人教版初中数学知识点分布以及中考考点
人教版中考考点初中数学全部的所有单元知识点详细总结归纳精华大全(含方程式公式大全)
![人教版中考考点初中数学全部的所有单元知识点详细总结归纳精华大全(含方程式公式大全)](https://img.taocdn.com/s3/m/a4cd009d856a561253d36f5a.png)
人教版中考考点初中数学全部的所有单元知识点详细总结归纳精华大全(含方程式公式大全)1、一元一次方程根的情况△=b2-4ac当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…X N,我们把(X1+X2+…+X N)/N叫做这个N个数的算术平均数,记为X 加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
初中数学知识点总结人教版
![初中数学知识点总结人教版](https://img.taocdn.com/s3/m/c8bcbf32dcccda38376baf1ffc4ffe473368fda3.png)
初中数学知识点总结人教版初中数学知识点总结(人教版)一、数与代数1. 有理数- 整数和小数- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值- 有理数的运算律2. 整式与分式- 单项式与多项式- 同类项与合并同类项- 整式的加减乘除- 因式分解- 分式的基本性质- 分式的乘除法- 分式的加减法3. 代数方程- 一元一次方程- 二元一次方程组- 解方程的基本方法- 列方程解应用题4. 函数- 函数的概念- 线性函数- 反比例函数- 函数的图像和性质- 解析式的应用二、几何1. 平面图形- 点、线、面的基本性质- 角的概念和分类- 三角形的分类和性质- 四边形的分类和性质- 圆的基本性质- 相似图形- 平行线与平行线的性质2. 几何变换- 平移- 旋转- 轴对称(镜像对称)3. 几何计算- 线段、角的计算- 三角形、四边形的面积计算- 圆的周长和面积计算- 体积和表面积的计算(棱柱、棱锥、圆柱、圆锥、球)三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表(条形图、折线图、饼图)- 平均数、中位数、众数2. 概率- 随机事件- 概率的初步认识- 可能性的计算四、应用题1. 列方程解应用题- 行程问题- 工作问题- 利润问题- 比例问题2. 几何应用题- 面积问题- 体积问题- 角度计算问题3. 统计与概率应用题- 调查与统计分析- 可能性与预测请注意,以上内容是根据人教版初中数学教材的一般结构和知识点进行的总结,具体的教学内容可能会根据不同年份的教材版本和教学大纲有所变化。
教师和学生应参考最新的教材和教学指南来确定具体的教学内容和要求。
2024初中数学知识点中考总复习总结归纳
![2024初中数学知识点中考总复习总结归纳](https://img.taocdn.com/s3/m/b2acb13000f69e3143323968011ca300a6c3f6bd.png)
2024初中数学知识点中考总复习总结归纳一、整数和分数运算1.整数的四则运算:加法、减法、乘法、除法2.分数的四则运算:分数的加减法、乘法、除法3.整数与分数的混合运算:转化为同种形式进行运算二、多项式的运算1.单项式与多项式的加减法:同类项的合并2.多项式的乘法:使用分配律展开式相乘,并合并同类项3.多项式的除法:使用长除法进行整除或整除后的简化三、方程与不等式1.一元一次方程:基本概念、解方程的基本方法(逆运算、倒数、代入等)2.一元一次方程的应用:问题转化为方程、代入解的检验等3.一元二次方程的解:配方法、求根公式4.一元二次方程的应用:问题转化为方程、代入解的检验等5.一元一次不等式:基本概念、解不等式的基本方法(逆运算、倒数、代入等)6.一元一次不等式的应用:问题转化为不等式、代入解的检验等四、数形结合与图形的性质1.平面图形的拓展:几何图形的基本概念、性质和判定方法(例如多边形、平行四边形、正方形等)2.三角形与四边形的面积:基本公式的推导和应用3.三角形的相似与全等:判断相似与全等的条件及应用4.圆的性质与关系:圆心角、弧长、扇形和面积的计算5.空间几何体的计算:体积和表面积的计算五、几何与运动的关系1.几何与坐标系:点的坐标及其在平面直角坐标系中的性质2.直线与圆的方程:点斜式、斜截式和截距式的互相转换及应用3.运动方程:速度、时间、距离之间的关系及其应用六、数据与概率1.数据的整理与处理:频数、频率、中位数、众数、范围等的计算和应用2.统计图的绘制与分析:条形图、折线图、扇形图等的绘制和分析3.概率的计算:事件的排列组合、概率的计算公式以上是2024初中数学中考的一些重要知识点的总结归纳,希望对您的复习有帮助。
新人教版初中数学——定义、命题、定理-知识点归纳及中考典型题解析
![新人教版初中数学——定义、命题、定理-知识点归纳及中考典型题解析](https://img.taocdn.com/s3/m/f3f19a55c950ad02de80d4d8d15abe23482f0321.png)
新人教版初中数学——定义、命题、定理知识点归纳及中考题型解析一、定义与命题1.一般地,对某一名称或术语进行描述或作出规定就叫做该名称或术语的定义.2.判断一件事情的语句叫做命题.3.命题的组成:命题是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.4.命题的表达形式:命题可以写成“如果……那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.二、真命题、假命题1.正确的命题叫做真命题.2.要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明(推理、证明).3.要说明一个命题是假命题,只需举一个反例即可.三、逆命题1.把原命题的结论作为命题的条件,把原命题的条件作为命题的结论,所组成的命题叫做原命题的逆命题.2.在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题.如果把其中的一个命题叫做原命题,那么另一个命题就叫做它的逆命题.3.正确写出一个命题的逆命题的关键是能够正确区分这个命题的题设和结论.4.每个命题都有逆命题,但原命题是真命题,它的逆命题不一定是真命题.四、公理与定理1.如果一个命题的正确性是人们在长期实践中总结出来的,并把它作为判断其他命题真假的原始依据,这样的真命题叫做公理.2.如果一个命题可以从公理或其他命题出发,用逻辑推理的方法判断它是正确的,并且可以进一步作为判断其他命题真假的依据,这样的命题叫做定理.3.公理和定理都是真命题,都可作为证明其他命题是否为真命题的依据.4.由定理直接推出的结论,并且和定理一样可作为进一步推理依据的真命题叫做推论.五、互逆命题1.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫做互逆定理,其中一个定理叫做另一个定理的逆定理.2.任何一个命题都有逆命题,而一个定理并不一定有逆定理.3.角平分线性质定理及其逆定理、线段的垂直平分线性质定理及其逆定理、勾股定理及其逆定理等都是互逆定理.六、反证法1.定义:假设命题的结论不成立,即命题结论的反面成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立,这种证明方法叫做反证法.2.反证法的步骤:①假设命题结论的反面正确;②从假设出发,经过逻辑推理,推出与公理、定理、定义或已知条件相矛盾的结论;③说明假设不成立,从而得出原命题正确.考向一命题的改写每一个命题都是由题设和结论两部分组成的,所以找出一个命题的题设和结论是十分重要的.但有些命题的题设和结论不明显,它不是以“如果……那么……”的形式给出的.区分这类命题的题设和结论的具体方法:添上省去的词语后再进行分析.典例1把“两个邻角的角平分线互相垂直”写成“如果……,那么……”的形式为_________.【答案】如果作两个邻补角的角平分线,那么这两条角平分线互相垂直【解析】如果的后面是条件,那么的后面是结论,注意语句的通顺,表达的准确.故答案为如果作两个邻补角的角平分线,那么这两条角平分线互相垂直.1.【浙江省绍兴市浣江教育集团2018–2019学年八年级上学期期中数学试题】把命题“同角的余角相等”改写成“如果…那么…”的形式_________.