2020年高考物理电磁学难点突破

2020年高考物理电磁学难点突破
2020年高考物理电磁学难点突破

电磁学难点突破

副标题

题号一二总分

得分

一、实验题探究题(本大题共7小题,共63.0分)

1.某实验探究小组想测定一定值电阻的阻值,其阻值标示值为,他们在实验

室找到如下器材:

电池组E:电动势6V,内阻不计;

电流表:量程内阻约为;

电流表:量程,内阻;

滑动变阻器:阻值范围;

定值电阻,阻值为;

开关S、导线若干.

请回答下面问题:

在实验中要求尽可能准确地测量出的阻值,请你在虚线框中画出测量阻值的电路图,并在图中标明器材代号.

调节滑动变阻器,两表的示数如图所示,可读出电流表的示数是________mA,电流表的示数是________,电阻的实际阻值为________.

2.研究性学习小组围绕一个量程为30mA的电流计展开探究.

为测量该电流计的内阻,同学甲设计了如图所示电路.图中电源电动势未知,内阻不计.闭合开关,将电阻箱阻值调到时,电流计恰好满偏;将电阻箱阻值调到时,电流计指针指在如图所示位置,则电流计的读数为______由以上数据可得电流计的内阻______.

同学乙将甲设计的电路稍作改变,在电流计两端接上两个表笔,如图所示,设计出一个简易的欧姆表,并将表盘的电流刻度转换为电阻刻度:闭合开关,将两表笔断开,调节电阻箱,使指针指在“30mA”处,此处刻度应标阻值为______

填“0”或“”;再保持电阻箱阻值不变,在两表笔间接不同阻值的已知电阻找出对应的电流刻度.则“10mA”处对应表笔间电阻阻值为______.若该欧姆表使用一段时间后,电池内阻变大不能忽略,电动势不变,但将两表笔断开,指针仍能满偏,按正确使用方法再进行测量,其测量结果与原结果相比将______填“变大”、“变小”或“不变”.

3.有一个小灯泡上标有“”的字样,现在要用伏安法测量这个小灯泡的伏

安特性曲线.现有下列器材供选用:

电压表,内阻约电压表,内阻约

电流表,内阻约电流表,内阻约

滑动变阻器R滑动变阻器R

学生电源直流、开关及导线为了调节方便,测量尽可能准确,实验中应选用电压表____________,电流表____________,滑动变阻器____________填器材的前方选项符号,如A,

为使实验误差尽量减小,要求从零开始多取几组数据;请在下面的方框中画出实验电路图.

P为I U图线上的一点,PN为图线上P点的切线、PQ为U轴的垂线,PM 为I轴的垂线,则由图可知:随着所加电压的增加,小灯泡的电阻将____________填“增大”“减小”或“不变”;对应P点,小灯泡的电阻值约为____________

保留三位有效数字.

4.为确定某电子元件的电气特性,做如下测量.用多用表测量该元件的电阻,选

用“”倍率的电阻挡测量,发现多用表指针偏转过大,因此需选择________倍率的电阻挡填“”或“”,并________再进行测量,多用表的示数如图所示,测量结果为________.

将待测元件额定电压、蓄电池、滑动变阻器、电流表、多用表、电键及若干导线连接成电路如图所示.添加连线,使电路能测量该元件完整的伏安特性.

本实验中使用多用表测电压,多用表的选择开关应调到________挡填“直流电压”或“直流电压”.

5.分有一金属电阻丝的阻值约为20,现用以下实验器材测量其电阻率:

A.电压表量程,内阻约为15

B.电压表量程,内阻约为3

C.电流表量程,内阻约为

D.电流表量程,内阻约为

E.滑动变阻器阻值范围,允许最大电流

F.滑动变阻器阻值范围,允许最大电流

G.螺旋测微器

H.电池组电动势3V,内电阻约为

I. 开关一个和导线若干

某同学决定采用分压式接法调节电路.为了比较准确地测量出电阻丝的电阻,电压表选________,电流表选________,滑动变阻器选________只需填写器材前面的字母

用螺旋测微器测量该电阻丝的直径,示数如图甲所示,该电阻丝直径的测量值

________mm;

如图乙所示,将电阻丝拉直后两端分别固定在刻度尺两端的接线柱和上,其间有一可沿电阻丝滑动的触头,触头的上端为接线柱当按下触头时,它才与电阻丝接触,触头位置可在刻度尺上读出.

该同学测电阻丝电阻的实物连接如图丙所示,在连接最后一根导线的左端到电池组正极之前,请指出其中仅有的2个不当之处,并说明如何改正.

A. _________ _______________.

实验中改变触头与电阻丝接触的位置,并移动滑动变阻器的滑片,使电流表的示数保持不变,记录对应的电压表的示数和接入电路的电阻丝的长度.利用测量数据描点作出图线,如图丁所示,并求得图线的斜率为则用电阻丝的直径、电流和斜率表示电阻丝的电阻率________.

6.分一个刻度没标数值的电压表量程约为9V,内阻约为,现要较为

准确地测其内阻,且各仪表的示数不得少于满量程的实验室提供了如下器材:

A.电流表:量程3mA,内阻约

B.电流表:量程3A,内阻约

C.电压表:量程,内阻

D.电压表:量程60V,内阻约

E.定值电阻器:阻值

F.定值电阻器:阻值

G.电源:电动势约15V,内阻约

H.滑动变阻器

I.导线若干、单刀单掷开关一个

除被测电压表、G、I肯定需外,最少还需器材填序号;

用你所选最少器材以及G、I在虚线框中画出测量原理图;

根据所画原理图,写出的表达式用某次电表的测量值、已知量表示

并指明表达式中所设物理量是哪些仪表测量时的示数.

7.一电流表的量程标定不准确,某同学利用图1所示电路测量该电流表的实际量程I

所用器材有:

图1

量程不准的电流表,内阻r,量程标称为;

标准电流表,内阻r,量程;

标准电阻R,阻值;

滑动变阻器R,总电阻约为;

电源E,电动势,内阻不计;

保护电阻R;开关S;导线.

回答下列问题:在图2所示的实物图上画出连线.

图2

开关S闭合前,滑动变阻器的滑动端c应滑动至________端.

开关S闭合后,调节滑动变阻器的滑动端,使电流表满偏;若此时电流表的读数为I,则的量程I________.

若测量时,未调到满偏,两电流表的示数如图3所示,从图中读出的示数I________,的示数I________;由读出的数据计算得I________保留3位有效数字

图3

写出一条提高测量准确度的建议:_____________________________________.

二、计算题(本大题共6小题,共60.0分)

8.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为

d的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿水平方向从两板正中间射入偏转电场.当两板不

带电时,这些电子通过两板之间的时间为;当在两板上加如图乙所示的电压时为已知,所有电子均能从两板间通过,然后进入垂直纸面向里、磁感应强度

为B的匀强磁场中,最后都垂直打在竖直放置的荧光屏上.已知电子的质量为m、电荷量为e,其重力不计.求:

电子离开偏转电场时的位置到的最小距离和最大距离;

偏转磁场区域的水平宽度L;

偏转磁场区域的最小面积S.

9.如图甲所示,在直角坐标系x L区域内有沿y轴正方向的匀强电场,右

侧有一个以点L,为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N。现有一质量为m,带电量为e的电子,从y轴上的A点以速度v沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,速度方向与x轴夹角为。

此时在圆形区域加如图乙所示周期性变化的磁场磁场从t时刻开始变化,且以垂直于纸面向外为磁场正方向,最后电子运动一段时间后从N点飞出,速度方向与x轴夹角也为。求:

电子进入圆形磁场区域时的速度大小请作出电子飞行的轨迹图;

x L区域内匀强电场场强E的大小;

写出圆形磁场区域磁感应强度B的大小、磁场变化周期T各应满足的表达式。

10.如图,在xOy平面第一象限分布一有界匀强电场,电场方向平行y轴向下,左边界

为y轴,右边界为8l的直线,边界线与x轴交于M点。在第四象限整个区域存在匀强磁场,方向垂直纸面向里.一质量为m、带电量为q的粒子从y轴上P 点以初速度v垂直y轴射入匀强电场,从x轴上Q点以与x轴正方向角进入匀

强磁场.已知OP l,不计粒子重力,电场强度E和磁感应强度B大小未知,问:

O与Q两点的距离s多大?

