乙醛氧化制醋酸的基本原理

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乙醛氧化制醋酸基本原理

一、反应方程式:

乙醛首先氧化成过氧醋酸,而过氧醋酸很不稳定,在醋酸锰的催化下发生分解,同时使另一分子的乙醛氧化,生成二分子醋酸。氧化反应是放热反应。

CH3CHO+O2 CH3COOOH (1)CH3COOOH+CH3CHO 2CH3COOH (2)在氧化塔内,还进行下列副反应:

CH3COOOH CH3OH+CO2(3)CH3OH+O2 HCOOH+H2O (4)CH3COOOH+ CH3COOH CH3COOCH3+CO2+H2O (5)CH3OH+ CH3COOH CH3COOCH3+H2O (6) CH3CHO CH4+CO (7) CH3CH2OH+ CH3COOH CH3COOC2H5+H2O (8) CH3CH2OH+ HCOOH HCOOC2H5+H2 (9) 3CH3CHO+3O2 HCOOH+ CH3COOH+CO2+H2O (10) 2CH3CHO+5O2 4CO2+4H2O (11) 3CH3CHO+O2 CH3CH(OCOCH3)2+H2O (12) 2CH3COOH CH3COCH3+CO2+H2O (13) CH3COOH CH4+CO2 (14) 乙醛氧化制醋酸的反应机理一般认为可以用自由基的连锁反应机理来进行解释。常温下乙醛就可以自动地以很慢的速度吸收空气中

的氧而被氧化生成过氧醋酸。

二、反应条件对化学反应的影响:

1、物系相态:

氧化过程可以在气相中进行,也可以在也相中进行。

在气相状态下,乙醛和氧气或空气相混合,氧化反应极易进行,而不必使用催化剂。但是由于空气密度小、热容小、导热系数小,乙醛氧化反应放出的大量热量极难排出,系统温度难以控制,造成恶性爆炸事故。因而气相氧化过程没有得到实际应用。

工业上实际使用的液相过程,向装有乙醛的醋酸溶液的氧化塔中通入氧气或空气,氧气首先扩散到液相,再被乙醛所吸收,借催化剂的作用使乙醛氧化为醋酸。由于液体的密度较大,热容量也大,传热速率高,热量很容易通过冷却管由工业水带走,不易产生局部过热,反应温度能有效地加以控制,确保安全生产。

2、催化剂:

采用催化剂能使反应过程显著加速,特别是能加速过氧醋酸的分解。这样可以避免过氧醋酸的积聚,消除爆炸性危险。变价金属盐,如铁、钴、锰、镍、铜、铬的盐类均可作催化剂。

工业中常用醋酸锰作为乙醛氧化制醋酸的催化剂。同时,国内对锰、钴、镍复合催化剂也进行了一定的研究工作。

另外一些重金属盐是负催化剂,它们的存在使反应速度减慢,比没有催化剂存在时还要慢。按其反应速度的影响顺序排列如下:

进行,对收率和安全都不利。

因此,氧化反应的正常温度控制在60-80℃为宜。

氧化塔的反应温度有三种分布方式。一般来说,塔底由于乙醛浓度太高,新鲜锰的活性不高,温度略微低些有好处。为了降低气相中乙醛的浓度,塔顶温度也不宜控制过高。

4、塔顶压力

增加压力有如下好处:(1)对氧的扩散和吸收有利,特别是以空气为氧化剂的装置,能提高空气的利用率。(2)能相对地降低乙醛、醋酸在气相的分压,使乙醛、醋酸在尾气中的浓度降低,提高乙醛转化率和氧的利用率。(3)能提高设备生产能力。

压力太高也不好,设备费用和操作费用均随之增加。另外,还会增加气相爆炸的可能性,因为可爆炸气体的爆炸性随压力增加而增加。实际生产操作控制在0.05-0.25Mpa之间。

操作过程中,压力波动不易过频,因为压力波动会使氧气的停留时间发生变化,而对反应不利。

5、醛氧配比

从乙醛氧化生成醋酸的反应式可知,理论上1mol乙醛和0.5mol 氧发生反应生成1mol醋酸。

CH3CHO + 1/2O2 CH3COOH

44.05 16 60.05

1000 X

X=1000*16/44.05=363.2kg

即每1000kg乙醛需耗363.2kg纯氧(254.3Nm3)。在实际生产中,通常采取氧气稍微过量,以提高乙醛的利用率。使用纯氧氧化的装置,一般氧气过量5-10%,使用空气氧化的装置过量还要大些。但氧气过多也是有害的。一方面增加气相反应的危险性,因为气相中含醛超过40%,含氧超过3%就有爆炸危险。另一方面造成乙醛深度氧化,使甲酸增多,影响产品质量,给后处理带来困难。另外由于每个副反应几乎都伴有水的生成,使氧化液中总酸含量下降,水分含量升高,催化剂活性下降,从而影响氧的吸收。

在生产中,一旦醛氧比失控,要恢复正常是需要一个很长的过程。因此,实际操作时要根据中间分析结果严格控制醛氧配比。

值得一提的是,这里所说的醛氧配比是指纯氧,在比值不变的情况下,由于氧气中氧含量波动实际上改变了醛氧配比。在实际操作中,还要及时注意氧气的氧含量,以便求得正确的醛氧配比。

6、气体分配

实际生产中,氧气或空气是分段进入氧化塔。内冷式氧化塔分4-5节进塔,外冷式氧化塔分2-3节进塔。

塔内乙醛浓度是由下数第一节开始逐渐递减的,因而产生了第一节进氧量大于其他各节进氧量的分配方案。

但是,对于采用新鲜锰的流程,进入氧化塔的是Mn++,尚无催化能力。第一节进氧量过大,就容易进行无催化的不定向氧化反应,导致副反应加剧,而影响收率。

同时,氧气分布除了考虑传质因素之外,还要考虑传热因素。因

为氧化反应是一个放热过程,进氧量过于集中容易造成局部过热,同样加剧副反应。

因此,氧气分布以均匀为宜。第一节在催化剂尚未活动时,进氧量稍微小一点;末节乙醛浓度很低,进氧量也不宜太大。

7、原料纯度

对氧化反应有害的杂质有水、氯及铋、镁、锌、钡、锡、钠、铅、汞等金属离子。

水与催化剂作用生成无活性的过氧化锰水合物,使催化剂中毒。原料乙醛中含水量应小于0.4%。当氧化液中含水量达4%时,氧化速度明显下降,冰点难以提高。氧化液中的水主要来源于:氧气(或空气)夹带的水;副反应生成的水;设备泄漏渗透的水。要降低氧化液的含水量,要从设备、工艺、操作上去控制水源。尤其是使用循环锰催化剂时,其活性高,遇水中毒的严重性就越大。

原料乙醛中如有氯离子,能使乙醛局部聚合变成三聚乙醛或四聚乙醛。三聚乙醛或四聚乙醛是不能起氧化反应,在酸性介质中受热后即分解成乙醛进入气相,在气相与氧气反应酿成爆炸性事故。乙醛贮存时间过长也会部分聚合而阻碍氧化反应,一般规程规定,乙醛在低温情况下贮存不能超过一个星期。

铋、镁、锌、钡、锡、钠、铅、汞等金属离子是负性很强的负催化剂,它能抑制过氧醋酸的生气,对反应很不利。即使少量的这些离子存在,对反应速度有显著影响。

原料乙醛中的酒精,可与醋酸反应生成醋酸乙酯,这样既损失了

相关文档
最新文档