考向二真命题、假命题1.判断语句是否为命题要抓住两条:①命题必须是一个完整的带有判断性的句子,通常是陈述句(包括肯定句和否定句),而疑问句和命令性语句都不是命题;②命题必须对某件事作出肯定或否定的判断.2.辨别命题的真假时,对命题的正确性理解一定要准确,进行辨别时要熟练掌握相关的定理、公理、定义.要说明一个命题是假命题,通常可以通过举反例的方法解决.命题的反例是具备命题的条件,但不具备命题的结论的实例.典例2下列命题是真命题的是A.一组对边平行,另一组对边相等的四边形是平行四边形B.两条对角线相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.平行四边形既是中心对称图形,又是轴对称图形【答案】C【解析】A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形.故本选项错误;C、两组对边分别相等的四边形是平行四边形.故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;故选C.2.下列命题中,假命题的是A.直角三角形斜边上的高等于斜边的一半B.圆既是轴对称图形,又是中心对称图形C.一组邻边相等的矩形是正方形D.菱形对角线互相垂直平分考向三互逆命题与互逆定理1.如果两个命题的题设和结论正好相反,那么这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.一般地,如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,则称这两个定理互为逆定理,其中一个定理叫做另一个定理的逆定理.3.“题设与结论正好相反”可理解为第一个命题的题设是第二个命题的结论,第一个命题的结论是第二个命题的题设.典例3下列命题中,逆命题为真命题的是A.对顶角相等B.若a=b,则|a|=|b|C.同位角相等,两直线平行D.若ac2<bc2,则a<b【答案】C【解析】A、对顶角相等的逆命题是两个相等的角是对顶角,假命题;B、若a=b,则|a|=|b|的逆命题是若|a|=|b|,则a=b,假命题;C、同位角相等,两直线平行的逆命题是两直线平行,两直线平行,真命题;D、若ac2<bc2,则a<b的逆命题是若a<b,则ac2<bc2,假命题;故选C.3.“内错角相等,两直线平行”的逆命题是__________.4.有下列命题:①若x2=x,则x=1;②若a2=b2,则a=b;③线段垂直平分线上的点到线段两端点的距离相等;④相等的弧所对的圆周角相等;其中原命题与逆命题都是真命题的个数是A.1个B.2个C.3个D.4个考向四反证法①当命题的结论涉及“否定”“至多”“至少”“无限”“无数”“唯一”时常用反证法.②矛盾的类型:a.与已知定义、定理、公理相矛盾;b.与已知条件相矛盾;c.推出自相矛盾的结果.③用反证法证明问题的关键是清楚结论的反面是什么,有哪些情况,不要遗漏;利用反证法证明时,每一步都要有依据,直到推出矛盾.典例4【福建省福州市仓山区福州时代中学2019–2020学年九年级上学期10月月考数学试题】用反证法证明命题“三角形中最多有一个角是直角”时,下列假设正确的是A.三角形中最少有一个角是直角B.三角形中没有一个角是直角C.三角形中三个角全是直角D.三角形中有两个或三个角是直角【答案】D【解析】根据反证法的步骤,则可假设为三角形中有两个或三个角是直角.故选D.【名师点睛】本题考查反证法,判断命题的反面是解题的关键.∥”,第一步应假设:5.用反证法证明“若a c,b c∥,则a b∥B.a与b垂直A.a bC.a与b不一定平行D.a与b相交6.用反证法证明“等腰三角形的底角是锐角”时,首先应假设_________.1.下列命题为真命题的是A.三角形的一个外角大于任何一个和它不相邻的内角B.两直线被第三条直线所截,同位角相等C.垂直于同一直线的两直线互相垂直D.三角形的外角和为1802.能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是A.120°,60°B.95°,105°C.30°,60°D.90°,90°3.下列命题的逆命题是真命题的是A.若a>0,b>0,则a+b>0 B.直角都相等C.同位角相等,两直线平行D.若a=b,则|a|=|b|4.下列命题:①长度相等的弧是等弧;②任意三点确定一个圆;③相等的圆心角所对的弦相等;④外心在三角形的一条边上的三角形是直角三角形,其中真命题有A.0个B.1个C.2个D.3个5.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是A.a=3,b=2 B.a=3,b=–2C.a=–3,b=–2 D.a=–2,b=–36.写出一个能说明命题:“若22a b>,则a b>”是假命题的反例:__________.7.请写出“四条边相等的四边形是菱形”的逆命题:__________.8.命题“同位角相等,两直线平行”的逆命题是:_____.9.已知命题“关于x的一元二次方程x2+bx+14=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是__________.10.若命题“12xy=⎧⎨=-⎩不是方程ax–2y=1的解”为假命题,则实数a满足:__________.11.如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.12.定理:直角三角形斜边上的中线等于斜边的一半.(1)写出这个定理的逆命题;(2)判断逆命题的真假并说明你的理由.13.写出下列命题的逆命题,并判断是真命题,还是假命题.(1)如果0a =,0b =,那么0ab =. (2)对顶角相等.13.如图,点D ,E 在△ABC 的边BC 上,连接AD ,AE .①AB =AC ;②AD =AE ;③BD =CE .以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题: A :①②⇒③;B :①③⇒②;C :②③⇒①.(1)以上三个命题是真命题的为__________(直接作答);(2)请选择一个真命题进行证明(先写出所选命题,然后证明).14.阅读以下证明过程:已知:在△ABC中,∠C≠90°,设AB=c,AC=b,BC=a.求证:a2+b2≠c2.证明:假设a2+b2=c2,则由勾股定理逆定理可知∠C=90°,这与已知中的∠C≠90°矛盾,故假设不成立,所以a2+b2≠c2.请用类似的方法证明以下问题:已知:关于x的一元二次方程x2-(m+1)x+2m-3=0有两个实根x1和x2.求证:x1≠x2.1.判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为A .﹣2B .﹣12C .0D .122.下列命题是真命题的是 A .对角线相等的四边形是矩形 B .对角线互相垂直的四边形是矩形 C .对角线互相垂直的矩形是正方形 D .四边相等的平行四边形是正方形3.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是 A .1B .2C .3D .44.下列命题是假命题的是A .到线段两端点距离相等的点在线段的垂直平分线上B .等边三角形既是轴对称图形,又是中心对称图形C .n 边形(3)n ≥的内角和是180360n ︒︒-D .旋转不改变图形的形状和大小 5.下列命题正确的是 A .矩形对角线互相垂直 B .方程214x x =的解为14x = C .六边形内角和为540°D .一条斜边和一条直角边分别相等的两个直角三角形全等 6.下列命题中假命题是 A .对顶角相等B .直线5y x =-不经过第二象限C .五边形的内角和为540︒D .因式分解()322x x x x x x ++=+7.下列命题是真命题的是A .两边及其中一边的对角分别相等的两个三角形全等B .平分弦的直径垂直于弦C .对边平行且一组对角相等的四边形是平行四边形D .两条直线被第三条直线所截,内错角相等 8.下列说法正确的是①函数y =x 的取值范围是13x .②若等腰三角形的两边长分别为3和7,则第三边长是3或7. ③一个正六边形的内角和是其外角和的2倍. ④同旁内角互补是真命题.⑤关于x 的一元二次方程2(3)0x k x k -++=有两个不相等的实数根.A .