弹塑性力学习题解答

合集下载

弹塑性力学习题答案

弹塑性力学习题答案

弹塑性力学习题答案弹塑性力学习题答案弹塑性力学是力学中的一个重要分支,研究物体在外力作用下的弹性变形和塑性变形。

通过学习弹塑性力学,我们可以更好地理解材料的变形行为以及结构的稳定性。

下面是一些弹塑性力学学习题的答案,希望对大家的学习有所帮助。

1. 什么是弹性变形和塑性变形?弹性变形是指物体在外力作用下发生的可逆变形,当外力撤除后,物体可以恢复到原来的形状。

而塑性变形是指物体在外力作用下发生的不可逆变形,即使外力撤除,物体也无法完全恢复到原来的形状。

2. 什么是弹性模量和塑性模量?弹性模量是衡量物体抵抗弹性变形的能力的物理量,记作E。

它的单位是帕斯卡(Pa)。

弹性模量越大,物体越难发生弹性变形。

塑性模量是衡量物体抵抗塑性变形的能力的物理量,记作G。

它的单位也是帕斯卡(Pa)。

塑性模量越大,物体越难发生塑性变形。

3. 什么是屈服点和屈服强度?屈服点是指物体在外力作用下发生塑性变形的临界点,即当外力超过一定程度时,物体开始发生塑性变形。

屈服强度是指物体在屈服点处所承受的最大外力,也就是物体开始发生塑性变形时的外力大小。

4. 什么是弹性极限和断裂强度?弹性极限是指物体在外力作用下能够恢复到原来形状的最大外力,也就是物体发生弹性变形的临界点。

断裂强度是指物体在外力作用下发生断裂的最大外力,也就是物体完全破坏的外力大小。

5. 什么是杨氏模量和泊松比?杨氏模量是衡量物体在弹性变形时应力和应变之间关系的物理量,记作Y。

它的单位是帕斯卡(Pa)。

杨氏模量越大,物体越难发生弹性变形。

泊松比是衡量物体在受到外力作用时,横向收缩相对于纵向伸长的比例关系的物理量,记作ν。

它是一个无单位的数值,通常在0和0.5之间。

泊松比越大,物体在受到外力作用时横向收缩的程度越大。

这些弹塑性力学学习题的答案只是对相关概念的简单解释,实际的弹塑性力学问题可能更加复杂。

在解决实际问题时,我们需要综合运用弹塑性力学的理论知识,并结合实际情况进行分析和计算。

弹塑性力学习题解答

弹塑性力学习题解答

第一、二章作业一、选择题:1.弹性力学的研究对象是 B 。

A.刚体;B.可变形固体;C.一维构件; D.连续介质;2.弹性力学的研究对象是 C几何尺寸和形状。

A.受到…限制的物体; B.可能受到…限制的物体;C.不受…限制的物体; D.只能是…受限制的任何连续介质;3.判断一个张量的阶数是根据该张量的C确定的。

A.下标的数量; B.哑标的数量; C.自由标的数量; D.字母的数量。

4.展开一个张量时,对于自由下标操作的原则是按其变程C。

A.一一罗列; B.先罗列再求和; C.只罗列不求和; D.一一求和。

5.展开一个张量时,对于哑脚标操作的原则是按其变程B。

A.一一罗列; B.先罗列再求和; C.只罗列不求和; D.一一求和。

6.在弹性力学中,对于固体材料(即研究对象)物性组成的均匀性以及结构上的连续性等问题,提出了基本假设。

这些基本假设中最基本的一条是 A。

A.连续性假设; B.均匀性假设;C.各向同性的假设; D.几何假设——小变形条件;7.从一点应力状态的概念上讲,当我们谈及应力,必须表明的是D。

A.该应力的大小和指向,是正应力还是剪应力;B.该应力是哪一点处的正应力和剪应力,还是全应力;C.该应力是哪一点处的应力D.该应力是哪一点处哪一微截面上的应力,是正应力还是剪应力。

