壳牌石油标准 SHELL MESC SPE说明

合集下载

MESC SPE 77-306

MESC SPE 77-306

PRODUCTION TESTING OF VALVES IN LOW TEMPERATURE SERVICES1. INTRODUCTION1.1 SCOPE1.1.1 (1) This specification covers the procedures for production testing of gate, globe, check,ball and butterfly on/off valves and control valves used in a low temperature servicerange from minus 30 ºC down to minus 196 ºC.1.1.2 This specification shall apply in addition to the applicable MESC buying descriptionsand the referenced external standards.1.1.3 This specification is a supplement to BS 6364 and EN 1626.1.1.4 Clauses of BS 6364 and EN 1626 which are not amended by this specificationshall remain valid as written.1.1.5 The numbers in brackets at the section headings refer to the relevant sections inBS 6364.1.1.6 Type approval testing of valves which are not yet accepted by Shell Global SolutionsInternational (Shell-GSI), and therefore not listed in the Shell-GSI Technical AcceptedManufacturers And Products (TAMAP) database, shall comply with the requirementsof specification T-2.253.730.1.1.7 Non-operable valvesWhere "non-operable" is stated on the MESC buying description this means that the valve shall not be operated at service temperatures below zero degrees Celsius. These “non-operable” valves are only subject to a shell test at both ambient and low temperature conditions (see section 3.3.6.2).2. REFERENCESIn this specification, reference is made to the following publications:NOTE: Unless specifically designated by date, the latest edition of each publication shall be used,together with any amendments/supplements/revisions thereto.API 598 (8thedition, May-2004)Valve inspection and testing – downstream segmentASME B 16.34 Valves - flanged, threaded and welding ends.BS 6364 Specification for valves for cryogenic service.EN 1626 Cryogenic vessels – valves for cryogenic service.EN 12300 Cryogenic vessels – cleanliness for cryogenic service.IEC 60534-4 Industrial process control valves, part 4 inspection and routinetesting.ISO 5208 Industrial valves – pressure testing of valves.EN-ISO 6708 Pipe work components – Definition and selection of DN(nominal size).and type approval testing for on/offspecificationT-2.253.730 Procedure,valves and control valves in low temperature (cryogenic)services.SPE 77/312 Fugitive emission leak detection of valves.3. AMENDMENTS TO BS 6364 AND EN 1626.3.1 (1) GENERAL INFORMATION AND PRE-REQUISITES3.1.1. The valves on an order shall be separated into inspection lots, as defined inSPE 77/302 section 4.2.1.3.1.2 Valves to be tested shall be selected at random from the total lot.3.1.3 The total number of samples shall be 10%, with a minimum of one per valve type,style, size and pressure class rating.3.1.3.1 In order to grant the manufacturer a waiver for performing production tests onordered valves he shall confirm that:- he provides the client production test report(s) of at random selectedidentical valve(s) which passed this test and are used for the same designconditions.- the accepted identical production test report(s) are not older than 2 years andshall be part of the technical dossier.- Documentary evidence shall be included in the technical dossier and remain withthe manufacturer.3.1.4 The seat leakage of bi-directional valves shall be tested in both directions.3.1.5 Valves with a preferred high pressure side (as marked on the body) shall be testedin that preferred side.3.1.6 Upstream-sealing valves, such as trunnion mounted ball valves shall be seat testedon the upstream seat.3.2 (A2) PREPARATIONS PRIOR TO PRODUCTION TESTINGfacility3.2.1 Testing3.2.1.1 The valve shall be tested at the manufacturer's own test facilities or independenttesting facility.3.2.1.2 Shell-GSI accepted valve manufacturers, listed in the TAMAP database, with aninspection department independent from their production and lowtemperature/cryogenic testing sections, are allowed to carry out theSPE 77/306 production testing without the need of witnessing by an independentinspection authority or Principal’s representative.In all other cases:The whole test shall be witnessed by an independent inspection authority or thePrincipal’s representative.3.2.1.3 All contacts, concerning the test arrangements shall take place directly between themanufacturer and the testing facility/institute.3.2.1.4 The manufacturer shall supply the testing facility/institute all relevant documents.3.2.2 (A4) Valve production test record/certificate3.2.2.1 During the test all observations, data and results shall be recorded insequence with dates and time and may be supported by photographs.3.2.2.2 The test results and documents shall be compiled and filed by the manufacturer forreference.3.2.2.3 An example of a valve production test record/certificate is shown in appendix C. 3.2.3 ACCEPTANCEREQUIREMENTS.3.2.3.1 A lot shall be accepted if all the samples of the lot meet the specified acceptancecriteria.3.2.3.2 If a valve fails any of the test requirements the valve shall be rejected, the cause ofthe