2017中考数学专题训练:《统计与概率》测试题及答案
2017年中考数学《统计》专题训练含答案解析
![2017年中考数学《统计》专题训练含答案解析](https://img.taocdn.com/s3/m/55338cf381c758f5f71f6705.png)
统计一.选择题1.已知甲学校的男生占全校人数的50%,乙学校的女生占该校总人数的50%,则下列结论中,正确的是()A.甲校的男生与乙校的女生人数一样多B.甲校的女生与乙校的男生人数一样多C.甲校的男生比乙校的女生多D.不能确定2.在反映某种股票的涨跌情况时,选择()A.条形统计图B.折线统计图C.扇形统计图D.以上都可以3.在下列语句中,其中正确的语句是()A.在统计中应用扇形统计图B.在统计中应用条形统计图C.在统计中应用哪种统计图要根据具体情况选择适当的统计图D.在统计中应用折线统计图4.如图是某班学生最喜欢的球类活动人数统计图,则下列说法不正确的是()A.该班喜欢乒乓球的学生最多B.该班喜欢排球与篮球的学生一样多C.该班喜欢足球的人数是喜欢排球人数的1.25倍D.该班喜欢其它球类活动的人数为5人5.根据呼和浩特市第一季度用电量的扇形统计图,则二月份用电量占第一季度用电量的百分比为()A.60% B.64% C.54% D.74%6.如图是某企业6月份各项支出金额占该月总支出金额的比例情况统计图,该月总支出金额为40万元.7月份由于原料提价需增加1万元支出,如果在总支出金额不变的情况下,压缩管理支出,那么7月份绘制的统计图中,管理支出所占区域的扇形圆心角度数为()A.25°B.27°C.30°D.36°二.填空题7.扇形统计图中,圆代表.8.八年级(1)班进行一次数学测验,成绩分为优秀、良好、及格、不及格四个等级.测验结果反映在扇形统计图上,如图所示,则成绩良好的学生人数占全班人数的百分比是%.9.图为某同学参加今年六月份的全县中学生生物竞赛每个月他的测验成绩,则他的五次成绩的平均数为.10.如图是根据我市2001年至2005年财政收入绘制的折线统计图,观察统计图可得:同上年相比我市财政收入增长速度最快的年份是年,比它的前一年增加亿元.11.如图是我国国家统计局公布的“1949年,1978年,1993年高等学校数”条形统计图,根据条形统计图完成下表:年份194919781993高等学数(所)12.如图是某电视剧在各年龄段人群收视情况的频率分布直方图.若某村观看此电视剧的观众人数为1400人,则其中50岁以上(含50岁)的观众约有人.三.解答题13.(1分)红星煤矿人事部欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行专业知识测试,成绩如下表所示;并依录用的程序,组织200名职工对三人进行民主评议投票推荐,三人得票率如图所示.(没有弃权票,每位职工只能投1票,每得1票记作1分)(1)请填出三人的民主评议得分:甲得分,乙得分,丙得分;(2)根据招聘简章,人事部将专业知识、民主评议二项得分按6:4的比例确定各人成绩,成绩优者将被录用.那么将被录用,他的成绩为分.测试项目测试成绩(单位:分)甲乙丙专业知识73746714.某生物课外活动小组的同学举行植物标本制作比赛,结果统计如下:人数12432每人所作标本数246810根据表中提供的信息,回答下列问题:(1)该组共有学生多少人?(2)制作标本数在6个及以上的人数在全组人数中所占比例?(3)平均每人制作多少个标本?(4)补全下图的条形统计图.统计参考答案与试题解析一.选择题1.已知甲学校的男生占全校人数的50%,乙学校的女生占该校总人数的50%,则下列结论中,正确的是()A.甲校的男生与乙校的女生人数一样多B.甲校的女生与乙校的男生人数一样多C.甲校的男生比乙校的女生多D.不能确定【考点】有理数大小比较.【分析】因两个学校的总人数不能确定,故甲校男生和乙校女生的人数不能确定.【解答】解:两个学校的总人数不能确定,故甲校男生和乙校女生的人数不能确定.故选D.【点评】考查了有理数大小的比较.本题关键在于确定两个学校的总人数再进行比较.2.在反映某种股票的涨跌情况时,选择()A.条形统计图B.折线统计图C.扇形统计图D.以上都可以【考点】统计图的选择.【分析】条形统计图能清楚地表示出每个项目的具体数目;折线统计图表示的是事物的变化情况;扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据.【解答】解:根据题意,得直观反映某种股票的涨跌情况,即变化情况.结合统计图各自的特点,应选择折线统计图.故选B.【点评】此题根据扇形统计图、折线统计图、条形统计图各自的特点来判断.3.在下列语句中,其中正确的语句是()A.在统计中应用扇形统计图B.在统计中应用条形统计图C.在统计中应用哪种统计图要根据具体情况选择适当的统计图D.在统计中应用折线统计图【考点】统计图的选择.【分析】统计图的选择:即根据常用的几种统计图反映数据的不同特征结合实际来选择.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:根据分析可得C答案正确.故选:C.【点评】此题主要考查了统计图的选择,选择统计图要根据实际情况选择扇形统计图、折线统计图、条形统计图.4.如图是某班学生最喜欢的球类活动人数统计图,则下列说法不正确的是()A.该班喜欢乒乓球的学生最多B.该班喜欢排球与篮球的学生一样多C.该班喜欢足球的人数是喜欢排球人数的1.25倍D.该班喜欢其它球类活动的人数为5人【考点】扇形统计图.【专题】图表型.【分析】从扇形统计图中分别找出各个量对应的百分数,比较判断即可.【解答】解:A、从扇形统计图中看出:该班喜欢乒乓球的学生占30%,是最多的,A 正确;B、喜欢排球与篮球的学生均占20%,一样多,B正确;C、因为25%÷20%=1.25,喜欢足球的人数是喜欢排球人数的1.25倍,C正确;D、应为喜欢其它球类活动的人数占总人数的5%;综上,故选D.【点评】扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.5.根据呼和浩特市第一季度用电量的扇形统计图,则二月份用电量占第一季度用电量的百分比为()A.60% B.64% C.54% D.74%【考点】扇形统计图.【专题】图表型.【分析】在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.二月份所占圆心角为230.4°,则二月份用电量占第一季度用电量的百分比为:230.4°÷360°×100%=64%.【解答】解:二月份用电量占第一季度用电量的百分比为:230.4°÷360°×100%=64%,故选B.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°比.6.如图是某企业6月份各项支出金额占该月总支出金额的比例情况统计图,该月总支出金额为40万元.7月份由于原料提价需增加1万元支出,如果在总支出金额不变的情况下,压缩管理支出,那么7月份绘制的统计图中,管理支出所占区域的扇形圆心角度数为()A.25°B.27°C.30°D.36°【考点】扇形统计图.【专题】图表型.【分析】先求出增加1万元时,7月份在扇形统计图中的圆心角要增加的度数,即管理支出所占区域的扇形圆心角度数要减少的角度数,由此即可求出答案.【解答】解:因为增加1万元,7月份在扇形统计图中的圆心角要增加(1÷40)×360°=9°,所以如果在总支出金额不变的情况下,压缩管理支出,那么7月份绘制的统计图中,管理支出所占区域的扇形圆心角度数为36°﹣9°=27°.故选B.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°之比.二.填空题7.扇形统计图中,圆代表整体.【考点】扇形统计图.【分析】根据扇形统计图的特点可知圆代表整体,各个扇形代表部分.【解答】解:扇形统计图中,圆代表整体.【点评】圆代表整体,即单位1,各个扇形代表部分.圆心角的大小反映该部分所占整体的百分比的大小.8.八年级(1)班进行一次数学测验,成绩分为优秀、良好、及格、不及格四个等级.测验结果反映在扇形统计图上,如图所示,则成绩良好的学生人数占全班人数的百分比是45%.【考点】扇形统计图.【专题】图表型.【分析】先求出统计图中成绩良好的学生人数占的角度,用这个度数除以360度,即可求得,成绩良好的学生人数占全班人数的百分比即可.【解答】解:因为统计图中成绩良好的学生人数占的角度是360°﹣108°﹣40°﹣50°=162°,所以成绩良好的学生人数占全班人数的百分比是162°÷360°×100%=45%.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比.9.图为某同学参加今年六月份的全县中学生生物竞赛每个月他的测验成绩,则他的五次成绩的平均数为80.【考点】算术平均数;折线统计图.【专题】图表型.【分析】运用求平均数公式:=(x1+x2+x3+…x n)即可求出.【解答】解:由折线图得,小明同学五次成绩的平均分=(65+80+80+85+90)÷5=80分.故答案为:80.【点评】本题考查了平均数的定义,即所有数据的和除以数据的个数.也考查了对统计的理解.10.如图是根据我市2001年至2005年财政收入绘制的折线统计图,观察统计图可得:同上年相比我市财政收入增长速度最快的年份是2005年,比它的前一年增加50亿元.【考点】折线统计图.【专题】图表型.【分析】折线统计图中折线越陡的表示增长的速度越快,则从图中可以看出2004年到2005年的折线最陡,则同上年相比我市财政收入增长速度最快的年份是2005年;2005年的财政收入为95亿元,2004年的财政收入为45亿元,由此即可求出2005年较2004年财政收入的增长量.【解答】解:同上年相比我市财政收入增长速度最快的年份是2005年;2005年的财政收入为95亿元,2004年的财政收入为45亿元,则2005年较2004年财政收入增加了95﹣45=50亿元.【点评】读懂折线统计图,从统计图中得到必要的信息是解决本题的关键.11.如图是我国国家统计局公布的“1949年,1978年,1993年高等学校数”条形统计图,根据条形统计图完成下表:年份194919781993高等学数(所)2055981065【考点】条形统计图.【专题】计算题.【分析】根据条形统计图可直接得出1949年,1978年,1993年高等学校数,再填空即可.【解答】解:由条形图可得1949年,1978年,1993年高等学校数分别为205所,598所,1065所.故答案为205,598,1065.【点评】本题考查了条形统计图,培养学生观察图表的能力,是基础知识要熟练掌握.12.如图是某电视剧在各年龄段人群收视情况的频率分布直方图.若某村观看此电视剧的观众人数为1400人,则其中50岁以上(含50岁)的观众约有504人.【考点】用样本估计总体;频数(率)分布直方图.【专题】计算题.【分析】通过观察图,可求出50岁以上(含50岁)的观众的频率,然后乘以总人数即可.【解答】解:从图中可以发现50岁以上的频率=0.24+0.12=0.36,1400人其中50岁以上的人数=1400×0.36=504.【点评】本题考查从统计表中获取信息的能力,及统计中用样本估计总体的思想.三.解答题13.红星煤矿人事部欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行专业知识测试,成绩如下表所示;并依录用的程序,组织200名职工对三人进行民主评议投票推荐,三人得票率如图所示.(没有弃权票,每位职工只能投1票,每得1票记作1分)(1)请填出三人的民主评议得分:甲得70分,乙得68分,丙得62分;(2)根据招聘简章,人事部将专业知识、民主评议二项得分按6:4的比例确定各人成绩,成绩优者将被录用.那么甲将被录用,他的成绩为71.8分.测试项目测试成绩(单位:分)甲乙丙专业知识737467【考点】加权平均数;统计表;扇形统计图.【专题】图表型.【分析】(1)扇形统计图中,各部分的数量=总体×所占百分比.分别求得甲的得分、乙的得分、丙的得分;(2)分别求得甲、乙、丙的最后得分,再判断.【解答】解:(1)甲的民主得分=200×35%=70分,乙的民主得分=200×34%=68分,丙的民主得分=200×31%=62分;(2)甲的最后得分=(73×6+70×4)÷10=71.8;乙的最后得分=(74×6+68×4)÷10=71.6;丙的最后得分=(67×6+62×4)÷10=65,∴甲将被录用,他的成绩为71.8分.【点评】本题考查了从扇形统计图和统计表格得出数据的能力和平均数及加权平均数的计算能力.14.某生物课外活动小组的同学举行植物标本制作比赛,结果统计如下:人数12432每人所作标本数246810根据表中提供的信息,回答下列问题:(1)该组共有学生多少人?(2)制作标本数在6个及以上的人数在全组人数中所占比例?(3)平均每人制作多少个标本?(4)补全下图的条形统计图.【考点】条形统计图;统计表.【专题】图表型.【分析】(1)把表中的人数加起来即可;(2)制作标本数在6个及以上的人数在全组人数中所占比例=×100%;(3)平均每人制作的标本=;(4)由表画图.【解答】解:(1)该组共有学生:1+2+4+3+2=12(人);(4+3+2)÷12×100%=75%;(2)制作标本数在6个及以上的人数在全组人数中所占比例:(3)(1×2+2×4+4×6+3×8+2×10)÷12=6.5(个);(4).【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.。
近五年(2017-2021)年浙江中考数学真题分类汇编之统计与概率(含解析)
![近五年(2017-2021)年浙江中考数学真题分类汇编之统计与概率(含解析)](https://img.taocdn.com/s3/m/afc53a222bf90242a8956bec0975f46527d3a78a.png)
2017-2021年浙江中考数学真题分类汇编之统计与概率一.选择题(共13小题)1.(2020•宁波)一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为()A.B.C.D.2.(2019•温州)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人3.(2021•宁波)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数(单位:环)及方差S2(单位:环2)如下表所示:甲乙丙丁9899S2 1.60.830.8根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁4.(2020•嘉兴)已知样本数据2,3,5,3,7,下列说法不正确的是()A.平均数是4B.众数是3C.中位数是5D.方差是3.2 5.(2020•衢州)如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A.B.C.D.6.(2020•湖州)数据﹣1,0,3,4,4的平均数是()A.4B.3C.2.5D.2 7.(2020•台州)在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分析得出这个结论所用的统计量是()A.中位数B.众数C.平均数D.方差8.(2021•衢州)一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸出1个球,摸到白球的概率是()A.B.C.D.9.(2021•杭州)某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等.某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是()A.B.C.D.10.(2021•台州)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为,s2,该顾客选购的鸡蛋的质量平均数和方差分别为,s12,则下列结论一定成立的是()A.<B.>C.s2>s12D.s2<s12 11.(2020•金华)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.B.C.D.12.(2020•绍兴)如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E出口落出的概率是()A.B.C.D.13.(2019•舟山)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%二.填空题(共6小题)14.(2021•金华)某单位组织抽奖活动,共准备了150张奖券,设一等奖5个,二等奖20个,三等奖80个.已知每张奖券获奖的可能性相同,则1张奖券中一等奖的概率是.15.(2020•嘉兴)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是.16.(2020•宁波)今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差s2(单位:千克2)如表所示:甲乙丙454542s2 1.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是.17.(2020•温州)某养猪场对200头生猪的质量进行统计,得到频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生猪有头.18.(2021•宁波)一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为.19.(2021•丽水)根据第七次全国人口普查,华东A,B,C,D,E,F六省60岁及以上人口占比情况如图所示,这六省60岁及以上人口占比的中位数是.三.解答题(共3小题)20.(2020•绍兴)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验,并将所得数据绘制成如图统计图表.4月份生产的羽毛球重量统计表组别重量x(克)数量(只)A x<5.0mB 5.0≤x<5.1400C 5.1≤x<5.2550D x≥5.230(1)求表中m的值及图中B组扇形的圆心角的度数.(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?21.(2020•湖州)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?22.(2019•温州)车间有20名工人,某一天他们生产的零件个数统计如下表:车间20名工人某一天生产的零件个数统计表生产零件个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?2017-2021年浙江中考数学真题分类汇编之统计与概率参考答案与试题解析一.选择题(共13小题)1.(2020•宁波)一个不透明的袋子里装有4个红球和2个黄球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为()A.B.C.D.【考点】概率公式.【专题】概率及其应用;应用意识.【分析】根据概率公式计算.【解答】解:从袋中任意摸出一个球是红球的概率==.故选:D.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.2.(2019•温州)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人【考点】扇形统计图.【专题】数据的收集与整理.【分析】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【解答】解:调查总人数:40÷20%=200(人),选择黄鱼的人数:200×40%=80(人),故选:D.【点评】本题考查的是扇形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;扇形统计图直接反映部分占总体的百分比大小.3.(2021•宁波)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数(单位:环)及方差S2(单位:环2)如下表所示:甲乙丙丁9899S2 1.60.830.8根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【专题】统计的应用;应用意识.【分析】根据平均环数比较成绩的好坏,根据方差比较数据的稳定程度.【解答】解:甲、丙、丁射击成绩的平均环数较大,∵丁的方差<甲的方差<丙的方差,∴丁比较稳定,∴成绩较好状态稳定的运动员是丁,故选:D.【点评】本题考查的是方差和算术平均数,掌握方差反映了一组数据的波动大小,方差越大,波动性越大,方差越小,数据越稳定是解题的关键.4.(2020•嘉兴)已知样本数据2,3,5,3,7,下列说法不正确的是()A.平均数是4B.众数是3C.中位数是5D.方差是3.2【考点】方差;算术平均数;中位数;众数.【专题】统计的应用;应用意识.【分析】根据众数、中位数、平均数、方差的定义和计算公式分别进行分析即可.【解答】解:样本数据2,3,5,3,7中平均数是4,中位数是3,众数是3,方差是S2=[(2﹣4)2+(3﹣4)2+(5﹣4)2+(3﹣4)2+(7﹣4)2]=3.2.故选:C.【点评】本题考查方差、众数、中位数、平均数.关键是掌握各种数的定义,熟练记住方差公式是解题的关键.5.(2020•衢州)如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A.B.C.D.【考点】概率公式.【专题】概率及其应用;数据分析观念.【分析】直接利用“Ⅱ”所示区域所占圆周角除以360,进而得出答案.【解答】解:由游戏转盘划分区域的圆心角度数可得,指针落在数字“Ⅱ”所示区域内的概率是:=.故选:A.【点评】此题主要考查了概率公式,正确理解概率的求法是解题关键.6.(2020•湖州)数据﹣1,0,3,4,4的平均数是()A.4B.3C.2.5D.2【考点】算术平均数.【专题】统计与概率;数据分析观念.【分析】根据题目中的数据,可以求得这组数据的平均数,本题得以解决.【解答】解:==2,故选:D.【点评】本题考查算术平均数,解答本题的关键是明确算术平均数的计算方法.7.(2020•台州)在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分析得出这个结论所用的统计量是()A.中位数B.众数C.平均数D.方差【考点】统计量的选择;算术平均数;中位数;众数;方差.【专题】统计的应用;数据分析观念.【分析】根据中位数的意义求解可得.【解答】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数,半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数,故选:A.