改变B,可使粒子从P点到M点时间最短,则最短时间t多大

要使粒子能第二次进入磁场,磁感应强度B的取值范围?

11.如图a所示的平面坐标系xOy,在整个区域内充满了匀强磁场,磁场方向垂直坐标

平面,磁感应强度B随时间变化的关系如图b所示。开始时刻,磁场方向垂直纸面向内如图,t时刻有一带正电的粒子不计重力从坐标原点O沿x轴正向进

入磁场,初速度为v。已知带电粒子的比荷为,其

它有关数据见图中标示。试求:

时粒子所处位置的坐标x,y;

带电粒子进入磁场运动后第一次到达y轴时离出发点的距离h;

带电粒子是否还可以返回原点?如果可以,求返回原点经历的时间t。

12.如图所示,在平面直角坐标系XOY的第Ⅰ象限内有一矩形区域OMNA,其中P、Q

分别为OM、AN的中点,A点坐标为,M点坐标为。区域OPQA 内有方向沿的匀强电场,场强;区域PMNQ内有垂直于纸面向外的圆形磁场,圆心位于坐标,半径为,感应强度。电

场区域的OA边可产生比荷的初速度为0的带正电粒子,粒子经

电场加速后射入磁场。不计粒子重力和粒子间相互作用,空气阻力可以忽略已知,,求:

粒子进入磁场的速度大小为多少?

在磁场中运动时间最长的粒子的出发点坐标Y为多少?该粒子在磁场中运动的时间为多少?

在磁场中运动时间为的粒子经过X轴的位置坐标是多少?

13.分如图所示,在空间中存在垂直纸面向里的场强为B匀强磁场,其边界AB、

CD的宽度为d,在左边界的Q点处有一质量为m,带电量大小为q的负粒子沿与

左边界成的方向射入磁场,粒子重力不计,求:

若带电粒子能从AB边界飞出,求带电粒子在磁场中运动的最大半径Rm

若带电粒子能垂直CD边界飞出磁场,穿过小孔进入如图所示的匀强电场中减速至零且恰好没碰到右极板,求极板间电压U.

若带电粒子的速度是中的倍,并可以从Q点沿纸面各个方向射入磁场,则粒子能打到CD边界的范围?

答案和解析

1.【答案】如图:

;260;200

【解析】本题考查的学生对电表的改装和用伏安法测电阻,题中给出了电流表2的内阻和量程,串联上定值电阻,可以改装为电压表。

将与定值电阻串联,改装成电压变,然后根据伏安法测电阻实验设计电路图。改装后的电压表阻值远大于待测电阻的阻值,故电流表外接;滑动变阻器最大阻值较小,而实验中要求尽可能准确地测量出Rx的阻值,故采用分压式。

电路如图:

读出图中两个电表的示数,注意分度值和单位;

本题难度不大,主要是学生要根据给出的实验仪器电流表内阻,想到将电流表改装成电压表,然后用伏安法测电阻。

2.【答案】,30

,6

不变

【解析】本题考查了欧姆变的改装原理及欧姆表的使用。

根据电流表的读数要求可读出电流由闭合电路欧姆定律,将电阻箱阻值调到时有,

电阻箱阻值调到时有,

联立两式并代入数据

根据闭合电路欧姆定律将两表笔断开时有

因此时待测电阻为,故应在“30mA”处标明;当两表笔接上电阻时有

根据分流公式可得通过电流表的电流为

联立并将,

代入解得

根据闭合电路欧姆定律可知电池新时有:,测量电阻时电流表示数为:

欧姆表用一段时间调零时有,测量电阻时:

,比较可知,所以若电流相同则,即测量结果不变。

3.【答案】D E

如图所示

增大

【解析】因灯泡的额定电压为4V,电压表选A因灯泡的额定电流为,所以电流表选D;本题中的变阻器需采用分压式连接,选用较小的电阻调节起来较方便,故滑动变阻器选E;为从零开始多取几组数据,滑动变阻器需采用分压式连接,因电阻较小,电流表宜采用外接法,所以实验电路图如答案图所示;从图象中可以看出,灯泡两端的电压增加相同的值,流过灯泡的电流增加的越来越少,说明灯泡电阻随电压

的升高而增大.对应P点,小灯泡的电阻.

4.【答案】欧姆调零70

直流电压

【解析】指针偏转过大,表明该元件的电阻较小,应选用低倍率的电阻挡测量,即选“”,然后红、黑表笔短接,进行欧姆调零,再进行测量.从多用表上可读得阻值为.

根据题意,应采用分压电路进行测量,连线如图所示;

因该元件的额定电压为,故多用表的选择开关调到“直流电压”挡.

5.【答案】分,分,分分

开关应该处于断开状态分:滑动变阻器滑片应当滑到最右端分;

【解析】试题分析:电源电压为3V,所以电压表选择电路最大电流约为

,所以电流表选择C,为方便实验操作,滑动变阻器的范围不能过

大,应选F;

由图示螺旋测微器可知,固定刻度示数为0mm,可动刻度示数为

,螺旋测微器示数为.电路在工作前开关应该处于断开状态;为了保护用电器和电表,滑动变阻器的滑片应该置于接入电路的有效阻值最大处,故不当之处是:开关应该处于断开状态、滑动变阻器滑片应当滑到最右端.

根据欧姆定律得:,根据电阻定律得:,联立解得:则斜率解得:.

考点:本题考查了测定金属丝的电阻率、螺旋测微器读数、实物图连接、电阻定律、欧姆定律.

6.【答案】;

如图:;

R x U r R I r R U;U为电压表V的示数,I为电流表A 的示数

【解析】本题考查了伏安法测电阻,考查了对实验原理的掌握情况和以物理原理分析实际问题的能力。

根据欧姆定律可知,待测电压表的满偏电流约为:I V U V R x m A m A,所以电流表选A;由于待测电压表的量程约9V,所以电压表选V;另外还需要滑动变阻器;故还需要的器材为ACEH;

由于变阻器的全电阻远小于测量电路的总电阻,所以变阻器应采用分压式接法,电路图如图所示:

将变阻器的滑片置于适当的位置,测量出电流表示数为I,电压表V示数为U;则U R x U r R,解得:R x U r R I r R U。

7.【答案】见解析

【解析】连图如下图

b I多次测量求平均值

略.为保护电表,闭合电键前应使滑动变阻器阻值调至最大,即应滑至b端;

根据电路连接形式可知电流表读数为I时,两端电压为I r R,可知此时

流过的电流I I;根据读数规则读数代入第问中的表达式,即得I;多次测量取平均值.

8.【答案】;

【解析】【解析】

试题分析:

由题意可知,从、、等时刻进入偏转电场的电子离开偏转电场时的位置到的距离最小,有:得电子的最小距离

从0、、、等时刻进入偏转电场的电子离开偏转

电场时的位置到的距离最大,有:电子的最大距离

为:

设电子从偏转电场中射出时的偏向角为q,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:设电子离开偏转电场时的速度为,垂直偏转极

板的速度为,则电子离开偏转电场时的偏向角为:,式中又:解得:由于各个时刻从偏转电场中射出的电子的速度大小

相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第问知电子离开偏转电场时的位置到的最大距离和最小距离的差值为:

,所以垂直打在荧光屏上的电子束的宽度为:

匀强磁场的最小面积

考点:带电粒子在电场及在磁场中的运动.

9.【答案】

解:电子在

电场中作类平抛

运动,射出电场

时,如图1所示.