8.表征受力物体内一点处的应力状态一般需要__B_应力分量,其中独立的应力分量有_C__。

A. 18个; B. 9个; C. 6个; D. 2个。

9.一点应力状态的主应力作用截面上,剪应力的大小必定等于___D_________。

A.主应力值; B.极大值; C.极小值; D.零。

10.一点应力状态的最大(最小)剪应力作用截面上的正应力,其大小_____D_______。

A.一般不等于零; B.等于极大值; C.等于极小值; D.必定等于零。

11.平衡微分方程是 C 间的关系。

A .体力分量和面力分量;B .应力分量和面力分量;C .体力分量和应力分量;D .体力分量、面力分量和应力分量;12.静力边界条件是 B 间的关系。

弹塑性理论考试题及答案

弹塑性理论考试题及答案

弹塑性理论考试题及答案一、单项选择题(每题2分,共10分)1. 弹塑性理论中,材料的屈服准则通常用以下哪个参数表示?A. 应力B. 应变C. 弹性模量D. 屈服应力答案:D2. 弹塑性材料在循环加载下,其行为主要受哪个参数的影响?A. 最大应力B. 最大应变C. 应力幅值D. 应变幅值答案:C3. 根据弹塑性理论,材料的硬化指数n通常用来描述什么?A. 材料的弹性B. 材料的塑性C. 材料的断裂特性D. 材料的疲劳特性答案:B4. 在弹塑性理论中,哪个参数用来描述材料在塑性变形后能否恢复原状?A. 弹性模量B. 屈服应力C. 塑性应变D. 弹性应变答案:D5. 弹塑性材料在受到拉伸应力作用时,其应力-应变曲线通常呈现哪种形状?A. 线性B. 非线性C. 抛物线D. 指数曲线答案:B二、多项选择题(每题3分,共15分)6. 弹塑性理论中,材料的屈服准则可以由以下哪些因素确定?A. 应力状态B. 应变状态C. 温度D. 材料的微观结构答案:A|B|C|D7. 弹塑性材料在循环加载下,其疲劳寿命主要受哪些因素的影响?A. 应力幅值B. 材料的屈服应力C. 循环加载频率D. 材料的微观缺陷答案:A|B|C|D8. 在弹塑性理论中,材料的硬化行为可以通过以下哪些方式来描述?A. 硬化指数B. 硬化模量C. 应力-应变曲线D. 屈服应力答案:A|B|C9. 弹塑性材料在受到压缩应力作用时,其应力-应变曲线通常呈现以下哪些特点?A. 初始阶段为弹性B. 达到屈服点后进入塑性变形C. 塑性变形后材料体积不变D. 卸载后材料能够完全恢复原状答案:A|B|C10. 弹塑性理论中,材料的断裂特性可以通过以下哪些参数来描述?A. 断裂韧性B. 应力集中系数C. 材料的硬度D. 材料的塑性应变答案:A|B|C|D三、简答题(每题5分,共20分)11. 简述弹塑性理论中材料的屈服现象。

答:在弹塑性理论中,材料的屈服现象是指材料在受到一定的应力作用后,从弹性变形转变为塑性变形的过程。

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案

1 εij = (ui, j +uj,i ) 2
σji, j
(i, j =12,3) ,
E 1 ν = 2(uj,ij +ui, jj ) +1−2νuk,kjδij (1+ν)
5Байду номын сангаас
20112011-2-17
题1-3
E 1 ν (uj,ij +ui,jj ) + σji, j = uk,ki 2 (1+ν) 1−2ν
3
2c
l
y
解: 1、将 Φ 代入
∇ 4Φ =0 满足, 为应力函数。 满足, Φ 为应力函数。
2、求应力(无体力) 求应力(无体力)
20112011-2-17 20
题1-13 3 3F xy q 2 Φ= xy− 2 + y 4c 3 2 c
2
o
x
2c
l
y
2
∂φ 3F xy ∂φ σx = 2 = − 3 +q, σy = 2 =0, ∂y 2c ∂x y2 ∂φ 3F τxy =− = − 1− 2 ∂x∂y 4c c
z l y
F = −ρg bz
x
x
20112011-2-17
8
题1-5 等截面直杆(无体力作用),杆轴 等截面直杆(无体力作用),杆轴 ), 方向为 z 轴,已知直杆的位移解为
u =−kyz v =kxz
w=k ( x, y) ψ
为待定常数, 其中 k 为待定常数,ψ(x‚y)为待定函数, 为待定函数 试写出应力分量的表达式和位移法方程。 试写出应力分量的表达式和位移法方程。
2

弹塑性力学习题及答案

弹塑性力学习题及答案

.本教材习题和参考答案及部分习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。

答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。

2.2证明:若ijji a a =,则0ijk jk e a =。

(需证明)2.3设a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。

弹塑性力学试卷及弹性力学教材习题及解答

弹塑性力学试卷及弹性力学教材习题及解答

二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。

(参照oxyz直角坐标系)。

2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。

三、选择题(每小题有四个答案,请选择一个正确的结果。

每小题4分,共16分。

)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。

裂纹展布的方向是:_________。

A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。

该板危险点的最大拉应力是无孔板最大拉应力__________倍。

A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。

)则在该点处的应变_________。

A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。

A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。

)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。

2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。

为平均应力。

并说明这样分解的物理意义。

3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。

若选取=ay2做应力函数。

试求该物体的应力解、应变解和位移解。

(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。

)题五、3图4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作用。

弹塑性力学习题答案

弹塑性力学习题答案

第二章 习题解答2-1解:已知 0,0,===-==y x xy y xf f q τσσ1)⎪⎪⎩⎪⎪⎨⎧+∂∂+∂∂+∂∂+∂∂xy y yxx x y yx τστσ23()()⎩⎨⎧++s xy y s yx x l m m l σστστσ 有:lq t x -=代入(*4理、几何方程得:E x u x ==∂∂ε11E y v y ==∂∂ε0==∂∂+∂∂xy yux v γ ()()⇒=+∴0dyy df dx x dg 类似于教材题2-3,可求出 ()()wx v x g wy u y f +=-=00,001;1v wx qy Ev u wy qx Eu ++--=+---=∴υυ从v u ,表达式可见,位移分量是坐标的单值函数,满足位移单值条件。