failure shall be investigated and a detailed valve component inspection ismandatory.3.2.3.3 In that case the valve shall be disassembled and valve parts, i.e. seats, seals,gaskets, shall be checked for excessive wear and/or permanent deformation.3.2.3.4 Re-testing at the specified temperature is mandatory for those valves where the measured-forces/torque during the operational test or seat test exceeds the specified limit.3.2.3.5 When a re-test is needed the test report shall be submitted to the Principal.3.2.3.6 In case any of the tested valves fails to meet the acceptance criteria additionalvalves (the same size and pressure class) shall be tested and/or the repaired valveshall then be re-tested.3.2.3.7 If these samples meet the acceptance criteria, the lot shall be accepted withexception of the initially rejected items.3.2.3.8 If any of the additionally inspected samples fails to meet the acceptance criteria,then 100% of the lot shall be inspected or, at the principal’s discretion, the entire lotshall be rejected.3.2.3.9 The re-test shall take place at the same testing facility where the previous test wascarried out.3.2.3.10 If the test equipment fails or a shortage of gas (bottle/supply) occurs, the test shallbe aborted and the valve shall be submitted to a re-test.3.2.4 Test rig, valve connections and supports3.2.4.1 (fig. 2) A schematic of a low temperature test rig is shown in Appendices B1 and B2.3.2.4.2 The valve and the tank shall be strong enough to withstand all forces exertedduring handling of the valve.3.2.4.3 The test rig shall be capable for testing the valve in both directions.3.2.4.4 Brackets to support the valve in the test rig shall be fixed to the valve end covers oralternatively clamped to the body.3.2.4.5 There shall be no supports mounted to the stem/bonnet extension of the valve.3.2.4.6 The valve to be tested shall be flanged or wafer (lug) type.3.2.4.7 The valve ends shall be equipped with suitable end covers, capable for testing inboth directions.3.2.4.8 Both blind flange covers shall be provided with a pressure/vent connection and athermocouple connection for the closure member of the valve.3.2.4.9 The gaskets for the valve end blind flanges shall be spiral wound with ASTM A240type 316(L) windings, inner and centring ring and graphite filler.3.2.4.10 If the valve is of the wafer(lug) type design, then the valve end connectors shall bemodified (by the manufacturer) accordingly, to accommodate this type of valve. 3.2.4.11 Deviations and/or other testing systems are subject to approval by the Principal.3.2.5 (A3.1.3)Selection of the coolant mediumService and test temperature: Type of coolant medium:from -30 ºC down to -49 ºC alcohol with ice, liquid nitrogen or nitrogen gasfrom -50 ºC down to -196 ºC liquid nitrogen with or without alcohol, ornitrogen gas.Deviations are subject to approval by the Principal.3.2.6 Selection of the leak test medium3.2.6.1 The leak test medium may be:- helium- pure nitrogen or- 99% nitrogen mixed with 1% helium (used as a trace for leak detection purposes) 3.2.6.2 For tests at or close to the temperature of minus 196 ºC, only helium shall be used.3.2.6.3 Pure nitrogen is only acceptable for seat testing if agreed by the Principal.3.2.6.4 The test medium shall be certified before commencement of testing.3.2.6.5 Attention is drawn to the hazardous nature of pneumatic testing.3.2.7 Test instruments and equipment3.2.7.1 Suitable temperature recording equipment and thermocouple connections shall beused for monitoring the temperature throughout the test.3.2.7.2 To measure the actual pressures both a pressure recorder and/or a pressuregauge (with a valid calibration date) can be used.The scale of the test pressure gauges shall not exceed twice the range of maximumtest pressure.Note: All digital indicators shall have full scale reading.3.2.7.3 The leakage through the test valve shall be measured by means of one of thefollowing devices:- measuring cylinder in water tank- gas flow meter soap film type- gas flow meter (interconnected to a computer system with screen display)- rota-meter type flow meter for high leakage rates and large valve sizes.3.2.7.4 Fugitive volatile emissions from the stuffing box, body/bonnet and coverconnections of the valve shall be detected by means of a mass spectrometer leakdetector and sample probe as listed in SPE 77/312 section 8.4.3.2.7.5 All measuring equipment and instruments shall have a system calibration certificate,issued not earlier than 6 months prior to the test.3.3 (A3) TESTING3.3.1 General3.3.1.1 The valve shall be visually inspected for any damage and defects.3.3.1.2 The valve and test equipment/system shall be dry thoroughly cleaned, degreasedand dust and oil-free.3.3.1.3 Prior to commencement of the tests the valve(s) shall be unpainted and withoutinternal protective coating.3.3.1.4 If a protective coating must be removed, the valve shall be disassembled and thevalve body and internals shall be thoroughly cleaned and degreased with