①②③B .①④⑤C .②④D .③⑤9.下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直,其中逆命题是真命题的是 A .①②③④B .①③④C .①③D .①10.下列说法正确的是A .有两边和一角分别相等的两个三角形全等B .有一组对边平行,且对角线相等的四边形是矩形C .如果一个角的补角等于它本身,那么这个角等于45°D .点到直线的距离就是该点到该直线的垂线段的长度 11.下列命题是真命题的是A .同旁内角相等,两直线平行B .对角线互相平分的四边形是平行四边形C .相等的两个角是对顶角D .圆内接四边形对角相等 12.现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一个图形和它经过平移所得的图形中,各组对应点所连接的线段平行且相等; ③通常温度降到0℃以下,纯净的水会结冰是随机事件;④一个角的两边与另一个角的两边分别平行,那么这两个角相等; ⑤在同一平面内,过一点有且只有一条直线与已知直线垂直; 其中真命题的个数有 A .1个B .2个C .3个D .4个13.下列命题是假命题的是A .n 边形(3n ≥)的外角和是360︒B .线段垂直平分线上的点到线段两个端点的距离相等C .相等的角是对顶角D .矩形的对角线互相平分且相等14.下列命题是假命题的是A .平行四边形既是轴对称图形,又是中心对称图形B .同角(或等角)的余角相等C .线段垂直平分线上的点到线段两端的距离相等D .正方形的对角线相等,且互相垂直平分15.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为A .0B .1C .2D .316.能说明命题“关于x 的方程240x x m -+=一定有实数根”是假命题的反例为A .1m =-B .0m =C .4m =D .5m =17.下列命题是假命题的是A .函数35y x =+的图象可以看作由函数31y x=﹣的图象向上平移6个单位长度而得到 B .抛物线234y x x =﹣﹣与x 轴有两个交点C .对角线互相垂直且相等的四边形是正方形D .垂直于弦的直径平分这条弦18.命题“三角形的三个内角中至少有两个锐角”是_____(填“真命题”或“假命题”).19.【安徽省2019年中考数学试题】命题“如果a +b =0,那么a ,b 互为相反数”的逆命题为____________________________.1.【答案】如果两个角是同一个角的余角,那么这两个角相等.【解析】根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,故答案为:如果两个角是同一个角的余角,那么这两个角相等.2.【答案】A【解析】直角三角形斜边上的中线等于斜边的一半,A是假命题;圆既是轴对称图形,又是中心对称图形,B是真命题;一组邻边相等的矩形是正方形,C是真命题;菱形对角线互相垂直平分,D是真命题;故选A.3.【答案】两直线平行,内错角相等【解析】“内错角相等,两直线平行”的条件是:内错角相等,结论是:两直线平行.将条件和结论互换得逆命题为:两直线平行,内错角相等.故答案为:两直线平行,内错角相等.4.【答案】A【解析】若x2=x,则x=1或x=0,所以原命题错误;若x=1,则x2=x,所以原命题的逆命题正确;若a2=b2,则a=±b,所以原命题错误;若a=b,则a2=b2,所以原命题的逆命题正确;线段垂直平分线上的点到线段两端点的距离相等,所以原命题正确;到线段两端点的距离相等的点在线段的垂直平分线上,所以原命题的逆命题正确;相等的弧所对的圆周角相等,所以原命题正确;相等的圆周角所对弧不一定相等,所以原命题的逆命题错误.故选A.5.【答案】D【解析】∵反证法证明“若a∥c,b∥c,则a∥b”,∴一步应假设a与b不平行,即:a,b相交.故选D.【名师点睛】此题主要考查了用反证法证明的基本步骤,在中考中经常以这种题型出现.【名师点睛】本题考查命题的定义,根据命题的定义,命题有题设和结论两部分组成.6.等腰三角形的底角是钝角或直角【解析】根据反证法的第一步:假设结论不成立设,可以假设“等腰三角形的两底都是直角或钝角”.故答案是:等腰三角形的两底都是直角或钝角.1.【答案】A【解析】三角形的一个外角大于任何一个和它不相邻的内角,A是真命题;两条平行线被第三条直线所截,同位角相等,B是假命题;在同一平面内,垂直于同一直线的两直线互相平行,C是假命题;三角形的外角和为360°,D是假命题;故选A.【名师点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.【答案】D【解析】∵互补的两个角可以都是直角,∴能说明命题“如果两个角互补,那么这两个角一定是锐角,另一个是钝角”为假命题的两个角是90°,90°,故选D.考点:本题考查的是两角互补的定义【名师点睛】解答本题的关键是熟练掌握两角互补的定义,即若两个角的和是180°,则这两个角互补.3.【答案】C【解析】A、若a>0,b>0,则a+b>0的逆命题为若a+b>0,则a>0,b>0,错误,为假命题;B、直角都相等的逆命题为相等的角都是直角,错误,为假命题;C、同位角相等,两直线平行的逆命题为两直线平行,同位角相等,为真命题;D、若a=b,则|a|=|b|的逆命题为若|a|=|b|,则a=b,错误,为假命题,故选C.【名师点睛】本题考查了命题与定理的知识,解题的关键是了解不等式的性质、直角的定义、平行线的性质及绝对值的意义,难度不大.4.【答案】B【解析】①等弧必须同圆中长度相等的弧,故本选项错误.②不在同一直线上任意三点确定一个圆,故本选项错误.③在等圆中相等的圆心角所对的弦相等,故本选项错误.④外心在三角形的一条边上的三角形是直角三角形,故本选项正确.所以只有④一项正确.故选B.5.【答案】C【解析】当a=3,b=2时,a2>b2,而a>b成立,故A选项不符合题意;当a=3,b=–2时,a2>b2,而a>b成立,故B选项不符合题意;当a =–3,b =–2时,a 2>b 2,但a >b 不成立,故C 选项符合题意;当a =–2,b =–3时,a 2>b 2不成立,故D 选项不符合题意;故选C .6.【答案】2,1a b =-=(注:答案不唯一)【解析】当2,1a b =-=时,222(2)4,1a b =-==根据有理数的大小比较法则可知:41,21>-<则此时满足22a b >,但不满足a b >因此,“若22a b >,则a b >”是假命题故答案为:2,1a b =-=.(注:答案不唯一)【名师点睛】本题考查了假命题的证明方法,掌握反例中题设与结论的特点是解题关键. 7.【答案】菱形的四条边相等【解析】“四条边相等的四边形是菱形”的逆命题为“菱形的四条边相等”.故答案为:菱形的四条边相等.8.【答案】两直线平行,同位角相等【解析】命题:“同位角相等,两直线平行.”的题设是“同位角相等”,结论是“两直线平行”.所以它的逆命题是“两直线平行,同位角相等.”故答案为“两直线平行,同位角相等”.9.【答案】当b =–12,方程没有实数解 【解析】∵b =–12时,Δ=(–12)2–4×14<0,∴方程没有实数解.∴当b =–12,方程没有实数解可作为说明这个命题是假命题的一个反例.故答案为:当b =–12,方程没有实数解. 10.【答案】a =–3【解析】当x =1、y =–2时,a +4=1,解得a =–3,故当a =–3时,12x y =⎧⎨=-⎩是方程ax –2y =1的解,则a =–3时,可以说明命题“12x y =⎧⎨=-⎩不是方程ax –2y =1的解”为假命题,故答案为:a =–3. 11.【解析】已知:∠1=∠2,∠B =∠C ;求证:∠A =∠D .证明:如图,∵∠1=∠3,∠1=∠2,∴∠3=∠2,∴EC ∥BF ,∴∠AEC =∠B .又∵∠B =∠C ,∴∠AEC =∠C ,∴AB ∥CD ,∴∠A =∠D .12.【解析】(1)直角三角形斜边上的中线等于斜边的一半的逆命题为:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(2)真命题.证明如下:已知:如图,在△ABC 中,点D 是AB 的中点,连接CD ,且CD =12A B .求证:△ABC 是直角三角形.