综合1)~4),。

q xy y x 为问题的正确解答0,=-==τσσ2-2x =σxy τ注意:y x ,代入均满足。

2)验证相容方程:0)(2=+∇y x σσ 亦满足。

3)验证应力边界条件: i) 主要边界:()0,2=±=h y yx yτσ满足ii) 次要边界:()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰-=-=-=222222320)1(0h h lx xy h h l x x h h l x x Pdy ydy dy τσσ (1)、(2)满足,(3)式左=⎰-===⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-223332212*41*618218hh P h I P h h I P dy y h I P 右 结论:所列xy y x τσσ,,满足平衡方程、相容方程;在主要边界上严格满足应力边界条件,次要边界近似满足应力边界条件,又为单连体,故在圣维南原理的前提下为问题的正确解。

2-3、证明:1)由,,yVf xV fy x∂∂-=∂∂-=则平衡微分方程为: ()()⎪⎪⎩⎪⎪⎨⎧=∂τ∂+∂-σ∂=∂τ∂+∂-σ∂⇒⎪⎪⎩⎪⎪⎨⎧=∂∂-∂τ∂+∂σ∂=∂∂-∂τ∂+∂σ∂0x y V 0yx V 0y V x y 0x V y x yx y xyx yx y xy x (*) 类似于题2-10的推证过程,(*)式的通解为:y x x V yV 2xy 22y 22x ∂∂ϕ∂-=τ∂ϕ∂=-σ∂ϕ∂=-σ;;即: yx V xV y2xy 22y 22x ∂∂ϕ∂-=τ+∂ϕ∂=σ+∂ϕ∂=σ;;2) 对于平面应力问题,相容方程为:()()⎪⎪⎭⎫⎝⎛∂∂+∂∂+-=+∇y f x f y x y xυσσ12即:2222 2-4、x, y n l σσ2==2l 应力主向成∴l σn3-3、解: 1由x=0得: 2由 得: Fx Ex Cx Bx Ax y ++++=∴注:公式中已略去ϕ中与应力分量无关的一次项和常数项。

弹塑性力学课程作业 参考答案

弹塑性力学课程作业 参考答案

弹塑性力学课程作业1 参考答案一.问答题1. 答:请参见教材第一章。

2. 答:弹塑性力学的研究对象比材料力学的研究对象更为广泛,是几何尺寸和形态都不受任何 限制的物体。

导致这一结果的主要原因是两者研究问题的基本方法的不同。

3. 答:弹塑性力学与材料力学、结构力学是否同属固体力学的范畴,它们各自求解的主要问题都是变形问题,求解主要问题的基本思路也是相同的。

这一基本思路的主线是:(1)静 力平衡的受力分析;(2)几何变形协调条件的分析;(3)受力与变形间的物理关系分析; 4. 答:“假设固体材料是连续介质”是固体力学的一条最基本假设,提出这一基本假设得意义是为利用数学中的单值连续函数描述力学量(应力、应变和位移)提供理论依据。

5. 答:请参见本章教材。

6. 答:略(参见本章教材)7. 答:因为物体内一点某微截面上的正应力分量 σ 和剪应力分量τ 同材料的强度分析 问题直接相关,该点微截面上的全应力则不然。

8. 答:参照坐标系围绕一点截取单元体表明一点的应力状态,对单元体的几何形状并不做 特定的限制。

根据单元体所受力系的平衡的原理研究一点的应力状态。

研究它的目的是: 首先是了解一点的应力状态任意斜截面上的应力,进一步了解该点的主应力、主方向、 最大(最小)剪应力及其作用截面的方位,最终目的是为了分析解决材料的强度问题。

