数列基础知识归纳

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修5 数列础知识归纳

一、数列的有关概念:

1.数列的定义:按一定次序排列的一列数叫做数列.

(1) 数列中的每个数都叫这个数列的项.记作a n ,在数列第一个位置的项叫第1项(或

首项),在第二个位置的叫第2项,…,序号为n 的项叫第n 项(也叫通项),记作a n .

(2) 数列的一般形式:a 1,a 2,a 3,…,a n ,…,简记作{a n }.

2.通项公式的定义:如果数列{a n }的第n 项与n 之间的关系可以用一个公式表示,那么这

个公式就叫这个数列的通项公式.

说明:(1) {a n }表示数列,a n 表示数列中的第n 项,a n = f (n )表示数列的通项公式;

(2) 同一个数列的通项公式的形式不一定唯一.例如,a n = (- 1)n =1,21()1,2n k k n k -=-⎧∈⎨=⎩

Z ; (3) 不是每个数列都有通项公式.例如,1,1.4,1.41,1.414,….

(4) 从函数观点看,数列实质上是定义域为正整数集N *(或它的有限子集)的函数f (n ),

当自变量n 从1开始依次取值时对应的一系列函数值f (1),f (2),f (3),…,f (n ),….通

常用a n 来代替f (n ),其图象是一群孤立的点.

3.数列的分类:

(1) 按数列项数是有限还是无限分:有穷数列和无穷数列;

(2) 按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动

数列.

4.递推公式的定义:如果已知数列{a n }的第1项(或前几项),且任一项a n 与它的前一项

a n - 1 (或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.

5.数列{a n }的前n 项和的定义:S n = a 1 + a 2 + a 3 + … +a n =1n

k k a =∑称为数列{a n }的前n 项和.要

理解S n 与a n 之间的关系.

6.等差数列的定义:

一般地,如果一个数列从第.2.项起..,每一项与它的前一项的差等于同一个常数..

,那么数 列

数列的概念 数列的定义

数列的分类

数列的性质

等差数列与等比数列 等差数列与等比数列的概念

等差数列与等比数列的性质

等差数列与等比数列的基本运算

数列的求和

倒序相加

错位相减

裂项相消

其他方法

数列应用

这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.

即:{a n }为等比数列⇔ a n + 1 - a n = d ⇔ 2a n + 1 = a n + a n + 2 ⇔ a n = kn + b ⇔ S n = An 2 + Bn .

7.等比数列的定义:

一般地,如果一个数列从第.2.项起..,每一项与它的前一项的比等于同一个常数..

,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比.公比通常用字母q 表示(q ≠ 0),即:{a n }为等比数列⇔ a n + 1 :a n = q (q ≠ 0) ⇔212n n n a a a ++=.

注意条件“从第2项起”、“常数”q .由定义可知:等比数列的公比和项都不为零. 二、等差、等比数列的性质:

等差数列(AP ) 等比数列(GP )

通项公式 a n = a 1 + (n - 1)d

a n = a 1q n - 1 (a 1 ≠ 0,q ≠ 0) 前n 项和 11()(1)22n n n a a n n S na d +-==+ 11,1,(1), 1.1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩

性质 ①a n = a m + (n - m )d ①a n = a m q n - m

②m + n = s + t ,则a m + a n = a s + a t

②m + n = s + t ,则a m ⋅ a n = a s ⋅ a t ③S m ,S 2m - S m ,S 3m - S 2m ,…成AP ③S m ,S 2m - S m ,S 3m - S 2m ,…成GP

(q ≠ -1或m 不为偶数)

④a k ,a k + m ,a k + 2m ,…成AP ,d ' = md

④a k ,a k + m ,a k + 2m ,…成GP ,q ' = q m 注:1.等差(等比)数列{a n }的任意等距离的项构成的数列仍为等差(等比)数列.

2.三个数成等差的设法:a - d ,a ,a + d ;四个数成等差的设法:a - 3d ,a - d ,a + d ,

a + 3d ;

3.三个数成等比的设法:a /q ,a ,aq ;四个数成等比的错误设法:a /q 3,a /q ,aq ,aq 3 (为

什么?)

4.{a n }为等差数列,则{}n

a c (c > 0)是等比数列.

5.{b n } (b n > 0)是等比数列,则{log c b n } (c > 0且c ≠1) 是等差数列.

6.公差为d 的等差数列{a n }中,若d > 0,则{a n }是递增数列;若d = 0,则{a n }是常数列;

若d < 0,则{a n }是递减数列.

7.等比数列{a n }中,若公比为q ,则

(1) 当a 1 > 0,q > 1或a 1 < 0,0 < q < 1时为递增数列; (2) 当a 1 < 0,q > 1或a 1 > 0,

0 < q < 1时为递减数列;

(3) 当q < 0时为摆动数列; (4) 当q = 1时为常数列.

8.等差数列前n 项和最值的求法:

(1) a 1 > 0,d < 0时,S n 有最大值;a 1 < 0,d > 0时,S n 有最小值.

(2) S n 最值的求法:

① 若已知S n ,可用二次函数最值的求法(n ∈ N *); ② 若已知a n ,则S n 取最值时n 的值(n ∈ N *)可如下确定:S n 最大值1

00n n a a +≥⎧⎨

≤⎩(或S n 最小值100n n a a +≤⎧⎨≥⎩). 三、常见数列通项的求法:

1.定义法(利用AP ,GP 的定义).

2.累加法(a n + 1 - a n = c n 型):a n = a 1 + (a 2 - a 1) + (a 3 - a 2) + … + (a n - a n - 1) = a 1 + c 1 + c 2

+ … + c n - 1(n ≥ 2).

相关文档
最新文档