【点评】本题主要考查统计量的选择,解题的关键是掌握中位数、众数、平均数及方差的定义和意义.8.(2021•衢州)一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸出1个球,摸到白球的概率是()A.B.C.D.【考点】概率公式.【专题】概率及其应用;数据分析观念.【分析】根据概率公式,用白球的个数除以球的总个数即可.【解答】解:∵从放有3个红球和2个白球布袋中摸出一个球,共有5种等可能结果,其中摸出的球是白球的有2种结果,∴从布袋中任意摸出1个球,摸到白球的概率是,故选:D.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.9.(2021•杭州)某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等.某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】概率及其应用;数据分析观念;推理能力.【分析】画树状图,共有9种等可能的结果,甲和乙从同一节车厢上车的结果有3种,再由概率公式求解即可.【解答】解:把3节车厢分别记为A、B、C,画树状图如图:共有9种等可能的结果,甲和乙从同一节车厢上车的结果有3种,∴甲和乙从同一节车厢上车的概率为=,故选:C.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.10.(2021•台州)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为,s2,该顾客选购的鸡蛋的质量平均数和方差分别为,s12,则下列结论一定成立的是()A.<B.>C.s2>s12D.s2<s12【考点】方差;算术平均数.【专题】统计的应用;应用意识.【分析】根据方差的意义求解.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【解答】解:∵超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,∴货架上原有鸡蛋的质量的方差s2>该顾客选购的鸡蛋的质量方差s12,而平均数无法比较.故选:C.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.(2020•金华)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.B.C.D.【考点】概率公式.【专题】概率及其应用;推理能力.【分析】根据概率公式直接求解即可.【解答】解:∵共有6张卡片,其中写有1号的有3张,∴从中任意摸出一张,摸到1号卡片的概率是=;故选:A.【点评】此题考查了概率的求法,用到的知识点为:概率等于所求情况数与总情况数之比.12.(2020•绍兴)如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E出口落出的概率是()A.B.C.D.【考点】概率公式.【专题】概率及其应用;推理能力.【分析】根据“在每个交叉口都有向左或向右两种可能,且可能性相等”可知在点B、C、D处都是等可能情况,从而得到在四个出口E、F、G、H也都是等可能情况,然后根据概率的意义列式即可得解.【解答】解:由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,小球最终落出的点共有E、F、G、H四个,所以小球从E出口落出的概率是:;故选:C.【点评】本题考查了概率的求法,读懂题目信息,得出所给的图形的对称性以及可能性相等是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.13.(2019•舟山)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%【考点】折线统计图.【专题】统计的应用;数据分析观念.【分析】两条折线图一一判断即可.【解答】解:A、错误.签约金额2017,2018年是下降的.B、错误.与上年相比,2016年的签约金额的增长量最多.C、正确.D、错误.下降了:≈9.4%.故选:C.【点评】本题考查折线统计图,解题的关键是理解题意读懂图象信息,属于中考常考题型.二.填空题(共6小题)14.(2021•金华)某单位组织抽奖活动,共准备了150张奖券,设一等奖5个,二等奖20个,三等奖80个.已知每张奖券获奖的可能性相同,则1张奖券中一等奖的概率是.【考点】概率公式.【专题】概率及其应用;应用意识.【分析】直接根据概率公式即可得出结论.【解答】解:∵共有150张奖券,一等奖5个,∴1张奖券中一等奖的概率==.故答案为:.【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数是解答此题的关键.15.(2020•嘉兴)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是.【考点】概率公式.【专题】计算题;概率及其应用;应用意识.【分析】直接利用概率公式求解.【解答】解:共有3种等可能结果,其中符合题意的情况有1种,∴蚂蚁获得食物的概率=.故答案为:.【点评】本题考查了概率的求法,理解如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=是解题关键.16.(2020•宁波)今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:千克)及方差s2(单位:千克2)如表所示:甲乙丙454542s2 1.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲.【考点】方差;算术平均数.【专题】统计的应用;应用意识.【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.【解答】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲;故答案为:甲.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.17.(2020•温州)某养猪场对200头生猪的质量进行统计,得到频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生猪有140头.【考点】频数(率)分布直方图.【专题】统计的应用;应用意识.【分析】根据题意和直方图中的数据可以求得质量在77.5kg及以上的生猪数,本题得以解决.【解答】解:由直方图可得,质量在77.5kg及以上的生猪:90+30+20=140(头),故答案为:140.【点评】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.18.(2021•宁波)一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为.【考点】概率公式.【专题】概率及其应用;数据分析观念.【分析】先求出球的总个数,再根据概率公式即可得出摸出一个球是红球的概率.【解答】解:∵一个不透明的袋子里装有3个红球和5个黑球,∴共有8个球,∴从袋中任意摸出一个球是红球的概率为.故答案为:.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.19.(2021•丽水)根据第七次全国人口普查,华东A,B,C,D,E,F六省60岁及以上人口占比情况如图所示,这六省60岁及以上人口占比的中位数是18.75%.【考点】中位数.【专题】统计的应用;运算能力.【分析】根据中位数的定义直接求解即可.【解答】解:把这些数从小到大排列为:16.0%,16.9%,18.7%,18.8%,20.9%,21.8%,则中位数是=18.75%.故答案为:18.75%.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.三.解答题(共3小题)20.(2020•绍兴)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验,并将所得数据绘制成如图统计图表.4月份生产的羽毛球重量统计表组别重量x(克)数量(只)A x<5.0mB 5.0≤x<5.1400C 5.1≤x<5.2550D x≥5.230(1)求表中m的值及图中B组扇形的圆心角的度数.(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?【考点】扇形统计图;用样本估计总体;频数(率)分布表.【专题】数据的收集与整理;统计的应用;数据分析观念;应用意识.【分析】(1)图表中“C组”的频数为550只,占抽查总数的55%,可求出抽查总数,进而求出“A组”的频数,即m的值;求出“B组”所占总数的百分比,即可求出相应的圆心角的度数;(2)计算“B组”“C组”的频率的和即为合格率,求出“不合格”所占的百分比,即可求出不合格的数量.【解答】解:(1)550÷55%=1000(只),1000﹣400﹣550﹣30=20(只)即:m=20,360°×=144°,答:表中m的值为20,图中B组扇形的圆心角的度数为144°;(2)+==95%,12×10×(1﹣95%)=120×5%=6(只),答:这次抽样检验的合格率是95%,所购得的羽毛球中,估计非合格品的羽毛球大约有6只.【点评】考查统计表、扇形统计图的意义和制作方法,理解图表中的数量和数量之间的关系,是正确计算的前提.21.(2020•湖州)为了解学生对网上在线学习效果的满意度,某校设置了:非常满意、满意、基本满意、不满意四个选项,随机抽查了部分学生,要求每名学生都只选其中的一项,并将抽查结果绘制成如图统计图(不完整).请根据图中信息解答下列问题:(1)求被抽查的学生人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求扇形统计图中表示“满意”的扇形的圆心角度数;(3)若该校共有1000名学生参与网上在线学习,根据抽查结果,试估计该校对学习效果的满意度是“非常满意”或“满意”的学生共有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型;数据的收集与整理;统计的应用;数据分析观念;应用意识.【分析】(1)从两个统计图中可知,在抽查人数中,“非常满意”的人数为20人,占调查人数的40%,可求出调查人数,进而求出“基本满意”的人数,即可补全条形统计图;(2)样本中“满意”占调查人数的,即30%,因此相应的圆心角的度数为360°的30%;(3)样本中“非常满意”或“满意”的占调查人数的(+),进而估计总体中“非常满意”或“满意”的人数.【解答】解:(1)抽查的学生数:20÷40%=50(人),抽查人数中“基本满意”人数:50﹣20﹣15﹣1=14(人),补全的条形统计图如图所示:(2)360°×=108°,答:扇形统计图中表示“满意”的扇形的圆心角度数为108°;(3)1000×(+)=700(人),答:该校共有1000名学生中“非常满意”或“满意”的约有700人.【点评】考查扇形统计图、条形统计图的意义和制作方法,从统计图中获取数量和数量之间的关系,是解决问题的前提,样本估计总体是统计中常用的方法.22.(2019•温州)车间有20名工人,某一天他们生产的零件个数统计如下表:车间20名工人某一天生产的零件个数统计表生产零件个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?【考点】众数;加权平均数;中位数.【专题】统计的应用;数据分析观念;运算能力.【分析】(1)根据平均数的计算方法进行计算即可;(2)求出中位数、众数、平均数,从大多数员工能够完成任务为标准“定额”.【解答】解:(1)×(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个)答:这一天20名工人生产零件的平均个数为13个;(2)中位数为,众数为11个,当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性;当定额为12个时,有12人达标,8人获奖,不利于提高大多数工人的积极性;当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性;因此,定额为11个时,有利于提高大多数工人的积极性.【点评】本题考查平均数、中位数、众数,理解中位数、众数、平均数的意义和计算方法是正确解答的前提.。
江苏省徐州市2017年中考数学总复习统计和概率测试卷B(含答案)(解析版)
![江苏省徐州市2017年中考数学总复习统计和概率测试卷B(含答案)(解析版)](https://img.taocdn.com/s3/m/b5820b615acfa1c7aa00ccee.png)
江苏省徐州市2017年中考数学总复习统计和概率测试卷B一、选择题(每题4分,共32分)1. 数据1,2,x,一1,一2的平均数是0,则这组数据的方差是( )A. 1B. 2C. 3D. 4【答案】B【解析】解:先由平均数是0求得x 的值,再由方差公式计算即可。
2. 掷两枚质地均匀的硬币,则两枚硬币全部正面朝上的概率等于( )A. 1B.C.D. 0【答案】C【解析】试题解析:根据题意,出现的结果一共有:正正,正反,反正,反反四种,所以两枚硬币全部正面朝上的概率等于.故选C.3. 某运动员进行110m跨栏训练,为判断他的成绩是否稳定,教练对他10次训练的成绩进行统计分析,则教练需了解这10次成绩的( )A. 众数B. 方差C. 平均数D. 频数【答案】B【解析】试题解析:众数、平均数是反映一组数据的集中趋势,而频数是数据出现的次数,只有方差是反映数据的波动大小的.故为了判断成绩是否稳定,需要知道的是方差.故选B.4. 在进行数据整理时,要显示数据特征( )A. 最好用扇形统计图B. 最好用条形统计图C. 最好用折线统计图D. 选用哪种统计图,要视具体情况而定【答案】D故选D.5. 小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是( )A. B. C. D.【答案】C【解析】试题解析:∵小玲在一次班会中参与知识抢答活动,现有语文题6道,数学题5道,综合题9道,∴她从中随机抽取1道,抽中语文题的概率是:.故选C.6. 一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒中大约有白球( )A. 24个B. 30个C. 36个D. 42个...【答案】B【解析】试题解析:设盒子里有白球x个,根据得:解得:x=32.经检验得x=32是方程的解.故选B.7. 某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度X(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为A. 0.8B. 0.7C. 0.4D. 0.2【答案】A【解析】试题解析:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是:.故选A.8. 小明随机地在如图所示的正三角形及内部区域投针,则针扎到其内切圆(阴影)区域的概率为( )A. B. π C. π D.【答案】C【解析】试题解析:∵如图所示的正三角形,∴∠CAB=60°,设三角形的边长是a,∴AB=a,∵⊙O是内切圆,∴∠OAB=30°,∠OBA=90°,∴BO=tan30°AB=a,则正三角形的面积是a2,而圆的半径是a,面积是a2,因此概率是a2÷a2=π.故选C.考点:几何概率.二、填空题(每题5分,共20分)9. 在围棋盒中有6颗黑色棋子和”颗白色棋子,随机地取出一颗棋子,如果它是黑色棋子的概率是,则n=_____________.【答案】4【解析】试题解析:∵围棋盒中有6颗黑色棋子和n颗白色棋子,∴棋子的总个数为6+n,∵随机地取出一颗棋子,如果它是白色棋子的概率是,∴,解得,n=4.10. 一组数据3,4,6,8,x的中位数是x,且x是满足不等式组’的整数则这组数据的平均数是___________________·【答案】5【解析】解不等式组得,3≤x<5,∵x是整数,∴x=3或4。
【配套K12】2017年中考数学试题分项版解析汇编第03期专题07统计与概率含解析
![【配套K12】2017年中考数学试题分项版解析汇编第03期专题07统计与概率含解析](https://img.taocdn.com/s3/m/1ee95a3b59eef8c75fbfb3b7.png)
专题07 统计与概率一、选择题1.(2017四川省南充市)某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为2【答案】C.【解析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:39392+=39;平均数=363723839440210+⨯++⨯+⨯=38.4方差=110[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A,B,D错误;故选C.考点:1.方差;2.加权平均数;3.中位数;4.众数.2.(2017四川省广安市)关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6 B.这组数据的中位数是1C.这组数据的平均数是6 D.这组数据的方差是10【答案】A.【解析】试题分析:数据由小到大排列为1,2,6,6,10,它的平均数为15(1+2+6+6+10)=5,数据的中位数为6,众数为6,数据的方差=15[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.4.故选A.考点:1.方差;2.算术平均数;3.中位数;4.众数.3.(2017四川省眉山市)下列说法错误的是()A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个【答案】C.考点:1.众数;2.算术平均数;3.中位数.4.(2017山东省枣庄市)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:由表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【答案】A.【解析】试题分析:∵ =>=,∴从甲和丙中选择一人参加比赛,∵ =<<,∴选择甲参赛,故选A.考点:1.方差;2.算术平均数.5.(2017山东省济宁市)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.18B.16C.14D.12【答案】B.【解析】试题分析:画树状图为:共有12种等可能的结果数,其中两次摸出的球上的汉字组成“孔孟”的结果数为2,所以两次摸出的球上的汉字组成“孔孟”的概率=212=16.故选B.考点:列表法与树状图法.6.(2017广东省)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95 B.90 C.85 D.80【答案】B.考点:众数.7.(2017广西四市)今年世界环境日,某校组织的保护环境为主题的演讲比赛,参加决赛的6名选手成绩(单位:分)如下:8.5,8.8,9.4,9.0,8.8,9.5,这6名选手成绩的众数和中位数分别是()A.8.8分,8.8分B.9.5分,8.9分C.8.8分,8.9分D.9.5分,9.0分【答案】C.【解析】试题分析:由题中的数据可知,8.8出现的次数最多,所以众数为8.8;从小到大排列:8.5,8.8,8.8,9.0,9.4,9.5,故可得中位数是(8.8+9.0)÷2=8.9.故选C.考点:1.众数;2.中位数.8.(2017广西四市)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A .51 B .41 C . 31 D .21 【答案】C . 【解析】试题分析:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于5的有4种情况,∴两次摸出的小球标号之和等于5的概率是:412=31.故选C . 考点:列表法与树状图法.9.(2017江苏省盐城市)数据6,5,7.5,8.6,7,6的众数是( ) A .5 B .6 C .7 D .8 【答案】B .考点:众数.10.(2017江苏省连云港市)小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A .方差B .平均数C .众数D .中位数 【答案】A . 【解析】试题分析:由于方差反映数据的波动情况,应知道数据的方差.故选A . 考点:统计量的选择.11.(2017河北省)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表比较5月份两组家庭用水量的中位数,下列说法正确的是()A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断【答案】B.考点:1.中位数;2.扇形统计图.12.(2017浙江省丽水市)根据PM2.5空气质量标准:24小时PM2.5均值在0∽35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米【答案】B.【解析】试题分析:从小到大排列此数据为:18,18,18,20,21,29,30,位置处于最中间的数是:20,所以组数据的中位数是20.故选B.考点:1.中位数;2.统计表.13.(2017浙江省台州市)有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数【答案】A.考点:1.统计量的选择;2.统计的应用.14.(2017浙江省绍兴市)在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其它均相同,从中任意摸出一个球,則摸出黑球的概率是()A.17B.37C.47D.57【答案】B.【解析】试题分析:∵在一个不透明的袋子中装有除颜色外其他均相同的4个红球和3个黑球,∴从中任意摸出一个球,则摸出黑球的概率是37.故选B.考点:概率公式.15.(2017浙江省绍兴市)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁【答案】D.【解析】试题分析:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选D.考点:1.方差;2.加权平均数.16.(2017湖北省襄阳市)下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查【答案】D.考点:全面调查与抽样调查.17.