9.答:略(请参见教材和本章重难点剖析。

) 10. 答:略(请参见教材和本章重难点剖析。

)11. 答:略(请参见教材和本章重难点剖析。

) 这样分解的力学意义是更有利于研究材料的塑性变形行为。

12. 答:略(请参见教材和本章重难点剖析。

)纳唯叶 (Navier) 平衡微分方程的力学意义是:只有满足该方程的应力解和体力才是客观上可能存在的。

13. 答:弹塑性力学关于应力分量和体力分量、面力分量的符号规则是不一样的。

它们的区别请参见教材。

14、答:弹塑性力学的应力解在物体内部应满足平衡微分方程和相容方程(关于相容方程详见第3、5、6章),在物体的边界上应满足应力边界条件。

弹塑性力学考试及答案

弹塑性力学考试及答案

弹塑性力学考试及答案一、单项选择题(每题2分,共10分)1. 弹塑性力学中,应力状态的基本方程是()。

A. 平衡方程B. 几何方程C. 物理方程D. 相容方程答案:A2. 在弹塑性力学中,材料的屈服准则是()。

A. 弹性准则B. 塑性准则C. 强度准则D. 破坏准则答案:B3. 弹塑性力学中,描述材料塑性变形的物理方程是()。

A. 弹性方程B. 塑性方程C. 粘性方程D. 蠕变方程答案:B4. 在弹塑性力学中,描述材料在多轴应力状态下的屈服行为,通常采用()。

A. 单轴屈服准则B. 双轴屈服准则C. 多轴屈服准则D. 各向同性屈服准则答案:C5. 弹塑性力学中,描述材料在应力作用下体积变化的方程是()。

A. 体积模量方程B. 剪切模量方程C. 泊松比方程D. 屈服方程答案:A二、多项选择题(每题3分,共15分)6. 弹塑性力学中,应力状态描述包括()。

A. 应力分量B. 主应力C. 主应变D. 应力不变量答案:ABD7. 弹塑性力学中,材料的塑性变形特性包括()。

A. 塑性流动B. 塑性硬化C. 塑性软化D. 塑性变形的不可逆性答案:ABCD8. 弹塑性力学中,常用的屈服准则包括()。

A. 冯·米塞斯准则B. 特雷斯卡准则C. 德鲁克准则D. 莫尔-库仑准则答案:ABCD9. 弹塑性力学中,塑性变形的描述方法包括()。

A. 增量理论B. 总应变理论C. 塑性势理论D. 塑性极限分析答案:ABCD10. 弹塑性力学中,材料的本构关系包括()。

A. 弹性本构关系B. 塑性本构关系C. 粘弹性本构关系D. 蠕变本构关系答案:ABCD三、填空题(每题2分,共20分)11. 弹塑性力学中,材料的弹性模量用符号 ________ 表示。

答案:E12. 弹塑性力学中,材料的泊松比用符号 ________ 表示。

答案:ν13. 弹塑性力学中,材料的屈服应力用符号 ________ 表示。

答案:σy14. 弹塑性力学中,材料的塑性应变用符号 ________ 表示。

(完整版)弹塑性力学习题题库加答案

(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。

己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。

解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。

解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案

厚壁筒应力问题
要点一
总结词
厚壁筒应力问题主要考察了弹塑性力学中厚壁筒结构的应 力分析和变形计算。
要点二
详细描述
厚壁筒应力问题涉及到厚壁筒结构在受到内压、外压或其 他复杂载荷作用时的应力分布和变形情况。在解题过程中 ,需要运用弹塑性力学的相关理论,如应力分析、应变分 析等,来求解结构的应力分布和变形情况。同时,还需要 考虑厚壁筒结构的特殊性,如不同材料的组合、多层结构 等,对结构应力和变形的影响。
02
弹塑性力学基础知识
应力和应变
基本概念
详细描述:应力和应变是弹塑性力学中的基本概念。应力表示物体内部相邻部分之间的相互作用力,而应变则表示物体在应 力作用下的变形程度。
屈服条件与应力-应变关系
屈服准则与流动法则
详细描述:屈服条件决定了材料在应力作用下的屈服点,是判断材料是否进入塑性状态的重要依据。 应力-应变关系则描述了材料在受力过程中应力与应变的变化规律。
弹塑性力学特点
弹塑性力学具有广泛的应用背景,涉及到众多工程领域,如结构工程、机械工 程、航空航天等。它既适用于脆性材料,也适用于塑性材料,并考虑了材料的 非线性特性。
弹塑性力学的基本假设
连续性假设
小变形假设
假设固体内部是连续的,没有空隙或 裂纹。
假设物体在外力作用下发生的变形是 微小的,不会影响物体内部应力分布。
弹塑性力学部分习题及答 案
• 弹塑性力学概述 • 弹塑性力学基础知识 • 弹塑性力学典型习题解析 • 弹塑性力学部分习题的定义与特点
弹塑性力学的定义
弹塑性力学是一门研究固体在受到外力作用时,其内部应力、应变和位移之间 关系的学科。它主要关注材料在受力过程中发生的弹性变形和塑性变形。