inhibitedmethylene-chloride or tri-chlor-ethylene.3.3.1.5 Re-assembly of the valve(s) shall be carried out at a clean location.3.3.1.6 After re-assembly the valve shall be re-qualified to the requirements of theapplicable design standard and specification.3.3.1.7 The tests shall be carried out in the sequence as stated in BS 6364, EN 1626section 5.2.4 and appendix C of this specification.3.3.1.8 The tests shall be consecutive with a minimum in delay.3.3.1.9 Throughout the test the temperatures shall be measured and recorded of thefollowing measuring points:- coolant- valve body (outside)- stuffing box or stem packing area (outside)- as near as possible to the closure member (i.e. disc, wedge or ball)Also the room temperature shall be recorded.3.3.2 Operation of the valve (open and close)3.3.2.1 The time to open and close wrench-manual operated valves, hand wheel and gear-operated valves shall be the shortest possible time specified by the valvemanufacturer or Principal.3.3.2.2 The actual force’s and torque’s (BTO, RT, ETO, BTC and ETC) applied at the valveoperator, during the maximum rated body differential test pressures for the designtemperature range, as defined in ASME B16.34, shall not exceed:- the torque values as per the applicable design standard/specification and- a maximum operating force of 350 N at the lower design temperature.3.3.2.3 The opening force, closing force and torque of each first operation shall bemeasured and recorded.3.3.2.4 During the valve seat test, after the first and last pressure increment the valve shallbe fully opened and closed five times.3.3.2.5 Manually operated valves shall be operated without the use of spanners (wheelkeys) or any other extension devices.3.3.2.6 The use of air-tool equipment for operation of the valve during this test isacceptable.3.3.2.7 For motor operated valves (with a gearbox or actuator), provisions shall be made tomonitor the performance of this operating device as such that an indirectmeasurement of the torque requirements is achieved.3.3.2.8 After the seat test the closure member of check valves shall be checkedagainst jamming in the close position by internal pressure difference.pressures3.3.3 TestBody pressure test: The objective of a body pressure test is to prove thequality of the materials used and the construction of the pressure equipmentbefore it enters or re-enters service.Seat pressure test: The objective of a seat pressure test is to prove thetightness of the valve seat(s) against leakage.Back seat test: The objective of the backseat test is to prove the tightness ofthe backseat against leakage to the stuffing box area.3.3.3.1 The maximum body test pressure and seat test pressure shall comply with theapplicable valve design code specified in the purchase order MESC description. 3.3.3.2 Valve body materials are listed in material groups in ASME B16.34 table 1.3.3.3.3 For metal seated valves, per material group, the nominal pressure/temperaturerating (PN) at the applicable test temperature shall be selected from ASME B16.34table 2.3.3.3.4 The shell (hydrostatic and pneumatic) test pressures, the closure (seat) high-and low test pressures and backseat test pressure shall comply with thevalues specified in API 598 sections 3.3, 3.4, 3.5 and tables 2 and 3.3.3.3.5 When the valve size and/or rating would seriously hamper the practicality of the testa reduced test pressure may be considered, however this is subject to approval bythe Principal.3.3.3.6 (A3.1.4.d) The test pressure shall preferably be raised in 3 equal increments minimum.However, the manufacturer may decide to perform the test in 4 or 5 equalincrements.temperature3.3.4 (A1) Test3.3.4.1 The valve temperature range (service duty) of the valve is stated in the MESCbuying description.3.3.4.2 The valve test temperature difference between valve body and closure membershall not deviate more than 5% from the lower design temperature or 5 ºC,whichever is the greater.3.3.4.3 Tests executed on valves with a lower design temperature of minus 196 ºC maycommence when the body has reached minus 190 ºC.3.3.4.4 The actual test temperature for valves with impact test qualified carbon steels (LCB)shall not be lower than the qualification design temperature with the valve underworking pressure, i.e.: - 50 ºC.3.3.5 (A3.1.3)Cooling-down3.3.5.1 During the cooling down period the temperature shall be measured and recorded.Manually recordings at least every 10 minutes. The records may be provided onseparate sheets.3.3.5.2 The valve shall be installed in the test tank and cooled down with the stem in thevertical (upright) position.3.3.5.3 In case of immersed in the coolant the top of the valve body/bonnet shall be justcovered.3.3.5.4 The stem seal(s) and/or stuffing box shall be above the maximum cold fluid level inthe tank.3.3.5.5 To prevent the formation of moisture in the valve during the cooling operation, aminimum pressure purge of 0.5 barg helium or nitrogen gas through the valve shallbe maintained with the valve in