由速度关

系:解得;

由速度关系得

在竖直方向

解得;

在磁场变化的半个周期内粒子的偏转角为,根据几何知识,在磁场变化的半个周期内,

粒子在x轴方向上的位移恰好等于粒子到达N点而且速度符合要求的空间条件是:

电子在磁场作圆周运动的轨道半径

,解得:、2、

若粒子在磁场变化的半个周期恰好转过圆周,同时MN间运动时间是磁场变化周期的

整数倍时,

可使粒子到达N点并且速度满足题设要求.应满足的时间条件:

解得

T的表达式得:、2、。

答:电子进入圆形磁场区域时的速度大小为解得;

区域内匀强电场场强E的大小;

圆形磁场区域磁感应强度B的大小表达式为、2、,磁场变化周期T各应满足的表达式为、2、。

【解析】本题考查带电粒子在复合场中的运动,综合性较强,难度较大,解题的关键是理解带电粒子在复合中的运动规律。

电子在电场中作类平抛运动,离开电场时电子的速度方向与x轴夹角,

,可求得电子进入圆形区域时的速度v;

运用运动的分解法研究可知:电子竖直方向上做初速度为零的匀加速运动,

,水平方向,联立可求出E;

在磁场变化的半个周期内电子的偏转角为,由几何知识得到在磁场变化的半个周期内,粒子在x轴方向上的位移等于电子的轨迹半径R,由题意,粒子到达N点而且

速度符合要求的空间条件是:,由牛顿第二定律得到半径,

联立得到磁感应强度B的大小表达式。电子在磁场变化的半个周期恰好转过圆周,同时MN间运动时间是磁场变化半周期的整数倍时,可使粒子到达N点并且速度满足题设要求,应满足的时间条件:,而,可求得T的表达式。

10.【答案】解:设粒子进入电场时y方向的速度为,

有:

设粒子从P到Q的时间为t1,则由类平抛得:,

解得:

从P点到M点时间最短的轨迹如图所示:

设轨迹半径为r,

粒子在磁场中的时间:又

粒子从P到Q的时间:

所以

要使粒子刚好能第二次进入磁场的轨迹如图

根据牛顿第二定律得

,又,

解得:,

要使粒子能第二次进磁场,磁感应强度B的范围:。

【解析】带电粒子在电场中做类平抛运动,根据电场中运动的末速度沿竖直方向的分量,确定电场中运动的时间,求得x轴方向运动的距离就是OQ之间的距离s;

带电粒子与磁场以多大角进入也会以同样大小的角度射出磁场,在磁场中运动的圆心角一定,半径越小运动时间越短,但是不再次进入电场用时最短,也就是之间在磁场中到达M点;

首先要分析粒子恰能第二次进入磁场的轨迹,画出轨迹图,结合轨迹图可求出CQ 之间的距离,由几何关系再求出在第四象限内运动轨道的半径,结合洛伦兹力做向心力的公式可求出磁感应强度的最大值,从而可得磁感应强度的范围。

带电粒子在电场中的运动,综合了静电场和力学的知识,分析方法和力学的分析方法基本相同;先分析受力情况再分析运动状态和运动过程,然后选用恰当的规律解题;解决这类问题的基本方法有两种,第一种利用力和运动的观点,选用牛顿第二定律和运动学公式求解;第二种利用能量转化的观点,选用动能定理和功能关系求解;经对本题的分析可知,粒子在第一象限内做类平抛运动,第一问还可以用能量进行求解;

本题第四象限内存在着有界磁场,带电粒子在第四象限内运动时,受到洛伦兹力的作用,将做有临界状态的圆周运动,对临界状态的寻找与分析成为了解决此类为题的重点和难点;此种类型的题能充分考查考生的综合分析能力和应用数学处理物理问题的能力;解此类问题的关键是做出带电粒子运动的轨迹图,抓住物理过程变化的转折点列出对应的状态方程,找出粒子运动的半径与磁场边界的约束关系。

11.【答案】解:由题意知,粒子进入磁场后在磁场中做圆周运动,设半径为R,周

期为T,由洛伦兹力提供向心力,有:

联解并代入数据得:

比较粒子在磁场中做圆周运动周期T和磁场变化周期可知,粒子在t时间内运动了三分之一圆周,其圆心为O,运动轨迹对应的圆心角为,作出粒子在磁场中运动的轨迹如图所示.

由图中几何关系有:

x

y

联解并代入数据得:

根据磁场的变化规律知,粒子在磁场的第一个周期后三分之一周期内做圆周运动的方向将发生变化,设其圆心为O;第二个周期前三分之二周期内做圆周运动的圆心为O,作出粒子在磁场中运动的轨迹如图所示.

由图中几何关系有

高中物理10大难点突破 物体受力分析

高中物理10大难点突破 目录 难点之一:物体受力分析 (1) 难点之二:传送带问题………………………………………………………………难点之三:圆周运动的实例分析……………………………………………………难点之四:卫星问题分析……………………………………………………………难点之五:功与能……………………………………………………………………. 难点之六:物体在重力作用下的运动………………………………………………. 难点之七:法拉第电磁感应定律……………………………………………………难点之八:带电粒子在电场中的运动………………………………………………难点之九:带电粒子在磁场中的运动………………………………………………. 难点之十:电学实验………………………………………………. …………………

难点之一物体受力分析 一、难点形成原因: 1、力是物体间的相互作用。受力分析时,这种相互作用只能凭着各力的产生条件和方向要求,再加上抽象的思维想象去画,不想实物那么明显,这对于刚升入高中的学生来说,多习惯于直观形象,缺乏抽象的逻辑思惟,所以形成了难点。 2、有些力的方向比较好判断,如:重力、电场力、磁场力等,但有些力的方向难以确定。如:弹力、摩擦力等,虽然发生在接触处,但在接触的地方是否存在、方向如何却难以把握。 3、受力分析时除了将各力的产生要求、方向的判断方法熟练掌握外,同时还要与物体的运动状态相联系,这就需要一定的综合能力。由于学生对物理知识掌握不全,导致综合分析能力下降,影响了受力分析准确性和全面性。 4、教师的教学要求和教学方法不当造成难点。教学要求不符合学生的实际,要求过高,想一步到位,例如:一开始就给学生讲一些受力个数多、且又难以分析的物体的受力情况等。这样势必在学生心理上会形成障碍。 二、难点突破策略: 物体的受力情况决定了物体的运动状态,正确分析物体的受力,是研究力学问题的关键。受力分析就是分析物体受到周围其它物体的作用。为了保证分析结果正确,应从以下几个方面突破难点。 1.受力分析的方法:整体法和隔离法 2.受力分析的依据:各种性质力的产生条件及各力方向的特点 3.受力分析的步骤: 为了在受力分析时不多分析力,也不漏力,一般情况下按下面的步骤进行: (1)确定研究对象—可以是某个物体也可以是整体。 (2)按顺序画力 a.先画重力:作用点画在物体的重心,方向竖直向下。

高考物理二轮复习重点及策略

2019高考物理二轮复习重点及策略 一、考点网络化、系统化 通过知识网络结构理解知识内部的联系。因为高考试题近年来突出对物理思想本质、物理模型及知识内部逻辑关系的考察。 例如学习电场这章知识,必须要建立知识网络图,从电场力和电场能这两个角度去理解并掌握。 二、重视错题 错题和不会做的题,往往是考生知识的盲区、物理思想方法的盲区、解题思路的盲区。所以考生要认真应对高三复习以来的错题,问问自己为什么错了,错在哪儿,今后怎么避免这些错误。分析错题可以帮助考生提高复习效率、巩固复习成果,反思失败教训,及时在高考前发现和修补知识与技能方面的漏洞。充分重视通过考试考生出现的知识漏洞和对过程和方法分析的重要性。很多学生不够重视错题本的建立,都是在最后关头才想起要去做这件事情,北京新东方一对一的老师都是非常重视同时也要求学生一定要建立错题本,在大考对错题本进行复习,这样的效果和收获是很多同学所意想不到的。 三、跳出题海,突出高频考点 例如电磁感应、牛二定律、电学实验、交流电等,每年会考到,这些考点就要深层次的去挖掘并掌握。不要盲区的去大