(2017重庆市B卷)下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查【答案】D.【解析】试题分析:A.人数不多,容易调查,适合普查.B.对“神舟十一号”运载火箭发射前零部件质量情况的调查必须准确,故必须普查;C.班内的同学人数不多,很容易调查,因而采用普查合适;D.数量较大,适合抽样调查;故选D.考点:全面调查与抽样调查.二、填空题18.(2017四川省南充市)经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是.【答案】19.考点:列表法与树状图法.19.(2017四川省绵阳市)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.【答案】14.【解析】试题分析:画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率=936=14.故答案为:14.考点:列表法与树状图法.20.(2017四川省达州市)从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数6yx图象上的概率是.【答案】13.【解析】试题分析:画树状图得:∵共有12种等可能的结果,点(m,n)恰好在反比例函数6yx=图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m,n)在函数6yx=图象上的概率是:412=13.故答案为:13.考点:1.反比例函数图象上点的坐标特征;2.列表法与树状图法.21.(2017广东省)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【答案】25.考点:概率公式.22.(2017广西四市)红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有人.【答案】680.【解析】试题分析:由于样本中最喜欢的项目是跳绳的人数所占比例为85200,∴估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有1600×85200=680,故答案为:680.考点:用样本估计总体.23.(2017江苏省盐城市)如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是.【答案】13.【解析】试题分析:上方的正六边形涂红色的概率是13,故答案为:13.考点:概率公式.24.(2017浙江省丽水市)如图,由6个小正方形组成的2×3网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.【答案】13.考点:1.利用轴对称设计图案;2.列表法与树状图法.25.(2017浙江省台州市)三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为.【答案】56.【解析】试题分析:画树状图得:∵共有6种等可能的结果,抽签后每个运动员的出场顺序都发生变化有5种情况,∴抽签后每个运动员的出场顺序都发生变化的概率=56,故答案为:56.考点:列表法与树状图法.26.(2017湖北省襄阳市)同时抛掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是.【答案】38.考点:列表法与树状图法.27.(2017重庆市B卷)某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是个.【答案】183.【解析】试题分析:由图可知,把数据从小到大排列的顺序是:180、182、183、185、186,中位数是183.故答案为:183.考点:1.折线统计图;2.中位数.三、解答题28.(2017四川省南充市)在“宏扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A﹣国学诵读”、“B﹣演讲”、“C﹣课本剧”、“D﹣书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:(1)如图,希望参加活动C占20%,希望参加活动B占15%,则被调查的总人数为人,扇形统计图中,希望参加活动D所占圆心角为度,根据题中信息补全条形统计图.(2)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?【答案】(1)60,72;(2)360.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.29.(2017四川省广安市)某校为提高学生身体素质,决定开展足球、篮球、台球、乒乓球四项课外体育活动,并要求学生必须并且只能选择一项.为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并绘制出以下两幅不完整的统计图.请根据统计图回答下列问题.(要求写出简要的解答过程)(1)这次活动一共调查了多少名学生?(2)补全条形统计图.(3)若该学校总人数是1300人,请估计选择篮球项目的学生人数.【答案】(1)400;(2)作图见解析;(3)520.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.30.(2017四川省眉山市)一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.若红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是129.(1)求袋中红球的个数;(2)求从袋中任取一个球是黑球的概率.【答案】(1)200;(2)829.【解析】试题分析:(1)先根据概率公式求出白球的个数为10,进一步求得红、黑两种球的个数和为280,再根据红球个数是黑球个数的2倍多40个,可得黑球个数为(280﹣40)÷(2+1)=80个,进一步得到红球的个数;(2)根据概率公式可求从袋中任取一个球是黑球的概率.试题解析:(1)290×129=10(个),290﹣10=280(个),(280﹣40)÷(2+1)=80(个),280﹣80=200(个).故袋中红球的个数是200个;(2)80÷290=829.答:从袋中任取一个球是黑球的概率是829.考点:概率公式.31.(2017四川省绵阳市)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗):(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图:如图所示的扇形统计图中,扇形A对应的圆心角为度,扇形B对应的圆心角为度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?【答案】(1)3,6,B,A,72,36;(2)900.【解析】试题分析:(1)根据表格中数据填表画图即可,利用360°×其所占的百分比求出扇形对应的圆心角度数;(2)用360°乘以样本中稻穗谷粒数大于或等于205颗的水稻所占百分比即可.试题解析:(1)填表如下:如图所示:如图所示的扇形统计图中,扇形A对应的圆心角为:360°×630=72度,扇形B对应的圆心角为360°×330=36度.故答案为:3,6,B,A,72,36;(2)3000×6330+=900.即据此估计,其中稻穗谷粒数大于或等于205颗的水稻有900株.考点:1.频数(率)分布直方图;2.用样本估计总体;3.频数(率)分布表;4.扇形统计图.32.(2017四川省达州市)国家规定,中、小学生每天在校体育活动时间不低于1h.为此,某区就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图如图所示,其中A组为t<0.5h,B组为0.5h≤t<1h,C组为1h≤t<1.5h,D组为t≥1.5h.请根据上述信息解答下列问题:(1)本次调查数据的众数落在组内,中位数落在组内;(2)该辖区约有18000名初中学生,请你估计其中达到国家规定体育活动时间的人数.【答案】(1)B,C;(2)960.【解析】试题分析:(1)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得答案;(2)达国家规定体育活动时间的人数约1800×10060300+=960(人).答:达国家规定体育活动时间的人约有960人.考点:1.频数(率)分布直方图;2.用样本估计总体;3.中位数;4.众数.33.(2017山东省枣庄市)为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.【答案】(1)50,30%;(2)作图见解析;(3)35.【解析】试题分析:(1)由舞蹈的人数除以占的百分比求出调查学生总数,确定出扇形统计图中m的值;(2)求出绘画与书法的学生数,补全条形统计图即可;(3)列表得出所有等可能的情况数,找出恰好为一男一女的情况数,即可求出所求概率.试题解析:(1)20÷40%=50(人),15÷50=30%;故答案为:50;30%;(2)50×20%=10(人),50×10%=5(人),如图所示:(3)∵5﹣2=3(名),∴选修书法的5名同学中,有3名男同学,2名女同学,所有等可能的情况有20种,其中抽取的2名同学恰好是1名男同学和1名女同学的情况有12种,则P(一男一女)=1220=35.考点:1.列表法与树状图法;2.扇形统计图;3.条形统计图;4.应用题;5.数据的收集与整理.34.(2017山东省济宁市)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【答案】(1)40;(2)作图见解析;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【解析】试题分析:(1)利用折线统计图结合条形统计图,利用优秀人数÷优秀率=总人数求出即可;(2)分别求出第四次模拟考试的优秀人数以及第三次的优秀率即可得出答案;(2)由(1)得,第四次优秀的人数为:40×85%=34(人),第三次优秀率为:3240×100%=80%;如图所示:1.;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.考点:1.条形统计图;2.扇形统计图.35.(2017广东省)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表(1)填空:①m= (直接写出结果);②在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【答案】(1)①52;②144;(2)720.【解析】试题分析:(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.试题解析:(1)①调查的人数为:40÷20%=200(人),∴m=200﹣12﹣80﹣40﹣16=52;②C组所在扇形的圆心角的度数为80200×360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有125280200++×1000=720(人).考点:1.扇形统计图;2.用样本估计总体;3.频数(率)分布表.36.(2017广西四市)为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了名市民,扇形统计图中,C组对应的扇形圆心角是°;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.【答案】(1)2000,108;(2)作图见解析;(3)14.【解析】试题分析:(1)根据B组的人数以及百分比,即可得到被调查的人数,进而得出C组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)根据C组的人数,补全条形统计图;(2)条形统计图如下:(3)画树状图得:∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为:416=14.考点:1.列表法与树状图法;2.扇形统计图;3.条形统计图.37.(2017江苏省盐城市)为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.【答案】(1)12;(2)14.【解析】试题分析:(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.试题解析:(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=12,故答案为:12;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=14.考点:1.列表法与树状图法;2.概率公式.38.(2017江苏省盐城市)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.【答案】(1)40;(2)72;(3)280.【解析】试题分析:(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去A景点的人数所占的百分比即可.试题解析:(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为840×360°=72°;(3)800×1440=280,所以估计“最想去景点B“的学生人数为280人.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.数形结合.39.(2017江苏省连云港市)某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x分(60≤x≤100).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.“文明在我身边”摄影比赛成绩统计表根据以上信息解答下列问题:(1)统计表中c的值为;样本成绩的中位数落在分数段中;(2)补全频数分布直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?【答案】(1)0.34,70≤x<80;(2)作图见解析;(3)180.【解析】试题分析:(1)由60≤x<70频数和频率求得总数,根据频率=频数÷总数求得a、b、c的值,由中位数定义求解可得;(2)根据(1)中所求数据补全图形即可得;(2)补全图形如下:(3)600×(0.24+0.06)=180(幅).答:估计全校被展评作品数量是180幅.考点:1.频数(率)分布直方图;2.用样本估计总体;3.频数(率)分布表;4.中位数.40.(2017江苏省连云港市)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【答案】(1)13;(2)23.【解析】试题分析:(1)直接利用概率公式求出甲投放的垃圾恰好是A类的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.试题解析:(1)∵垃圾要按A,B,C三类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A类的概率为:13;(2)如图所示:由图可知,共有18种可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)=1218=23;即,乙投放的垃圾恰有一袋与甲投放的垃圾是同一类的概率是:23.考点:1.列表法与树状图法;2.概率公式.41.(2017河北省)编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分,如图是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;(2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次,这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.【答案】)(1)2分,条形统计图见解析;(2)23;(3)3,3分或0分.【解析】试题分析:(1)由第6名学生命中的个数为5×40%=2可得答案,并补全条形图;(2)由这6名学生中,命中次数多于5×50%=2.5次的有2、3、4、5号这4名学生,根据概率公式可得;(3)根据众数的定义得出前6名学生积分的众数即可得.试题解析:(1)第6名学生命中的个数为5×40%=2,则第6号学生的积分为2分,补全条形统计图如下:。
[推荐学习]2017年中考数学试题分项版解析汇编第02期专题07统计与概率含解析
![[推荐学习]2017年中考数学试题分项版解析汇编第02期专题07统计与概率含解析](https://img.taocdn.com/s3/m/b9cc9906cfc789eb172dc8fd.png)
专题7:统计与概率一、选择题1.(2017北京第8题)下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况. 2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多【答案】A..考点:折线统计图2.(2017北京第10题)下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A.① B.② C. ①② D.①③【答案】B.考点;频率估计概率3.(2017福建第7题)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,15【答案】D【解析】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.4.(2017河南第5题)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分 B.95分,90分 C. 90分,95分 D.95分,85分【答案】A.【解析】试题分析:这组数据中95出现了3次,次数最多,为众数;中位数为第3和第4两个数的平均数为95,故选A.考点:众数;中位数.5.(2017河南第8题)如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.18B.16C.14D.12【答案】C.【解析】试题分析:列表得,由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为164,故选C.考点:用列表法(或树形图法)求概率.6. (2017广东广州第3题)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁)12,13,14,15,15,15.这组数据中的众数,平均数分别为()A.12,14 B. 12,15 C.15,14 D. 15,13【答案】C【解析】试题分析:15出现次数最多,有3次,所以,众数为15, 11213141515156+++++()=14.故选C.考点:众数,中位数的求法7. (2017湖南长沙第6题)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生C.数据3,5,4,1,2-的中位数是4D.“367人中有2人同月同日生”为必然事件【答案】D考点:事件发生的可能性8. (2017山东临沂第6题)小明和小华玩“石头、剪子、布”的游戏.若随机出手一次,则小华获胜的概率是()A.23B.12C.13D.29【答案】C【解析】试题分析:根据题意,画树状图为:可知小明出一种,小华则可能出3种可能,只有一种可能获胜,则其获胜的概率为:13.故选:C考点:概率9. (2017山东临沂第9题)某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示:这15名员工每人所创年利润的众数、中位数分别是()A.10,5 B.7,8 C.5,6.5 D.5,5【答案】D【解析】试题分析:根据表格可知出现最多的是5万元,共有7次,因此众数是5,这15名员工的每人创年利润为:10、8、8、8、5、5、5、5、5、5、5、3、3、3、3,中位数是中间的一个,是5万元,故选:D考点:众数与中位数10. (2017山东青岛第3题)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A 、众数是6吨B 、平均数是5吨C 、中位数是5吨D 、方差是34 【答案】C 【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数11. (2017江苏宿迁第3题)一组数据:5,4,6,5,6,6,3这组数据的众数是 A .6 B .5 C .4 D .3 【答案】A. 【解析】试题分析:众数是一组数据中出现次数最多的数,这组数据中6出现了3次,次数最多,所以6为众数,故选A.12. (2017辽宁沈阳第8题)下利事件中,是必然事件的是( ) A.将油滴在水中,油会浮在水面上 B.车辆随机到达一个路口,遇到红灯 C.如果22a b =,那么a b =D.掷一枚质地均匀的硬币,一定正面向上 【答案】A.【解析】试题分析:选项A ,将油滴在水中,油会浮在水面上,是必然事件;选项B ,车辆随机到达一个路口,遇到红灯,是随机事件;选项C ,如果22a b =,那么a b =,是随机事件;选项D ,掷一枚质地均匀的硬币,一定正面向上,是随机事件,故选A. 故选C .考点:必然事件;随机事件.13. (2017江苏苏州第5题)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为 A .70 B .720 C.1680 D .2370 【答案】C. 【解析】 试题分析:702400=1680100⨯故答案选C. 考点:用样本估计总体的统计思想.14. (2017江苏苏州第2题)有一组数据:2,5,5,6,7,这组数据的平均数为 A .3 B .4 C .5 D .6 【答案】C. 【解析】 试题分析:2+5+5+6+7=55故答案选C.考点:平均数的求法15. (2017山东菏泽第4题)某兴趣小组为了解我市气温变化情况,记录了今年月份连续6天的最低气温(单位:℃):7,4,2,1,2,2----.关于这组数据,下列结论不正确的是( )A .平均数是2-B .中位数是2- C.众数是2- D .方差是7 【答案】D. 【解析】试题分析:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].由此可得,这组数据的众数为-2,中位数为-2,平均数为-2,方差是9,故选D.16. (2017浙江舟山第3题)已知一组数据c b a ,,的平均数为5,方差为4,那么数据2,2,2---c b a 的平均数和方差分别是( )A .3,2B .3,4C .5,2D .5,4 【答案】B. 【解析】试题分析:平均数为13(a −2 + b −2 + c −2 )=13(3×5-6)=3;原来的方差:2221(5)(5)(5)43a b c ⎡⎤-+-+-=⎣⎦;新的方差:2221(23)(23)(3a b c ⎡⎤--+--+--=⎣⎦2221(5)(5)3a b c ⎡⎤-+-+-=⎣⎦,故选B. 考点: 平均数;方差.17. (2017浙江舟山第5题)红红和娜娜按图示的规则玩“锤子、剪刀、布”游戏(如图),下列命题中错误的是( )A .红红不是胜就是输,所以红红胜的概率为21B .红红胜或娜娜胜的概率相等C .两人出相同手势的概率为31 D .娜娜胜的概率和两人出相同手势的概率一样 【答案】A. 【解析】试题分析:画树状图得,由树状图可得一共有9种等可能的情况,其中红红胜的概率是P=3193=,娜娜胜的概率是P=3193=,两人出相同手势的概率为P=3193=,A 错误.故选A. 考点:概率的意义,概率公式18. (2017浙江台州第4题)有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )A .方差B .中位数 C.众数 D .平均数 【答案】A 【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定。
