小学奥数周期问题解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点说明
第十四讲:周期问题
周期问题:
周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.
分类:1.图形中的周期问题;
2.数列中的周期问题;
3.年月日中的周期问题.
周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。主要方法有观察法、逆推法、经验法等。主要问题有年月日、星期几问题等。
⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,
结果就为周期里的最后一个;
例如:1,2,1,2,1,2,…那么第18个数是多少?
这个数列的周期是2,1829
÷=,所以第18个数是2.
⑵如果比整数个周期多n个,那么为下个周期里的第n个;
例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?
这个数列的周期是3,16351
÷=⋅⋅⋅,所以第16个数是1.
⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.
例如:1,2,3,2,3,2,3,…那么第16个数是多少?
这个数列从第二个数开始循环,周期是2,(161)271
-÷=⋅⋅⋅,所以第16个数是2.
板块一、图形中的周期问题
【例 1】小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:
●●○●●○●●○…
你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?
【解析】仔细观察图中球的排列,不难发现球的排列规律是:2个黑球,1个白球;2个黑球,1个白球;……
也就是按“2个黑球,1个白球”的顺序循环出现,因此,这道题的周期为3(2个黑球,1个白
球).再看看90、100里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个.因为90330
÷=,正好有30个周期,第90个是白球.100333
÷=…1,有33个周期还多1个,所以,第100个是黑球.
【巩固】美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:
○●○○○●○○○●○○○……
那么你知道这串珠子中,最后一个珠子应是什么颜色吗?
美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?
【解析】观察可以发现,这串珠子是按“一白、一黑、二白”4个珠子组成一组,并且不断重复出现的.我们先算出102个珠子可以这样排列成多少组,还余多少.我们可以根据排列周期判断出最后一个珠子的颜色,还可以求出有多少个这样的珠子.因为102425
÷=…2,所以最后一个珠子是第26个周期中的第二个,即为黑色.在每一个周期中只有1个黑珠子,所以黑色珠子在这串珠子中共有25126
+=(个)
【例 2】小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.
⑴第73颗是什么颜色的?
⑵第10颗黄珠子是从头起第几颗?
⑶第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?
【解析】⑴这些珠子是按红、黄、蓝、绿、白的顺序排列,每一组有5颗.73514
÷=(组)……3(颗),第73颗是第15组的第3颗,所以是蓝色的.
⑵第10颗黄珠子前面有完整的9组,一共有5945
⨯=(颗)珠子.第10颗黄珠子是第l0组的第2颗,所以它是从头数的第47颗.列式:592
=(颗)
⨯+452
=+47
⑶第8颗红珠子与第11颗红珠子之间一共有14颗珠子.第8颗红珠子与第11颗红珠子之间有
完整的两组(第9、10组),共l0颗珠子,第8颗红珠子后面还有4颗珠子,所以是14颗.列式:=+=(颗).
524
⨯+10414
【巩固】奥运会就要到了,京京特意做了一些“北京欢迎你”的条幅,这些条幅连起来就成了:“北京欢迎你北京欢迎你北京欢迎你……”依次排列,第28个字是什么字?
【解析】 这道题是按“北京欢迎你”的规律重复排列,即5个字为一个周期.因为2855÷=…3,所以28
个字里含有5个周期还多3个字,即第28个字就是所列一个周期中的第3个字,所以第28个字是“欢”字.
【巩固】 节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就
是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯.那么第73盏灯是什么颜色的灯?
【解析】 从第一盏白灯开始,每隔三盏彩灯就又出现一盏白灯,不难看出白灯的编号依次是: 1,5,9,13,……,这些编号被4除所得的余数都是1.734181=⨯+,即73被4除的余数是1,因此第
73盏灯是白灯.
【例 3】 节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,然后 又是5
盏红灯、4盏蓝灯、1盏黄灯、……这样排下去.问:
⑴第150盏灯是什么颜色?
⑵前200盏彩灯中有多少盏蓝灯?
【解析】 ⑴街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,这样一个周期变化的,实际上一个
周期就是54110++=(盏)灯.150(541)15÷++=,150盏灯刚好15个周期,所以第150盏应该是这个周期的最后一盏,是黄色的灯.
⑵如果是200盏灯,就是200(541)20÷++=的周期.每个周期都有4盏蓝灯,20480⨯=(盏) 前200盏彩灯中有80盏蓝灯.
【巩固】 在一根绳子上依次穿2个红珠、2个白珠、5个黑珠,并按此方式反复,如果从头开始数,直到
第50颗,那么其中白珠有多少颗?
【解析】 50(225) 5÷++=…5.52212⨯+=(个).
【巩固】 小莉把平时积存下来的200枚硬币按3个1分,2个2分,1个5分的顺序排列起来.
⑴最后1枚是几分硬币
⑵这200枚硬币一共价值多少钱?
【解析】 ⑴每个周期有3216++=枚硬币,要求最后一枚,用这个数除以6,根据余数来判断
200633÷=……2,所以最后一枚是1分硬币
⑵每个周期中6枚硬币共价值13221512⨯+⨯+⨯=(分),用这个数乘以周期次数再加上余下的,就可以得到一共价值多少了12332398⨯+=(分),所以,这200枚硬币一共价值398分.
【巩固】 桌子上摆了很多硬币,按一个一角,两个五角,三个一元的次序排列,一共19枚硬币.问:最
后一个是多少钱的?第十四个是多少钱的?
【解析】 1963÷=…1,1462÷=…2,所以,第19枚硬币是一角的,第14枚硬币是五角的.