证明:∵点D 是AB 的中点∴AD =BD∵CD =12AB , ∴AD =BD =CD ,∴∠DAC =∠ACD ,∠DCB =∠DBC∵∠DAC +∠ACD +∠DCB +∠DBC =180°∴∠ACD +∠DCB =90°,即∠ACB =90°∴△ABC 是直角三角形.【名师点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.13.【解析】(1)逆命题:如果0ab =,那么0a =,0b =;假命题.(2)逆命题:如果两个角相等,那么这两个角是对顶角;假命题.【名师点睛】此题考查命题与定理,解题关键在于掌握判定定理.14.【解析】假设x 1=x 2,则[-(m +1)]2-4(2m -3)=0,整理得:m2-6m+13=0,而m2-6m+13=(m-3)2+4>0,与m2-6m+13=0矛盾,故假设不成立,所以x1≠x2.1.【答案】A【解析】当n=﹣2时,满足n<1,但n2﹣1=3>0,所以判断命题“如果n<1,那么n2﹣1<0”是假命题,举出n=﹣2.故选A.【名师点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.2.【答案】C【解析】A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线相等的平行四边形是矩形,所以B选项错误;C、对角线互相垂直的矩形是正方形,所以C选项正确;D、四边相等的菱形是正方形,所以D选项错误.故选C.【名师点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.3.【答案】A【解析】①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选A.【名师点睛】考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.【答案】B【解析】A 、到线段两端点距离相等的点在线段的垂直平分线上,正确,是真命题;B 、等边三角形是轴对称图形,但不是中心对称图形,错误,是假命题;C 、n 边形(3)n ≥的内角和是180360n ︒︒-,正确,是真命题;D 、旋转不改变图形的形状和大小,正确,是真命题,故选B .【名师点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【答案】D【解析】A .矩形对角线互相垂直,不正确;B .方程x 2=14x 的解为x =14,不正确;C .六边形内角和为540°,不正确;D .一条斜边和一条直角边分别相等的两个直角三角形全等,正确;故选D .【名师点睛】本题考查了命题与定理、矩形的性质、一元二次方程的解、六边形的内角和、直角三角形全等的判定;要熟练掌握.6.【答案】D【解析】A .对顶角相等;真命题;B .直线5y x =-不经过第二象限;真命题;C .五边形的内角和为540︒;真命题;D .因式分解()322+1++=+x x x x x x ;假命题;故选D .【名师点睛】本题考查了命题与定理、真命题和假命题的定义:正确的命题是真命题,错误的命题是假命题;属于基础题.7.【答案】C【解析】A 、由两边及其中一边的对角分别相等无法证明两个三角形全等,故A 错误,是假命题; B 、平分弦(非直径)的直径垂直于弦,故B 错误,是假命题;C 、一组对边平行且一组对角相等的四边形是平行四边形,故C 正确,是真命题;D 、两条平行线被第三条直线所截,内错角相等,故D 错误,是假命题;故选C .【名师点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.【答案】D【解析】①函数y =x 的取值范围是13x >-,故错误. ②若等腰三角形的两边长分别为3和7,则第三边长是7,故错误.③一个正六边形的内角和是其外角和的2倍,正确.④两直线平行,同旁内角互补是真命题,故错误.⑤关于x 的一元二次方程2(3)0x k x k -++=有两个不相等的实数根,正确, 故选D .【名师点睛】此类题的知识综合性非常强.要求对每一个知识点都要非常熟悉.注意:二次根式有意义的条件是被开方数是非负数,分式有意义的条件是分母不等于0,弄清等腰三角形的三线合一指的是哪三条线段,熟悉多边形的内角和公式和外角和公式,熟练配方法的步骤;理解正多边形内角和外角关系;熟记根判别式.9.【答案】C【解析】①两直线平行,内错角相等;其逆命题:内错角相等,两直线平行,是真命题; ②对顶角相等,其逆命题:相等的角是对顶角,是假命题;③等腰三角形的两个底角相等,其逆命题:有两个角相等的三角形是等腰三角形,是真命题; ④菱形的对角线互相垂直,其逆命题:对角线互相垂直的四边形是菱形,是假命题;故选C .【名师点睛】本题考查了写一个命题的逆命题的方法,真假命题的判断,弄清命题的题设与结论,掌握相关的定理是解题的关键.10.【答案】D【解析】A .有两边和一角分别相等的两个三角形全等;不正确;B .有一组对边平行,且对角线相等的四边形是矩形;不正确;C .如果一个角的补角等于它本身,那么这个角等于45°;不正确;。
人教版初中数学知识点(全)
![人教版初中数学知识点(全)](https://img.taocdn.com/s3/m/196999dcdc88d0d233d4b14e852458fb770b389a.png)
人教版初中数学知识点(全)一、整数与有理数1. 整数的概念与表示方法2. 整数的加减法3. 整数的乘法4. 整数的除法5. 整数的混合运算6. 有理数的概念与表示方法7. 有理数的加减法8. 有理数的乘法9. 有理数的除法10. 有理数的混合运算二、代数与方程1. 代数式的基本概念2. 代数式的运算3. 初等代数式4. 一元一次方程5. 一元一次方程的解6. 一元一次方程的应用三、平面图形1. 点、线、面的基本概念2. 直线的性质3. 角的概念与性质4. 线段的概念与性质5. 三角形的基本概念与性质6. 三角形的分类与判定7. 直角三角形与勾股定理8. 平行线与平行四边形9. 四边形的分类及其性质10. 梯形和平行四边形的面积四、图形的位置与方位1. 坐标系2. 图形的部分、全及简单运动3. 图形的位置关系4. 图形的投影和视图五、数据的处理与统计1. 统计调查与数据收集2. 单图形的统计3. 标线图4. 等距统计图与频数分布直方图5. 旋转、平移、翻折、镜面变换6. 几何图形的位置关系六、函数的初步认识1. 函数的概念与表示2. 函数的自变量、因变量与函数图象3. 线性函数及其图象的特征4. 恒等函数和常数函数5. 一元一次方程与一元一次函数七、空间与立体图形1. 立体图形的基本概念2. 正交投影3. 立体图形的展开图4. 空间中的位置关系与方向八、相似与全等1. 点、线、平面的基本性质2. 同位角和同旁内角3. 两个线的夹角与两个平面的夹角4. 直线与平面的位置关系5. 立体图形的拆分九、变量与变化1. 变量与量的关系2. 变量的代数表示3. 变量之间的关系及其图象4. 变量间比例关系及其图象十、数系的扩充1. 自然数、整数、有理数的关系2. 实数的概念与性质3. 几何图形的相似比与相似定理4. 实际问题与解整数方程5. 锐角三角函数、直角三角函数十一、平面直角坐标系1. 平面直角坐标系的建立2. 点与平面直角坐标系3. 点在平面直角坐标系中的坐标4. 平面直角坐标系与方程十二、几何图形的变换1. 图形的变换2. 平移和旋转3. 对称与中心对称4. 拓展与概括(图形自相似、放缩)以上是人教版初中数学知识点的概述,其中包括整数与有理数、代数与方程、平面图形、图形的位置与方位、数据的处理与统计、函数的初步认识、空间与立体图形、相似与全等、变量与变化、数系的扩充、平面直角坐标系以及几何图形的变换等内容。
人教版初中数学中考复习知识点归纳总结全册
![人教版初中数学中考复习知识点归纳总结全册](https://img.taocdn.com/s3/m/aef070092a160b4e767f5acfa1c7aa00b52a9da5.png)
人教版初中数学中考复习知识点归纳总结
全册
第一章:有理数
1. 有理数的概念和表示方法
- 有理数是可以表示为两个整数的比例的数,包括整数、分数
和小数。
- 有理数可以用分数的形式表示,也可以用小数的形式表示。
2. 有理数的比较和大小关系
- 有理数可以通过大小关系进行比较,可以使用大小符号(<, >, =)进行表示。
3. 有理数的加法和减法
- 有理数之间可以进行加法和减法运算,运算结果仍为有理数。
...