中考数学试题分项版解析汇编(第03期)专题07 统计与概率(含解析)(2021学年)
![中考数学试题分项版解析汇编(第03期)专题07 统计与概率(含解析)(2021学年)](https://img.taocdn.com/s3/m/dc630dfbcc7931b764ce1501.png)
2017年中考数学试题分项版解析汇编(第03期)专题07 统计与概率(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学试题分项版解析汇编(第03期)专题07统计与概率(含解析))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学试题分项版解析汇编(第03期)专题07 统计与概率(含解析)的全部内容。
专题07 统计与概率一、选择题1.(2017四川省南充市)某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:成绩/分3637383940人数/人12142下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为2【答案】C.【解析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;+=39;第5和第6名同学的成绩的平均值为中位数,中位数为:39392+⨯++⨯+⨯=38.4平均数=363723839440210[(36﹣38.4)2+2×(37﹣38。
4)2+(38﹣38.4)2+4×(39﹣38。
4)2+2×(40方差=110﹣38.4)2]=1.64;∴选项A,B,D错误;故选C.考点:1.方差;2.加权平均数;3.中位数;4.众数.2.(2017四川省广安市)关于2、6、1、10、6的这组数据,下列说法正确的是() A.这组数据的众数是6B.这组数据的中位数是1C.这组数据的平均数是6D.这组数据的方差是10【答案】A.【解析】(1+2+6+6+10)=5,数据的试题分析:数据由小到大排列为1,2,6,6,10,它的平均数为15中位数为6,众数为6,数据的方差=1[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)52]=10.4.故选A.考点:1.方差;2.算术平均数;3.中位数;4.众数.3.(2017四川省眉山市)下列说法错误的是( )A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个【答案】C.考点:1.众数;2.算术平均数;3.中位数.4.(2017山东省枣庄市)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差 3.6 3.67.48.1由表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )A.甲B.乙 C.丙 D.丁【答案】A.【解析】试题分析:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选A.考点:1.方差;2.算术平均数.5.(2017山东省济宁市)将分别标有“孔”“孟"“之”“乡"汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是( )A.18B.16C.14D.12【答案】B.【解析】试题分析:画树状图为:共有12种等可能的结果数,其中两次摸出的球上的汉字组成“孔孟"的结果数为2,所以两次摸出的球上的汉字组成“孔孟”的概率=212=16.故选B.考点:列表法与树状图法.6.(2017广东省)在学校举行“阳光少年,励志青春"的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是( )A.95 B.90 C.85 D.80【答案】B.考点:众数.7.(2017广西四市)今年世界环境日,某校组织的保护环境为主题的演讲比赛,参加决赛的6名选手成绩(单位:分)如下:8.5,8。
2017中考数学专题训练:《统计与概率》测试题及答案
![2017中考数学专题训练:《统计与概率》测试题及答案](https://img.taocdn.com/s3/m/0198ac04c281e53a5802ffe6.png)
万安中学中考总复习绝密资料2017中考数学专题训练:《统计与概率》测试题时间45分钟满分120分2017.4.18 一。
解答题(每题15分,共120分)1. (福建)“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;类别儿童玩具童车童装抽查件数90请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童车的合格率为90%、85%、80%,若从该超市的这三类儿童用品中随机购买一件,请估计购买到合格品的概率是多少?2.(湖北)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.3. (四川成都)某校将举办“心怀感恩•孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.4. (四川宜宾)为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中一共抽查了名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为,喜欢“戏曲”活动项目的人数是人;(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.5. (四川)某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图10所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12的次数;(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率。
专题07 统计与概率2017年中考数学试题分项版解析汇编(解析版)
![专题07 统计与概率2017年中考数学试题分项版解析汇编(解析版)](https://img.taocdn.com/s3/m/78241500011ca300a6c3907b.png)
专题07 统计与概率一、选择题1.(2017浙江衢州第4题)据调查,某班20为女同学所穿鞋子的尺码如表所示,则鞋子尺码的众数和中位数分别是()尺码(码)34 35 36 37 38人数 2 5 10 2 1A.35码,35码B.35码,36码C.36码,35码D.36码,36码【答案】D.【解析】试题解析:数据36出现了10次,次数最多,所以众数为36,一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36.故选D.考点:1.众数;2.中位数.2.(2017山东德州第6题)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是()A.平均数B.方差C.众数D.中位数【答案】C【解析】试题分析:用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].41码共20件,最多,41码是众数,故选C考点:方差;加权平均数;中位数;众数3.(2017浙江宁波第8题)若一组数据2,3,x,5,7的众数为7,则这组数据的中位数为( )A.2B.3C.5D.7【答案】C.【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,5,7,7,中位数为:5.故选C.考点:众数;中位数.4.(2017重庆A卷第4题)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【答案】D.【解析】试题解析:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选D.考点:全面调查和抽样调查.5.(2017广西贵港第2题)数据3,2,4,2,5,3,2的中位数和众数分别是()A.2,3 B.4,2 C.3,2 D.2,2【答案】C【解析】试题解析:把这组数据从小到大排列:2,2,2,3,3,4,5,最中间的数是3,则这组数据的中位数是3;2出现了3次,出现的次数最多,则众数是2.故选:C.考点:众数;中位数.6.(2017广西贵港第8题)从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.14B.12C.34D.1【答案】B【解析】试题解析:从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)=21 42,故选B考点:列表法与树状图法;三角形三边关系.7.(2017贵州安顺第6题)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.16,10.5 B.8,9 C.16,8.5 D.8,8.5【答案】B.【解析】试题解析:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;故选B.考点:众数;条形统计图;中位数.8.(2017湖北武汉第4题)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示.成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数 2 3 2 3 4 1则这些运动员成绩的中位数,众数分别为()A.1.65,1.70 B.1.65,1.75 C. 1.70,1.75 D.1.70,1.70 【答案】C.【解析】试题解析:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65, 1.70,1.70,1.70,1.75,1.75,1.75,1.75,1.80.众数为:1.75;中位数为:1.70.故选C.考点:1.中位数;2.众数.9.(2017湖南怀化第4题)下列说法中,正确的是( )A.要了解某大洋的海水污染质量情况,宜采用全面调查方式;B.如果有一组数据为5,3,6,4,2,那么它的中位数是6;C.为了解怀化市6月15日到19日的气温变化情况,应制作折线统计图;D.“打开电视,正在播放怀化新闻节目”是必然事件.【答案】C.【解析】试题解析:A、要了解某大洋的海水污染质量情况,宜采用抽样调查,故A不符合题意;B、如果有一组数据为5,3,6,4,2,那么它的中位数是4.5,故B不符合题意;C、为了解怀化市6月15日到19日的气温变化情况,应制作折线统计图,故C符合题意;D、“打开电视,正在播放怀化新闻节目”是随机事件,故D不符合题意;故选C.考点:随机事件;全面调查与抽样调查;折线统计图;中位数.10.(2017江苏无锡第6题)“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()成绩(分)70 80 90男生(人) 5 10 7女生(人) 4 13 4A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数【答案】A.【解析】试题解析:∵男生的平均成绩是:(70×5+80×10+90×7)÷22=1780÷22=8010 11,女生的平均成绩是:(70×4+80×13+90×4)÷21=1680÷21=80,∴男生的平均成绩大于女生的平均成绩.∵男生一共22人,位于中间的两个数都是80,所以中位数是(80+80)÷2=80,女生一共21人,位于最中间的一个数是80,所以中位数是80,∴男生成绩的中位数等于女生成绩的中位数.故选A.考点:1.中位数;2.算术平均数.11.(2017甘肃兰州第7题)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )A.20B.24C.28D.30【答案】D【解析】试题解析:根据题意得9n=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.考点:利用频率估计概率.12.(2017山东烟台第8题)甲、乙两地去年12月前5天的平均气温如图所示,下列描述错误的是( )A .两地气温的平均数相同B .甲地气温的中位数是C 06 C.乙地气温的众数是C 04 D .乙地气温相对比较稳定 【答案】C 【解析】试题解析:甲乙两地的平均数都为6℃;甲地的中位数为6℃;乙地的众数为4℃和8℃;乙地气温的波动小,相对比较稳定. 故选C .考点:方差;算术平均数;中位数;众数.13.(2017四川宜宾第6题)某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )A .参加本次植树活动共有30人B .每人植树量的众数是4棵C .每人植树量的中位数是5棵D .每人植树量的平均数是5棵【答案】D .考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.14.(2017四川自贡第2题)下列成语描述的事件为随机事件的是()A.水涨船高 B.守株待兔 C.水中捞月 D.缘木求鱼【答案】B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B.考点:随机事件.15.(2017四川自贡第7题)对于一组统计数据3,3,6,5,3.下列说法错误的是()A.众数是3 B.平均数是4 C.方差是1.6 D.中位数是6【答案】D.【解析】试题解析:A、这组数据中3都出现了3次,出现的次数最多,所以这组数据的众数为3,此选项正确;B、由平均数公式求得这组数据的平均数为4,故此选项正确;C、S2=15[(3﹣4)2+(3﹣4)2+(6﹣4)2+(5﹣4)2+(3﹣4)2]=1.6,故此选项正确;D、将这组数据按从大到校的顺序排列,第3个数是3,故中位数为3,故此选项错误;故选D.考点:1.众数;2.平均数;3.方差;4.中位数.16.(2017新疆建设兵团第4题)下列事件中,是必然事件的是()A.购买一张彩票,中奖B.通常温度降到0℃以下,纯净的水结冰C.明天一定是晴天D.经过有交通信号灯的路口,遇到红灯【答案】B.考点:随机事件.17.(2017浙江宁波第6题)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )A.12B.15C.310D.710【答案】C.【解析】试题解析:∵布袋里装有5个红球, 2个白球,3个黄球,∴从袋中摸出一个球是黄球的概率是:3 10.故选C.考点:概率.18.(2017江苏徐州第5题)在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书话动,为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数01234人数4 12 16 17 1关于这组数据,下列说法正确的是( )A .中位数是2B .众数是17 C. 平均数是2 D .方差是2 【答案】A . 【解析】考点:1.方差;2.加权平均数;3.中位数;4.众数.19.(2017浙江嘉兴第3题)已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据2a -,2b -,2c -的平均数和方差分别是( ) A .3,2 B .3,4C .5,2D .5,4【答案】B . 【解析】试题解析:∵数据a ,b ,c 的平均数为5, ∴13(a+b+c )=5, ∴13(a-2+b-2+c-2)=13(a+b+c )-2=5-2=3, ∴数据a-2,b-2,c-2的平均数是3; ∵数据a ,b ,c 的方差为4, ∴13[(a-5)2+(b-5)2+(c-5)2]=4,∴a-2,b-2,c-2的方差=13[(a-2-3)2+(b-2-3)2+(c--2-3)2]=13[(a-5)2+(b-5)2+(c-5)2]=4.故选B.考点:1.方差;2.算术平均数.20.(2017浙江嘉兴第5题)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A.红红不是胜就是输,所以红红胜的概率为1 2B.红红胜或娜娜胜的概率相等C.两人出相同手势的概率为1 3D.娜娜胜的概率和两人出相同手势的概率一样【答案】A.【解析】试题解析:红红和娜娜玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:红红娜娜石头剪刀布石头(石头,石头)(石头,剪刀)(石头,布)剪刀(剪刀,石头)(剪刀,剪刀)(剪刀,布)布(布,石头)(布,剪刀)(布,布)由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).因此,红红和娜娜两人出相同手势的概率为13,两人获胜的概率都为13,红红不是胜就是输,所以红红胜的概率为12,错误,故选项A符合题意,故选项B,C,D不合题意;故选A.考点:1.列表法与树状图法;2.命题与定理.二、填空题1.(2017重庆A卷第16题)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是小时.【答案】11.【解析】试题解析:由统计图可知,一共有:6+9+10+8+7=40(人),∴该班这些学生一周锻炼时间的中位数是第20个和21个学生对应的数据的平均数,∴该班这些学生一周锻炼时间的中位数是11.考点:1.中位数;2.平均数.2.(2017贵州黔东南州第14题)黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是kg.【答案】560kg.【解析】试题解析:由题意可得,该果农今年的“优质蓝莓”产量约是:800×0.7=560kg,考点:利用频率估计概率.3.(2017四川泸州第13题)在一个不透明的袋子中装有4个红球和2个白球,这些球除了颜色外无其他差别,从袋子中随机摸出一个球,则摸出白球的概率是.【答案】1 3 .【解析】试题解析:袋子中球的总数为:4+2=6,∴摸到白球的概率为:21 = 63.考点:概率公式.4.(2017新疆建设兵团第12题)某餐厅供应单位为10元、18元、25元三种价格的抓饭,如图是该餐厅某月销售抓饭情况的扇形统计图,根据该统计图可算得该餐厅销售抓饭的平均单价为元.【答案】17.【解析】试题解析:25×20%+10×30%+18×50%=17;答:该餐厅销售抓饭的平均单价为17元.考点:扇形统计图.5.(2017浙江嘉兴第14题)七(1)班举行投篮比赛,每人投5球.如图是全班学生投进球数的扇形统计图,则投进球数的众数是.【答案】3球.试题解析:∵由图可知,3球所占的比例最大,∴投进球数的众数是3球.考点:1.扇形统计图;2.众数.6.(2017浙江衢州第13题)在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里摸出1个球,则摸到红球的概率是.【答案】2 3 .【解析】试题解析:∵一个不透明的箱子里有1个白球,2个红球,共有3个球,∴从箱子中随机摸出一个球是红球的概率是2 3 .考点:概率.7.(2017山东德州第16题)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物埋、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.【答案】1 9【解析】列表如下物理化学生物物理(物理,物理)(物理,化学)(物理,生物)化学(化学,物理)(化学,化学)(化学,生物)生物(生物,物理)(生物,化学)(生物,生物)∴两人都抽到物理实验的概率是1 9考点:列表法或树状图法求概率8.(2017湖北盖茨退休14题)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.【答案】25.试题解析:根据题意可得:列表如下红1 红2 黄1 黄2 黄3 红1 红1,红2 红1,黄1 红1,黄2 红1,黄3 红2 红2,红1 红2,黄1 红2,黄2 红2,黄3 黄1 黄1,红1 黄1,红2 黄1,黄2 黄1,黄3 黄2 黄2,红1 黄2,红2 黄2,黄1 黄2,黄3 黄3 黄3,红1 黄3,红2 黄3,黄1 黄3,黄2共有20种所有等可能的结果,其中两个颜色相同的有8种情况,故摸出两个颜色相同的小球的概率为82= 205.考点:列表法和树状图法.9.(2017江苏盐城第13题)如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是.【答案】1 3 .【解析】试题解析:上方的正六边形涂红色的概率是1 3 .考点:概率公式.三、解答题1.(2017浙江衢州第20题)根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示。
人教版八下数学07 统计与概率(第01期)-2017年中考数学试题分项版解析汇编(原卷版)
![人教版八下数学07 统计与概率(第01期)-2017年中考数学试题分项版解析汇编(原卷版)](https://img.taocdn.com/s3/m/3fed587f03d8ce2f006623e4.png)