弹塑性力学-陈明祥版的-课后习题答案++

弹塑性力学-陈明祥版的-课后习题答案++
◆ 分析研究物理现象的方法和工具的选用与人们 当时对客观事物的认识水平有关,会影响问题 的求解与表述。
◆ 所有与坐标系选取无关的量,统称为物理恒量。
◆ 在一定单位制下,只需指明其大小即足以被说明
的物理量,统称为标量。例如温度、质量、功等。
◆ 在一定单位制下,除指明其大小还应指出其方向
的物理量,称为矢量。例如速度、加速度等。
x j xk
(I-25)
4.张量的分解
张量一般是非对称的。若张量 ai的j 分量满足
aij a ji
(I-27)
则 aij称为对称张量。 如果 的分ai量j 满足
aij a ji
(I-28)
则称为反对称张量。显然反对称张量中标号重复的
分量(也即主对角元素)为零,即 a11 a22 。a33 0
弹塑性力学与材料力学同属固体力学的 分支学科,它们在分析问题解决问题的基本 思路上都是一致的,但在研究问题的基本方 法上各不相同。其基本思路如下:
(1) 受力分析及静力平衡条件 (力的分析)
物体受力作用处于平衡状态,应当满足的条件 是什么?(静力平衡条件)
(2) 变形的几何相容条件 (几何分析)
材料是均匀连续的,在受力变形后仍应是连续 的。固体内既不产生“裂隙”,也不产生“重叠 ”, 此时材料变形应满足的条件是什么?(几何相 容条件)
建立起普 遍适用的理 论与解法。
1、涉及数学理论较复杂,并以其理论与解
法的严密性和普遍适用性为特点;
2、弹塑性的工程解答一般认为是精确的;
3、可对初等力学理论解答的精确度和可靠
进行度量。
四、 弹塑性力学的基本任务
可归纳为以下几点: 1.建立求解固体的应力、应变和位移分布规律的 基本方程和理论; 2.给出初等理论无法求解的问题的理论和方法, 以及对初等理论可靠性与精确度的度量; 3.确定和充分发挥一般工程结构物的承载能力, 提高经济效益; 4.为进一步研究工程结构物的强度、振动、稳定 性、断裂等力学问题,奠定必要的理论基础。

工程弹塑性力学题库及答案

工程弹塑性力学题库及答案

解:刚塑性模型不考虑弹性阶段应变,因此刚塑性应力应变曲线即为

线,这不难由原式推得
而在强化阶段,
,因为这时
将 都移到等式左边,整理之即得答案。
其中
5.7 已知简单拉伸时的 变的比值
曲线由(5.1)式给出,考虑横向应变与轴向应
在弹性阶段,
为材料弹性时的泊松比,但进入塑性阶段后 值开
始增大最后趋向于 。试给出 解:按题设在简单拉伸时总有


(2)纯剪切应力状态,

故 7.10 如何利用与 Tresca 屈服条件相关联的流动法则?
第八章 理想刚塑性的平面应变问题
8.1简述滑移线的概念: 解:在塑性区内,将各点最大剪应力方向作为切线而连接起来的线,称之为滑移 线。 剪切应力是最大剪应力。 平衡方程——沿线: 2k=C 或 =2k ;
沿线: +2k=C 或 = 2k ; 速度方程——沿线:dv v d=0;
对,
,代入得
对,
,代入得
对,
,代入得
1.10当
时,证明
成立。
解: 由
,移项之得
证得
第五章 简单应力状态的弹塑性问题
5.1 简述 Bauschinger 效应: 解:拉伸塑性变形后使压缩屈服极限降低的现象
5.2 在拉杆中,如果 和 为试件的原始截面积和原长,而 和 为拉伸后的截
面积和长度。则截面收缩率为 时,有这样的关系: 证明: 体积不变,则有

中:
沿
线,
中: ,
中:
,


, 情况二见图(1),与①一样
所以
8.6 已知具有尖角为 的楔体,在外力 P 的作用下,插入具有相同角度的 V 形缺口 内,试分别按如下两中情况画出滑移线场并求出两种情况的极限荷载。 1)、楔体与 V 形缺口之间完全光滑;2)、楔体与 V 形缺口接触处因摩擦作用其剪应 力为 k。

(完整版)弹塑性力学习题题库加答案

(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。

己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。

解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。

解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。

弹塑性力学答案

弹塑性力学答案

一、简答题1答:(1)如图1所示,理想弹塑性力学模型:e s seE E σεεεσεσεε=≤==>当当(2)如图2所示,线性强化弹塑性力学模型:()1e s s eE E σεεεσσεεεε=≤=+->当当(3)如图3所示,幂强化力学模型:nA σε= (4)如图4所示,钢塑性力学模型:(a )理想钢塑性:0s sεσσεσσ=≤=>当不确定当(b )线性强化钢塑性:()0/s s sEεσσεσσσσ=≤=->当当图1理想弹塑性力学模型图2线性强化弹塑性力学模型图3幂强化力学模型(a ) (b ) 图4钢塑性力学模型2答:3答:根据德鲁克公设,()00,0pp ij ij ij ij ij d d d σσεσε-≥≥。

