小学数学应用题题形与解题思路

合集下载

小学数学必考100道应用题及答案(完整版)

小学数学必考100道应用题及答案(完整版)

小学数学必考100道应用题及答案(完整版)1. 学校图书馆有故事书240 本,科技书比故事书多30 本,科技书有多少本?答案:240 + 30 = 270(本)解题思路:科技书数量= 故事书数量+ 302. 果园里有苹果树180 棵,梨树比苹果树少20 棵,梨树有多少棵?答案:180 - 20 = 160(棵)解题思路:梨树数量= 苹果树数量- 203. 小明买了一支钢笔,花了8 元,又买了一个笔记本,花了5 元,一共花了多少钱?答案:8 + 5 = 13(元)解题思路:总花费= 钢笔花费+ 笔记本花费4. 养殖场有鸡200 只,鸭的数量是鸡的1.2 倍,鸭有多少只?答案:200 ×1.2 = 240(只)解题思路:鸭的数量= 鸡的数量×1.25. 一本书有150 页,小红第一天看了20%,第二天看了25%,两天一共看了多少页?答案:150 ×(20% + 25%)= 67.5(页)解题思路:先算出两天分别看的页数占总页数的比例,再乘以总页数得到两天看的页数之和6. 一个长方形的长是12 厘米,宽是长的2/3,这个长方形的面积是多少?答案:宽为12 ×2/3 = 8 厘米,面积= 12 ×8 = 96(平方厘米)解题思路:先求出宽,再用长乘以宽得到面积7. 商店运来500 千克水果,上午卖出180 千克,下午卖出220 千克,还剩多少千克?答案:500 - 180 - 220 = 100(千克)解题思路:用运来的水果重量依次减去上午和下午卖出的重量8. 工人师傅要生产480 个零件,已经生产了3 天,每天生产80 个,还剩多少个没生产?答案:480 - 80 ×3 = 240(个)解题思路:先算出已经生产的零件数量,再用总数减去已生产的数量9. 小明家离学校1500 米,他每天上学、放学一共要走多少米?答案:1500 ×2 = 3000(米)解题思路:上学和放学的路程相同,所以总路程是单程的2 倍10. 一桶油重50 千克,用去了30%,还剩多少千克?答案:50 ×(1 - 30%)= 35(千克)解题思路:剩下的油的重量= 总重量×(1 -用去的比例)11. 一个三角形的底是9 分米,高是底的2/3,这个三角形的面积是多少?答案:高为9 ×2/3 = 6 分米,面积= 9 ×6 ÷2 = 27(平方分米)解题思路:先求出高,再根据三角形面积公式计算12. 学校合唱队有男生25 人,女生人数是男生的1.2 倍,合唱队一共有多少人?答案:女生人数为25 ×1.2 = 30 人,总人数= 25 + 30 = 55(人)解题思路:先求出女生人数,再加上男生人数得到总人数13. 有一块长方形菜地,长18 米,宽12 米,这块菜地的一半种西红柿,种西红柿的面积是多少?答案:菜地面积为18 ×12 = 216 平方米,种西红柿的面积为216 ÷2 = 108 平方米解题思路:先求出菜地面积,再除以2 得到种西红柿的面积14. 一辆汽车2 小时行驶了160 千米,照这样的速度,5 小时能行驶多少千米?答案:速度为160 ÷2 = 80 千米/小时,5 小时行驶80 ×5 = 400 千米解题思路:先求出速度,再乘以时间得到行驶的路程15. 一个正方形的周长是36 厘米,它的面积是多少平方厘米?答案:边长为36 ÷4 = 9 厘米,面积为9 ×9 = 81 平方厘米解题思路:先求出边长,再计算面积16. 妈妈买了3 千克苹果,花了18 元,每千克苹果多少钱?答案:18 ÷ 3 = 6(元)解题思路:单价= 总价÷数量17. 小明做了40 道数学题,做错了5 道,他的正确率是多少?答案:(40 - 5)÷40 ×100% = 87.5%解题思路:正确率= (做对的题数÷总题数)×100%18. 一间教室长10 米,宽6 米,高3.5 米,要粉刷教室的四面墙壁和天花板,除去门窗和黑板的面积20 平方米,粉刷的面积是多少平方米?答案:(10 ×3.5 + 6 ×3.5)×2 + 10 ×6 - 20 = 132(平方米)解题思路:分别计算四面墙壁和天花板的面积,再减去门窗和黑板的面积19. 一根铁丝可以围成一个边长为8 厘米的正方形,如果用这根铁丝围成一个长方形,长是10 厘米,宽是多少厘米?答案:铁丝长度为8 × 4 = 32 厘米,宽为(32 - 10 ×2)÷2 = 6 厘米解题思路:先求出铁丝长度,再根据长方形周长公式求出宽20. 一个圆柱形水桶,底面半径是2 分米,高是5 分米,这个水桶的容积是多少升?答案:3.14 ×2 ×2 ×5 = 62.8(立方分米)= 62.8 升解题思路:圆柱容积= 底面积×高21. 一辆自行车的价格是300 元,一辆摩托车的价格是自行车的6 倍,一辆摩托车比一辆自行车贵多少元?答案:300 ×6 - 300 = 1500(元)解题思路:先求出摩托车的价格,再减去自行车的价格22. 学校举行运动会,参加跑步的有48 人,参加跳远的人数是跑步的3/4,参加跳高的人数是跳远的2/3,参加跳高的有多少人?答案:参加跳远的有48 ×3/4 = 36 人,参加跳高的有36 ×2/3 = 24 人解题思路:依次计算出跳远和跳高的人数23. 有一堆煤,用去了2/5 ,还剩下12 吨,这堆煤原来有多少吨?答案:12 ÷(1 - 2/5)= 20(吨)解题思路:剩下的煤占原来的(1 - 2/5),用剩下的煤的重量除以其占比得到原来煤的重量24. 一块长方形草地,长和宽的比是5:3,长比宽多12 米,这块草地的面积是多少平方米?答案:长比宽多5 - 3 = 2 份,1 份是12 ÷2 = 6 米,长为5 ×6 = 30 米,宽为3 ×6 = 18 米,面积为30 ×18 = 540 平方米解题思路:先求出长和宽分别占的份数,计算出1 份的长度,进而求出长和宽,最后求出面积25. 一个圆锥形沙堆,底面直径是6 米,高是2 米,这个沙堆的体积是多少立方米?答案:半径为6 ÷ 2 = 3 米,体积= 1/3 ×3.14 × 3 ×3 ×2 = 18.84 立方米解题思路:先求出半径,再根据圆锥体积公式计算26. 小红买了2 件上衣和3 条裤子,一共花了240 元,一件上衣的价格是一条裤子的2 倍,上衣和裤子的单价各是多少元?答案:设裤子单价为x 元,则上衣单价为2x 元,2 ×2x + 3x = 240,解得x = 32,上衣单价为64 元解题思路:根据价格关系设未知数,列方程求解27. 甲乙两地相距360 千米,一辆汽车从甲地开往乙地,3 小时行了全程的3/4,这辆汽车平均每小时行多少千米?答案:3 小时行驶的路程为360 ×3/4 = 270 千米,速度为270 ÷3 = 90 千米/小时解题思路:先求出3 小时行驶的路程,再除以时间得到速度28. 有一批零件,师傅单独做需要10 小时,徒弟单独做需要15 小时,师徒两人合作,需要几小时完成?答案:1 ÷(1/10 + 1/15)= 6(小时)解题思路:把工作总量看作单位“1”,师傅每小时完成1/10 ,徒弟每小时完成1/15 ,合作每小时完成(1/10 + 1/15),用1 除以合作每小时完成的量29. 一个长方体水箱,从里面量长8 分米,宽5 分米,高4 分米,水箱里的水深3 分米,水箱里的水有多少升?答案:8 ×5 × 3 = 120(立方分米)= 120 升解题思路:水的体积= 长×宽×水深30. 把20 克盐放入200 克水中,盐占盐水的百分之几?答案:20 ÷(20 + 200)×100% = 9.09%解题思路:先求出盐水的总质量,再用盐的质量除以盐水的总质量乘以100%31. 商店里有红气球180 个,黄气球比红气球少20 个,蓝气球的个数是黄气球的2 倍,蓝气球有多少个?答案:黄气球有180 - 20 = 160 个,蓝气球有160 × 2 = 320 个解题思路:先求出黄气球的个数,再求出蓝气球的个数。