专题07 统计与概率一、选择题1.(2017浙江衢州第4题)据调查,某班20为女同学所穿鞋子的尺码如表所示,则鞋子尺码的众数和中位数分别是()尺码(码)34 35 36 37 38人数 2 5 10 2 1A.35码,35码B.35码,36码C.36码,35码D.36码,36码2. (2017山东德州第6题)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是()A.平均数 B.方差 C.众数 D.中位数3.(2017浙江宁波第8题)若一组数据2,3,x,5,7的众数为7,则这组数据的中位数为( )A.2B.3C.5D.74.(2017重庆A卷第4题)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查5.(2017广西贵港第2题)数据3,2,4,2,5,3,2的中位数和众数分别是()A.2,3 B.4,2 C.3,2 D.2,26.(2017广西贵港第8题)从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.14B.12C.34D.17.(2017贵州安顺第6题)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.16,10.5 B.8,9 C.16,8.5 D.8,8.58.(2017湖北武汉第4题)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示.成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数 2 3 2 3 4 1则这些运动员成绩的中位数,众数分别为()A.1.65,1.70 B.1.65,1.75 C. 1.70,1.75 D.1.70,1.709.(2017湖南怀化第4题)下列说法中,正确的是( )A.要了解某大洋的海水污染质量情况,宜采用全面调查方式;B.如果有一组数据为5,3,6,4,2,那么它的中位数是6;C.为了解怀化市6月15日到19日的气温变化情况,应制作折线统计图;D.“打开电视,正在播放怀化新闻节目”是必然事件.10.(2017江苏无锡第6题)“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()成绩(分) 70 80 90男生(人) 5 10 7女生(人) 4 13 4A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D .男生成绩的中位数小于女生成绩的中位数11.(2017甘肃兰州第7题)一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为( ) A.20B.24C.28D.3012.(2017山东烟台第8题)甲、乙两地去年12月前5天的平均气温如图所示,下列描述错误的是( )A .两地气温的平均数相同B .甲地气温的中位数是C 06 C.乙地气温的众数是C 04 D .乙地气温相对比较稳定13.(2017四川宜宾第6题)某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )A .参加本次植树活动共有30人B .每人植树量的众数是4棵C .每人植树量的中位数是5棵D .每人植树量的平均数是5棵 14.(2017四川自贡第2题)下列成语描述的事件为随机事件的是( ) A .水涨船高 B .守株待兔 C .水中捞月 D .缘木求鱼15. (2017四川自贡第7题)对于一组统计数据3,3,6,5,3.下列说法错误的是( ) A .众数是3 B .平均数是4C .方差是1.6D .中位数是616.(2017新疆建设兵团第4题)下列事件中,是必然事件的是( ) A .购买一张彩票,中奖B .通常温度降到0℃以下,纯净的水结冰C .明天一定是晴天D .经过有交通信号灯的路口,遇到红灯17.(2017浙江宁波第6题)一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( ) A.12B.15C.310D.71018.(2017江苏徐州第5题)在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书话动,为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示: 册数 0 1 2 3 4 人数41216171关于这组数据,下列说法正确的是( )A .中位数是2B .众数是17 C. 平均数是2 D .方差是219.(2017浙江嘉兴第3题)已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据2a -,2b -,2c -的平均数和方差分别是( ) A .3,2B .3,4C .5,2D .5,420. (2017浙江嘉兴第5题)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是( )A .红红不是胜就是输,所以红红胜的概率为12B .红红胜或娜娜胜的概率相等C .两人出相同手势的概率为13D.娜娜胜的概率和两人出相同手势的概率一样二、填空题1.(2017重庆A卷第16题)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是小时.2.(2017贵州黔东南州第14题)黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是kg.3.(2017四川泸州第13题)在一个不透明的袋子中装有4个红球和2个白球,这些球除了颜色外无其他差别,从袋子中随机摸出一个球,则摸出白球的概率是.4.(2017新疆建设兵团第12题)某餐厅供应单位为10元、18元、25元三种价格的抓饭,如图是该餐厅某月销售抓饭情况的扇形统计图,根据该统计图可算得该餐厅销售抓饭的平均单价为元.5.(2017浙江嘉兴第14题)七(1)班举行投篮比赛,每人投5球.如图是全班学生投进球数的扇形统计图,则投进球数的众数是.6.(2017浙江衢州第13题)在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里摸出1个球,则摸到红球的概率是.7.(2017山东德州第16题)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物埋、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是.8.(2017湖北盖茨退休14题)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.9.(2017江苏盐城第13题)如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是.三、解答题1.(2017浙江衢州第20题)根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示。
中考真题同步练习《概率与统计》
![中考真题同步练习《概率与统计》](https://img.taocdn.com/s3/m/a0a88030cfc789eb172dc8c7.png)
概率与统计一、单选题1、(2017•温州)某校学生到校方式情况的统计图如图所示,若该校步行到校的学生有100人,则乘公共汽车到校的学生有( ) A 、75人B 、100人C 、125人D 、200人2、(2017•宁波)若一组数据2,3,x , 5,7的众数为7,则这组数据的中位数为 ( ) A 、2B 、3C 、5D 、73、(2017·台州)有5名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( ) A 、方差B 、中位数C 、众数D 、平均数4、(2017•绍兴)在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其它均相同,从中任意摸出一个球,则摸出黑球的概率是( ) A 、B 、C 、D 、5、(2017·衢州)据调查,某班20位女同学所穿鞋子的尺码如下表所示,则鞋子尺码的众数和中位数分别是( )A 、 35码,35码B 、35码,36码C 、36码,35码D 、36码,36码6、(2017·金华)某校举行以“激情五月,唱响青春”为主题的演讲比赛.决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是( ) A 、B 、C 、D 、7、(2017•温州)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:表中表示零件个数的数据中,众数是( ) A 、5个B 、6个C 、7个D 、8个8、(2017•湖州)一个布袋里装有个只有颜色不同的球,其中个红球,个白球.从布袋里摸出个球,记下颜色后放回,搅匀,再摸出个球,则两次摸到的球都是红球的概率是( ) A 、B、C 、D 、9、(2017•宁波)一个不透明的布袋里装有5个红球、2个白球、3个黄球,它们除颜色外其余都相同.从袋中任意找出1个球,是黄球的概率为 ( ) A 、B 、C 、D 、10、(2017•绍兴)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )A 、甲B 、乙C 、丙D 、丁11、(2017·嘉兴)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是( )A、红红不是胜就是输,所以红红胜的概率为B 、红红胜或娜娜胜的概率相等C、两人出相同手势的概率为D 、娜娜胜的概率和两人出相同手势的概率一样12、(2017·嘉兴)已知一组数据,,的平均数为,方差为,那么数据,,的平均数和方差分别是( )A 、,B 、,C 、,D 、,13、(2017·丽水)根据PM2.5空气质量标准:24小时PM2.5均值在1~35(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表.这组PM2.5数据的中位数是( )A 、21微克/立方米B 、20微克/立方米C 、19微克/立方米D 、18微克/立方米 二、填空题14、(2017•杭州)数据2,2,3,4,5的中位数是________. 15、(2017·衢州)在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同。
2017年中考数学试题分类解析汇编(第03期)专题07统计与概率(含解析)(数理化网)
![2017年中考数学试题分类解析汇编(第03期)专题07统计与概率(含解析)(数理化网)](https://img.taocdn.com/s3/m/55b515450a1c59eef8c75fbfc77da26925c596ee.png)
2017年中考数学试题分类解析汇编(第03期)专题07统计与概率(含解析)(数理化网)专题07统计与概率一、选择题1.(2017四川省南充市)某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为2【答案】.【解析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=(36﹣38.4)22×(37﹣38.4)2(38﹣38.4)24×(39﹣38.4)22×(40﹣38.4)2=1.64;选项A,BD错误;故选C.考点:1.方差;2.加权平均数;3.中位数;4.众数2.(2017四川省广安市)关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6B.这组数据的中位数是1C.这组数据的平均数是6D.这组数据的方差是10【答案】.【解析】试题分析:数据由小到大排列为1,2,6,6,10,它的平均数为(12+6+6+10)=5,数据的中位数为6,众数为6,数据的方差=(1﹣5)2(2﹣5)2(6﹣5)2(6﹣5)2(10﹣5)2=10.4.故选A.考点:1.方差;2.算术平均数;3.中位数;4.众数3.(2017四川省眉山市)下列说法错误的是()A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个【答案】.考点:1.众数;2.算术平均数;3.中位数4.(2017山东省枣庄市)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:由表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【答案】.【解析】试题分析:=>=,从甲和丙中选择一人参加比赛,=<<,选择甲参赛,故选A.考点1.方差;2.算术平均数5.(2017山东省济宁市)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.【答案】.【解析】试题分析:画树状图为:共有12种等可能的结果数,其中两次摸出的球上的汉字组成“孔孟”的结果数为2,所以两次摸出的球上的汉字组成“孔孟”的概率==.故选B.考点:6.(2017广东省)在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是()A.95B.90C.85D.80【答案】.考点:7.(2017广西四市)今年世界环境日,某校组织的保护环境为主题的演讲比赛,参加决赛的6名选手成绩(单位:分)如下:8.5,8.8,9.4,9.0,8.8,9.5,这6名选手成绩的众数和中位数分别是()A.8.8分,8.8分B.9.5分,8.9分C.8.8分,8.9分D.9.5分,9.0分【答案】.【解析】试题分析:由题中的数据可知,8.8出现的次数最多,所以众数为8.8;从小到大排列:8.5,8.8,8.8,9.0,9.4,9.5,故可得中位数是=8.9.故选C.考点:1.众数;2.中位数8.(2017广西四市)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()B.C.D.【答案】.【解析】试题分析:画树状图得:共有12种等可能的结果,两次摸出的小球标号之和等于5的有4种情况,两次摸出的小球标号之和等于5的概率是:=.故选C.考点:9.(2017江苏省盐城市)数据6,5,7.5,8.6,7,6的众数是()A.5B.6C.7D.8【答案】.考点:10.(2017江苏省连云港市)小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A.方差B.平均数C.众数D.中位数【答案】.【解析】试题分析:由于方差反映数据的波动情况,应知道数据的方差.故选A.考点:11.(2017河北省)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表比较5月份两组家庭用水量的中位数,下列说法正确的是()A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断【答案】.考点:1.中位数;2.扇形统计图12.(2017浙江省丽水市)根据PM2.5空气质量标准:24小时PM2.5均值在035(微克/立方米)的空气质量等级为优.将环保部门对我市PM2.5一周的检测数据制作成如下统计表,这组PM2.5数据的中位数是()A.21微克/立方米B.20微克/立方米C.19微克/立方米D.18微克/立方米【答案】.【解析】试题分析:从小到大排列此数据为:18,18,18,20,21,29,30,位置处于最中间的数是:20,所以组数据的中位数是20.故选B.考点:1.中位数;2.统计表13.(2017浙江省台州市)有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数【答案】.考点:1.统计量的选择;2.统计的应用.14B.C.D.【答案】.【解析】试题分析:在一个不透明的袋子中装有除颜色外其他均相同的4个红球和3个黑球,从中任意摸出一个球,则摸出黑球的概率是.故选B.考点:15.(2017浙江省绍兴市)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁【答案】.【解析】试题分析:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选D.考点:1.方差;2.加权平均数16.(2017湖北省襄阳市)下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查【答案】.考点:17.(2017重庆市B卷)下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查【答案】.【解析】试题分析:A.人数不多,容易调查,适合普查.B.对“神舟十一号”运载火箭发射前零部件质量情况的调查必须准确,故必须普查;C.班内的同学人数不多,很容易调查,因而采用普查合适;D.数量较大,适合抽样调查;故选D.考点:18.(2017四川省南充市)经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是.【答案】.考点:19.(2017四川省绵阳市)同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是.【答案】.【解析】试题分析:画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率==.故答案为:.考点:20.(2017四川省达州市)从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数图象上的概率是.【答案】.【解析】试题分析:画树状图得:共有12种等可能的结果,点(m,n)恰好在反比例函数图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),点(m,n)在函数图象上的概率是:=.故答案为:.考点:1.反比例函数图象上点的坐标特征;2.列表法与树状图法21.(2017广东省)在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.【答案】.考点:22.(2017广西四市)红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有人.【答案】680.【解析】试题分析:由于样本中最喜欢的项目是跳绳的人数所占比例为,估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有1600=680,故答案为:680.考点:23.(2017江苏省盐城市)如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是.【答案】.【解析】试题分析:上方的正六边形涂红色的概率是,故答案为:.考点:24.(2017浙江省丽水市)如图,由6个小正方形组成的23网格中,任意选取5个小正方形并涂黑,则黑色部分的图形是轴对称图形的概率是.【答案】.考点:1.利用轴对称设计图案;2.列表法与树状图法25.(2017浙江省台州市)三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为.【答案】.【解析】试题分析:画树状图得:共有6种等可能的结果,抽签后每个运动员的出场顺序都发生变化有5种情况,抽签后每个运动员的出场顺序都发生变化的概率=,故答案为:.考点:26.(2017湖北省襄阳市)同时抛掷三枚质地均匀的硬币,出现两枚正面向上,一枚正面向下的概率是.【答案】.考点:27.(2017重庆市B卷)某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是个.【答案】.【解析】试题分析:由图可知,把数据从小到大排列的顺序是:180、182、183、185、186,中位数是183.故答案为:183.考点:1.折线统计图;2.中位数28.(2017四川省南充市)在“宏扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A﹣国学诵读”、“B﹣演讲”、“C﹣课本剧”、“D﹣书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:(1)如图,希望参加活动C占20%,希望参加活动B占15%,则被调查的总人数为人,扇形统计图中,希望参加活动D所占圆心角为度,根据题中信息补全条形统计图.(2)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?【答案】60,72.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图29.(2017四川省广安市)某校为提高学生身体素质,决定开展足球、篮球、台球、乒乓球四项课外体育活动,并要求学生必须并且只能选择一项.为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并绘制出以下两幅不完整的统计图.请根据统计图回答下列问题.(要求写出简要的解答过程)(1)这次活动一共调查了多少名学生?(2)补全条形统计图.(3)若该学校总人数是1300人,请估计选择篮球项目的学生人数.【答案】.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图30.(2017四川省眉山市)一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.若红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是.(1)求袋中红球的个数;(2)求从袋中任取一个球是黑球的概率.【答案】.【解析】试题分析:(1)先根据概率公式求出白球的个数为10,进一步求得红、黑两种球的个数和为280,再根据红球个数是黑球个数的2倍多40个,可得黑球个数为(280﹣40)(21)=80个,进一步得到红球的个数;(2)根据概率公式可求从袋中任取一个球是黑球的概率.试题解析:(1)290=10(个),290﹣10=280(个),(280﹣40)(21)=80(个),280﹣80=200(个).故袋中红球的个数是200个;(2)80290=.答:从袋中任取一个球是黑球的概率是.考点:31.(2017四川省绵阳市)红星中学课外兴趣活动小组对某水稻品种的稻穗谷粒数目进行调查,从试验田中随机抽取了30株,得到的数据如下(单位:颗):(1)对抽取的30株水稻稻穗谷粒数进行统计分析,请补全下表中空格,并完善直方图:如图所示的扇形统计图中,扇形A对应的圆心角为度,扇形B对应的圆心角为度;(2)该试验田中大约有3000株水稻,据此估计,其中稻穗谷粒数大于或等于205颗的水稻有多少株?【答案】.