在应力空间中,可将0ij ijσσ-作为向量ij σ与向量0ij σ之差。

由于应力主轴与应变增量主轴是重合的,因此,在应力空间中应变增量也看作是一个向量。

利用向量点积的定义:()00cos 0p p ijij ij ij ij ij d σσεσσεϕ-=-≥,ϕ为两个向量的夹角。

由于0ij ij σσ-和p ij ε都是正值,要使上式成立,ϕ必须为锐角,因此屈服面必须是凸的。

4 答:逆解法就是先假设物体内部的应力分布规律,然后分析它所对应的边界条件,以确定这样的应力分布规律是什么问题的解答。

半逆解法就是针对求解的问题,根据材料力学已知解或弹性体的边界形状和受力情况,假设部分应力为某种形式的函数,从而推断出应力函数,从而用方程和边界条件确定尚未求出的应力分量,或完全确定原来假设的尚未全部定下来的应力。

如果能满足弹性力学的全部条件,则这个解就是正确的解答。

否则需另外假定,重新求解。

二、计算题1解:对于a 段有:0N a a a aF A E a a σσεε==∆=,对b 段有:0N b b bbP F A E b b σσεε-==∆=又a b ∆=∆ 则N bPF a b=+ 2解:代入公式,116I =,227I =-,30I = 故117.5MPa σ=,20MPa σ=,3 1.5MPa σ=-()0123/3 5.33MPa σσσσ=++=08.62MPa τ==3解:(1)代入公式,110I =,2200I =-,30I = 故主应力:120MPa σ=,20MPa σ=,310MPa σ=-12352MPa σστ-=±=±,132152MPa σστ-=±=±,123102MPa σστ-=±=±所以max 15MPa τ=(2)代入公式,160I =,21075I =,35250I =故主应力:130MPa σ=,222.1MPa σ=,37.9MPa σ=1237.12MPa σστ-=±=±,13211.052MPa σστ-=±=±,123 3.952MPa σστ-=±=±所以max 11.05MPa τ=4 证明:将213132σσσσμσσ--=-中,化简得:13=将0τ=13max 2σστ-=代入maxττ中,化简得:0max13ττ=所以,等式得证。

弹塑性力学作业(含答案)

弹塑性力学作业(含答案)

2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。

己求得应力解为: σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。

解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。

解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得: 则显然:3312317.08310 4.917100PaPa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 则:θ=+40.268840°16' 或(-139°44') 5-2:给出axy ϕ=;(1):捡查ϕ是否可作为应力函数。

(2):如以ϕ为应力函数,求出应力分量的表达式。

(3):指出在图示矩形板边界上对应着什么样的边界力。

(坐标如图所示) 解:将axy ϕ=代入40ϕ∇=式得:220ϕ∇∇= 满足。

弹塑性力学习题集_很全有答案_

弹塑性力学习题集_很全有答案_

σ y = cx + dy − γy , τ xy = − dx − ay ,其它应力分量为零。试根据
直边及斜边上的边界条件,确定常数 a、b、c、d。 2—16* 已知矩形截面高为 h, 宽为 b 的梁受弯曲时的正 My 12 M 应力 σ z = = y, 试求当非纯弯时横截面上的剪应力公 J bh 3 式。 (利用弹塑性力学平衡微分方程)
题 2—15 图
12 6 0 2—17 已知一点处的应力张量为: σ ij = 6 10 0 MPa ,试求该点的最大主应力及 0 0 0 其主方向。 2—18* 在物体中某一点 σ x = σ y = σ z = τ xy = 0 ,试以 τ yz 和 τ zx 表示主应力。
3—1
为 ε 1 = 1.7 × 10 −4 , ε 2 = 0.4 × 10 −4 。已知ν = 0.3,试求主应变 ε 3 。
3—9 如题 4—9 图示尺寸为 1×1×1cm 的铝方块,无间隙地嵌入——有槽的钢块中。 设钢块不变形,试求:在压力 P = 6KN 的作用下铝块内一点应力状态的三个主应力及主应 变,铝的弹性常数 E=70Gpa,ν = 0.33。 3—10* 直径 D = 40mm 的铝圆柱体, 无间隙地放入厚度为 δ = 2mm 的钢套中, 圆柱受
v = b0 + b1 x + b2 y + b3 z w = c 0 + c1 x + c 2 y + c3 z
式中 a 0 L , a1 L , a 2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
(1) u = (3x 2 + 20) × 10 −2 , v = (4 yx) × 10 −2 ,在(0,2)点处。 (2) u = (6 x 2 + 15) × 10 −2 , v = (8 zy ) × 10 −2 , w = (3z 2 − 2 xy) × 10 −2 ,在(1,3,4)点处。 2—30 试证在平面问题中下式成立: εx + εy =ε′ x + ε′ y