第二章:代数式及其计算
1. 代数式的概念和性质
- 代数式是由数、字母和运算符号组成的表达式。
- 代数式可以进行加法、减法、乘法和除法运算。
2. 代数式的加法和减法
- 代数式之间可以进行加法和减法运算,运算结果仍为代数式。
...
第三章:方程及其应用
1. 方程的概念和解的概念
- 方程是含有未知数的等式。
- 方程的解是能使方程成立的值。
2. 一元一次方程
- 一元一次方程是一个未知数的一次方程。
- 解一元一次方程的方法包括移项、合并同类项、化简和求解。
...
(继续列举下一章节的内容)
总结
本文档总结了人教版初中数学中考的重点知识点,包括有理数、代数式及其计算、方程及其应用等多个章节的内容。
每个章节介绍
了该主题的概念、性质和解题方法。
这些知识点是中考数学复习的
重点内容,希望能对同学们的复习提供帮助。
【精编】中考必备:人教版初中数学知识点总结(完整版)2023
![【精编】中考必备:人教版初中数学知识点总结(完整版)2023](https://img.taocdn.com/s3/m/b9bb5379b80d6c85ec3a87c24028915f804d84a3.png)
【精编】中考必备:人教版初中数学知识点总结(完整版)2023一、数与式1.数的认识1.1 自然数自然数是人们最早形成的概念之一,即从1开始逐一加1的数字序列。
自然数包括正整数和零。
1.2 负数负数是小于零的整数。
负数在数轴上表示为向左移动。
1.3 整数整数由自然数、0和负数组成。
1.4 分数分数表示除法的一种形式。
分数由分子和分母组成,分子表示被除数,分母表示除数。
1.5 小数小数是不能化为整数比的数,可以写成分数的带分数形式或非循环小数和循环小数的形式。
2.有理数有理数是可以表示为两个整数之比的数,包括整数、分数和小数。
3.实数实数是有理数和无理数的统称。
4.函数函数是一种特殊的关系,它把一个数集的每个元素都对应到另一个数集的唯一元素上。
函数包括定义域、值域、图像等概念。
5.代数式及其计算代数式是用数和字母表示的式子。
代数式的计算包括合并同类项、提取公因式、配方法、乘法公式、因式分解等。
二、图形与几何1.平面图形平面图形包括点、线段、射线、直线、角、三角形、四边形、多边形和圆等。
2.三视图及等腰三角形三视图是一个物体分别在正、左、上三个方向上的投影图。
等腰三角形是指两边边长相等的三角形。
3.全等三角形及判断相似全等三角形是指对应的三边和三个内角全部相等的三角形。
相似三角形是指对应的两个角相等的三角形。
4.平行线及其性质平行线是指在同一个平面上不相交的直线。
平行线的性质包括平行公理、平行线性质、平行线定理等。
5.比例与分析比例是指两个数或两个量之间的相等关系。
比例的应用包括比例尺、比例方程、比例的四性质等。
6.圆与圆周角圆是指平面上任意一点与一个确定的点之间的距离相等的点的集合。
圆周角是指与圆心角对应的两条弧所夹的角。
7.计算器的使用计算器是辅助学习数学的工具之一,学生需要学会合理使用、读取和解读计算器上的数值。
三、数据与概率1.统计图及频数分布统计图用直方图、折线图、饼图等形式将数据进行可视化展示。
中考必备:人教版初中数学知识点总结 (完整版)
![中考必备:人教版初中数学知识点总结 (完整版)](https://img.taocdn.com/s3/m/c4f681aeb90d6c85ed3ac682.png)
初中数学知识点总结七年级数学(上)知识点 (2)第一章有理数 (2)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (7)第一章相交线与平行线 (7)第二章平面直角坐标系 (8)第三章三角形 (8)第四章二元一次方程组 (9)第五章不等式与不等式组 (10)第六章数据的收集、整理与描述 (11)八年级数学(上)知识点 (12)第一章全等三角形 (12)第二章轴对称 (13)第三章实数 (13)第四章一次函数 (14)第五章整式的乘除与分解因式 (14)八年级数学(下)知识点 (17)第一章分式 (17)第二章反比例函数 (18)第三章勾股定理 (18)第四章四边形 (19)第五章数据的分析 (20)九年级数学(上)知识点 (22)第一章二次根式 (22)第二章一元二次根式 (22)第三章旋转 (23)第四章圆 (24)第五章概率 (25)九年级数学(下)知识点 (26)第一章二次函数 (26)第二章相似 (27)第三章锐角三角函数 (28)第四章投影与视图 (29)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b互为倒数;若ab=-1 a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a -b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b -a)n , 当n 为正偶数时: (-a)n =a n 或 (a -b)n =(b -a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
2023年初中数学中考考点归纳双向细目表
![2023年初中数学中考考点归纳双向细目表](https://img.taocdn.com/s3/m/f04724bfaff8941ea76e58fafab069dc502247d6.png)
2023年初中数学中考考点一、代数1. 一元一次方程与一元一次不等式 1.1 解一元一次方程1.2 解一元一次不等式2. 整式2.1 整式的加减2.2 整式的乘除3. 因式分解3.1 提公因式法3.2 积因式分解4. 分式4.1 分式的加减4.2 分式的乘除二、几何1. 相似三角形1.1 判定相似三角形 1.2 相似三角形的性质2. 平行线与三角形2.1 平行线的性质2.2 三角形内角和3. 圆3.1 圆的性质3.2 圆内接四边形4. 三角形4.1 三角形的外角性质 4.2 三角形的面积计算三、函数与图像1. 一次函数1.1 一次函数的性质 1.2 一次函数图像2. 二次函数2.1 二次函数的性质2.2 二次函数图像3. 绝对值函数3.1 绝对值函数的性质 3.2 绝对值函数图像四、统计与概率1. 统计1.1 统计量的计算1.2 统计图的绘制2. 概率2.1 基本概率事件2.2 条件概率的计算五、解析几何1. 直线与圆1.1 直线与圆的位置关系 1.2 直线与圆的性质2. 空间图形2.1 空间图形的投影2.2 空间图形的体积计算六、实际问题1. 实际问题的解决方法1.1 将实际问题转化为数学问题1.2 利用数学方法解决实际问题2. 实际问题的综合运用2.1 结合多种数学知识解决实际问题 2.2 实际问题综合运用的技巧七、综合练习1. 综合练习题1.1 完形填空题1.2 阅读理解题2. 综合练习题解析2.1 完形填空题解析2.2 阅读理解题解析以上便是2023年初中数学中考的考点归纳双向细目表,同学们在备考中可根据此表进行有针对性的复习和练习,以取得更好的考试成绩。
2023年初中数学中考考点归纳双向细目表随着2023年初中数学中考的逐渐临近,同学们将面临着对数学知识的系统复习和全面梳理。