【解析】试题分析:(1)根据表格中数据填表画图即可,利用360°其所占的百分比求出扇形对应的圆心角度数;(2)用360°乘以样本中稻穗谷粒数大于或等于205颗的水稻所占百分比即可.试题解析:(1)填表如下:如图所示:如图所示的扇形统计图中,扇形A对应的圆心角为:360°=72度,扇形B对应的圆心角为360°=36度.故答案为:3,6,B,A,72,36;(2)3000=900.即据此估计,其中稻穗谷粒数大于或等于205颗的水稻有900株.考点:1.频数(率)分布直方图;2.用样本估计总体;3.频数(率)分布表;4.扇形统计图32.(2017四川省达州市)国家规定,中、小学生每天在校体育活动时间不低于1h.为此,某区就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图如图所示,其中A组为t0.5h,B组为0.5ht<1h,C组为1ht<1.5h,D组为t1.5h.请根据上述信息解答下列问题:(1)本次调查数据的众数落在组内,中位数落在组内;(2)该辖区约有18000名初中学生,请你估计其中达到国家规定体育活动时间的人数.【答案】B,C.【解析】试题分析:(1)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得答案;(2)达国家规定体育活动时间的人数约1800=960(人).答:达国家规定体育活动时间的人约有960人.考点:1.频数(率)分布直方图;2.用样本估计总体;3.中位数;4.众数33.(2017山东省枣庄市)为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.【答案】50,30%;.【解析】试题分析:(1)由舞蹈的人数除以占的百分比求出调查学生总数,确定出扇形统计图中m的值;(2)求出绘画与书法的学生数,补全条形统计图即可;(3)列表得出所有等可能的情况数,找出恰好为一男一女的情况数,即可求出所求概率.试题解析:(1)2040%=50(人),1550=30%;故答案为:50;30%;(2)5020%=10(人),5010%=5(人),如图所示:(3)5﹣2=3(名),选修书法的5名同学中,有3名男同学,2名女同学,所有等可能的情况有20种,其中抽取的2名同学恰好是1名男同学和1名女同学的情况有12种,则P(一男一女)==.考点1.列表法与树状图法;2.扇形统计图;3.条形统计图;4.应用题;5.数据的收集与整理34.(2017山东省济宁市)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【答案】答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【解析】试题分析:(1)利用折线统计图结合条形统计图,利用优秀人数优秀率=总人数求出即可;(2)分别求出第四次模拟考试的优秀人数以及第三次的优秀率即可得出答案;(2)由(1)得,第四次优秀的人数为:4085%=34(人),第三次优秀率为:100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.考点:1.条形统计图;2.扇形统计图35.(2017广东省)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题:体重频数分布表(1)填空:m=(直接写出结果);在扇形统计图中,C组所在扇形的圆心角的度数等于度;(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?【答案】52;②144;(2)720.【解析】试题分析:(1)根据D组的人数及百分比进行计算即可得到m 的值;根据C组的百分比即可得到所在扇形的圆心角的度数;(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年级体重低于60千克的学生数量.试题解析:(1)调查的人数为:4020%=200(人),m=200﹣12﹣80﹣40﹣16=52;C组所在扇形的圆心角的度数为360°=144°;故答案为:52,144;(2)九年级体重低于60千克的学生大约有1000=720(人).考点:1.扇形统计图;2.用样本估计总体;3.频数(率)分布表36.(2017广西四市)为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了名市民,扇形统计图中,C组对应的扇形圆心角是°;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.【答案】2000,108.【解析】试题分析:(1)根据B组的人数以及百分比,即可得到被调查的人数,进而得出C组的人数,再根据扇形圆心角的度数=部分占总体的百分比360°进行计算即可;(2)根据C组的人数,补全条形统计图;(2)条形统计图如下:(3)画树状图得:共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,甲、乙两人选择同一种交通工具上班的概率为:=.考点:1.列表法与树状图法;2.扇形统计图;3.条形统计图37.(2017江苏省盐城市)为了编撰祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个,则小明回答正确的概率是;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.【答案】;(2).【解析】试题分析:(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.试题解析:(1)对第二个字是选“重”还是选“穷”难以抉择,若随机选择其中一个正确的概率=,故答案为:;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.考点:1.列表法与树状图法;2.概率公式38.(2017江苏省盐城市)“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.【答案】.【解析】试题分析:(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去A景点的人数所占的百分比即可.试题解析:(1)被调查的学生总人数为820%=40(人);(2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为360°=72°;(3)800=280,所以估计“最想去景点B“的学生人数为280人.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.数形结合39.(2017江苏省连云港市)某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x分(60x≤100).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.“文明在我身边”摄影比赛成绩统计表根据以上信息解答下列问题:(1)统计表中c的值为;样本成绩的中位数落在分数段中;(2)补全频数分布直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?【答案】0.34,70x<80;(2)作图见解析;(3)180.【解析】试题分析:(1)由60x<70频数和频率求得总数,根据频率=频数总数求得a、b、c的值,由中位数定义求解可得;(2)根据(1)中所求数据补全图形即可得;(2)补全图形如下:(3)600(0.240.06)=180(幅).答:估计全校被展评作品数量是180幅.考点:1.频数(率)分布直方图;2.用样本估计总体;3.频数(率)分布表;4.中位数40.(2017江苏省连云港市)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【答案】;(2).【解析】试题分析:(1)直接利用概率公式求出甲投放的垃圾恰好是A类的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.试题解析:(1)垃圾要按A,B,C三类分别装袋,甲投放了一袋垃圾,甲投放的垃圾恰好是A类的概率为:;(2)如图所示:由图可知,共有18种可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)==;即,乙投放的垃圾恰有一袋与甲投放的垃圾是同一类的概率是:.考点:1.列表法与树状图法;2.概率公式41.(2017河北省)编号为15号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分,如图是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;(2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次,这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.,条形统计图见解析;;(3)3,3分或(1)由第6名学生命中的个数为540%=2可得答案,并补全条形图;(2)由这6名学生中,命中次数多于550%=2.5次的有2、3、4、5号这4名学生,根据概率公式可得;(3)根据众数的定义得出前6名学生积分的众数即可得.试题解析:(1)第6名学生命中的个数为540%=2,则第6号学生的积分为2分,补全条形统计图如下:(3)由于前6名学生积分的众数为3分,第7号学生的积分为3分.考点:1.概率公式;2.条形统计图;3.众数42.(2017浙江省丽水市)在全体丽水人民的努力下,我市剿灭劣V类水“河道清淤”工程取得了阶段性成果,如表是全市十个县(市、区)指标任务数的统计表;如图是截止2017年3月31日和截止5月4日,全市十个县(市、区)指标任务累计完成数的统计图.全市十个县(市、区)指标任务数统计表(1)截止3月31日,完成进度(完成进度=累计完成数任务数100%)最快、最慢的县(市、区)分别是哪一个?(2)求截止5月4日全市的完成进度;(3)请结合图表信息和数据分析,对Ⅰ县完成指标任务的行动过程和成果进行评价.【答案】完成进度最快的是C县,完成进度最慢的是I县;85.9%;(3)答案见解析.。
【推荐精选】2017年中考数学试题分项版解析汇编(第04期)专题07 统计与概率(含解析)
![【推荐精选】2017年中考数学试题分项版解析汇编(第04期)专题07 统计与概率(含解析)](https://img.taocdn.com/s3/m/600f2a561eb91a37f1115c82.png)
专题07 统计与概率一、选择题1. (2017贵州遵义第5题)我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30°B.30°,28°C.31°,30°D.30°,30°【答案】D.考点:众数;算术平均数.2. (2017湖南株洲第7题)株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为()A.9:00﹣10:00 B.10:00﹣11:00 C.14:00﹣15:00 D.15:00﹣16:00【答案】B.【解析】试题分析:由统计表可得:10:00﹣11:00,进馆24人,出馆65人,差之最大,故选:B.考点:统计表.3.(2017湖南株洲第8题)三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为()A.19B.16C.)14D.)12【答案】D.【解析】试题分析:画树状图为:(用A、B、C表示三位同学,用a、b、c表示他们原来的座位)共有6种等可能的结果数,其中恰好有两名同学没有坐回原座位的结果数为3, 所以恰好有两名同学没有坐回原座位的概率=3162. 故选D .考点:列表法与树状图法.4. (2017内蒙古通辽第3题)空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是( ) A .折线图 B .条形图 C .直观图 D .扇形图 【答案】D考点:统计图的选择5. (2017内蒙古通辽第5题)若数据10,9,a ,12,9的平均数是10,则这组数据的方差是( ) A .1 B .2.1 C .9.0 D .4.1 【答案】B 【解析】试题分析:先由平均数的公式,由数据10,9,a ,12,9的平均数是10,可得(10+9+a+12+9)÷5=10,解得:a=10,然后可求得这组数据的方差是51[(10﹣10)2+(9﹣10)2+(10﹣10)2+(12﹣10)2+(9﹣10)2]=1.2.故选:B .考点:1、方差;2、算术平均数6. (2017郴州第5题)在创建“全国园林城市”期间,郴州市某中学组织共青团员取植树,其中七位同学植树的棵数分别为:3,1,1,3,2,3,2,则这组数据的中位数和众数分别是( )A.3,2 B.2,3 C.2,2 D.3,3【答案】B.考点:中位数、众数.7. (2017湖南常德第4题)如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A.30,28 B.26,26 C.31,30 D.26,22【答案】B.【解析】试题分析:由图可知,把7个数据从小到大排列为22,22,23,26,28,30,31,中位数是第4位数,第4位是26,所以中位数是26.平均数是(22×2+23+26+28+30+31)÷7=26,所以平均数是26.故选B.考点:中位数;加权平均数.8. (2017广西百色第3题)在以下一列数3,3,5,6,7,8中,中位数是()A.3 B.5 C.5.5 D.6【答案】C【解析】试题分析:从小到大排列此数据为:3,3,5,6,7,8,第3个与第4个数据分别是5,6,所以这组数据的中位数是(5+6)÷2=5.5.故选C.考点:中位数.9. (2017广西百色第9题)九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是()A.45︒ B.60︒ C. 72︒ D.120︒【答案】C考点:1.扇形统计图;2.条形统计图.10. (2017黑龙江绥化第7题)从一副洗匀的普通扑克牌中随机抽取一张,则抽出红桃的概率是()A.154B.1354C.113D.14【答案】B 【解析】试题分析:∵一副扑克牌共54张,其中红桃13张,∴随机抽出一张牌得到红桃的概率是1354.故选B.考点:概率公式.11. (2017湖北孝感第7题)下列说法正确的是()A.调查孝感区域居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95C. “打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为1 2【答案】A考点:1.抽样调查;2.众数;3.随机事件;4.概率.12. (2017内蒙古呼和浩特第4题)如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A.2010年至2014年间工业生产总值逐年增加B.2014年的工业生产总值比前一年增加了40亿元C.2012年与2013年每一年与前一年比,其增长额相同D.从2011年至2014年,每一年与前一年比,2014年的增长率最大【答案】D【解析】试题分析:A、2010年至2014年间工业生产总值逐年增加,正确,不符合题意;B、2014年的工业生产总值比前一年增加了40亿元,正确,不符合题意;C、2012年与2013年每一年与前一年比,其增长额相同,正确,不符合题意;D、从2011年至2014年,每一年与前一年比,2012年的增长率最大,故D符合题意;故选D.考点:折线统计图.13. (2017青海西宁第4题)下列调查中,适合采用全面调查(普查)方式的是()A.了解西宁电视台“教育在线”栏目的收视率B.了解青海湖斑头雁种群数量C. 了解全国快递包裹产生包装垃圾的数量D.了解某班同学“跳绳”的成绩【答案】D考点:全面调查与抽样调查.14. (2017上海第4题)数据2、5、6、0、6、1、8的中位数和众数分别是()A.0和6 B.0和8 C.5和6 D.5和8【答案】C【解析】试题分析:将2、5、6、0、6、1、8按照从小到大排列是:0,1,2,5,6,6,8,位于中间位置的数为5,故中位数为5,数据6出现了2次,最多,故这组数据的众数是6,中位数是5,故选C.考点:1.众数;2.中位数.15. (2017湖南张家界第7题)某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是()A.14B.13C.12D.34【答案】A.【解析】试题分析:如图:共有16种结果,小明和小红分在同一个班的结果有4种,故小明和小红分在同一个班的机会=416 =14.故选A .考点:列表法与树状图法.16. (2017辽宁大连第6题)同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为( ) A .41 B .31 C.21 D .43 【答案】.考点:列表法与树状图法.17. (2017海南第9题)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是( ) A .15,14 B .15,15 C .16,14 D .16,15 【答案】D.考点:中位数,众数.18. (2017海南第10题)如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.12B.14C.18D.116【答案】D.【解析】试题分析:首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.列表如下:∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为116,故选:D.考点:用列表法求概率.19. (2017河池第7题)在《数据分析》章节测试中,“勇往直前”学习小组7位同学的成绩分别是94,95,96,93,95,88,92.这组数据的中位数和众数分别是()A .94,94B .95,94 C. 95,93 D .96,93 【答案】B.考点:众数;中位数.20. (2017贵州六盘水第5题)已知A 组四人的成绩分别为90、60、90、60,B 组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当( ) A.平均数B.中位数C.众数D.方差【答案】D .试题分析:A 组:平均数=75,中位数=75,众数=60或90,方差=225;B 组:平均数=75,中位数=75,众数=70或80,方差=25,故选D . 考点:方差;平均数;中位数;众数.21. (2017贵州六盘水第7题)国产大飞机919C 用数学建模的方法预测的价格是(单位:美元):5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,这组数据的平均数是( ) A.5000.3B.4999.7C.4997D.5003【答案】A.试题分析:数据5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,同时减去5000,得到新数据:98,99,1,2,-10,-80,80,10,-99,-98,新数据平均数:0.3,所以原数据平均数:5000.3,故选A . 考点:平均数22. (2017新疆乌鲁木齐第4题)下列说法正确的是 ( ) A .“经过有交通信号的路口,遇到红灯,” 是必然事件B .已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次 C.处于中间位置的数一定是中位数D .方差越大数据的波动越大,方差越小数据的波动越小 【答案】D .【解析】试题解析:A 、“经过有交通信号的路口,遇到红灯,”是随机事件,故原题说法错误; B 、已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次,说法错误; C 、处于中间位置的数一定是中位数,说法错误;D 、方差越大数据的波动越大,方差越小数据的波动越小,说法正确; 故选D .考点:1.概率的意义;2.中位数;3.方差;4.随机事件. 二、填空题1. (2017内蒙古通辽第13题)毛泽东在《沁园春·雪》中提到五位历史名人:秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗.小红将这五位名人简介分别写在五张完全相同的知识卡片上.小哲从中随机抽取一张,卡片上介绍的人物是唐朝以后出生的概率是 . 【答案】25考点:概率公式2. (2017郴州第12题)为从甲乙两名射击运动员中选出一人参加竞标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩为8.9环,方差分别是220.8, 1.3S S ==甲乙,从稳定性的角度看,的成绩更稳定(天“甲”或“乙”) 【答案】甲. 【解析】试题分析:方差越小,数据的密集度越高,波动幅度越小, 已知S 甲2=0.8,S乙2=1.3,可得S甲2<S乙2,所以成绩最稳定的运动员是甲. 考点:方差.3. (2017郴州第15题)从1,1,0- 三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是 . 【答案】23.【解析】试题分析:列表得:所有等可能的情况有6种,其中该点刚好在坐标轴上的情况有4种,所以该点在坐标轴上的概率=42 63 .考点:用列表法求概率.4. (2017湖北咸宁第13题)小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:在每天所走的步数这组数据中,众数和中位数分别是.【答案】1.4;1.35.考点:众数;中位数.5. (2017湖南常德第13题)彭山的枇杷大又甜,在今年5月18日“彭山枇杷节”期间,从山上5棵枇杷树上采摘到了200千克枇杷,请估计彭山近600棵枇杷树今年一共收获了枇杷千克.【答案】24000.【解析】试题分析:根据题意得:200÷5×600=24000(千克).故答案为:24000.考点:用样本估计总体.6. (2017广西百色第14题)一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,随机抽取一张,抽中标号为奇数的卡片的概率是.【答案】3 5考点:概率公式.7. (2017哈尔滨第17题)一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.【答案】617【解析】试题分析:∵不透明的袋子中装有17个小球,其中6个红球、11个绿球, ∴摸出的小球是红球的概率为617.