《相交线与平行线》单元测试卷(一)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《相交线与平行线》单元测试卷(一)
班级 姓名 座号 成绩
一、选择题:(每小题3分,共30分。)
1.下列说法中错误..
的个数是( ) (1)过一点有且只有一条直线与已知直线平行。
(2)过一点有且只有一条直线与已知直线垂直。
(3)在同一平面内,两条直线的位置关系只有相交、平行两种。 (4)不相交的两条直线叫做平行线。
(5)有公共顶点且有一条公共边的两个角互为邻补角。 A. 1个 B. 2个 C. 3个 D. 4个
2.下列所示的四个图形中,1∠和2∠是同位角...的是( )
A. ②③
B. ①②③
C. ①②④
D. ①④
3.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( ) A. 43∠=∠ B. 21∠=∠ C. DCE D ∠=∠ D.
180=∠+∠ACD D
4.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) A. 第一次向左拐
30,第二次向右拐
30 B. 第一次向右拐
50,第二次向左拐
130 C. 第一次向右拐
50,第二次向右拐
130 D. 第一次向左拐
50,第二次向左拐
130
5.两条平行直线被第三条直线所截,下列命题中正确..
的是( ) A. 同位角相等,但内错角不相等 B. 同位角不相等,但同旁内角互补 C. 内错角相等,且同旁内角不互补 D. 同位角相等,且同旁内角互补
6.下列说法中,正确..
的是( ) A. 图形的平移是指把图形沿水平方向移动。 B. 平移前后图形的形状和大小都没有发生改变。 C. “相等的角是对顶角”是一个真命题。 D. “直角都相等”是一个假命题。
①
2
121②
1
2
③
1
2
④
E D
C B
A
432
1
7.如右图所示,已知BC AC ⊥ ,AB CD ⊥,垂足分别是C 、D ,那么以下线段大小的比较必定成立....
的是( ) A. AD CD > B. BC AC < C. BD BC > D. BD CD <
8.如右图,CD AB //,且
25=∠A ,
45=∠C ,则E ∠的度数是( ) A.
60 B.
70 C.
110 D.
80
9.在一个平面内,任意四条直线相交,交点的个数最多有( )
A. 7个
B. 6个
C. 5个
D. 4个
10. 如右图所示,BE 平分ABC ∠,BC DE //,图中相等的角共有( )
A. 3对
B. 4对
C. 5对
D. 6对
二、填空题。(每小题3分,共27分)
1.用吸管吸易拉罐内的饮料时,如图①,
1101
=∠,则=2∠ (易拉罐的上下底面互相平行)
2.有一个与地面成30°角的斜坡,如图②,现要在斜坡上竖一电线杆,当电线杆与斜坡成的=1∠ °时,电线杆与地面垂直。
3.如图③,按角的位置关系填空:A ∠与1∠是 ;
A ∠与3∠是 ; 2∠与3∠是 。
4.把命题“等角的余角相等”写成“如果……,那么……。”的形式为 。
D
C
B
A
E
D
C
B
A
E D
C
B
A
2
1
图①
1
图②
30︒
图③
C
B
A
3
2
1
5.如图④,若
22021=∠+∠ ,则=3∠ 。
6.如图⑤,已知b a //,若
501=∠,则=∠2 ; 若
1003=
∠,则=∠2 。 7.如图⑥,为了把ABC ∆平移得到‘
’‘
C B A ∆,可以先将ABC ∆向右平移 格,再向上平移 格。 8.若b a //,c b ⊥,则a c 。
9.三条直线AB 、CD 、EF 相交于点O ,如图⑦所示,AOD ∠的对顶角是 ,FOB ∠的对顶
角是 ,EOB ∠的邻补角是 。
三、解答题。(每小题5分,共43分)
1.如图,已知BC DE //,
80=∠B ,
56=∠C ,求ADE ∠和DEC ∠的度数。(7分)
2.如图,已知:21∠∠=, 50=D ∠,求B ∠的度数。
(8分)
b
a
3
图④
212
图⑤
c
b
a 3
1图⑥
A’C ’
B ’
A
B
C
H
G 2
1
F
E
D
C B
A
E
D C
B A
图⑦
O F
E
D
C B A
3.如图,已知CD AB //,CF AE //,求证:DCF BAE ∠=∠。(9分)
4.如图,CD AB //,AE 平分BAD ∠,CD 与AE 相交于F ,E CFE ∠=∠。 求证:BC AD //。(10分)
5.如图,已知CD AB //,
40=∠B ,CN 是BCE ∠的平分线,CN CM ⊥,求BCM ∠的度数。 (9分)
F
E
D
C
B A
2
1
F
E
D
C
B
A
N
M
E
D
C
B
A