量做题,通过典型例题来掌握解题思路和答题技巧;重视“物理过程与方法”;重视数学思想方法在物理学中的应用;通过一题多问,一题多变,一题多解,多题归一,全面提升分析问题和解决问题的能力;通过定量规范、有序的训练来提高应试能力。 四、提升解题能力 1、强化选择题的训练 注重对基础知识和基本概念的考查,在选择题上的失手将使部分考生在高考中输在起跑线上,因为选择题共48分。所以北京新东方中小学一对一盛海清老师老师建议同学们一定要做到会的题目都拿到分数,不错过。 2、加强对过程与方法的训练,提高解决综合问题的应试能力 2019年北京高考命题将加大落实考查“知识与技能”、“过程与方法”的力度,更加注重通过对解题过程和物理思维方法的考查来甄别考生的综合能力。分析是综合的基础,分析物理运动过程、条件、特征,要有分析的方法,主要有:定性分析、定量分析、因果分析、条件分析、结构功能分析等。在处理复杂物理问题是一般要定性分析可能情景、再定量分析确定物理情景、运动条件、运动特征。 如物体的平衡问题在力学部分出现,学生往往不会感到困难,在电场中出现就增加了难度,更容易出现问题的是在电

高考物理重难点与方法

高三物理复习重难点 力学 一、力学整体隔离法 对于连接体和叠加体一般用整体隔离法,整体法的条件是物体的加速度相同,整体时忽略物体之间的力,只考虑外部的力。 二、力学动态分析 动态分析矢量三角形的条件:物体在三个共点力作用下处于平衡状态,其中一个力大小方向都不变,一个力大小变方向不变,一个力大小方向都变。 动态分析相似三角形的条件:找到力的三角形和边的三角形相似,对应边成比例。 例1.如图所示,轻绳一端系在质量为m的物体A上,另一端系在一个套在粗糙竖直杆MN的圆环上.现用水平力F拉住绳子上一点O,使物体A从图中实线位置缓慢下降到虚线位置,但圆环仍保持在原来的位置不动.则在这一过程中,环对杆的摩擦力F1和环对杆的压力F2的变化情况是 ( ). A.F1保持不变,F2逐渐增大 B.F1逐渐增大,F2保持不变 C.F1逐渐减小,F2保持不变 D.F1保持不变,F2逐渐减小 答案:D 例2.如图所示,在光滑定滑轮C正下方与C相距h的A处固定一电荷量为Q(Q>0)的点电荷,电荷量为q的带正电小球B,用绝缘细线拴着,细线跨过定滑轮,另一端用适当大小的力F拉住,使B处于静止状态,此时B与A点的距离为R,B和C之间的细线与AB垂直。若B所受的重力为G,缓慢拉动细线(始终保持B平衡)直到B 接近定滑轮,静电力常量为k,环境可视为真空,则下列说法正确的是 A.F逐渐增大 B.F先增大后减小 C.B受到的库仑力大小不变 D.B受到的库仑力逐渐增大

答案:C 运动学 一、匀变速直线运动 1.匀变速直线运动x-t图象与v-t图象的比较 倾斜直线表示匀速直线运动;曲线表示倾斜直线表示匀变速直线运动;曲线表 (1)x-t图象与v-t图象都只能描述直线运动,且均不表示物体运动的轨迹; (2)分析图象要充分利用图象与其所对应的物理量的函数关系; (3)识图方法:一轴、二线、三斜率、四面积、五截距、六交点. 2.匀变速直线运动的追及相遇问题 (1)速度相等是两个物体间距离最大或最小的时候。 (2)画图得位移关系。 例1.在一条宽马路上某一处有A、B两车,它们同时开始运动,取开始运动时刻为计时零点,它们的速度-时间图象如图所示,则在0~t4这段时间内的情景是( ). A.A在0~t1时间内做匀加速直线运动,在t1时刻改变运动方向 B.在t2时刻A车速度为零,然后反向运动,此时两车相距最远 C.在t2时刻A车追上B车 D.在t4时刻两车相距最远 答案:D 二、平抛运动

高中物理学习十大方法和技巧

高中物理学习十大方法和技巧 物理这门自然科学课程比较比较难学,死记硬背是学不会的,一字不差地背下来,出 个题目还是照样不会做,那么同学们应该怎样做呢?下面是由小编整理的高中物理学习十大方法和技巧,希望对您有用。 高中物理学习十大方法和技巧 1、注意。带着的问题,可以提高的,能使的重点更加突出。上,当讲到自己时的不懂之处时,就非常主动、格外注意听,力求当堂弄懂。同时可以对比的讲解以检查自己 对教材理解的深度和广度,对疑难问题的分析过程和,也可以作进一步的质疑、析疑、提出自己的见解。这样听完课,不仅能掌握的重点,突破难点,抓住关键,而且能更 好地掌握分析问题、解决问题的思路和,进一步提高自己的。 2、独立做题。要独立地(指不依赖他人),保质保量地做一些题。题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。任何人学习数理化不经过这 一关是学不好的。独立解题,可能有时慢一些,有时要走弯路,有时甚至解不出来, 但这些都是正常的,是任何一个初学者走向的必由之路。 3、笔记本(纠错本)。上课以听讲为主,还要有一个笔记本,有些东西要记下来。知识 结构,好的解题方法,好的例题,听不太懂的地方等等都要记下来。课后还要整理笔记,一方面是为了“消化好”,另一方面还要对笔记作好补充。笔记本不只是记上课老 师讲的,还要作一些读书摘记,自己在作业中发现的好题、好的解法也要记在笔记本上,就是同学们常说的“好题本”。辛辛苦苦建立起来的笔记本要进行编号,以后要经 学看,要能做到爱不释手,终生保存。 4、三个基本。基本概念要清楚,基本规律要熟悉,基本方法要熟练。关于基本概念,举一个例子。比如说速率。它有两个意思:一是表示速度的大小;二是表示路程与时间 的比值(如在匀速圆周运动中),而速度是位移与时间的比值(指在匀速直线运动中)。关 于基本规律,比如说平均速度的计算公式有两个经常用到V=s/t、V=(vo+vt)/2。前者 是定义式,适用于任何情况,后者是导出式,只适用于做匀变速直线运动的情况。再 说一下基本方法,比如说研究问题是常采用的整体法和隔离法,就是一个典型的相辅 形成的方法。最后再谈一个问题,属于三个基本之外的问题。就是我们在学习的过程中,总结出一些简练易记实用的推论或论断,对帮助解题和学好是非常有用的。如,

高考物理重点难点复习14

高考物理重点难点14 含电容电路的分析策略 将电容器置于直流电路,创设复杂情景,是高考命题惯用的设计策略,借以突出对考生综合能力的考查,适应高考选拔性需要.应引起足够关注 . 1.(★★★★)在如图14-1电路中,电键S 1、S 2、S 3、S 4均闭合.C 是极板水平放置的平行板电容器,板间悬浮着一油滴P ,断开哪一个电键后P 会向下运动 A.S 1 B.S 2 C.S 3 D.S 4 图14—1 图14—2 2.(★★★)(2000年春)图14-2所示,是一个由电池、电阻R 与平行板电容器组成的串联电路.在增大电容器两极板间距离的过程中 A.电阻R 中没有电流 B.电容器的电容变小 C.电阻R 中有从a 流向b 的电流 D.电阻R 中有从b 流向a 的电流 ●案例探究 [例1](★★★★★)如图14-3所示的电路中,4个电阻的阻值均为R ,E 为直流电源,其内阻可以不计,没有标明哪一极是正极.平行板电容器两极板间的距离为d .在平行极板电容器的两个平行极板之间有一个质量为m ,电量为q 的带电小球.当电键K 闭合时,带电小球静止在两极板间的中点O 上.现把电键打开,带电小球便往平行极板电容器的某个极板运动,并与此极板碰 撞,设在碰撞时没有机械能损失,但带电小球的电量发生变化.碰后小球带有与该极板相同性质的电荷,而且所带的电量恰好刚能使它运动到平行极板电容器的另一极板.求小球与电容器某个极板碰撞后所带的电荷. 命题意图:考查推理判断能力及分析综合能力,B 级要求. 错解分析:不能深刻把握该物理过程的本质,无法找到破题的切入点(K 断开→U 3变化→q 所受力F 变化→q 运动状态变化),得出正确的解题思路. 解题方法与技巧: 由电路图可以看出,因R 4支路上无电流,电容器两极板间电压,无论K 是否闭合始终等于电阻R 3上的电压U 3,当K 闭合时,设此两极板间电压为U ,电源的电动势为E ,由分压关系可得U =U 3= 3 2E ① 小球处于静止,由平衡条件得 d qU =mg ② 当K 断开,由R 1和R 3串联可得电容两极板间电压U ′为 图14-3