考点:概率公式.8. (2017黑龙江齐齐哈尔第11题)在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为20.15S =甲,20.2S =乙,则成绩比较稳定的是 班.【答案】甲 【解析】试题分析:∵s 甲2<s 乙2,∴成绩相对稳定的是甲. 考点:1.方差;2.算术平均数.9. (2017黑龙江绥化第17题)在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9.则这位选手五次射击环数的方差为 . 【答案】2. 【解析】试题分析:五次射击的平均成绩为x =15(5+7+8+6+9)=7, 方差S 2=15[(5﹣7)2+(8﹣7)2+(7﹣7)2+(6﹣7)2+(9﹣7)2]=2. 考点:方差.10. (2017内蒙古呼和浩特第16题)我国魏晋时期数学家刘徽首创“割圆术”计算圆周率.随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率π进行估计.用计算机随机产生m 个有序对(,)x y (x ,y 是实数,且01x ≤≤,01y ≤≤),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部,如果统计出这些点中到原点的距离小于或等于1的点有n 个,则据此可估计π的值为 .(用含m ,n 的式子表示)【答案】4n m考点:1.利用频率估计概率;2.规律型:点的坐标.11. (2017上海第12题)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.【答案】3 10【解析】试题分析:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:3235++=310考点:概率公式.12. (2017上海第14题)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是万元.【答案】120【解析】试题分析:第一季度的总产值是72÷(1﹣45%﹣25%)=360(万元),则该企业第一季度月产值的平均值是13×360=120(万元).考点:扇形统计图13. (2017湖南张家界第13题)某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:那么这50名学生平均每人植树 棵. 【答案】4. 【解析】试题分析:平均每人植树(3×20+4×15+5×10+6×5)÷50=4棵,故答案为:4. 考点:加权平均数.14. (2017辽宁大连第10题)下表是某校女子排球队员的年龄分布.则该校女子排球队队员年龄的众数是 岁. 【答案】15.考点:众数.15. (2017河池第15题)在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是90,87,88,93,92,则这位歌手的成绩是 . 【答案】90. 【解析】试题分析:根据算术平均数的计算公式,把这5个分数加起来,再除以5,即可得出答案. 这位参赛选手在这次比赛中获得的平均分为:(92+93+88+87+90)÷5=90(分); 故答案为:90. 考点:平均数. 三、解答题1. (2017贵州遵义第21题)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.【答案】(1).14;(2). 小明恰好取到两个白粽子的概率为14.考点:列表法与树状图法;概率公式.2. (2017贵州遵义第23题)贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有人;(2)关注城市医疗信息的有人,并补全条形统计图;(3)扇形统计图中,D部分的圆心角是度;(4)说一条你从统计图中获取的信息.【答案】(1)1000;(2)150;(3)144;(4)市民关注交通信息的人数最多.(4)由条形统计图可知,市民关注交通信息的人数最多.考点:条形统计图;扇形统计图.3. (2017湖南株洲第21题)某次世界魔方大赛吸引世界各地共600名魔方爱好者参加,本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到20个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是3×3阶魔方赛A区域30名爱好者完成时间统计图,求:①A区域3×3阶魔方爱好者进入下一轮角逐的人数的比例(结果用最简分数表示).②若3×3阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在3×3阶魔方赛后进入下一轮角逐的人数.③若3×3阶魔方赛A区域爱好者完成时间的平均值为8.8秒,求该项目赛该区域完成时间为8秒的爱好者的概率(结果用最简分数表示).【答案】①A区进入下一轮角逐的人数比例为:215;②估计进入下一轮角逐的人数为80人;该区完成时间为8秒的爱好者的概率为7 30.所以(1×6+3×7+a×8+b×9+10×10)÷30=8.8化简,得8a+9b=137,又∵1+3+a+b+10=30,即a+b=16所以8913716a ba b+=⎧⎨+=⎩,解得a=7,b=9所以该区完成时间为8秒的爱好者的概率为7 30.考点:条形统计图;用样本估计总体;概率公式.菁4. (2017内蒙古通辽第21题)小兰和小颖用下面两个可以转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次指针所指数字之和为4,则小兰胜,否则小颖胜(指针指在分界线时重转).这个游戏对双方公平吗?请用树状图或列表法说明理由.【答案】这个游戏对双方是公平的考点:1、游戏公平性;2、列表法与树状图法5. (2017内蒙古通辽第23题)某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀.这次竞赛中甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.a,的值;(1)求出下列成绩统计分析表中b(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组,但乙组同学不同意甲组同学的说法,认为他们的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.【答案】(1)a=6,b=7.2(2)小英属于甲组学生(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.考点:1、方差;2、折线统计图;3、算术平均数;4、中位数6. (2017郴州第20题)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问题卷调查,调查结果为“A非常了解”、“B了解”、“C基本了解”三个等级,并根据调查结果制作了如下两幅不完整的统计图.(1)这次调查的市民人数为人,m=,n=;(2)补全条形统计图;(3)若该市约有市民1000000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A非常了解”的程度.【答案】(1)500,12,32;(2)详见解析;(3)32000人.答:该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.考点:统计图.7. (2017湖北咸宁第19题)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如下图所示的两幅不完整统计图,请你根据图中信息解答下列问题:⑴补全条形统计图,“体育”对应扇形的圆心角是度;⑵根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有人;⑶在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或者画树状图的方法求所抽取的2人来自不同班级的概率【答案】(1)72;(2)700;(3)23.所以P(2名学生来自不同班)=82 123.考点:扇形统计图;条形统计图;列表法与树状图法;用样本估计总体.8. (2017湖南常德第17题)甲、乙、丙三个同学站成一排进行毕业合影留念,请用列表法或树状图列出所有可能的情形,并求出甲、乙两人相邻的概率是多少?【答案】23.考点:列表法与树状图法.9. (2017湖南常德第20题)在“一带一路”倡议下,我国已成为设施联通,贸易畅通的促进者,同时也带动了我国与沿线国家的货物交换的增速发展,如图是湘成物流园2016年通过“海、陆(汽车)、空、铁”四种模式运输货物的统计图.请根据统计图解决下面的问题:(1)该物流园2016年货运总量是多少万吨?(2)该物流园2016年空运货物的总量是多少万吨?并补全条形统计图;(3)求条形统计图中陆运货物量对应的扇形圆心角的度数?【答案】(1)240;(2)36;(3)18°.考点:条形统计图;扇形统计图.10. (2017广西百色第23题)甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):某同学计算出了甲的成绩平均数是9,方差是2222221[(109)(89)(99)(109)(89)]0.85S =-+-+-+-+-=甲,请作答:(1)在图中用折线统计图将甲运动员的成绩表示出来;(2)若甲、乙的射击成绩平均数都一样,则a b += ;(3)在(2)的条件下,当甲比乙的成绩较稳定时,请列举出,a b 的所有可能取值,并说明理由.【答案】(1)画图见解析;(2)17;(3)a=8时,b=9;a=9时,b=8;理由见解析∴S 甲2<S 乙2,即15[(10﹣9)2+(9﹣9)2+(9﹣9)2+(a ﹣9)2+(b ﹣9)2]<0.8, ∵a+b=17,∴b=17﹣a ,代入上式整理可得:a 2﹣17a+71<0,解得:2<a <2,∵a 、b 均为整数,∴a=8时,b=9;a=9时,b=8. 考点:1.折线统计图;2.加权平均数;3.方差.11. (2017哈尔滨第23题)随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生? (2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.【答案】(1)本次调查共抽取了50名学生;(2)补图见解析;(3)估计最喜欢太阳岛风景区的学生有540名.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.12. (2017黑龙江齐齐哈尔第24题)为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动.某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出不完整的频数分布表和频数分布直方图.请根据图表信息解答问题:(1)表中a=,b=;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第组;(4)请估计该校七年级学生日阅读量不足1小时的人数.【答案】(1)70,0.40;(2)补图见解析;(3)3;(4)估计该校七年级学生日阅读量不足1小时的人数为180人.【解析】试题分析:(1)根据“频数÷百分比=数据总数”先计算总数为200人,再根据表中的数分别求a和b;(2)补全直方图;考点:1.频数(率)分布直方图;2.用样本估计总体;3.频数(率)分布表;4.中位数.13. (2017黑龙江绥化第23题)某校为了解学生每天参加户外活动的情况,随机抽查了100名学生每天参加户外活动的时间情况,并将抽查结果绘制成如图所示的扇形统计图.请你根据图中提供的信息解答下列问题:(1)请直接写出图中a的值,并求出本次抽查中学生每天参加户外活动时间的中位数;(2)求本次抽查中学生每天参加户外活动的平均时间.【答案】(1)a=20%.本次抽查中学生每天参加活动时间的中位数是1;(2)本次抽查中学生每天参加户外活动的平均时间是1.175小时.【解析】试题分析:(1)用1减去其它组的百分比即可求得a的值,然后求得各组的人数,根据中位数定义求得中考点:1.扇形统计图;2.加权平均数;3.中位数.14. (2017湖北孝感第19题)今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝感文化,争做文明学生”知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成,,,,,A B C D E F六个等级,并绘制成如下两幅不完整的统计图表.请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为,表中:m=,n=;扇形统计图中,E 等级对应的圆心角α等于度;(4分=1分+1分+1分)(2)该校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.【答案】(1)80,12,8,36;(2)抽取两人恰好是甲和乙的概率是16.【解析】考点:1.列表法;2.树状图法;3.扇形统计图;4.频数分布表.15. (2017内蒙古呼和浩特第19题)为了解某个某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x (单位:C ︒)进行调查,并将所得的数据按照1216x ≤<,1620x ≤<,2024x ≤<,2428x ≤<,2832x ≤<分成五组,得到如图频率分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于24C ︒的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.【答案】(1)这30天最高气温的平均数为20.4℃;中位数为22℃;(2)该地这个季度中最高气温超过(1)中平均数的天数为48天;(3)这两天都在气温最高一组内的概率为25.考点:1.列表法与树状图法;2.用样本估计总体;3.频数(率)分布直方图;4.加权平均数;5.中位数.16. (2017青海西宁第25题)西宁教育局在局属各初中学校设立“自主学习日”.规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表.针对以下六个项目(每人只能选一项):A.课外阅读;B.家务劳动;C.体育锻炼;D.学科学习;E.社会实践;F.其他项目进行调查.根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:(1)此次抽查的样本容量为____________,请补全条形统计图;。
【推荐精选】2017年中考数学试题分项版解析汇编(第05期)专题07 统计与概率(含解析)
![【推荐精选】2017年中考数学试题分项版解析汇编(第05期)专题07 统计与概率(含解析)](https://img.taocdn.com/s3/m/eb321d0beefdc8d376ee3250.png)
专题07 统计与概率一、选择题1.(2017年贵州省毕节地区第5题)对一组数据:﹣2,1,2,1,下列说法不正确的是()A.平均数是1 B.众数是1 C.中位数是1 D.极差是4【答案】A.考点:极差,算术平均数,中位数,众数.2.(2017年贵州省毕节地区第8题)为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条B.1750条C.2500条D.5000条【答案】A.【解析】试题分析:首先求出有记号的2条鱼在50条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.由题意可得:50÷250=1250(条).故选A.考点:用样本估计总体3.(2017年贵州省毕节地区第10题)甲、乙、丙、丁参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表:则这10次跳绳中,这四个人发挥最稳定的是()A.甲B.乙C.丙D.丁【答案】B.考点:方差,算术平均数.4.(2017年湖北省十堰市第5题)某交警在一个路口统计的某时段来往车辆的车速情况如表:则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,8【答案】B.【解析】试题分析:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50,所以中位数是50,在这组数据中出现次数最多的是50,即众数是50.故选:B.考点:中位数和众数5.(2017年湖北省荆州市第4题)为了解某班学生双休户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:则关于“户外活动时间”这组数据的众数、中位数、平均数分别是()A.3、3、3B.6、2、3C.3、3、2D.3、2、3【答案】A考点:1、众数;2、加权平均数;3、中位数6. (2017年湖北省宜昌市第6题)九一(1)班在参加学校4100m 接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为( ) A . 1 B .12 C. 13D .14 【答案】D 【解析】试题分析:根据概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数,可得甲跑第一棒的概率为14. 故选:D . 考点:概率公式7. (2017年内蒙古通辽市第3题)空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是( )A .折线图B .条形图C .直观图D .扇形图 【答案】D 【解析】试题分析:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.由分析可知,要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图. 故选:D .考点:统计图的选择8. (2017年内蒙古通辽市第5题)若数据10,9,a ,12,9的平均数是10,则这组数据的方差是( ) A .1 B .2.1 C .9.0 D .4.1 【答案】B 【解析】试题分析:先由平均数的公式,由数据10,9,a ,12,9的平均数是10,可得(10+9+a+12+9)÷5=10,解得:a=10,然后可求得这组数据的方差是51[(10﹣10)2+(9﹣10)2+(10﹣10)2+(12﹣10)2+(9﹣10)2]=1.2.故选:B.考点:1、方差;2、算术平均数9.(2017年山东省东营市第6题)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.47B.37C.27D.17【答案】A考点:概率10.(2017年山东省泰安市第8题)袋内装有标号分别为1、2、3、4的4个球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,主其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为()A.14B.516C.716D.12【答案】B考点:列表法与树状图法11.(2017年山东省泰安市第11题)为了解中考体育科目训练情况,某校从九年级学生中随机抽取部分学生进行了一次中考体育科目测试(把测试结果分为A、B、C、D四个等级),并将测试结果绘制成了如图所示的两幅不完整统计图.根据统计图中提供的信息,结论错误....的是()A.本次抽样测试的学生人数是40B.在图1中,α∠的度数是126C.该校九年级有学生500名,估计D级的人数为80D.从被测学生中随机抽取一位,则这位学生的成绩是A级的概率为0.2【答案】C【解析】试题分析: A、本次抽样测试的学生人数是:12÷30%=40(人),正确,不合题意;B、∵40812640---×360°=126°,∠α的度数是126°,故此选项正确,不合题意;C、该校九年级有学生500名,估计D级的人数为:500×840=100(人),故此选项错误,符合题意;D、从被测学生中随机抽取一位,则这位学生的成绩是A级的概率为:840=0.2,正确,不合题意;故选:C.考点:1、概率公式;2、用样本估计总体;3、扇形统计图;4、条形统计图12.(2017年山东省泰安市第16题)某班学生积极参加爱心活动,该班50名学生的捐款统计情况如下表:则他们捐款金额的中位数和平均数分别是()A.10,20.6 B.20,20.6 C.10,30.6 D.20,30.6【答案】D考点:1、中位数;2、统计表;3、加权平均数13.(2017年山东省威海市第2题)某校排球队10名队员的身高(厘米)如下:195,186,182,188,182,186,188,186,188.这组数据的众数和中位数分别是()A.186,188 B.188,187 C.187,188 D.188,186【答案】B【解析】试题分析:根据众数和中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.将数据重新排列为:182、182、186、186、186、188、188、188、188、195,∴众数为188,中位数为186+1882=187,故选:B.考点:1、众数,2、中位数14. (2017年山东省威海市第9题)甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是( )A .31 B .94 C.95 D .32【答案】C考点:树状图和概率15. (2017年山东省潍坊市第7题)甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次、甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选( ).A.甲B. 乙C. 丙D. 丁【答案】C考点:1、方差;2、折线统计图;3、加权平均数16.(2017年湖南省郴州市第5题)在创建“全国园林城市”期间,郴州市某中学组织共青团员取植树,其中七位同学植树的棵数分别为:3,1,1,3,2,3,2,则这组数据的中位数和众数分别是()A.3,2 B.2,3 C.2,2 D.3,3【答案】B.【解析】试题分析:在这一组数据中3是出现次数最多的,故众数是3;处于这组数据中间位置的那个数是2,那么由中位数的定义可知,这组数据的中位数是2.故选B.考点:中位数、众数.17.(2017年四川省内江市第3题)为了解某市老人的身体健康状况,需要抽取部分老人进行调查,下列抽取老人的方法最合适的是()A.随机抽取100位女性老人B.随机抽取100位男性老人C.随机抽取公园内100位老人D.在城市和乡镇各选10个点,每个点任选5位老人【答案】D.【解析】试题分析:为了解某市老人的身体健康状况,需要抽取部分老人进行调查,在城市和乡镇各选10个点,每个点任选5位老人,这种抽取老人的方法最合适.