概率论教案

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论教案 Hessen was revised in January 2021

第一章随机事件与概率

第一节随机事件

教学目的:了解概率的主要任务及其研究对象;掌握随机试验、随机事件等基本概念;掌握随机事件间的关系与运算,了解其运算规律。

教学重点:随机试验,随机事件,事件间的关系与运算。

教学难点:事件(关系、运算)与集合的对应,用运算表示复杂事件。

教学内容:

1、随机现象与概率统计的研究对象

随机现象:在一定的条件下,出现不确定结果的现象。

研究现象:概率论与数理统计研究随机现象的统计规律性。

2、随机试验(E)

对随机现象的观察。特点①试验可在相同条件下重复;②试验的所有可能结果不只一个,但事先已知;③每次试验出现一个且出现一个,哪个出现事先不知。

3、基本事件与样本空间

(1)基本事件:E中的结果(能直接观察到,不可再分),也称为样本点,用 表示。

(2)样本空间:E中所有基本事件的集合称为这个随机试验E的样本空间,用Ω表示。

4、随机事件

(1)随机事件:随机试验中可能发生也可能不发生的时间。用A、B、C等表示。

(2)随机事件的集合表示

(3)随机事件的图形表示

必然事件(Ω)和不可能事件(E)

5、事件间的关系与运算

(1)包含(子事件)与相等

(2)和事件(加法运算)

(2)积事件(乘法运算)

(3)互斥关系

(4)对立关系(逆事件)

(5)差事件(减法运算)

6、事件间的运算规律

(1)交换律;(2)结合律;(3)分配律;(4)对偶律

教学时数:2学时

作 业:习题一 1、2

第二节 概率的定义

教学目的:掌握概率的古典定义,几何定义,统计定义及这三种概率的计算方法;了解概率的基本性质。

教学难点:古典概率的计算,频率性质与统计概率。

教学内容:

1、概率

用于表示事件A 发生可能性大小的数称为事件A 的概率,用P(A)表示。

2、古典型试验与古典概率

(1)古典型试验:特点①基本事件只有有限个;②所有基本事件的发生是等可能

的。 (2)古典概率,在古典型试验中规定 P(A)=n

k A =Ω中基本事件总数中含的基本事件数 3、几何型试验与几何概率

(1)几何型试验

向区域G 内投点,点落在G 内每一点处是等可能的,落在子区域1G 内(称事件A 发生)的概率与1G 的度量成正比,而与1G 的位置和形状无关。

(2)几何概率。在几何型试验中规律定 P(A)=的度量

的度量G G 1 4、频率与统计概率

(1)事件的概率

设在n 次重复试验中,事件A 发生了r 次,则称比值

n r 为在这n 次试验中事件A 发生的频率,记为n r A f n =

)( (2)频率的性质

11)(0≤≤A f n ;○21)(=Ωn f ;○30)(=Φn f ; ○

4Φ=AB 时,)()()(B f A f B A f n n n +=+;

○5 随机性:r 的出现是不确定的;○6稳定性:)()(∞→→n p A f n (3)统计概率,规定

P(A)=P

(4)统计概率的计算

n r A p ≈

)( (n 很大)

5、概率的基本性质

从以上三种定义的概率中可归纳得到:

(1)0;1)(≤≤A P

(2)1)(=ΩP

(3)0)(=φP

(4)若AB=φ,则)()()(B P A P B A p +=+

教学时数:2学时

作 业:习题 一 4、7、8、11

第三节 概率的公理化体系

教学目的:掌握概率的公理化定义及概率的性质;会用概率的基本公式求概率。 教学重点:概率的公理化定义;概率基本公式。

教学难点:用概率基本公式计算概率。

教学内容:

1、概率的公理化定义

(1)为什么要用公理定义概率

1数学特点 ;○2深入研究的需要;○3是第二节中三种特殊形式的扩展。

(2)定义

设A 为随机试验E 中的任何事件,如果函数P(A)满足

公理一(范围) 01)(≤≤A P ;

公理二(正则性) 1)(=ΩP ;

公理三(可列可加性)。若可列个事件 n A A A A 321,,两个互斥,则

则称P(A)为事件A 的概率。

2、概率的性质

从公理出发,可以严格证明

性质1:0)(=φP

性质2:若事件 n A A A A 321,,两两互斥,则)()(11∑∑===n

n i n n i A P A p

性质3:对任何事件A ,)(1)(A P A P -=

性质4:若P(A)-P(B)B)-P(A ,=⊂则B A

性质‘4 P(AB)-P(B)A)-P(B )A P(B ==

注:○1P(AB)-P(A)B)-P(A )B P(A ==

性质5 P(A+B)=p(A)+P(B)-P(AB)

注:性质5对任意有限个事件情况可以扩展

教学时数:2学时

作 业:习题一 15、16

第四节 条件概率,乘法定理、全概率公式与贝叶斯公式

教学目的:理解条件概率的定义和概率的乘法公式、全概率公式、贝叶斯公式。使学生掌握条件概率和概率的乘法公式,全概率公式和贝叶斯公式的应用。

教学重点:条件概率、乘法定理、全概率公式和贝叶斯公式。

教学难点:条件概率的确定,用全概率公式和贝叶斯公式计算概率。

教学内容:

1、条件概率

(1)实际问题中要确定在某事件已发生时,另一事件的概率,看书20p 例,在具体问题求条件概率。

(2)定义:若P(B)>0,称

为在事件B 发生的条件下事件A 的条件概率。

2、概率的乘法公式

(1) )()()(B A P B P AB P ⋅=

相关文档
最新文档