高三物理难题汇总

1 如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2 ,求:(1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v1和v2 (3)磁感应强度B的大小 (4)电场强度E的大小和方向 2 如图2—14所示,光滑水平桌面上有长L=2m的木板C,质量m c=5kg,在其正中央并排放着两个小滑块A和B,m A=1kg,m B=4kg,开始时三物都静止.在A、B间有少量塑胶炸药,爆炸后A以速度6m/s水平向左运动,A、B中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A、B都与挡板碰撞后,C的速度是多大? (2)到A、B都与挡板碰撞为止,C的位移为多少? 3 为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F 1 ,放手后,木板沿斜面下滑,稳定后弹簧示数为 F 2,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上) 图 12

4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质 量分别为m A =m B =m ,m C =3 m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度03 2v 向下运动,经历同样过程,最后木块C 停在斜面上的R 点,求P 、R 间的距离L ′的大小。 5 如图,足够长的水平传送带始终以大小为v =3m/s 的速度向左运动,传送带上有一质量为M =2kg 的小木盒A ,A 与传送带之间的动摩擦因数为μ=0.3,开始时,A 与传送带之间保持相对静止。先后相隔△t =3s 有两个光滑的质量为m =1kg 的小球B 自传送带的左端出发,以v 0=15m/s 的速度在传送带上向右运动。第1个球与木盒相遇后,球立即进入盒中与盒保持相对静止,第2个球出发后历时△t 1=1s/3而与木盒相遇。求(取g =10m/s 2) (1)第1个球与木盒相遇后瞬间,两者共同运动的速度时多大? (2)第1个球出发后经过多长时间与木盒相遇? (3)自木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量是多少? 6 如图所示,两平行金属板A 、B 长l =8cm ,两板间距离d =8cm ,A 板比B 板电势高300V , B A v 0

高中物理十大难点之法拉第电磁感应定律

难点之七 法拉第电磁感应定律 一、难点形成原因 1、关于表达式t n E ??=φ 此公式在应用时容易漏掉匝数n ,实际上n 匝线圈产生的感应电动势是串联在一起的,其次φ?是合磁通量的变化,尤其变化过程中磁场方向改变的情况特别容易出错,并且感应电动势E 与φ、φ?、t ??φ的关系容易混淆不清。 2、应用法拉第电磁感应定律的三种特殊情况E=Blv 、ω221Bl E = 、E=nBs ωsin θ(或E=nBs ωcos θ)解决问题时,不注意各公式应用的条件,造成公式应用混乱从而形成难点。 3、公式E=nBs ωsin θ(或E=nBs ωcos θ)的记忆和推导是难点,造成推导困难的原因主要是此情况下,线圈在三维空间运动,不少同学缺乏立体思维。 二、难点突破 1、φ、φ?、t ??φ同v 、△v 、t v ??一样都是容易混淆的物理量,如果理不清它们之间的关系,求解感应电动势就会受到影响,要真正掌握它们的区别应从以下几个方面深入理解。 磁通量φ 磁通量变化量φ? 磁通量变化率t ??φ 物理 意 义 磁通量越大,某时刻穿过磁场中某个面的磁感线条数越多 某段时间穿过某个面的末、初磁通量的差值 表述磁场中穿过某个面的磁通量变化快慢的物理量 大小 计 算 ⊥=BS φ,⊥S 为与B 垂直的面积 12φφφ-=?,S B ?=?φ或B S ?=?φ t S B t ??=??φ 或t B S t ??=??φ 注 意 若穿过某个面有方向相反的磁场,则不能直接用⊥=BS φ,应考虑相反方 向的磁通量相互抵消以 后所剩余的磁通量 开始和转过1800时平面都与磁场垂直,穿过平面的磁通量是不同的,一 正一负,△φ=2 BS , 而不是零 既不表示磁通量的大小,也不表示变化的多少,在φ—t 图象中用图线的斜率表示 2、明确感应电动势的三种特殊情况中各公式的具体用法及应用时须注意的问题 ⑴导体切割磁感线产生的感应电动势E=Blv ,应用此公式时B 、l 、v 三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算,生硬地套用公式会导致错误。有的注意到三者之间的关系,发现不垂直后,在不明白θ角含义的情况下用E=Blvsin θ求解,这也是不可取的。处理这类问题,最好画图找B 、l 、v 三个量的关系,如若不两两垂直则在图上画出它们两两垂直的有效分量,然后将有效分量代入公式E=Blv 求解。此公式也可

高考物理重点难点复习3

高考物理重点难点3 力矩平衡条件及应用 力矩平衡以其广泛的实用性,再次被考纲列为考查的内容,且以此知识点为素材的高考命题屡次再现于近几年高考上海卷及全国理综卷中.其难点分布于:(1)从实际背景中构建有固定转动轴的物理模型.(2)灵活恰当地选取固定转动轴.(3)将转动模型从相关系统(连结体)中隔离分析等. ●难点磁场 1.(★★★★)如图3-1所示,一根长为L 的轻杆OA ,可绕水平 轴O 在竖直平面内自由转动,左端A 挂一质量为m 的物体,从杆上 一点B 系一不可伸长的细绳,将绳跨过光滑的钉子C 与弹簧K 连接, 弹簧右端固定,这时轻杆在水平位置保持平衡,弹簧处于伸长状态, 已知OB =OC =32L ,弹簧伸长量恰等于BC ,由此可知,弹簧的劲度系数等于______. 2.(★★★★★)(1997年上海,6)如图3-2所示是一种手 控制动器,a 是一个转动着的轮子,b 是摩擦制动片,c 是杠杆, O 是其固定转动轴.手在A 点施加一个作用力F 时,b 将压紧轮 子,使轮子制动.若使轮子制动所需的力矩是一定的,则下列说 法正确的是 A.轮a 逆时针转动时,所需的力F 较小 B.轮a 顺时针转动时,所需的力F 较小 C.无论逆时针还是顺时针转动,所需的力F 相同 D.无法比较F 的大小 ●案例探究 [例1](★★★★★)如图3-3所示,长为L 质量为m 的均匀木棒,上端用绞链固定在物体上,另一端放在动摩擦 因数为μ的小车平台上,小车置于光滑平面上,棒与平台的 夹角为θ,当: (1)小车静止时,求棒的下端受小车的支持力; (2)小车向左运动时,求棒的下端受小车的支持力; (3)小车向右运动时,求棒的下端受小车的支持力. 命题意图:题目出示的物理情境,来考查考生受力分析 能力及力矩平衡条件的应用能力.B 级要求. 错解分析:对“车的不同运动状态使棒所受摩擦力大小方向的变化”理解分析不透,从而错列力矩平衡方程. 解题方法与技巧:(1)取棒为研究对象.选绞链处为固定转动轴,除转动轴对棒的作用力外,棒的受力情况如图3-4所示,由力矩平衡条件知: F N 1Lc os θ=mg 2 L c os θF N 1=21mg 图 3-1 图 3-2 图3-3

