 1) x ( x 1) x 1 1 1 1 dx dx dx 2 x ( x 1) x 1
1 ln x ln x 1 C. x 1
三、简单无理函数的积分
ax b 讨论类型 R( x, ax b ), R( x , ), cx e
n
n
解决方法 作代换去掉根号.
1 1 x 例10 求积分 dx x x
解
1 x 2 1 x 令 t t , x x
1 sin x dx. 例9 求积分 sin 3 x sin x A B A B 解 sin A sin B 2 sin cos 2 2 1 sin x 1 sin x sin 3 x sin x dx 2 sin 2 x cos x dx 1 sin x dx 2 4 sin x cos x 1 1 1 1 dx dx 2 2 4 sin x cos x 4 cos x
几种特殊类型的函数积分

反三角函数积分公式
∫sinxdx=−cosx+Cint sin x , dx = -cos x + C∫sinxdx=−cosx+C
∫cosxdx=sinx+Cint cos x , dx = sin x + C∫cosxdx=sinx+C
∫tanxdx=ln|secx|+Cint tan x , dx = ln |sec x| + C∫tanxdx=ln∣secx∣+C
底数小于1的对数函数积分公式
∫logₐ(x) dx = xlogₐ(x) - ∫x/lna dx = xlogₐ(x) x/lna + C,其中C为积分常数。
对数函数积分应用
解决对数方程
计算对数值
通过积分的方法,可以将对数方程转 化为代数方程,从而更容易求解。
利用对数函数的积分公式,可以计算 对数值,例如计算ln(e)、lg(10)等。
积分性质
对于三角函数的积分,有基本的 积分公式,如∫sin(x)dx = -cos(x) + C,∫cos(x)dx = sin(x) + C等。
三角函数的积分具有一些重要的 性质,如∫[sin(x)]^2dx = ∫[1 cos(2x)]/2dx = x/2 - sin(2x)/4 + C。
积分变换
底数小于1的对数函 数
如以0.5为底的对数函数,记作 logₐ(x),其定义域为(0, +∞), 其中a为正实数且a≠1。
对数函数积分公式
自然对数函数积分公式
∫ln(x) dx = xln(x) - x + C,其中C为积分常数。
常用对数函数积分公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年8月21日星期五
1
目录
上页
下页
返回
一、 有理函数的积分
(Integration of Rational Function)
有理函数的定义:两个多项式的商表示的函数.
P(x) Q( x)
a0 xn b0 x m
a1 x n1 b1 x m1
an1 x an bm1 x bm
其中m、n都是非负整数;a0 ,a1 ,,an及b0 ,b1,,bm 都是实数,并且a0 0,b0 0.
下页
返回
(
x
Mx 2 px
N q)n
dx
(
t
2
Mt a
2
)n
dt
(
t
2
b a
2
)n
dt
第三节 例9
2(n
M 1)(t 2
a
2
)n1
b
1 (t 2 a2 )n dt.
结论: 有理函数的原函数都是初等函数.
上页
下页
返回
3)有理函数化为部分分式之和的一般规律:
(1)分母中若有因式 ( x a)k ,则分解后为
(x
A1 a)k
(x
A2 a)k1
Ak xa
,
其中 A1 , A2 ,, Ak都是待定的常数.
(2)分母中若有因式 ( x2 px q)k ,其中
p2 4q 0 则分解后为
M1x ( x2 px
9
目录
上页
下页
返回
例4 求积分
1
x
3
2
x2
dx. x
解:
1 dx
x3 2x2 x
x(
1 x
1)2dx
1 x
(x
1 1)2
1 x
1
dx
例2
1dx x
(
x
1 1)2
dx
x
1
dx 1
ln | x | 1 ln | x 1| C. x 1
2020年8月21日星期五
10
目录
上页
下页
返回
2020年8月21日星期五
12
目录
上页
下页
返回
注意:
有理函数的积分就是对下列三类函数的积分:
(1) 多项式;
(2)
(
x
A a
)n
;
Mx N (3) ( x2 px q)n ;
主要讨论(3)积分
1)
n 1,
Mx N
x2
px
dx q
M
ln( x2
px
q)
b arctan
x
p 2
C;
2
a
a
2020年8月21日星期五
13
目录
上页
下页
返回
(2)
n 1,
(
x
Mx 2 px
N q)n
dx
x2
px q x
p2
2
q
p2 ,
4
令 x pt 2
并记
x2 px q t 2 a2 ,
Mx N Mt b,
其中
a2 q p2 , 4
b N Mp , 2
2020年8月21日星期五
14
目录
上页
x
x2
. 1
2020年8月21日星期五
3
目录
上页
下页
返回
2)在实数范围内真分式总可以分解成几个最简式之和
最简分式是下面两种形式的分式
A (x a)k
Ax B ( x2 px q)k ;
其中 A, B,a, p,q 都是待定的常数.