小学数学典型应用题归纳汇总30种题型

小学数学典型应用题归纳汇总30种题型

小学数学典型应用题归纳汇总30种题型1归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量某所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12某16=1.92(元)列成综合算式0.6÷5某16=0.12某16=1.92(元)答:需要1.92元。

2归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量某份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例1服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米?3.2某791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式3.2某791÷2.8=904(套)答:现在可以做904套。

3和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。

小学数学应用题解题思路指南

小学数学应用题解题思路指南

小学数学应用题解题思路指南在小学数学的学习中,应用题是让很多同学感到头疼的部分。

但其实,只要掌握了正确的解题思路和方法,应用题也可以变得轻松有趣。

接下来,就让我们一起探索小学数学应用题的解题思路吧。

一、认真审题这是解题的第一步,也是最为关键的一步。

拿到一道应用题,首先要仔细阅读题目,弄清楚题目中所给出的条件和问题。

在阅读时,可以一边读一边用笔将关键的数字、词语等标注出来,以便后续分析。

比如,有这样一道题:“小明有 5 个苹果,小红的苹果数比小明多 3 个,他们俩一共有多少个苹果?”在这道题中,“5 个”“多 3 个”就是关键信息。

同时,还要注意题目中的单位是否统一,如果不统一,要先进行单位换算。

二、分析数量关系在认真审题的基础上,接下来要分析题目中数量之间的关系。

这是解题的核心环节。

常见的数量关系有:加法关系(如“一共”“总和”等)、减法关系(如“多多少”“少多少”等)、乘法关系(如“几倍”“几个几”等)、除法关系(如“平均分”等)。

以“小明有 5 个苹果,小红的苹果数是小明的 2 倍,他们俩一共有多少个苹果?”这道题为例,我们可以看出,小红的苹果数与小明的苹果数存在倍数关系,即小红有 5×2 = 10 个苹果。

然后再用小明的苹果数加上小红的苹果数,得到他们俩一共有的苹果数 5 + 10 = 15 个。

三、选择合适的解法分析清楚数量关系后,就需要选择合适的解法来解题。

小学数学应用题的解法主要有算术法和方程法。

算术法是我们在小学阶段常用的方法,它通过直接列式计算来得出答案。

比如,“一辆汽车每小时行驶 60 千米,行驶了 3 小时,一共行驶了多少千米?”就可以用 60×3 = 180 千米。

方程法则是在小学高年级会接触到的方法。

它的思路是先设未知数,然后根据题目中的等量关系列出方程,最后解方程得出答案。

比如,“一个数的 3 倍加上 5 等于 26,这个数是多少?”我们可以设这个数为x,列出方程 3x + 5 = 26,然后解方程得出 x = 7。

小学数学应用题解题思路及方法

小学数学应用题解题思路及方法

小学数学应用题解题思路及方法30类典型应用题:1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少元2、3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?3、5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?2、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