高中物理10大难点强行突破之三圆周运动的实例分析

难点之三:圆周运动的实例分析 一、难点形成的原因 1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。 2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用; 3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。 4、圆周运动的周期性把握不准。 5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。 二、难点突破 (1)匀速圆周运动与非匀速圆周运动 a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。 b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。 c.匀速圆周运动只是速度方向改变,而速度大小不变。做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。 例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少? 【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。 【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T 2恰为零,设此时角速度为ω1,AC 绳上拉力设为T 1,对小球有: mg T =?30cos 1 ① 30sin L ωm =30sin T A B 2 11② 代入数据得: s rad /4.21=ω, 要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T 1恰为零,设此时角速度为ω2,BC 绳拉力为T 2,则有 mg T =?45cos 2 ③ T 2sin45°=m 2 2ωL AC sin30°④ 代入数据得:ω2=3.16rad/s 。要使AC 绳有拉力,必须ω<ω2,依题意ω=4rad/s>ω2,故AC 绳已无拉力,AC 绳是松驰状态,BC 绳与杆的夹角θ>45°,对小球有: 图3-1

高考物理重点难点复习2

高考物理中的阿难点2:连接体问题分析策略 整体法与隔离法 两个或两个以上物体相互连接参与运动的系统称为连接体.以平衡态或非平衡态下连接体问题拟题屡次呈现于高考卷面中,是考生备考临考的难点之一. ●难点磁场 1.(★★★★)(1998年全国高考)如图2-1,质量为2 m 的物块A 与水平地面的摩擦可忽略不计,质量为m 的物块B 与地面的动摩擦因数为μ,在已知水平推力F 的作用下,A 、B 做加速运动,A 对B 的作用力为 ____________. 2.(★★★★)(1999年广东)A 的质量m 1=4 m ,B 的质量m 2=m ,斜面固定在水平地面上.开始时将B 按在地面上不动,然后放手,让A 沿斜面下滑而B 上升.A 与斜面无摩擦,如图2-2,设当A 沿斜面下滑s 距离后,细线突然断了.求B 上升的最大高度H . ●案例探究 [例1](★★★★)如图2-3所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的 21,即a =2 1 g ,则小球在下滑的过程中,木箱对地面的压力为多少? 命题意图:考查对牛顿第二定律的理解运用能力及灵活选取研究对象的能力.B 级要求. 错解分析:(1)部分考生习惯于具有相同加速度连接体问题演练,对于“一动一静”连续体问题难以对其隔离,列出正确方程.(2)思维缺乏创新,对整体法列出的方程感到疑惑. 解题方法与技巧: 解法一:(隔离法) 木箱与小球没有共同加速度,所以须用隔离法. 取小球m 为研究对象,受重力mg 、摩擦力F f ,如图2-4 ,据牛顿第二定律得: mg -F f =ma ① 取木箱M 为研究对象,受重力Mg 、地面支持力F N 及小球给予的摩擦力F f ′如图2-5. 据物体平衡条件得: F N -F f ′-Mg =0 ② 且F f =F f ′ ③ 由①②③式得F N = 2 2m M +g 由牛顿第三定律知,木箱对地面的压力大小为 F N ′=F N = 2 2m M +g . 解法二:(整体法) 图2—4 图2-1 图2-2 图2-5 图2-3

高考物理重难点

高考物理重难点 一、考试目标与要求 高考物理在考查知识的同时注重考查能力,并把对能力的考查放在首要位置。通过考核知识及其运用来鉴别考生能力的高低,但不把某些知识与某种能力简单地对应起来。 目前,高考物理科要考核的能力主要包括以下几个方面: 1.理解能力:理解物理概念、物理规律的确切含义,理解物理规律的适用条件,以及它们在简单情况下的应用;能够清楚认识概念和规律的表达形式(包括文字表述和数学表述);能够鉴别关于概念和规律的似是而非的说法;理解相关知识的区别和联系。 2.推理能力:能够根据已知的知识和物理事实、条件,对物理问题进行逻辑推理和论证,得出正确的结论或作出正确的判断,并能把推理过程正确地表达出来。 3.分析综合能力:能够独立地对所遇的问题进行具体分析、研究,弄清其中的物理状态、物理过程和物理情境,找出其中起重要作用的因素及有关条件;能够把一个复杂问题分解为若干较简单的问题,找出它们之间的联系;能够提出解决问题的方法,运用物理知识综合解决所遇到的问题。 4.应用数学处理物理问题的能力:能够根据具体问题列出物理量之间的关系式,进行推导和求解,并根据结果得出物理结论;必要时能运用几何图形、函数图像进行表达、分析。 5.实验能力:能独立的完成实验,能明确实验目的,能理解实验原理和方法,能控制实验条件,会使用仪器,会观察、分析实验现象,会记录、处理实验数据,并得出结论,对结论进行分析和评价;能发现问题、提出问题,并制定解决方案;能运用已学过的物理理论、实验方法和实验仪器去处理问题,包括简单的设计性实验。 这五个方面的能力要求不是孤立的,着重对某一种能力进行考查的同时在不同程度上也考查了与之相关的能力。同时,在应用某种能力处理或解决具体问题的过程种也伴随着发现问题、提出问题的过程。因而高考对考生发现问题、提出问题等探究能力的考查渗透在以上各种能力的考查中。 二、考试范围与要求 要考查的物理知识包括力学、热学、电磁学、光学、原子物理学、原子核物理学等部分。考虑到课程标准中物理知识的安排和高校录取新生的基本要求,《考试大纲》把考试内容分为必考内容和选考内容两类. 重难点部分 一、力学部分 重点 力学是整个中学物理的基础和核心,历年高考中,力学分值所占比例较大,并有逐年提高比例的趋势,压轴大题大多为力学问题或与力学紧密联系的问题。 (一)力学考点和知识结构解析 1.运动的描述 (1)匀速直线运动(简单) (2)匀变速直线运动(图像,运动问题的解决) 2.牛顿运动定律 (1)力力的分类受力分析(必考点)以及物体的平衡

高考物理复习知识点难点汇总14 含电容电路的分析策略

难点14 含电容电路的分析策略 将电容器置于直流电路,创设复杂情景,是高考命题惯用的设计策略,借以突出对考生综合能力的考查,适应高考选拔性需要.应引起足够关注. ●难点磁场 1.(★★★★)在如图14-1电路中,电键S 1、S 2、S 3、S 4均闭合.C 是极板水平放置的平行板电容器,板间悬浮着一油滴P ,断开哪一个电键后P 会向下运动 A.S 1 B.S 2 C.S 3 D.S 4 图14—1 图14—2 2.(★★★)(2000年春)图14-2所示,是一个由电池、电阻R 与平行板电容器组成的串联电路.在增大电容器两极板间距离的过程中 A.电阻R 中没有电流 B.电容器的电容变小 C.电阻R 中有从a 流向b 的电流 D.电阻R 中有从b 流向a 的电流 ●案例探究 [例1](★★★★★)如图14-3所示的电路中,4个电阻的阻值均为R ,E 为直流电源,其内阻可以不计,没有标明哪一极是正极.平行板电容器两极板间的距离为d .在平行极板电容器的两个平行极板之间有一个质量为m ,电量为q 的带电小球.当电键K 闭合时,带电小球静止在两极板间的中点O 上.现把电键打开,带电小球便往平行极板电容器的某个极板运动,并与此极板碰 撞,设在碰撞时没有机械能损失,但带电小球的电量发生变化.碰后小球带有与该极板相同性质的电荷,而且所带的电量恰好刚能使它运动到平行极板电容器的另一极板.求小球与电容器某个极板碰撞后所带的电荷. 命题意图:考查推理判断能力及分析综合能力,B 级要求. 错解分析:不能深刻把握该物理过程的本质,无法找到破题的切入点(K 断开→U 3 变化→q 所受力F 变化→q 运动状态变化),得出正确的解题思路. 解题方法与技巧: 由电路图可以看出,因R 4支路上无电流,电容器两极板间电压,无论K 是否闭合始终等于电阻R 3上的电压U 3,当K 闭合时,设此两极板间电压为U ,电源的电动势为E ,由分压关系可得U =U 3= 32E ① 小球处于静止,由平衡条件得d qU =mg ② 当K 断开,由R 1和R 3串联可得电容两极板间电压U ′为U ′=2 E ③ 由①③得U ′=4 3 U ④ 图14-3