(完整版)弹塑性力学习题题库加答案.docx

(完整版)弹塑性力学习题题库加答案.docx

第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。

己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。

解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。

x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。

弹塑性力学部分习题及答案

弹塑性力学部分习题及答案


根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

塑性:弹性:2-16设有任意形状的等厚度薄板,体力可以不计,在全部边界上(包括孔口边界上)受有均匀压力q 试证q y x -==σσ 及0=xy τ能满足平衡微分方程、相容方程和应力边界条件,也能满足位移单值条件,因而就是正确的解答。

证明: (1)将应力分量q y x -==σσ,0=xy τ和0==y x f f 分别代入平衡微分方程、相容方程⎪⎪⎩⎪⎪⎨⎧=+∂∂+∂∂=+∂∂+∂∂00y x xy yy x y yxxx f f τστσ (a ) 0)1())((2222=∂∂+∂∂+-=+∂∂+∂∂)(y f x f yx y x y x μσσ (b )显然(a )、(b )是满足的(2)对于微小的三角板dy dx A ,,都为正值,斜边上的方向余弦),cos(x n l =,),cos(y n m =,将q y x -==σσ,0=xy τ代入平面问题的应力边界条件的表达式⎪⎩⎪⎨⎧=+=+)()()()(s f l m s f m l y s xy y x s yx x τστσ (c ) 则有),cos(),cos(x n q x n x -=σ ),c o s (),c o s (y n q y n y -=σ 所以q x -=σ,q y -=σ。

对于单连体,上述条件就是确定应力的全部条件。

(3)对于多连体,应校核位移单值条件是否满足。

该题为平面应力的情况,首先,将应力分量q y x -==σσ及0=xy τ代入物理方程,得形变分量q E x )1(-=με,q Ey )1(-=με,0=xy γ (d ) 然后,将(d )的变形分量代入几何方程,得q Ex u )1(-=∂∂μ,q E y v )1(-=∂∂μ,0=∂∂+∂∂y u x v (e )前而式的积分得到 )()1(1y f qx E u +-=μ,)()1(2x f qy Ev +-=μ (f ) 其中的1f 和2f 分别是y 和x 的待定函数,可以通过几何方程的第三式求出,将式(f )代入(e )的第三式得 dxx df dy y df )()(21=-等式左边只是y 的函数,而等式右边只是x 的函数。

因此,只可能两边都等于同一个常数ω,于是有ω-=dy y df )(1,ω=dxx df )(2,积分以后得01)(u y y f +-=ω,02)(v x x f +=ω 代入(f )得位移分量⎪⎩⎪⎨⎧++-=+--=vx qy E v u y qx E u ωμωμ)1()1(0 其中ω,,00v u 为表示刚体位移量的常数,须由约束条件求得。

从式(g )可见,位移是坐标的单值连续函数,满足位移单值条件,因而,应力分量是正确的解答。

2-17设有矩形截面的悬臂粱,在自由端受有集中荷载F ,体力可以不计。

试根据材料力学公式,写出弯应力x σ和切应力xy τ的表达式,并取挤压应力0=y σ,然后证明,这些表达式满足平衡微分方程和相容方程,再说明,这些表达式是否就表示正确的解答。

解〔1〕矩形悬臂梁发生弯曲变形,任意横截面上的弯矩方程为Fx x M -=)(,横截面对z 轴(中性轴)的惯性矩为123h I z =,根据材料力学公式,弯应力xy hFI y x M z x 312)(-==σ;该截面上的剪力为F x F s -=)(,剪应力22223()346()()24s xy F x y F h I y h h h τ=-=--;并取挤压应力0=y σ(2)经验证,上述表达式能满足平衡微分方程⎪⎪⎩⎪⎪⎨⎧=+∂∂+∂∂=+∂∂+∂∂00y x xy y y x y yxxx f f τστσ 也能满足相容方程0)1())((2222=∂∂+∂∂+-=+∂∂+∂∂)(y f x f yx y x y x μσσ再考察边界条件:在2/h y ±=的主要边界上,应精确满足应力边界条件:0)(2/==h y y σ,0)(2/==h y yx τ; 0)(2/=-=h y y σ,0)(2/=-=h y yx τ。

能满足在次要边界x=0上,列出三个积分的应力边界条件:/20/2/20/2/20/2()0()0()h x x h h x x h h xy x h dy ydy dy F σστ=-=-=-⎧=⎪⎪=⎨⎪⎪=-⎩⎰⎰⎰ 满足应力边界条件。

在次要边界l x =上,列出三个积分的应力边界条件:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-====⎰⎰⎰⎰⎰⎰-=--=--=-Fy h h F dy Fl ly h F ydy lydy h F dy h h x xy h h h h l x x h h h h l x x h h )4(6)(12)(012)(2232/2/02/2/232/2/2/2/32/2/2/2/τσσ满足应力边界条件因此,他们是该问题的解答。