4、服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?5、小华每天读24页书,12天读完了《红岩》一书。

小明每天读36页书,几天可以读完《红岩》?6、食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。

后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?3、和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷2 小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

7、甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?8、长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。

小学数学应用题解答的思路整理

小学数学应用题解答的思路整理

小学数学应用题解答的思路整理数学是一门需要应用和实践的学科,通过解决实际问题来应用数学知识是培养学生数学思维和解决问题能力的重要途径。

而小学数学应用题是培养学生解决实际问题能力的常见形式。

在解答小学数学应用题时,以下几个步骤和思路可能对学生有所帮助。

1. 理解问题首先,学生需要仔细阅读题目,理解题目的意思。

关键是要确定问题在问什么,题目要求学生计算什么或得出什么结论。

有时候,学生可能还需要将题目中的信息整理出来,以更好地解决问题。

2. 分析问题在理解问题的基础上,学生应该进一步分析问题。

这包括确定应用何种数学知识和技巧来解答问题。

通过将问题拆分为更小的部分,并对问题的各个方面进行思考和推敲,学生可以找到解决问题的正确路径。

3. 制定解决方案此步骤是解决问题的关键。

学生需要根据问题的要求和已有的数学知识制定解决方案。

可以通过列出解题步骤、制定算式或图表等方式来规划解答过程。

这有助于学生系统地思考和组织解答过程。

4. 进行计算和推理在制定了解决方案后,学生可以根据题目要求进行计算或推理。

在这个过程中,学生应该小心注意计算的准确性和步骤的清晰性。

若需要进行计算,学生应熟练掌握基本的计算技巧和运算规则,避免简单的计算错误。

5. 检查答案在得出答案之后,学生需要对其进行检查以确保准确性。

这可以通过反向计算、逻辑推理或使用其他方法来验证答案的正确性。

检查答案是重要的环节,不仅可以发现潜在的错误,还能帮助学生理解问题的本质和解题的思路。

6. 总结和反思最后,学生应该总结整个解答过程,并进行反思。

他们可以思考解决问题的思路是否合理,解答过程是否流畅,以及自己在解题中的优点和不足。

通过反思,学生可以找到改进方法,提高解决问题的能力。

需要注意的是,在解答小学数学应用题时,学生还应善于利用图表、图示和模型等辅助工具。

这些工具有助于学生理解问题和构建解决问题的思维框架。

通过以上的步骤和思路,学生可以更好地解答小学数学应用题。

小学数学中最经典的30个题型

小学数学中最经典的30个题型

小学数学中最经典的30个题型1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

1买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解:(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

23台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解:(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

35辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解:(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

2、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

小学数学必考应用题思路解析(附例题)

小学数学必考应用题思路解析(附例题)

小学数学必考应用题思路解析(附例题)(1)平均数问题:平均数是等分除法的发展。

解题关键:在于确定总数量和与之相对应的总份数。

算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。

数量关系式:数量之和÷数量的个数=算术平均数。

加权平均数:已知两个以上若干份的平均数,求总平均数是多少。

数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。

差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

数量关系式:(大数-小数)÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数。

例1. 一辆汽车以每小时100 千米的速度从甲地开往乙地,又以每小时60 千米的速度从乙地开往甲地。

求这辆车的平均速度。

分析:求汽车的平均速度同样可以利用公式。

此题可以把甲地到乙地的路程设为“1 ”,则汽车行驶的总路程为“2 ”,从甲地到乙地的速度为100 ,所用的时间为,汽车从乙地到甲地速度为60 千米,所用的时间是,汽车共行的时间为+ = , 汽车的平均速度为2 ÷=75 (千米)(2)归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。

根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。

根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。

一次归一问题,用一步运算就能求出“单一量”的归一问题。

又称“单归一。

”两次归一问题,用两步运算就能求出“单一量”的归一问题。

又称“双归一。

”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。

反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。

解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。

小学数学20道常考应用题及解题思路

小学数学20道常考应用题及解题思路

小学数学20道常考应用题及解题思路1、一桶油连桶重16千克,用去一半后,连桶重9千克,桶重多少千克?解题思路:由已知条件可知,16千克和9千克的差正好是半桶油的重量。

9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。

答题:解:9-(16-9)=9-7=2(千克)答:桶重2千克。

2、一桶油连桶重10千克,倒出一半后,连桶还重5.5千克,原来有油多少千克?解题思路:由已知条件可知,10千克与5.5千克的差正好是半桶油的重量,再乘以2就是原来油的重量。

答题:解:(10-5.5)×2=9(千克)答:原来有油9千克。

3、用一只水桶装水,把水加到原来的2倍,连桶重10千克,如果把水加到原来的5倍,连桶重22千克。

桶里原有水多少千克?解题思路:由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。

答题:解:(22-10)÷(5-2)=12÷3=4(千克)答:桶里原有水4千克。

4、小红和小华共有故事书36本。

如果小红给小华5本,两人故事书的本数就相等,原来小红和小华各有多少本?解题思路:从“小红给小华5本,两人故事书的本数就相等”这一条件,可知小红比小华多(5×2)本书,用共有的36本去掉小红比小华多的本数,剩下的本数正好是小华本数的2倍。