“强制弱”规律“三思”

“强制弱”规律“三思” |浏览人次:9高中化学人教版 长沙市第21中学邵国光 “强制弱”规律“三思” 长沙市第21中学邵国光 化学反应中常常遵循“强制弱”的规律,例如“较强酸+较弱酸盐==较强酸盐+较弱酸(强酸制弱酸)”,“氧化剂+还原剂==还原产物+氧化产物”,则有:氧化剂的氧化性强于氧化产物的氧化性,还原剂的还原性强于还原产物的还原性等。运用“强制弱”规律解题时学会“三思”,就能化拙为巧,收到事半功倍之效。 一、对“强制弱”规律的“正向”思考 以强酸制弱酸为例:对于反应HA+B-==A-+HB,我们作正向思考,常归纳成“较强酸+较弱酸盐==较强酸盐+较弱酸”或“强酸制弱酸”。运用此规律我们可以由已知反应推知酸碱性强弱,如已知反应C6H5ONa+CO2(少量)+H2O→C6H5OH+NaHCO3,根据“强酸强碱制弱酸弱碱”规律可得到结论:C6H5O-夺取了H2CO3中的H+生成了C6H5OH,而H2CO3失去H+生成HCO3-。酸性:H2CO3>C6H5OH。 二、对“强制弱”规律的“逆向”思考 同样,对于反应HA+B-==A-+HB,我们作逆向思考,实际上此反应可看作A-不能夺取HB中的H+,但B-能夺取HA中的H+,故B-结合H+的能力强于A-,即B-的碱性强于A-。如已知反应 C6H5ONa+CO2(少量)+H2O→C6H5OH+NaHCO3,我们可得另一结论:过量的C6H5O-不能继续结合产物HCO3-中的H+,即CO32-结合H+的能力强于C6H5O-,碱性:CO32->C6H5O-。酸性:C6H5OH>HCO3-,根据“强酸强碱制弱酸弱碱”规律可知下列反应可以发生:CO32-+C6H5OH→HCO3-+C6H5O-。现就上述两种思维方法的应用举两例说明: [例1]向等物质的量浓度的两种一元弱酸盐溶液中,分别加入适量的CO2,发生如下反应:NaA+CO2+H2O==HA+NaHCO3、2NaB+CO2+H2O==2HB+Na2CO3。则HA和HB在水中电离出H+的能力大小关系是()

高考物理重点全归纳

高考物理重点全归纳 力学部分 质点的直线运动:运动图象以及匀变速直线运动规律的应用,如追及问题等。常考方法有图象法等。高考命题出现率一般。 相互作用:物体的平衡及动态平衡,有的还联系电学知识。常考方法有合成与分解法、三角形法、正交分解法、对称法、临界与极值法等。高考命题出现率中等。 牛顿运动定律:牛顿第二定律的应用,与图象综合、联系实际问题等。常考方法有图象法、整体与隔离法、临界与极值法等。高考命题出现率一般。 曲线运动:平抛运动、圆周运动,有时与功能综合。常考方法有对称法、二级结论法、临界与极值法、数理结合等。高考命题出现率中等。 万有引力与航天:公转模型、变轨、同步卫星、宇宙速度等。常考方法有图象法、比值法、估算法、模型法等。高考命题出现率高。 机械能:功、功率、动能定理、机械能守恒定律的应用。常考方法有图象法、临界与极值法等。高考命题出现率极高。 碰撞与动量守恒:动量定理、动量守恒定律以及综合应用。常考方法有图象法、临界与极值法等。高考命题出现率高。 电学部分 电场:电场的性质、平行板电容器、图象等。常考方法有图象法、对称法、二级结论法等。高考命题出现率极高。 磁场:安培力、带电粒子在磁场中的运动。常考方法有对称法、二级结论法、临界与极值法。高考命题出现率高。 电磁感应:楞次定律、法拉第电磁感应定律的应用。常考方法有图象法、对称法、二级结论法等。高考命题出现率极高。 交变电流:变压器、远距离输电等。高考命题出现率一般。 原子与原子核 氢原子能级、光电效应及图象、波粒二象性、核反应及核能。常考方法有图象法、二级结论法等。高考命题出现率一般。1 物理学史 围绕物理学史、经典实验及方法,大多源于教材。高考命题出现率一般。 实验部分

2020届高考物理一轮复习难点突破核能的分析与计算

2020届高考物理一轮复习难点突破核能的分析 与计算 核能的开发与利用是一个社会热点咨询题,以此为背景的命题既是3+X高考的热点,亦是考生应考的难点. ●难点展台 1.〔★★★★〕裂变反应是目前核能利用中常用的反应.以原子核235 92 U为燃料的反应堆 中,当235 92 U俘获一个慢中子后发生的裂变反应能够有多种方式,其中一种可表示为 235 92U +1 n →139 54 Xe + 94 38 Sr +31 n 235.0439 1.0087 138.9178 93.9154 反应方程下方的数字是中子及有关原子的静止质量〔以原子质量单位u为单位〕. 1 u 的质量对应的能量为9.3×102MeV,此裂变反应开释出的能量是________MeV. 2.〔★★★★〕假设在Na C l蒸气中存在由钠离子Na+和氯离子Cl-靠静电相互作用构成的单个NaCl分子.假设取Na+与Cl-相距无限远时其电势能为零,一个NaCl分子的电势能为-6.1 eV.使一个中性钠原子Na最外层的电子脱离钠原子而形成钠离子Na+所需的能量〔电离能〕为5.1 eV,使一个中性氯原子Cl结合一个电子形成氯离子Cl-所放出的能量〔亲和能〕为 3.8 eV.由此可算出,在将一个NaCl分子分解成彼此远离的 中性钠原子Na和中性氯原子Cl的过程中,外界供给的总能量等于______eV. ●案例探究 [例1]〔★★★★〕如下一系列核反应是在恒星内部发生的, P+12 6C→13 7 N 13 7 N→136C+e++γP+136C→147N P+147N→158O 15 8 O→157N+e++γP+157N→126C+α

高中物理10大难点强行突破之九带电粒子在磁场中的运动

难点之九:带电粒子在磁场中的运动 一、难点突破策略 (一)明确带电粒子在磁场中的受力特点 1. 产生洛伦兹力的条件: ①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用. ②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小: 当电荷运动方向与磁场方向平行时,洛伦兹力f=0; 当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=q υB ; 当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= q υB ·sin θ 3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功. (二)明确带电粒子在匀强磁场中的运动规律 带电粒子在只受洛伦兹力作用的条件下: 1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动. 2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动. ①向心力由洛伦兹力提供:R v m qvB 2 = ②轨道半径公式:qB mv R = ③周期:qB m 2v R 2T π=π=,可见T 只与q m 有关,与v 、R 无关。 (三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。 1. “带电粒子在匀强磁场中的圆周运动”的基本型问题 (1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t π α=α=或)作为辅助。圆心的确定,通常有以下两种方法。 ① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。