k为正整数,p2 4q 0
2020年8月21日星期五
4
目录
例5 求积分
(1
1 2 x )(1
x2
)
dx.
例3
解:
(1
1 2 x )(1
x2
)
dx
4 1 52 x
2 x 5 1 x2
1 5
dx
4
2x1
1
5 2
x
dx
5 1
x2
5dx2 5ln(12x)1 5
1
2
x x2
dx
1 5
1
1 x
2
dx
2 ln(1 2x) 1 ln(1 x2 ) 1 arctan x C.
2020年8月21日星期五
2
目录
上页
下页
返回
假定分子与分母之间没有公因式
(1) n m, 这有理函数是真分式; (2) n m, 这有理函数是假分式;
有理函数有以下性质:
1)利用多项式除法, 假分式可以化成一个多项式和
一个真分式之和.
例如,我们可将 x 3 x 1
x2 1
1
化为多项式与真分式之和
N1 q)k
M2x N2 ( x2 px q)k1
Mk x Nk x2 px q
其中 Mi , Ni都是待定的常数(i 1,2,, k).
2020年8月21日星期五
5
目录
上页
下页
返回
为了便于求积分,必须把真分式化为部分分式之和,
同时要把上面的待定的常数确定,这种方法叫待定系
数法
例1
,
1 A(1 x2 ) (Bx C )(1 2x),
整理得 1 ( A 2B)x2 (B 2C )x C A,
A 2B 0,
B A
(1
2C 0, C 1,
1 2x)(1
x2)
A 4, 5 4
5 1 2
B 2,C 5
2x
x
5 1 x2
1 5
1 5.
,
2020年8月21日星期五
1 A( x 1)2 Bx Cx( x 1)
代入特殊的x值 : 令x 1 B 1;
令x 0 A 1;
令x 2 C 1;
1 x(x
1)2
1 x
(x
1 1)2
1 x
. 1
2020年8月21日星期五
8
目录
上页
下页
返回
例3
(1
1 2 x )(1
x2)
A 1 2x
Bx C 1 x2
6
目录
上页
下页
返回
例2
1 x( x1)2
A x
(x
B 1)2
C, x1
通分以后比较分子得:
1 (AC)x2 (B 2AC)x A
AC 0
B
2A
C
0
A
1,
B
1, C
1
A 1
1 x(x
1)2
1 x
(x
1 1)2
1 x
. 1
2020年8月21日星期五
7
目录
上页
下页
返回
我们也可以用赋值法来得到最简分式,比 如前面的例2,两端去分母后得到
5
5
5
2020年8月21日星期五
11
目录
上页
下页
返回
例6 求
解: 原式 x2 2x 3 dx
1 2
d(x2 2x 3) x2 2x 3
3
d(x 1) (x 1)2 ( 2)2
1 ln x2 2x 3 3 arctan x 1 C
2
2
2
思考: 如何求
提示: 变形方法同例6, 并利用 第三节 例9 .
第四章
第四节 几种特殊类型函数的积分
(Integration of several kinds of Special Functions)
• 基本积分法 : 直接积分法 ; 换元积分法 ; 分部积分法
求导 • 初等函数
积分
初等函数(见本节第一段)
本节内容: 一、有理函数的积分
二、可化为有理函数的积分举例
x2
x3 5x
6
(x
x3 2)( x
3)
A x2
B x
, 3
A( x 3) B( x 2) ( A B)x (3A 2B)
( x 2)( x 3)
( x 2)( x 3)
A B (3A
1, 2B)
3,
A B
5 ,
6
x2
x3 5x
6
5 x2
x
6
. 3
2020年8月21日星期五