答题:解:小华有书的本数:(36-5×2)÷2=13(本)小红有书的本数:13+5×2=23(本)答:原来小红有23本,小华有13本。

5、有5桶油重量相等,如果从每只桶里取出15千克,则5只桶里所剩下油的重量正好等于原来2桶油的重量。

原来每桶油重多少千克?解题思路:由已知条件知,5桶油共取出(15×5)千克。

由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。

答题:解:15×5÷(5-2)=25(千克)答:原来每桶油重25千克。

小学应用题解题思路和方法

小学应用题解题思路和方法

小学应用题解题思路和方法小学应用题是指能够通过运用所学知识和思考解决实际问题的数学题目。

小学生在学习数学的过程中应该注重应用题的训练,通过解决应用题不仅可以巩固所学的知识,还可以培养学生的逻辑思维能力和实际问题解决能力。

下面将介绍一些解决小学应用题的思路和方法。

1.阅读题目,理解问题:首先,小学生需要仔细阅读题目,并确保自己理解了问题的意思。

可以在读题的过程中划出关键信息,弄清楚问题所涉及的数学概念和操作,明确求解的目标。

2.找出已知条件:在理解问题的基础上,需要找出已知条件。

已知条件是解答问题所必需的信息,它们通常以文字、图表或图形等形式给出。

可以用不同颜色的笔或者划线的方式标记出已知条件。

3.确定所需求解的量:根据题目的要求,确定需要求解的量是什么。

有时,问题会直接给出所求的答案,有时需要通过运算来求解。

4.找到解题思路:在了解问题和已知条件的基础上,需要思考如何设置求解的步骤和方法。

可以通过列方程式、画图表、制作模型等方式寻找解题思路。

5.运用所学知识解题:根据已知条件和解题思路,运用所学的知识进行计算。

可以选择适当的运算符号和方法,例如加减乘除、分数、百分数、比例等。

6.检查答案的合理性:完成计算后,需要检查答案的合理性。

可以通过逻辑推理、估算、逆运算等方式确定答案是否合理。

如果答案不合理,可以重新检查解题过程。

7.总结和反思:在解答完题目后,可以进行总结和反思。

可以回答一些问题,例如:题目的分析和解答过程中遇到了哪些困难?有什么新的思考和发现?如果再遇到类似的问题,可以运用什么样的方法解决?以上是解决小学应用题的基本思路和方法。

在实际解题中,需要综合运用数学的各个知识点和技巧,同时培养自己的逻辑思维能力和问题解决能力。

通过不断的练习和思考,相信小学生可以越来越熟练地解决各种应用题。

总结小学数学常见应用题解题技巧

总结小学数学常见应用题解题技巧

总结小学数学常见应用题解题技巧在小学数学学习中,应用题是一个非常重要的内容,也是学生们常常遇到的题型。

掌握解题技巧对于提高解题效率和准确性非常关键。

本文将总结小学数学常见应用题解题技巧,帮助学生更好地解答这类题型。

一、认真审题是关键在解答应用题之前,我们首先要认真审题。

应用题往往会给出一个实际生活中的问题,而不是简单的计算题。

我们需要仔细阅读题目,了解清楚题目要求,理解问题中隐藏的信息和关键点。

二、理清思路,分步解题一旦理解了题目的要求,我们需要对解题思路进行思考。

常见的应用题解题思路包括:1. 确定未知数:找出题目中的未知数,并用字母表示。

2. 设置方程:根据题目提供的条件,建立数学关系式,往往是等式或者不等式。

3. 解方程:通过代入、消元等方法,解出方程,得到未知数的值。

4. 验证答案:将求得的未知数代入原方程进行验证,确认答案的正确性。

三、注意单位的转换在应用题中,常常涉及到单位换算的问题。

我们需要注意题目给出的单位,如长度单位、重量单位、时间单位等,并根据需要进行单位之间的转换。

在解题过程中,要保持单位的一致性,以免造成计算错误。

四、适当使用图表对于一些复杂的应用题,我们可以适当地使用图表来辅助解题。

例如,可以绘制线段、图形、表格等来表示问题中的条件和关系,通过图表分析可以更清晰地理解问题,在解题过程中更加有条理。

五、多角度思考,灵活运用在解答应用题时,我们要从不同角度思考问题,灵活运用所学的数学知识。

有时候,一个问题可以用多种方法来解答,我们可以根据题目的要求和条件,选择最适合的解题方法。

同时,也要善于借助已经学过的知识,将不同的数学概念和技巧结合起来,提高解题的效率。

六、反复练习,巩固运用提高解答应用题的能力需要不断的练习。

通过大量的习题训练,我们可以加深对解题思路的理解,掌握更多的解题技巧,并且培养解决问题的能力。

在练习的过程中,我们要注意查漏补缺,总结错误的原因,及时调整学习方法。

小学数学应用题解题技巧能力培养思路

小学数学应用题解题技巧能力培养思路

小学数学应用题解题技巧能力培养思路小学数学应用题是考查学生对数学知识的适用能力的一种重要形式,也是体现学生综合思维能力的重要指标。

要正确解决应用题,需要学生具备一定的解题技巧和思维能力。

以下是一些解题技巧和能力培养思路。

一、梳理信息,理清思路应用题通常会给出一些规定条件和问题,学生要仔细阅读并提取关键信息,将所给数据化为数学语言,转化为可以解决的数学问题。

在梳理信息和理清思路之后,学生可以画图、列式、构建等针对性操作,将问题转化为熟知的数学模型,帮助学生更好地理解和解决问题。

二、灵活运用基本算法应用题所需要解决的问题往往不仅仅是简单的加减乘除,可能还需要涉及分数、小数、百分数、比例、分项分式、代数式等知识,而且题目所涉及的算法也可能是多种多样的,学生需要有足够的基础知识和能力来应对不同情况。