为了帮助同学们更好地备战数学中考,以下将就上文所述的考点进行更加详细的探讨和扩充。
一、代数代数是数学中的重要分支,它涵盖了一元一次方程与一元一次不等式、整式、因式分解和分式等内容。
2024中考数学知识点总结
![2024中考数学知识点总结](https://img.taocdn.com/s3/m/0e6be1aba0c7aa00b52acfc789eb172ded639928.png)
2024中考数学知识点总结一、数与式1. 数的分类与立法运算- 自然数、整数、有理数、无理数的概念及相互关系。
- 自然数、整数、有理数的加减法、乘除法的规则。
- 无理数的定义及有理数与无理数的运算。
2. 数的积、商和负数- 实数的积的符号规定及实数的乘法运算律。
- 正数和负数的乘法及除法。
- 负数的概念及运算。
3. 数轴及整式的定义和四则运算- 数轴的概念与表示法。
- 整数的概念及整式的定义。
- 整式的加减法和乘法。
4. 一元一次整式方程- 整式方程的概念和解一元一次整式方程的方法。
- 一元一次整式方程的实际应用。
二、图形与运算1. 基本图形、圆与弦- 正方形、长方形、平行四边形、等腰三角形、直角三角形、等边三角形等基本图形的性质与判断。
- 圆的概念、圆心角、弧与弧长的关系。
2. 平移、旋转与镜像- 平面上的平移、旋转和镜像的概念及判断。
- 图形的平移、旋转和镜像的性质及判断。
3. 直线、角、三角- 直线的概念及判断。
- 角的概念、相邻角、对顶角、对角线等性质及判断。
- 三角形的分类、判断和性质。
4. 相交线与平行线- 平行线与相交线的性质及判断。
- 平行线与平行线的性质及判断。
5. 不等式、区间与正数幂- 不等式的概念及解不等式的方法。
- 区间的概念及判断。
- 正数指数与幂以及具体问题的表示与计算。
三、函数与图像1. 函数的概念与运算- 函数的定义及函数与方程的关系。
- 函数的运算规则。
- 函数的自变量与因变量的关系。
2. 一次函数和二次函数- 一次函数的定义、图象及特征。
- 一次函数的性质及应用。
- 二次函数的定义、图象及特征。
3. 方程与函数- 方程与函数的关系及解方程的基本思路。
- 一次方程、二次方程的定义、方法及应用。
4. 极大极小值- 极大极小值的概念、条件。
- 一元二次函数的极大极小值的应用。
5. 图像的平移与缩放- 图像平移的概念、规律及图示。
- 图像缩放的概念、规律及图示。
6. 函数的定义域和值域- 函数定义域的概念及计算。
中考数学知识点总结 实数 (6大知识点+例题) 新人教版
![中考数学知识点总结 实数 (6大知识点+例题) 新人教版](https://img.taocdn.com/s3/m/50a4ebfcf78a6529657d5353.png)
中考数学知识点总结 实数 (6大知识点+例题) 新人教版基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
初中数学知识点中考总复习总结归纳(人教版)
![初中数学知识点中考总复习总结归纳(人教版)](https://img.taocdn.com/s3/m/d45fdcd818e8b8f67c1cfad6195f312b3069eb5c.png)
初中数学知识点中考总复习总结归纳(人教版)2023年初中数学知识点中考总复习总结归纳第一章有理数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,32等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001…等;(4)一些三角函数,如sin60o等π+8等;3第二章整式的加减考点一、整式的有关概念(3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如?4ab,这种表示就是错误的,应写成?132132ab。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如3?5a3b2c是6次单项式。
考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。
(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。
4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。
初三数学知识点归纳人教版
![初三数学知识点归纳人教版](https://img.taocdn.com/s3/m/88c014835122aaea998fcc22bcd126fff7055d9e.png)
初三数学知识点归纳人教版一、一元二次方程。
1. 定义。
- 只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
一般形式为ax^2+bx + c=0(a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
2. 解法。
- 直接开平方法:对于方程x^2=k(k≥0),解得x=±√(k)。
例如(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。
- 配方法:将一元二次方程ax^2+bx + c = 0(a≠0)通过配方转化为(x+(b)/(2a))^2=frac{b^2-4ac}{4a^2}的形式,然后再用直接开平方法求解。
例如x^2+6x - 1 = 0,配方得(x + 3)^2=10,解得x=-3±√(10)。
- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}(b^2-4ac≥0)。
- 因式分解法:将方程化为两个一次因式乘积等于0的形式,即(mx +n)(px+q)=0,则mx + n = 0或px + q = 0。
例如x^2-3x+2 = 0,分解因式得(x - 1)(x -2)=0,解得x = 1或x = 2。
3. 根的判别式。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),其判别式Δ=b^2-4ac。
- 当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。
4. 一元二次方程根与系数的关系(韦达定理)- 对于一元二次方程ax^2+bx + c = 0(a≠0),若方程的两根为x_1,x_2,则x_1+x_2=-(b)/(a),x_1x_2=(c)/(a)。
二、二次函数。
1. 定义。
- 一般地,形如y = ax^2+bx + c(a≠0)的函数叫做二次函数,其中a、b、c是常数,x是自变量。
初中数学中考必考知识点
![初中数学中考必考知识点](https://img.taocdn.com/s3/m/9b3fcaefdc3383c4bb4cf7ec4afe04a1b071b0cf.png)
初中数学中考必考知识点
数学中考必考知识点包括基本运算、整数与有理数、代数式、方程与