故选D.考点:抽样调查的可靠性.18.(2017年四川省内江市第7题)某中学对该校九年级45名女学生进行了一次立定跳远测试,成绩如表:这些立定跳远成绩的中位数和众数分别是()A.9,9 B.15,9 C.190,200 D.185,200【答案】C.【解析】试题分析:45名女学生的立定跳远测试成绩的中位数是最中间第23个数据190,众数是出现次数最多的数据200;故选C.考点:众数;中位数.19.(2017年辽宁省沈阳市第8题)下利事件中,是必然事件的是()A.将油滴在水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.如果22=,那么a ba b=D.掷一枚质地均匀的硬币,一定正面向上【答案】A.考点:必然事件;随机事件.20.(2017年四川省成都市第7题)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:则得分的众数和中位数分别为()A.70 分,70 分 B.80 分,80 分 C. 70 分,80 分 D.80 分,70 分【答案】C考点:数据分析21.(2017年贵州省六盘水市第5题)已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当( )A.平均数B.中位数C.众数D.方差【答案】D.试题分析:A组:平均数=75,中位数=75,众数=60或90,方差=225;B组:平均数=75,中位数=75,众数=70或80,方差=25,故选D.考点:方差;平均数;中位数;众数.22.(2017年贵州省六盘水市第7题)国产大飞机919C用数学建模的方法预测的价格是(单位:美元):5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,这组数据的平均数是( )A.5000.3B.4999.7C.4997D.5003【答案】A.【解析】试题分析:数据5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,同时减去5000,得到新数据:98,99,1,2,-10,-80,80,10,-99,-98,新数据平均数:0.3,所以原数据平均数:5000.3,故选A.考点:平均数23.(2017年湖南省岳阳市第5题),0, ,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是A.15B.25C.35D.45【答案】C.考点:概率公式;有理数.24.(2017年湖北省黄冈市第5题)某校10名篮球运动员的年龄情况,统计如下表:则这10名篮球运动员年龄的中位数为()A. 12 B.13 C. 13.5 D.14【答案】B【解析】试题分析:从小到大排列此数据为:12,12,13,13,13,13,14,14,14,15位置处于最中间的两个数是:13,:13,所以组数据的中位数是13.故选:B.考点:中位数;统计表25.(2017年湖南省长沙市第6题)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生的中位数是4C.数据3,5,4,1,2D.“367人中有2人同月同日生”为必然事件【答案】D【解析】试题分析:检测某批次灯泡的使命,适用抽样调查,故A不正确;可能性是1%的事件在一次性事件中有可能发生,故B不正确;把这组数据从小到大排列为:-2,1,3,4,5,中间一个数是3,所以中位数是4,故不正确;“367人中有两人同月同日生”是必然事件,故正确.故选:D考点:事件发生的可能性26.(2017年浙江省杭州市第11题)数据2,2,3,4,5的中位数是.【答案】3【解析】试题分析:根据中位数的定义即中位数要把数据按从小到大排列为:2,2,3,4,5,位于最中间的一个数(或两个数的平均数)是3,则这组数的中位数是3.故答案为:3.考点:中位数二、填空题1.(2017年贵州省毕节地区第19题)记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整)如下:根据图中信息,该足球队全年比赛胜了场.【答案】30.考点:条形统计图;扇形统计图.2.(2017年贵州省黔东南州第14题)黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是kg.【答案】560【解析】试题分析:由题意可得,该果农今年的“优质蓝莓”产量约是:800×0.7=560kg,故答案为:560.考点:利用频率估计概率3.(2017年江西省第11题)已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是.【答案】5考点:1、众数;2、算术平均数;3、中位数4. (2017年内蒙古通辽市第13题)毛泽东在《沁园春·雪》中提到五位历史名人:秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗.小红将这五位名人简介分别写在五张完全相同的知识卡片上.小哲从中随机抽取一张,卡片上介绍的人物是唐朝以后出生的概率是.【答案】2 5【解析】试题分析:在秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗5五人中,唐朝以后出生的有2人.因此在上述5人中随机抽取一张,所有抽到的人物为唐朝以后出生的概率=25.故答案为:25.考点:概率公式5.(2017年山东省东营市第13题)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:如果选拔一名学生去参赛,应派去.【答案】乙考点:1、平均数,2、方差6. (2017年湖南省郴州市第12题)为从甲乙两名射击运动员中选出一人参加竞标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩为8.9环,方差分别是220.8, 1.3S S ==甲乙,从稳定性的角度看, 的成绩更稳定(天“甲”或“乙”) 【答案】甲. 【解析】试题分析:方差越小,数据的密集度越高,波动幅度越小, 已知S 甲2=0.8,S乙2=1.3,可得S甲2<S乙2,所以成绩最稳定的运动员是甲. 考点:方差.7. (2017年湖南省郴州市第15题)从1,1,0- 三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是 . 【答案】23. 【解析】试题分析:列表得:所有等可能的情况有6种,其中该点刚好在坐标轴上的情况有4种, 所以该点在坐标轴上的概率=4263=. 考点:用列表法求概率.8. (2017年辽宁省沈阳市第12题)一组数2,3,5,5,6,7的中位数是 . 【答案】5.试题分析:这组数据的中位数为5552+=. 考点:中位数.9. (2017年辽宁省沈阳市第14题)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是2220.53,0.51,0.43S S S ===甲乙丙,则三人中成绩最稳定的是 .(填“甲”或“乙”或“丙”) 【答案】丙. 【解析】试题分析:平均数相同,方差越小,这组数据越稳定,根据题意可得三人中成绩最稳定的是丙. 考点:方差.10.(2017年山东省日照市第14题)为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下: 183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是 . 【答案】182.考点:算术平均数.11. (2017年湖南省岳阳市第11题)在环保整治行动中,某市环保局对辖区内的单位进行了抽样调查,他们的综合得分如下:95,85,83,95,92,90,96,则这组数据的中位数是 ,众数是 .【答案】92,95. 【解析】试题解析:这组数据从小到大排列为:83,85,90,92,95,95,96.则中位数是:92; 众数是95.考点:众数;中位数.12.(2017年湖南省长沙市第17题)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是5.0,2.122==乙甲S S ,则在本次测试中, 同学的成绩更稳定(填“甲”或“乙”)【解析】试题分析:根据方差的意义,方差越小,数据越稳定,可知乙同学的成绩更稳定.故答案为:乙.考点:方差13.(2017年浙江省杭州市第13题)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.【答案】4 9考点:列表法与树状图求概率三、解答题1.(2017年贵州省毕节地区第23题)由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.【答案】∴小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率=21 42 =;(2)列表如下:3所有等可能的情况有16种,其中两指针所指数字数字都是偶数或都是奇数的都是4种,∴P(向往胜)=41164=,P(小张胜)=41164=,∴游戏公平.考点:游戏公平性;概率公式;列表法与树状图法.2.(2017年湖北省十堰市第20题)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.【答案】(1)抽样调查;(2)全校共征集作品180件; (3)恰好抽中一男一女的概率为25.(2)所调查的4个班征集到的作品数为:6÷90360=24件,平均每个班244=6件,C班有10件,∴估计全校共征集作品6×30=180件.条形图如图所示,(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中一男一女的概率为:82 205.考点:条形统计图, 扇形统计图,概率公式.3.(2017年贵州省黔东南州第20题)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.根据以上统计图表完成下列问题:(1)统计表中m= ,n= ,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【答案】(1)14,0.26(2)161≤x<164(3)1 3(2)观察表格可知中位数在 161≤x<164内,故答案为 161≤x<164.(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2树状图如图所示:所以P(两学生来自同一所班级)=412=13.考点:1、列表法与树状图法;2、频数(率)分布表;3、频数(率)分布直方图;4、中位数4.(2017年湖北省荆州市第21题)(本题满分8分)某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题(1)补全条形统计图(2)该年级共有700人,估计该年级足球测试成绩为D等的人数为__________人;(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.【答案】(1)图形见解析(2)56(3)1 6【解析】试题分析:(1)根据A等学生人数除以它所占的百分比求得总人数,然后乘以B等所占的百分比求得B等人数,从而补全条形图;(2)用该年级学生总数乘以足球测试成绩为D等的人数所占百分比即可求解;(3)利用树状图法,将所有等可能的结果列举出来,利用概率公式求解即可.(3)画树状图:共有12种等可能的结果数,其中选取的两个班恰好是甲、乙两个班的情况占2种,所以恰好选到甲、乙两个班的概率是212=16.考点:1、列表法与树状图法;2、用样本估计总体;3、扇形统计图;4、条形统计图5.(2017年湖北省宜昌市第18题)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格. 请回答下列问题:(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00-8:00 :需要租用公共自行车的人数是多少?【答案】(1)1300(2)2000考点:1、中位数;2、用样本估计总体6.(2017年江西省第15题)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.【答案】(1)14(2)16【解析】试题分析:(1)直接利用概率公式求出取出的是肉粽的概率;(2)直接列举出所有的可能,进而利用概率公式求出答案.试题解析:(1)∵有豆沙粽、肉粽各1个,蜜枣粽2个,∴随机地从盘中取出一个粽子,取出的是肉粽的概率是:14;(2)如图所示:,一共有12种可能,取出的两个都是蜜枣粽的有2种,故取出的两个都是蜜枣粽的概率为:212=16.考点:1、列表法与树状图法;2、概率公式7.(2017年江西省第18题)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.【答案】(1)800人,240人(2)200人(3)9.6万人【解析】(2)∵A类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人.考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图8. (2017年内蒙古通辽市第21题)小兰和小颖用下面两个可以转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次指针所指数字之和为4,则小兰胜,否则小颖胜(指针指在分界线时重转).这个游戏对双方公平吗?请用树状图或列表法说明理由.【答案】这个游戏对双方是公平的【解析】考点:1、游戏公平性;2、列表法与树状图法9. (2017年内蒙古通辽市第23题)某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀.这次竞赛中甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.a,的值;(1)求出下列成绩统计分析表中b(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组,但乙组同学不同意甲组同学的说法,认为他们的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.【答案】(1)a=6,b=7.2(2)小英属于甲组学生(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.【解析】考点:1、方差;2、折线统计图;3、算术平均数;4、中位数10.(2017年山东省东营市第20题)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【答案】(1)48(2)图形见解析(3)45°(4)1 4【解析】(3)648×360°=45°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万安中学中考总复习绝密资料
2017中考数学专题训练:《统计与概率》测试题
时间45分钟满分120分2017.4.18 一。
解答题(每题15分,共120分)
1. (福建)“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;
类别儿童玩具童车童装
抽查件数90
请根据上述统计表和扇形提供的信息,完成下列问题:
(1)分别补全上述统计表和统计图;
(2)已知所抽查的儿童玩具、童车、童车的合格率为90%、85%、80%,若从该超市的这三类儿童用品中随机购买一件,请估计购买到合格品的概率是多少?
2.(湖北)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
3. (四川成都)某校将举办“心怀感恩•孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.
(1)本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______;
(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.
4. (四川宜宾)为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.
请你根据统计图解答下列问题:
(1)在这次调查中一共抽查了名学生,其中,喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为,喜欢“戏曲”活动项目的人数是人;
(2)若在“舞蹈、乐器、声乐、戏曲”活动项目任选两项设立课外兴趣小组,请用列表或画树状图的方法求恰好选中“舞蹈、声乐”这两项活动的概率.
5. (四川)某校八年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图10所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:
(1)求出样本容量,并补全直方图;
(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12的次数;
(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率。
6. (辽宁)某中学对本校500名毕业生中考体育加试测试情况进行调查,根据男生1000
米及女生800米测试成绩整理、绘制成如下不完整的统计图(图①、图②),请根据统计图提供的信息,
回答下列问题:
(1)该校毕业生中男生有▲人,女生有▲人;
(2)扇形统计图中a= ▲,b= ▲;
(3)补全条形统计图(不必写出计算过程);
(4)若本校500名毕业生中随机抽取一名学生,这名学生该项测试成绩在8分以下的概率是多少?
7. (六盘水)假期,六盘水市教育局组织部分教师分别到A.B.C.D四个地方进行新课程培训,教育局按定额购买了前往四地的车票.如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:
(1)若去C地的车票占全部车票的30%,则去C地的车票数量是张,补全统计图.
(2)若教育局采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么余老师抽到去B地的概率是多少?
(3)若有一张去A地的车票,张老师和李老师都想要,决定采取旋转转盘的方式来确定.其中甲转盘被分成四等份且标有数字1、2、3、4,乙转盘分成三等份且标有数字7、8、9,如图2所示.具体规定是:同时转动两个转盘,当指针
指向的两个数字之和是偶数时,票给李老师,否则票给张老师(指针指在线上重转).试用“列表法”或“树状图”的方法分析这个规定对双方是否公平.
8. (新疆)为了解“阳光体育”活动情况,我市教育部门在市三中2000名学生中,随机抽取了若干学生进行问卷调查(要求每位学生只能填写一种自己喜欢的活动),并将调查的结果绘制成如图的两幅不完整的统计图:
根据以上信息解答下列问题:
(1)参加调查的人数共有人;在扇形图中,表示“C”的扇形的圆心角为度;
(2)补全条形统计图,并计算扇形统计图中的m;
(3)若要从该校喜欢“B”项目的学生中随机选择100名,则喜欢该项目的小华同学被选中的概率是多少?
答案
1. 【答案】解:(1)童车的数量是300×25%=75,童装的数量是300-75-90=135;
儿童玩具占得百分比是(90÷300)×100%=30%。
童装占得百分比1-30%-25%=45%。
补全统计表和统计图如下:
类别 儿童玩具 童车 童装 抽查件数
90
75
135
(2)∵儿童玩具中合格的数量是90×90%=81,童车中合格的数量是75×85%=63.75,童装中合格
的数量是135×80%=108,
∴从该超市的这三类儿童用品中随机购买一件,购买到合格品的概率是
8163.75108
84.25%300
++=。
2. (【答案】解:(1)60÷10%=600(人).
答:本次参加抽样调查的居民有600人。
(2)喜爱C 粽的人数:600-180-60-240=120,频率:120÷600=20%; 喜爱A 粽的频率:180÷600=30%。
据此补充两幅统计图如图:
(3)8000×40%=3200(人).
答:该居民区有8000人,估计爱吃D粽的人有3200人。
(4)画树状图如下:
∵共有12种等可能结果,第二个吃到的恰好是C粽的情况有3种,
∴第二个吃到的恰好是C粽的概率是
31
= 124。
答:他第二个吃到的恰好是C粽的概率是1
4。
3. 【答案】解:(1)50;320。
(2)列表如下:
∵共有12种情况,恰好抽到甲、乙两名同学的是2种,
∴P(恰好抽到甲、乙两名同学)=
21
= 126。
4. 解:(1)50;24%;4。
(2)设舞蹈、乐器、声乐、戏曲的序号依次是①②③④,画树状图:
∵任选两项设立课外兴趣小组,共有12种等可能结果,故恰好选中“舞蹈、声乐”两项活动的有2种情况,
∴故恰好选中“舞蹈、声乐”两项活动的概率是
21
= 126。
5.【答案】解:(1)∵由发言人数直方图可知B组发言人为10人,又已知B、E两组发言人数的比为5:2,
∴E组发言人为4人。
又∵由发言人数扇形统计图可知E组为8%,∴发言人总数为4÷8%=50人。
∴由扇形统计图知A组、C组、D组分别为3人,15人,13人。
∴F组为50-3-10-15-13-4=5人。
∴样本容量为50人。
补全直方图为:
(2) ∵在统计的50人中,发言次数大于12的有4+5=9人,
∴在这天里发言次数不少于12的频率为9÷50=18%。
∴全年级500人中,在这天里发言次数不少于12的次数为500×18%=90(次)。
(3)∵A组发言的学生为3人,∴有1位女生,2位男生。
∵E组发言的学生:4人,∴有2位女生,2位男生。
∴由题意可画树状图为:
∴共有12种情况,所抽的两位学生恰好是一男一女的情况有6种,
∴所抽的两位学生恰好是一男一女的概率为
61
= 122。
6.【答案】解:(1)300;200。
(2)12;62。
(3)补图如图所示:
(4)随机抽取的学生的测试成绩在8分以下的概率是10%。
7. 【答案】解:(1)30。
补全统计图如下:
(2)余老师抽到去B地的概率是
402
= 1005。
(3)根据题意列表如下:
∵两个数字之和是偶数时的概率是
61
= 122。
∴票给李老师的概率是1
2。
∴这个规定对双方公平。
8. 【答案】解:(1)300;108。
(2)∵抽取的学生中喜欢“C”项目的学生数为300-60-69-36-45=90(人)。
∴补全条形统计图如下:
∵m%=60
300
×100%=20%,∴m=20。
(3)喜欢B项目的有2000×69
300
=460(人),
∴小华被抽中的概率为1005
= 46023。