因此,学生需要掌握各种基本运算法则,并能够在应用题中灵活运用。

三、注意数据精度和单位转换应用题中所涉及到的数据往往具有一定的精度,学生需要注意小数点后的位数及其取舍规则。

同时,在计算过程中可能需要进行单位的转换,学生要能够清晰地进行单位之间的换算。

例如,长度的常用单位是米、分米、厘米,时间的常用单位是秒、分钟、小时,学生要能够根据题目需要进行转换。

四、掌握解题策略应对不同类型的应用题,学生需要掌握相应的解题策略。

例如,对于涉及面积和体积的题目,学生可以先画图确定几何关系,再利用公式求解;对于比较复杂的多步解题,学生可以先列出运算顺序和细节,依次计算。

总之,学生要多进行总结和归纳,总结出行之有效的解题策略和方法,并不断地应用和提升。

五、注重实际生活应用小学数学应用题不仅仅是为了检验学生的记忆和技能,更是为了培养学生的实际应用能力和解决问题的能力。

因此,教师在设计应用题时,应尽量贴近学生实际生活,注重实际应用价值,并鼓励学生灵活应用所掌握的知识和技能解决与生活相关的实际问题。

六、培养团队合作意识实际生活中,解决问题往往需要团队合作来发挥各自的能力。

小学数学应用题解题思路及方法

小学数学应用题解题思路及方法

小学数学应用题解题思路及方法小学数学应用题是指将数学知识应用于实际生活问题的题目。

这类题目要求学生能够理解问题背景,运用数学知识解决问题,并在解题过程中培养学生的逻辑思维能力和实际问题解决能力。

本文将介绍一些常见的小学数学应用题解题思路及方法。

一、读懂题目解决任何问题的第一步是仔细阅读题目,确保完全理解题意。

特别是对于应用题而言,理解问题的背景和条件非常重要。

掌握题目的关键信息有助于建立正确的解题思路。

二、确定解题过程每个数学应用题都有一个解题过程,学生需要明确解题的步骤。

例如,一些问题需要先确定未知数,然后建立方程式,最后解方程式求解未知数。

而对于另一些问题,学生需要根据条件进行分类、比较或计算。

明确解题过程有助于学生把握整个解题过程的思路和步骤。

三、分析问题在解决数学应用题时,学生需要对问题进行细致的分析。

这包括提取关键信息、确定数学关系、寻找规律等。

通过分析问题,学生可以建立正确的数学模型,并能够准确地运用数学知识解决问题。

四、运用适当的数学方法在解决数学应用题时,学生需要选择并运用适当的数学方法。

这需要学生掌握一定的数学基础知识,并能够灵活运用它们。

常见的数学方法包括四则运算、比例、百分数、图形的面积和体积计算等。

根据问题的要求,选择适当的方法能够更快、更准确地解决问题。

五、试错和检查解决数学应用题时,学生应通过试错和检查来验证解题过程和答案的正确性。

试错和检查是解题过程中重要的环节,能够帮助学生发现和纠正错误,并提高解决问题的准确性。

六、练习和实践解决数学应用题需要不断的练习和实践。

通过反复做题,学生可以熟悉各种题型,积累解题经验,并逐渐提高解题效率和准确率。

此外,学生还可以尝试解决一些实际生活中的问题,如购物计算问题、时间计算问题等,这样可以培养学生用数学解决实际问题的能力。

七、合理利用辅助工具在解决一些复杂的数学应用题时,学生可以合理利用辅助工具。

例如,绘制图表、图形,使用计算器等。

小学数学50道经典应用题解题思路+实用模板

小学数学50道经典应用题解题思路+实用模板

小学数学50道经典应用题解题思路+模板1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一张桌子的价钱。

答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。

2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

答题:解:45+5×3=45+15=60(千克)答:3箱梨重60千克。

3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。

即可求甲比乙每小时快多少千米。

答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。

4、李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。

5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

小学六年级数学应用题综合训练+解题思路

小学六年级数学应用题综合训练+解题思路

小学六年级数学应用题综合训练+解题思路1.甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B 地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵需要种的天数是2150÷86=25天甲25天完成24×25=600棵那么乙就要完成900-600=300棵之后,才去帮丙即做了300÷30=10天之后即第11天从A地转到B地。

2.有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?这是一道牛吃草问题,是比较复杂的牛吃草问题。

把每头牛每天吃的草看作1份。

因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份所以45-30=15天,每亩面积长84-60=24份所以,每亩面积每天长24÷15=1.6份所以,每亩原有草量60-30×1.6=12份第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛所以,一共需要38.4+3.6=42头牛来吃。

两种解法:解法一:设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=1.6每亩原有草量为60-1.6*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24*1.6*80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头)解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头3.某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?甲乙合作一天完成1÷2.4=5/12,支付1800÷2.4=750元乙丙合作一天完成1÷(3+3/4)=4/15,支付1500×4/15=400元甲丙合作一天完成1÷(2+6/7)=7/20,支付1600×7/20=560元三人合作一天完成(5/12+4/15+7/20)÷2=31/60,三人合作一天支付(750+400+560)÷2=855元甲单独做每天完成31/60-4/15=1/4,支付855-400=455元乙单独做每天完成31/60-7/20=1/6,支付855-560=295元丙单独做每天完成31/60-5/12=1/10,支付855-750=105元所以通过比较选择乙来做,在1÷1/6=6天完工,且只用295×6=1770元4.一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.把这个容器分成上下两部分,根据时间关系可以发现,上面部分水的体积是下面部分的18÷3=6倍上面部分和下面部分的高度之比是(50-20):20=3:2所以上面部分的底面积是下面部分装水的底面积的6÷3×2=4倍所以长方体的底面积和容器底面积之比是(4-1):4=3:4独特解法:(50-20):20=3:2,当没有长方体时灌满20厘米就需要时间18*2/3=12(分),所以,长方体的体积就是12-3=9(分钟)的水量,因为高度相同,所以体积比就等于底面积之比,9:12=3:45.甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?把甲的套数看作5份,乙的套数就是6份。