不等式、平面几何、三角形与三角函数、平行四边形与梯形、圆与圆的性质、空间几何、统计与概率等。
1.基本运算:包括加减乘除以及其组合运算。
2.整数与有理数:整数的概念、相反数、绝对值、整数的加减乘除等
基本运算;有理数的概念、相等性质、加减乘除等基本运算。
3.代数式:代数式的概念、代数式的运算、代数式的值等。
4.方程与不等式:一元一次方程及其应用、一元一次不等式及其应用、两个一元一次方程组及其解法等。
5.平面几何:线段、角的概念、角的度量、平行线与垂直线的判定、
平行线与角的性质、三角形的分类与判定、全等三角形的判定、平行四边
形与矩形的性质、梯形的性质等。
6.三角形与三角函数:三角形的角的度量、三角形的角的性质、勾股
定理和解直角三角形、正弦定理和余弦定理、三角函数值的应用等。
7.平行四边形与梯形:平行四边形的性质、梯形的性质、圆柱、圆锥、球的表面积和体积等。
8.圆与圆的性质:圆的概念、圆的性质、圆内接四边形和圆内接多边
形的性质等。
9.空间几何:射影定理、垂直半径定理、比例分割定理等。
10.统计与概率:图表的读写与应用、频数和频率的计算、样本调查概率的计算等。
以上是初中数学中考必考知识点的大致内容,学生在中考前需要对这些知识点进行系统的复习和巩固,理解概念,掌握基本运算和解题方法,做到熟练灵活运用。
除了理论知识,还需要通过做练习题和模拟试题来提高解题能力和应试技巧。
最重要的是,要充分理解数学的应用价值,培养善于运用数学思维解决实际问题的能力。
初中数学知识点中考分值分布
![初中数学知识点中考分值分布](https://img.taocdn.com/s3/m/cb67b509e418964bcf84b9d528ea81c758f52e9b.png)
初中数学知识点中考分值分布在初中数学中,各个知识点的掌握程度对学生在考试中的成绩起着至关重要的作用。
不同的知识点往往有不同的考查方式和分值分布。
了解各个知识点的中考分值分布,可以帮助学生合理安排备考时间和精力,提高自己在数学考试中的得分率。
下面,我们将主要探讨初中数学中常见的几个重要知识点的中考分值分布情况。
1. 等式与方程:等式与方程作为初中数学的基础知识点之一,通常在中考中占据较大的分值比重。
考题类型包括解方程、化简等式、判断等式成立与否等。
通过对等式与方程的练习和掌握,可以帮助学生提高逻辑思维能力和解题能力。
2. 几何图形:几何图形在初中数学中也是一个重要的知识点。
中考中经常涉及到的几何图形包括平行四边形、三角形、圆等。
此外,还需要掌握几何图形的性质和相关定理。
中考中关于几何图形的考题主要涉及到计算面积、周长、判断图形性质等。
3. 比例与相似:比例与相似是初中数学中一个综合性较强的知识点。
中考中经常涉及到的比例与相似的内容包括比例的计算、比例方程的求解、相似三角形的性质等。
了解和掌握比例与相似的知识点对于在中考中取得较高的得分至关重要。
4. 函数:函数作为初中数学的一个重要知识点,也是中考中的重点考查内容之一。
中考中与函数相关的知识点主要包括函数的概念、函数图像的分析、函数表达式的求解等。
通过对函数的学习和掌握,可以帮助学生提高数学分析和图像处理的能力。
5. 统计与概率:统计与概率也是初中数学中常见的知识点之一。
中考中会对统计与概率的基础知识进行考查,包括数据图表的解读、概率计算、事件的组合与排列等。
了解统计与概率的知识点可以帮助学生在中考中更好地应对与此相关的考题。
总体来说,初中数学中各个知识点的中考分值分布是不均匀的。
一些基础知识点如等式与方程、几何图形等通常占据较大的分值比重,需要学生加强复习和掌握。
而对于一些综合性较强的知识点如比例与相似、函数等,虽然分值比重可能相对较小,但对于学生的整体数学能力提升起着至关重要的作用。
人教版中考数学知识点归纳
![人教版中考数学知识点归纳](https://img.taocdn.com/s3/m/9bb612e577a20029bd64783e0912a21614797f3f.png)
人教版中考数学知识点归纳中考数学是学生升入高中的重要关口,难度不容小觑。
为了帮助学生系统地掌握人教版中考数学的重点知识,本文将对人教版中考数学知识点进行归纳总结。
以下是人教版中考数学常见知识点及其重难点的详细介绍。
一、数与式的运算在数与式的运算中,常见的知识点有加法、减法、乘法和除法。
其中,乘法是中考数学的重难点之一。
学生需要掌握乘法表的基础,了解乘法的运算法则,掌握乘法综合运用的方法。
此外,学生还需要了解小数、分数、百分数的运用以及其与整数四则运算的关系。
二、代数式及其运算代数式是中考数学的重要内容之一,包括代数式的定义、代数式的基本性质、多项式的展开式、配方法等内容。
其中,多项式的展开式是一个重要难点,需要学生掌握二次多项式、三次多项式的展开方法。
在配方法中,需要学生了解通项公式,掌握两个三角函的运用,以及能够正确应用配方法消去分式的难点。
三、常用函数常用函数包括一次函数、二次函数、常比例函数、反比例函数等。
其中,一次函数和二次函数是中考数学中的重点内容。
学生需要掌握一次函数和二次函数的基本概念、性质和定义,了解函数的图像、单调性、奇偶性等,以及掌握方程求解的方法。
四、几何知识几何知识包括平面几何和空间几何两个部分。
其中,平面几何主要包括角和三角形、直线和圆等内容,而空间几何涉及的内容则更为广泛,包括平行和垂直、角和面积、几何体等。
在解题时,学生需要掌握等腰三角形、直角三角形和全等三角形的求解方法以及勾股定理、正弦定理等三角函数的知识点。
五、数据及概率数据及概率是考到应用题中的重点。
学生需要了解数据统计方法如频数、频率、中位数、众数和一些数据的图形展示方式。
在概率理论方面,学生需要掌握一些基本概率公式和概率加法及乘法原理。
在应用题中的概率问题,学生需要正确理解题意,以便能够运用概率相关知识解决实际问题。
六、解析几何解析几何属于高中数学课程的一部分,但在中考数学中也包含了一些基础的内容。
学生需要了解坐标系的建立、点、线、圆的方程等基本知识点。
中考数学人教版知识点归纳
![中考数学人教版知识点归纳](https://img.taocdn.com/s3/m/440c5f9c6037ee06eff9aef8941ea76e58fa4a0c.png)
中考数学人教版知识点归纳中考数学是学生在中学阶段非常重要的一次考试,它不仅考察学生对数学基础知识的掌握,还考察学生解决问题的能力。
以下是人教版中考数学的知识点归纳:一、数与代数1. 有理数的四则运算和性质。
2. 绝对值、相反数的概念和应用。
3. 代数式的基本运算,包括加减乘除以及幂的运算。
4. 因式分解的方法,如提取公因式、公式法等。
5. 一元一次方程和一元二次方程的解法。
6. 不等式的性质和解法。
7. 函数的概念,包括一次函数、二次函数、反比例函数等。
二、几何1. 线段、角、三角形的基本性质和分类。
2. 四边形的性质,包括平行四边形、矩形、菱形、正方形等。
3. 圆的性质,包括圆周角、切线、弧长、扇形面积等。
4. 相似三角形和全等三角形的判定与性质。
5. 三角函数,包括正弦、余弦、正切等。
6. 空间几何,如立体图形的表面积和体积计算。
三、统计与概率1. 数据的收集、整理和描述,包括条形统计图、折线统计图、饼图等。