3-8设题3-8图中的三角形悬臂梁只受重力作用,而梁的密度为ρ,试用纯三次式的应力函数求解。

解(1)相容条件:设3223Dy Cxy y Bx Ax +++=Φ (a)不论上述中的系数取何值,纯三次式的应力函数总能满足相容方程。

(2)体力分量g f o f y x ρ==,由应力函数得应力分量的表达式Dy Cx x f y x x 6222+=-∂Φ∂=σ (b)gy By Ax y f yy y ρσ-+=-∂Φ∂=2622 (c)Cy Bx yx xy222--=∂∂Φ∂-=τ (d)(3)考察边界条件:利用边界条件确定待定系数先考察主要边界上0=y 的边界条件:0)(0==y y σ, 0)(0==y yx τ 将应力分量式(b)和式(c )代入,这些边界条件要求06)(0===Ax y y σ,02)(0=-==Bx y xy τ 得A=0,B=0。

式(b)、(c )、(d )成为Dy Cx x 62+=σ (e ) gy y ρσ-= (f )Cy xy 2-=τ (g )根据斜边界的边界条件,它的边界线方程是αtan x y =,在斜面上没有任何面力,即0==y x f f ,按照一般的应力边界条件,有⎪⎩⎪⎨⎧=+=+====0)()(0)()(tan tan tan tan αααατστσx y xy x y y x y xy x y x l m m l 将(e)、(f )、(g )代入得0)tan 2()tan 62(=-++ααCx m Dx Cx l (h ) 0)tan 2()tan (=-+-ααρCx l gx m (i )由图可见,ααπsin )2cos(),cos(-=+==x n l , αcos ),cos(==y n m代入式(h )、(i)求解C 和D,即得αρcot 2g C =,αρ2cot 3gD -=将这些系数代入式(b)、(c )、(d )得应力分量的表达式2cot 2cot cot x y xy gx gy gygy σραρασρτρα⎧=-⎪=-⎨⎪=-⎩ 4-12楔形体在两侧面上受有均布剪力q ,如题4-12图所示.试求其应力分量。

解 (1)应力函数)2sin 2cos (2D C B A +++=Φϕϕϕρ,进行求解 由应力函数Φ得应力分量⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧--=∂Φ∂∂∂-=+++=∂Φ∂=--+-=∂Φ∂+∂Φ∂=C B A D C B A D C B A ϕϕρρρτϕϕϕρσϕϕϕϕρρρσρϕϕρ2cos 22sin 2)1()2sin 2cos (2)2sin 2cos (21122222 (2)考察边界条件:根据对称性,得0)(2/=αϕσ (a ) q =2/)(αρϕτ (b ) 0)(2/=-αϕσ (c ) q -=-2/)(αρϕτ (d )由式(a )得2cos 2sin 20A B C D ααα+++= (e ) 由式(b )得2sin 2cos A B C q αα--= (f ) 由式(c )得2cos 2sin 20A B C D ααα--+= (g ) 由式(d )得2sin 2cos A B C q αα---=- (h ) 式(e )、(f )、(g )、(h)联立求解,得ααcot 2,0,sin 2qD C B q A -====将以上系数代入应力分量,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=+-=αϕτααϕσααϕσρϕϕρsin 2sin )cot sin 2cos ()cot sin 2cos (q q q 4一13设有内半径为r,外半径为R 的圆筒受内压力q ,试求内半径和外半径的改变,并求圆筒厚度的改变。

解 本题为轴对称问题,只有径向位移而无环向位移。

当圆筒只受内压力q 的情况下,取应力分量表达式(B=0),内外的应力边界条件要求0)(==r ρρϕτ,0)(==R ρρϕτq r -==ρρσ)(,0)(==R ρρσ由表达式可见,前两个关于ρϕτ的条件是满足的,而后两个条件要求⎪⎪⎩⎪⎪⎨⎧=+-=+02222C R A q C rA由上式解得)(2222r R r qR A --=,)(2222r R qr C -= (a)把A,B,C 值代入轴对称应力状态下对应的位移分量,ϕϕρμρμρsin cos )1()1()(2222K I R r R E qr u ++⎥⎦⎤⎢⎣⎡++--= (b ) 0cos sin =+-=ϕϕρϕK I H u (c)式(c )中的ϕρ,取任何值等式都成立,所以个自由项的系数为零H=I=K=0。

所以,轴对称问题的径向位移式(b )为⎥⎦⎤⎢⎣⎡++--=ρμρμρ2222)1()1()(R r R E qr u , 而圆简是属于平面应变问题,故上式中u E E -→-→1,12μμμ代替,则有 )1(1)11()11(22222----+-+=rR E R qu μρρμμμμρ此时内径改变为)1()1()1(1)11()11(2222222222μμμμμμμμ-+-+-=----+-+=r R r R E qr r R Er r R qu r ,外径改变为222222222)1()1(1)11()11(rR RrE qr r R ER R R qu R --=----+-+=μμμμμμ 圆环厚度的改变为)1()1(2μμμ-++---=-r R r R E qr u u r R5.155.1。

相关文档
最新文档