小学数学应用题解题思路及方法精华版

小学数学应用题解题思路及方法精华版

小学数学应用题解题思路及方法精华版小学数学应用题解题思路及方法精华版导言数学是我们生活中不可或缺的一部分,对于小学生来说更是如此。

其中应用题更是小学数学的重中之重,解题思路与方法的掌握对学生来说至关重要。

本文将结合小学数学应用题的题型,为大家提供一份精华版的解题思路与方法。

一、加减法应用题加减法应用题是小学数学应用题中最基础也是最常出现的题型,它能让小学生在日常生活中理解数学运算的应用。

解题思路有:1.读懂题目:要强调的是读懂题目是解决加减法应用题的第一步,只有理解题意才能有信心解题。

排除或缩小解题方案范围。

2.搭建方程:将读懂的题意转化为数字式,写出算式。

3.运用策略:针对不同的应用题,运用不同的策略。

比如,大小比较、借位与进位等。

二、乘法应用题乘法应用题需要的学生的熟悉知识点,灵活应用乘法运算计算。

解题思路有:1.图形分解法:乘法应用题中涉及到的面积计算,通常都需要用图形分解求解。

2.除法运用诸多:乘法运算并不是照着算式套用就能解决乘法应用题的。

有时候需要用到相反数、倒数、百分数等知识。

3.运用套路与技巧:类似于美国方法,在乘法中灵活运用套路与技巧,可以提高解题效率。

三、几何应用题几何应用题是小学数学中的难点之一,对于小学生们来说,运用几何知识解决应用题是一大挑战。

解题思路有:1.理解几何知识:在解决应用题的同时,需要把几何知识梳理清楚,做到知识点运用与解题相结合。

2.空间想象态度:在解几何应用题时,需要通过想象,把握物体在空间的位置、大小以及相互关系。

3.熟悉几何图形构成:几何应用题通常都需要将几何图形抽象出来进行分析,因此必须熟悉各种几何图形的构成及其性质。

四、比例应用题比例应用题难度处于较高层次,它涉及了小学数学中多个数学概念的结合,对于小学生来说需要耐心去理解和讨论。

解题思路有:1.明确比例的概念:在解决比例应用题时,必须首先明确比例的定义及应用,否则将难以理解。

2.口诀帮助解答:在比例应用题中,有很多口诀可以帮助解答,在做题过程中可以灵活运用。

小学数学应用题类型总结(附例题、解题思路)

小学数学应用题类型总结(附例题、解题思路)

小学数学应用题21种类型总结(附例题、解题思路)1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6天耕地300公顷。

例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

2、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

小学数学应用题题型

小学数学应用题题型

小学数学应用题型汇总1、归一问题:在解题时先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的量。

【数量关系】总量÷份数=1份数量 1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

2、归总问题:解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题。

【数量关系】 1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

3、和差问题:已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷ 2 小数=(和-差)÷ 2【解题思路和方法】把大小两个数的和转化成两个大数(或两小数)的和,然后再求另一个数。

4、和倍问题:已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

【数量关系】和÷倍数和=标准数标准数×倍数=另一个数【解题思路和方法】找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。

求出倍数和之后,再求出标准的数量是多少。

再根据倍数关系求另一个数。

5、差倍问题:已知两个数的差及两个数的倍数关系,求两个数各是多少的应用题。

【数量关系】两个数的差÷(倍数-1)=标准数标准数×倍数=另一个数【解题思路和方法】找准标准数。

6、倍比问题:有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

【数量关系】总量÷一个数量=倍数另一个数量×倍数=另一总量【解题思路和方法】先求出倍数,再用倍比关系求出要求的数。

7、相遇问题:两个运动的物体同时由两地出发相向而行,在途中相遇。

小学数学应用题解题10个思路应用题解题思路解题技巧

小学数学应用题解题10个思路应用题解题思路解题技巧

1.顺向综合思路“直接思路”是解题中的常规思路。

它一般是通过分析、综合、归纳等方法,直接找到解题的途径。

【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。

这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。

例1 兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?分析(按顺向综合思路探索):(1)根据弟弟速度为每分钟200米,出发5分钟的条件,可以求什么?可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。

(2)根据弟弟速度为每分钟200米,哥哥速度为每分钟250米,可以求什么?可以求出哥哥每分钟能追上弟弟多少米。

(3)通过计算后可以知道哥哥追赶弟弟的距离为1000米,每分钟可追上的距离为50米,根据这两个条件,可以求什么?可以求出哥哥赶上弟弟所需的时间。

(4)狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?狗跑的时间与哥哥追上弟弟所用的时间是相同的。

(5)已知狗以每分钟300米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?可以求出这时狗总共跑了多少距离?这个分析思路可以用下图(图2.1)表示。

例2 下面图形(图2.2)中有多少条线段?分析(仍可用综合思路考虑):我们知道,直线上两点间的一段叫做线段,如果我们把上面任意相邻两点间的线段叫做基本线段,那么就可以这样来计数。

(1)左端点是A的线段有哪些?有 AB AC AD AE AF AG共 6条。

(2)左端点是B的线段有哪些?有 BC、BD、BE、BF、BG共5条。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学应用题题形与解题思路应用题是小学数学中的重要内容之一,所涉及的面很广。