2. 平均数、中位数、众数的计算和意义。
3. 方差和标准差的计算,以及它们在数据分析中的作用。
4. 概率的基本概念,包括事件的独立性、互斥性等。
5. 简单事件的概率计算。
四、综合应用1. 解决实际问题,如速度、距离、时间问题,成本、利润问题等。
2. 数学建模,将实际问题抽象成数学问题进行求解。
3. 逻辑推理能力,包括演绎推理和归纳推理。
结束语:掌握中考数学的知识点是基础,但更重要的是学会如何运用这些知识解决实际问题。
希望以上的知识点归纳能够帮助同学们更好地复习和准备中考数学,祝大家取得优异的成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.证明
选择、证明题
.全等三角形
选择、填空题
.三角形全等的判定
证明题
.尺规作图
作图题
第二章特殊三角形
.图形的轴对称
a. 图形的对称性及轴对称的应用b.等腰三角形的概念、性质和判定c.直角三角形的概念、性质和判定
d.勾股定理及其逆定理
e.直角三角形全等的判定
选择、填空题
等腰三角形
选择、填空、解答题
填空、解答题
角的和差
解答题
余角和补角
填空、解答题
直线的相交
填空、解答题
七年级下册
章节
节次
重难点
出题类型
第一章平行线
平行线
a.平行线的判定与性质b.平移的性质及作法
选择、填空题
同位角、内错角、同旁内角
选择、填空、证明题
平行线的判定
选择、填空、证明题
平行线的性质
选择、填空、证明题
图形的平移
选择、填空、证明题
立方根
选择、填空、计算题
实数的运算
选择、填空、计算题
第四章代数式
用字母表示数
a.理解代数式的含义b.单项式、多项式及整式的概念c.合并同类项的运用
选的值
填空题
整式
选择、填空题
合并同类项
解答题
整式的加减
计算题
第五章一元一次方程
一元一次方程
a.等式性质的理解及运用b.解方程c.应用题的方程解法
选择、填空、解答题
单项式的乘法
选择、填空、解答题
多项式的乘法
选择、填空、解答题
乘法公式
选择、填空、解答题
整式的化简
选择、填空、解答题
同底数幂的除法
选择、填空、解答题
整式的除法
选择、填空、解答题
第四章因式分解
因式分解
a.应用各种方法分解因式b.利用因式分解解方程
选择、填空、解答题
提取公因式法
选择、填空、解答题
.二次根式的运算
选择、填空、计算题
第二章一元二次方程
.一元二次方程
a. 一元二次方程的概念及形式b.解法及根的判别式c.一元二次方程应用
d.韦达定理的应用
选择、填空题
一元二次方程的解法
选择、填空、解答题
.一元二次方程的应用
选择、填空、解答题
.一元二次方程根与系数的关系
选择、填空、解答题
第三章数据分析初步
选择、填空题
.不等式的基本性质
选择、填空、计算题
.一元一次不等式
计算题
.一元一次不等式组
计算题
第四章图形与坐标
.探索确定位置的方法
a.平面直角坐标系内点的特征及运用
选择、填空、应用题
.平面直角坐标系
选择、填空、应用题
.坐标平面内图形的轴对称和平移
选择、填空、解答题
第五章一次函数
.常量与变量
a.函数的概念、函数关系式b.一次函数的概念
选择、填空、计算题
有理数的减法
选择、填空、计算题
有理数的乘法
选择、填空、计算题
有理数的除法
选择、填空、计算题
有理数的乘方
选择、填空、计算题
有理数的混合运算
选择、填空、计算题
近似数
选择题
第三章实数
平方根
a.对平方根、算术平方根概念的理解b.平方根与算术平c.实数含义的理解
选择、填空、计算题
实数
选择、填空、计算题
图象、性质
c.一次函数在解决实际问题
选择、填空题
.函数
选择、填空、解答题
.一次函数
选择、填空、解答题
.一次函数的图象
选择、填空、解答题
.一次函数的简单应用
计算、应用题
八年级下册
章节
节次
重难点
出题类型
第一章二次根式
.二次根式
a.二次根式的意义的应用 b.二次根式的计算
选择、填空题
二次根式的性质
选择、填空题
用乘法公式分解因式
选择、填空、解答题
第五章分式
分式
a.了解分式的基本性质b.分式加减乘除运算c.解分式方程及应用
选择、填空、解答题
分式的基本性质
选择、填空、解答题
分式的乘除
选择、填空、解答题
分式的加减
选择、填空、解答题
分式方程
选择、填空、解答题
第六章数据与统计图表
数据的收集与整理
a.了解简单的随机抽样b. 了解三种统计图的特点;会制作统计图,能用统计图直观有效地描述数据 c. 计算频数、频数
填空题、计算题
等式的基本性质
计算题
一元一次方程的解法
计算题
一元一次方程的应用
计算题、解答题
第六章图形的初步知识
几何图形
a. 线段与角的大小比较b. 线段与角的和差问题 c. 时钟角度问题
选择、填空题
线段、射线和直线
选择、填空题
线段的长短比较
选择、填空题
线段的和差
解答题
角与角的度量
选择、填空题
角的大小比较
.平行四边形极其性质
选择、填空、应用题
.中心对称
选择题
.平行四边形的判定定理
选择、证明题
.三角形的中位线
选择、计算、证明题
.反证法
证明题
第五章特殊平行四边形
.矩形
a.矩形的定义、性质及判定
b.菱形的定义、性质及判定
.平均数
a.数据分析的概念及意义b.计算
选择、填空、计算题
.中位数和众数
选择、填空、计算题
.方差和标准差
选择、填空、计算题
第四章平行四边形
.多边形
a.多边形的定义,内角和的计算、外角和
b.平行四边形的定义极其性质、判定
c.平行四边形的相关计算
d.中心对称的应用e.三角形的中位线的定义、性质及运用
选择、填空题
第二章二元一次方程组
二元一次方程
a.解法:代入消元法和加减消元法b.应用二元一次方程组解决实际问题c.能解简单的三元一次方程组
选择、填空题
二元一次方程组
选择、填空、解答题
二元一次方程组的应用
选择、填空、解答题
三元一次方程组及其应用
选学,涉及较少
第三章整式的乘除
同底数幂的乘法
a.正整数、0、负整数指数幂的运算b.整式乘、除法运算c.乘法公式运用d.用科学记数法e.多项式除法
人教版初中数学知识点分布以及中考考点
七年级上册
章节
节次
重难点
出题类型
第一章有理数
从自然数到有理数
a. 有理数概念的理解
b. 相反数、绝对值的运用
选择题
数轴
选择、填空题
绝对值
填空题
有理数的大小比较
填空题
第二章有理数的运算
有理数的加法
a. 有理数混合计算的熟练掌握 b. 近似数的理解 c. 科学计数法的运用
选择、填空、解答题
条形统计图和折线统计图
解答题
扇形统计图
选择、填空、解答题
频数与频率
选择、填空、解答题
频数直方图
解答题
八年级上册
章节
节次
重难点
出题类型
第一章三角形的初步知识
.认识三角形
a.三角形的定义及性质 b.定义及命题的性质
c.证明的方法 d.全等三角形的判定e.尺规作图的方法
选择、填空题
定义与命题
.等腰三角形的性质定理
选择、填空、解答题
.等腰三角形的判定定理
选择、填空、解答题
.逆命题和逆定理
选择、填空、解答题
.直角三角形
选择、填空、解答题
.探索勾股定理
选择、填空、解答题
.直角三角形全等的判定
选择、填空、解答题
第三章一元一次不等式
.认识不等式
a.不等式的基本性质b.一元一次不等式(组)的解法及解决实际问题