高考物理天体运动中的五大难点突破

高考物理中天体运动中的五大难点突破 1.[多选]目前,在地球周围有许多人造地球卫星绕着它运转,其中一些卫星的轨道可近似为圆,且轨道半径逐渐变小。若卫星在轨道半径逐渐变小的过程中,只受到地球引力和稀薄气体阻力的作用,则下列判断正确的是( ) A .卫星的动能逐渐减小 B .由于地球引力做正功,引力势能一定减小 C .由于气体阻力做负功,地球引力做正功,机械能保持不变 D .卫星克服气体阻力做的功小于引力势能的减小 解析:选BD 由于空气阻力做负功,卫星轨道半径变小,由G Mm r 2=m v 2r 可知,卫星线速度增大,地球引力做正功,引力势能一定减小,故动能增大,机械能减小,选项A 、C 错误,B 正确;根据动能定理,卫星动能增大,卫星克服阻力做的功小于地球引力做的正功,而地球引力做的正功等于引力势能的减小,所以卫星克服阻力做的功小于引力势能的减小,选项D 正确。 2.(2020·云南昆明一中月考)如图所示,A 、B 两颗恒星分别绕他们连线上某一点做匀速圆周运动,我们通常称之为“双星系统”,A 的质量为B 的2倍,忽略其他星球对二者的引力,下列说法正确的是( ) A .恒星A 的向心加速度是 B 的一半 B .恒星A 的线速度是B 的2倍 C .恒星A 的公转周期是B 的一半 D .恒星A 的动能是B 的2倍 解析:选A A 、B 之间的引力提供各自的向心力,由牛顿第二定律可知,A 、B 的向心力相等,角速度和周期相等,则有2M 4π2T 2r A =M 4π2T 2r B ,解得恒星A 与恒星B 的轨道半径之比为r A ∶r B =1∶2,由v =ωr ,a =ω2r ,T A =T B ,可得A 正确,B 、C 错误;由动能E k =12mv 2可得E k A E k B =m A m B ·v A 2v B 2=21×14=12 ,故D 错误。 3.(2019·河南名校大联考)2018年6月14日,我国探月工程嫦娥四号“鹊桥”中继星进入地月拉格朗日L 2点的Halo 使命轨道,以解决月球背面的通讯问题。如图所示,地月拉格朗日L 2点在地球与月球的连线上。若“鹊桥”中继星在地月拉格朗日L 2点上,受地球、月球两大天体的引力作用,其绕地球运行的周期和月球绕地球运行的周期相同。已知地球质量、地月距离和月球的质量,分析月球受力时忽略“鹊桥”中继星对月球的作用力,则下列物理量可以求出的是( ) A .引力常量 B .月球绕地球运行的周期 C .“鹊桥”中继星的质量

高考物理难题集锦(一)含问题详解

高考物理难题集锦(一) 1、如图所示,在直角坐标系x O y平面的第Ⅱ象限有半径为R的圆O1分别与x轴、y轴相切于C(-R,0)、D (0,R)两点,圆O1存在垂直于x O y平面向外的匀强磁场,磁感应强度为B.与y轴负方向平行的匀强电场左边界与y轴重合,右边界交x轴于G点,一带正电的粒子A(重力不计)电荷量为q、质量为m,以某一速率垂直于x轴从C点射入磁场,经磁场偏转恰好从D点进入电场,最后从G点以与x轴正向夹角为45°的方向射出电场.求: (1)OG之间的距离; (2)该匀强电场的电场强度E; (3)若另有一个与A的质量和电荷量相同、速率也相同的粒 子A′,从C点沿与x轴负方向成30°角的方向射入磁场, 则粒子A′再次回到x轴上某点时,该点的坐标值为多少? 2、如图所示,光滑绝缘水平面的上方空间被竖直的分界面MN分隔成两部分,左侧空间有一水平向右的匀强电 场,场强大小,右侧空间有长为R=0.114m的绝缘轻绳, 绳的一端固定于O点,另一端拴一个质量为m小球B在竖直面沿顺 时针方向做圆周运动,运动到最低点时速度大小v B=10m/s(小球B 在最低点时与地面接触但无弹力)。在MN左侧水平面上有一质量 也为m,带电量为的小球A,某时刻在距MN平面L位置由静止 释放,恰能与运动到最低点的B球发生正碰,并瞬间粘合成一个整 体C。(取g=10m/s2) (1)如果L=0.2m,求整体C运动到最高点时的速率。(结果保留1位小数) (2)在(1)条件下,整体C在最高点时受到细绳的拉力是小球B重力的多少倍?(结果取整数) (3)若碰后瞬间在MN的右侧空间立即加上一水平向左的匀强电场,场强大小,当L满足什么条件时,整体C可在竖直面做完整的圆周运动。(结果保留1位小数) 3、如右图甲所示,间距为d的平行金属板MN与一对光滑的平行导轨相连,平行导轨间距L=d/2,一根导体棒ab 以一定的初速度向右匀速运动,棒的右侧存在一个垂直纸面向里,大小为B的匀强磁场。棒进入磁场的同时,粒子源P释放一个初速度为0的带电粒子,已知带电粒子质量为m,电量为q.粒子能从N板加速到M板,并从M 板上的一个小孔穿出。在板的上方,有一个环形区域存在大小也为B,垂直纸面向外的匀强磁场。已知外圆半径为2d,里圆半径为d.两圆的圆心与小孔重合(粒子重力不计) (1)判断带电粒子的正负,并求当ab棒的速度为v0时,粒子到达M板的速度v;

高中物理10大难点强行突破(144页全套)

高中物理10大难点强行突破 目录 难点之一:物体受力分析 (1) 难点之二:传送带问题………………………………………………………………难点之三:圆周运动的实例分析……………………………………………………难点之四:卫星问题分析……………………………………………………………难点之五:功与能……………………………………………………………………. 难点之六:物体在重力作用下的运动………………………………………………. 难点之七:法拉第电磁感应定律……………………………………………………难点之八:带电粒子在电场中的运动………………………………………………难点之九:带电粒子在磁场中的运动………………………………………………. 难点之十:电学实验………………………………………………. …………………

难点之一物体受力分析 一、难点形成原因: 1、力是物体间的相互作用。受力分析时,这种相互作用只能凭着各力的产生条件和方向要求,再加上抽象的思维想象去画,不象实物那么明显,这对于刚升入高中的学生来说,多习惯于直观形象,缺乏抽象的逻辑思惟,所以形成了难点。 2、有些力的方向比较好判断,如:重力、电场力、磁场力等,但有些力的方向难以确定。如:弹力、摩擦力等,虽然发生在接触处,但在接触的地方是否存在、方向如何却难以把握。 3、受力分析时除了将各力的产生要求、方向的判断方法熟练掌握外,同时还要与物体的运动状态相联系,这就需要一定的综合能力。由于学生对物理知识掌握不全,导致综合分析能力下降,影响了受力分析准确性和全面性。 4、教师的教学要求和教学方法不当造成难点。教学要求不符合学生的实际,要求过高,想一步到位,例如:一开始就给学生讲一些受力个数多、且又难以分析的物体的受力情况等。这样势必在学生心理上会形成障碍。 二、难点突破策略: 物体的受力情况决定了物体的运动状态,正确分析物体的受力,是研究力学问题的关键。受力分析就是分析物体受到周围其它物体的作用。为了保证分析结果正确,应从以下几个方面突破难点。 1. 2.受力分析的依据:各种性质力的产生条件及各力方向的特点 3.受力分析的步骤: 为了在受力分析时不多分析力,也不漏力,一般情况下按下面的步骤进行: (1)确定研究对象—可以是某个物体也可以是整体。 (2)按顺序画力 a.先画重力:作用点画在物体的重心,方向竖直向下。 b.次画已知力 c.再画接触力—(弹力和摩擦力):看研究对象跟周围其他物体有几个接触点(面),先对某个接触点(面)分析,若有挤压,则画出弹力,若还有相对运动或相对运动的趋势,则再画出摩擦力。分析完一个接触点(面)后,再依次分析其他的接触点(面)。 d.再画其他场力:看是否有电、磁场力作用,如有则画出。 (3)验证: a.每一个力都应找到对应的施力物体 b.受的力应与物体的运动状态对应。 说明: (1)只分析研究对象受的根据性质命名的实际力(如:重力、弹力、摩擦力等),不画它对别的物体的作用力。 (2)合力和分力不能同时作为物体所受的力。 (3)每一个力都应找到施力物体,防止“漏力”和“添力”。 (4)可看成质点的物体,力的作用点可画在重心上,对有转动效果的物体,则力应画在实际位置上。(5)为了使问题简化,常忽略某些次要的力。如物体速度不大时的空气阻力、物体在空气中所受的浮力等。(6)分析物体受力时,除了考虑它与周围物体的作用外,还要考虑物体的运动情况(平衡状态、加速或减速),当物体的运动情况不同时,其情况也不同。 4. 受力分析的辅助手段 (1)物体的平衡条件(共点力作用下物体的平衡条件是合力为零) (2)牛顿第二定律(物体有加速度时)

相关文档
最新文档