解答应用题既要综合应用小学数学中的概念性质、法则、公式、数量关系和解题方法等最基本的知识,还要具有分析、综合、判断、推理的能力。

所以解答应用题不仅可以巩固基础知识,同时也有助于培养学生初步的逻辑思维能力。

下面把学生在小学阶段学过的应用题归纳为五大类,每类中都有基本应用题和复合应用题,使学生先掌握每类应用题的基本思路和解答方法,再解答一些综合应用知识较多的复合应用题。

这样不但可以使学生掌握好基础知识,而且可以发展学生的智力,培养学生的解题能力。

在解答应用题时,侧重于用算术方法的思路,对于适于用方程的,结合具体的题目也介绍用方程的思路和方法。

一、一般应用题一般应用题没有固定的结构,也没有解题规律可循,完全要依赖分析题目的数量关系找出解题的线索。

分析一般应用题时,可以侧重从条件入手分析,也可以侧重从问题入手分析。

从条件入手分析时,要随时注意题目的问题,从问题入手分析时,要随时注意题目的已知条件。

否则,在分析时可能要走弯路。

例:某五金厂一车间要生产1100个零件,已经生产了5天,平均每天生产130个。

剩下的如果平均每天生产150个,还需几天完成?思路分析:已知“已经生产了5天,平均每天生产130个”,就可以求出已经生产的个数。

已知“要生产1100个机器零件”和已经生产的个数。

已知“剩下的平均每天生产150个”,就可以求出还需几天完成。

例:北辛庄要挖一条长1080米的水渠,计划25天完成。

实际每天比计划多挖1.8米,可比计划提前几天完成?思路分析:要求可比计划提前几天完成,就需要先求出实际用的天数。

(1)、计划每天挖多少米?(2)、实际每天挖多少米?(3)、实际几天完成?(4)、比计划提前几天完成?综合解答:练习题自己补充:二、典型应用题用两步或两步以上运算解答的应用题中,有的题目由于具有特殊的结构,因而可以用特定的步骤和方法来解答,这样的应用题通常称为典型应用题。

(一)求平均数应用题解答求平均数问题的规律是:总数量÷对应总份数=平均数(注:在这类应用题中,我们要抓住的是对应,可根据总数量来划分成不同的子数量,再一一地根据子数量找出各自的份数,最终得出对应关系。

)例:一台碾米机,上午4小时碾米1360千克,下午3小时碾米1096千克,这天平均每小时碾米约多少千克?思路分析:要求这天平均每小时碾米约多少千克。

1.这一天总共碾了多少米?(一天包括上午、下午)。

2.这一天总共工作了多少小时?(上午的4小时,下午的3小时)。

3.这一天的总数量是多少?这一天的总份数是多少?(从而找出了对应关系,问题也就得到了解决。

)例:有两块实验田,第一块3.5亩,平均亩产小麦480千克;第二块1.5亩,共产小麦750千克。

这两块地平均亩产小麦多少千克?思路分析:要求这两块地合并起来的平均亩产量。

1.第一块地总产量是多少?(第一块地给出的是单产量和亩数,要知道第一块地的总产量,)。

第二块地的总产量已知,(可得两块地的总数量)。

2.第一块地的份数已知(3.5亩),第二块地的份数已知(1.5亩),(总数量就可以找到对应的总份数)。

(二)归一问题归一问题的题目结构是,题目的前部分是已知条件,是一组相关联的量;题目的后半部分是问题,也是一组相关联的量,其中有一个量是未知的。

解题规律是,先求出单一的量,然后再根据问题,或求单一量的几倍是多少,或求有几个单一量。

例:6台拖拉机4小时耕地300亩,照这样计数,8台拖拉机7小时可耕地多少亩?思路分析:先求出单一量,即1台拖拉机1小时耕地的亩数,再求8台拖拉机7小时耕地的亩数。

例: 3台磨面机8小时磨面粉57.6吨,5台同样的磨面机,要磨面粉240吨,需要几小时?思路分析:先求出1台1小时磨面粉的吨数,最后看240吨里有几个5台1小时磨面粉的吨数,就是需要几小时。

(三)相遇问题指两运动物体从两地以不同的速度作相向运动。

相遇问题的基本关系是:1.相遇时间=相隔距离(两个物体运动时)÷速度和。

例:两地相距500米,小红和小明同时从两地相向而行,小红每分钟行60米,小明每分钟行65米,几分钟相遇? 2.相隔距离(两物体运动时)=速度之和×相遇时间例:一列客车和一列货车分别从甲乙两地同时相对开出,10小时后在途中相遇。

已知货车平均每小时行45千米,客车每小时的速度比货车快20﹪,求甲乙相距多少千米?3.甲速=相隔距离(两个物体运动时)÷相遇时间-乙速例:一列货车和一列客车同时从相距648千米的两地相对开出,4.5小时相遇。

客车每小时行80千米,货车每小时行多少千米?相遇问题可以有不少变化。

如两个物体从两地相向而行。

但不同时出发,或者其中一个物体中途停顿了一下,或两个运动的物体相遇后又各自继续走了一段距离等。

都要结合具体情况进行分析。

(相遇问题可以引申为工程问题:即工效和×合做时间=工作总量)。

练习题自己补充:三、分数和百分数应用题分数和百分数的基本应用题有三种,下面分别谈一谈每种应用题的特征和解题的规律。

(一)求一个数是另一个数的百分之几这类问题的结构特征是,已知两个数量,所求问题是这两个量间的百分率。

求一个数是另一个数的百分之几与求一个数是另一个数的几倍或几分之几的实质是一样的,只不过计算结果用百分数表示罢了,所以求一个数是另一数的百分之几时,要用除法计算。

解题的一般规律是:设a、b是两个数,当求a是b的百分之几时,列式是a÷b。

解答这类应用题时,关键是理解问题的含意。

例:养猪专业户李阿姨去年养猪350头,今年比去年多养猪60头,今年比去年多养猪百分之几?思路分析: 问题的含义是:今年比去年多养猪的头数是去年养猪头数的百分之几。

所以应用今年比去年多养猪的头数去÷去年养猪的头数,然后把所得的结果转化成百分数。

例: 某水泥厂,五月份计划生产水泥2.4万吨,实际生产水泥3万吨,实际比计划增产百分之几?思路分析:根据题意可知,问题的含意是:实际比计划增产的水泥是计划生产水你的百分之几。

增产的水泥有几万吨。

题目没有直接给。

(算出增产水泥,从而得出用增产的水泥÷计划的产量)。

:(二) 求一个数的几分之几或百分之几求一个数的几分之几或百分之几是多少,都用乘法计算。

解答这类问题时,要从反映两个数的倍数关系的那个已知条件入手分析,先确定单位“1”,然后确定求单位“1”的几分之几或百分之几。

例:和平小学扩建校舍,原计划投资56000元,实际投资比计划节约了,72实际投资多少元?思路分析: 已知实际投资比原计划节约了72,可知以原计划投资为单位“1”,实际投资是原计划投资的(1-.72).求实际投资多少元,就是求56000元的(1-72)是多少元。

例:第二服装厂,三月份计划加工服装45000件,结果上半月完成了,54下半月完成了60﹪,这个月比原计划多加工服装多少件?思路分析:由题意可知,上半月完成的和下半月完成的都是以计划加工服装45000件为单位“1”。

实际完成的是计划的(6054+),比计划多完成了(1%6054-+)。

求这个月比原计划多加工服装多少件,就是求45000件的(1%6054-+)是多少件? 此题还有不同的解法,自己探讨解题思路。

:(三)已知一个数的几分之几或百分之几是多少,求这个数这类应用题可以用方程来解,也可以用算术法来解。

用算术方法解时,要用除法计算。

解答这类应用题时,也要反映两个数的倍数关系的已知条件入手分析,先确定单位“1”,再确定单位“1”的几分之几或百分之几是多少。

一些稍难的应用题,可以画图帮助分析数量关系。

例:学校举行跳绳比赛,小明跳了120个,比小强多跳了.51。

小强跳了多少个? 用方程的思路分析:设小强跳了x 个。

由题意可知,小明跳的是小强的(1+51)倍,即x 的(1+51)倍是120个。

根据这个等量关系,就可以列方程求出x 的值。

用算术解的思路分析:已知小明比小强多跳了51,可知是以小强跳的个数为单位“1”,小明跳的是小强的(1+51)。

已知小明跳了120个,即已知小强跳的(1+51)是120个,求小强跳的个数(即求单位“1”),就是已知一个数的(1+51)是120个,求这个数,用除法解答。

:(四) 工程问题工程问题是研究工作效率、工作时间和工作总量的问题。

这类题目的特点是,工作总量没有给出实际数量,把它看做“1”,工作效率用时间1来表示,所求问题大多是合作时间。

例:一件工程,甲工程队修建需要8天,乙工程队修建需要12天,两队合修4天后,剩下的任务,有乙工程队单独修,还需几天?思路分析:把一件工程的工作量看作“1”,则甲的工作效率是81,乙的工作效率是121。

已知两队合修了4天,就可求出合修的工作量,进而也就能求出剩下的工作量。

用剩下的工作量除以乙的工作效率,就是还需要几天完成。

例: 加工一批机器零件,师傅单独加工需要10小时,徒弟单独加工需要15小时。

师徒二人合作,完成任务时,师傅比徒弟多加工了30个。

问这批零件共有多少个?思路分析: 要求这批零件有多少个,就得知道师傅比徒弟多加工的30个零件占这批零零件的几分之几。

要想得到这个条件,就得知道师徒二人合作了几天,和师傅比徒弟一天多加工这批零件的几分之几。

:四、比和比例应用题比和比例应用题是小学数学应用题的重要组成部分。

在小学中,比的应用题包括:比例尺应用题和按比例分配应用题,正、反比例应用题。

(一)比例尺应用题这种应用题是研究图上距离、实际距离和比例尺三者之间的关系的。

解答这类应用题时,最主要的是要清楚比例尺的意义,即:图上距离÷实际距离=比例尺 或实际距离图上距离=比例尺 根据这个关系式,已知三者之间的任意两个量,就可以求出第三个未知的量。

例:在比例尺是1:3000000的地图上,量得A 城到B 城的距离是8厘米,A 城到B 城的实际距离是多少千米?思路分析:把比例尺写成分数的形式,把实际距离设为x,代入比例尺的关系式就可解答了。

所设未知数的计量单位名称要与已知的计量单位名称相同。

(二)按比例分配应用题这类应用题的特点是:把一个数量按照一定的比分成两部分或几部分,求各部分的数量是多少。

这是学生在小学阶段唯一接触到的不平均分问题。

这类应用题的解题规律是:先求出各部分的份数和,在确定各部分量占总数量的几分之几,最后根据求一个数的几分之几是多少,用乘法计算,求出各部分的数量。

按比例分配也可以用归一法来解。

例:一种农药溶液是用药粉加水配制而成的,药粉和水的重量比是1:100。

2500千克水需要药粉多少千克?5.5千克药粉需加水多少千克?思路分析:已知药和水的份数,就可以知道药和水的总份数之和,也就可以知道药和水各自占总份数的几分之几,知道了分率,相应地也就可以求出各自相对量。

相关文档
最新文档