half open position.3.3.5.6 Soft-seated valves shall be kept in the fully open position and shall only be operated(closed and opened) regularly, when cavity purging is required.3.3.5.7 The test may commence when the valve body and the internals have reached thespecified test temperature (see section 3.3.4).The purge shall be switched off.Stabilise the temperature for 5 minutes.3.3.5.8 The valve shall be then in the fully open position.The complete system including the test valve/cavity shall be de-pressurised.3.3.6 Tests at specified low temperaturetest - (internal leakage)3.3.6.1 Seat3.3.6.1.1 The test valve shall be in the closed position and subjected to the test pressure in 3equal increments minimum. (ref. 3.3.3).3.3.6.1.2 A minimum closure force shall be applied and recorded to obtain a leakage lessthan the maximum allowable leakage specified.3.3.6.1.3 The down stream side of the valve shall be de-pressurised at the beginning of thetest and after each pressure increment.3.3.6.1.4 After the last increment the test pressure shall be maintained.3.3.6.1.5 After the pressure is stabilised, the leakage through the valve shall be recorded ateach pressure increment during a period of three minutes.3.3.6.1.6 For the allowable leakage rates see appendix A.test (external leakage of body/bonnet or body/cover)3.3.6.2 Shell3.3.6.2.1 The valve shall be outside the test tank, set in half open position and subjected tothe test pressure. Soft seated ball valves however shall be set in the fully openposition (to prevent possible damage of the soft seats) and subjected to the testpressure.3.3.6.2.2 The following specific components shall be checked for leakage and/or porosity:- body/bonnet joint or body/cover flanges.- stem extension, (connections)- stuffing box-stem seal and gland (follower)- around the end flange(s) or the valve connectors (for non end-flanged valves)- tubing connections of test rig3.3.6.2.3 The leakage of the test piping or tubing is excluded from this test.3.3.6.2.4 Check for leakage during a minimum period of 5 minutes.3.3.6.2.5 The measured body leakage rate for valves, tested at ambient and the specified lowtemperature, shall be zero. Any fugitive emissions shall be less than the valuesspecified in the purchase order, i.e. the MESC buying description and SPE 77/312.3.3.6.2.6 All data shall be recorded.test (at maximum pressure)3.3.7 Operational3.3.7.1 The in the test rig installed valve shall be opened and the maximum allowable ratedseat test pressure shall be applied from the preferred side (Ref. 3.3.3).3.3.7.2 Set the closure member of the test valve in the closed position.3.3.7.3 Release the test pressure at the downstream side of the valve to atmosphericpressure.3.3.7.4 The test pressure at the pressurised side and the cavity shall be maintained.3.3.7.5 The pressure shall be stable for one minute at the beginning of the first operation ofthe valve.3.3.7.6 Possible stem- and/or body-bonnet leakages shall be checked prior operationtesting.3.3.7.7 (A3.1.4.c) The valve shall be operated (open and immediately closed) 5 full strokes.3.3.7.8 The torque (force)s of the (open and close) operation of the valve shall be recorded.3.3.7.9 The maximum allowable force applied at the wrench or hand wheel is 350 N.3.3.7.10 After the operational test, the complete system and test valve shall be fully de-pressurised (including valve cavity).3.3.8 Warming-upcompletion of the leakage tests:3.3.8.1 After- the valve shall be in the half open position, however- soft seated ball valves shall be set in the fully open position (to preventpossible damage of the soft seats),de-pressurised (including any valve cavity) and be kept outside the test tank forwarming-up to ambient temperature.3.3.8.2 A forced warming-up, e.g. using hot-air blowers or heaters, is not allowed.However, air circulation around the valve at room temperature caused by fans isacceptable.inspection3.3.9 Final3.3.9.1 When the valve is at room temperature the valve and internals shall be cleaned anddried. The cleanliness requirements shall comply with EN 12300.3.3.9.2 End connectors and other test rig equipment shall be removed from the valve.3.3.9.3 After successful completion of all tests (see 3.2.3.2) the valve need not bedisassembled for component inspection but shall be visually inspected only.APPENDIX AMAXIMUM ALLOWABLE LEAKAGE RATES FOR ON/OFF VALVES (see notes)Shell (body), bonnet and stem seals leakage testsDepending on the media and service application, the actual leakage rates for valves, tested at both ambient and the specified low temperature conditions, shall be less than the values specified in SPE 77/312, section 6.The maximum allowable body leakage is zero (i.e. in compliance with ISO 5208, rate A).Seat leakage:The allowable seat leakage (both seats), shall be in accordance with ISO 5208 or BS 6364 appendix A ., pneumatic tested at ambient temperature, specified low pressure and rated seat test pressure:Valve seat type: Valve type:Resilient (soft) seated: Metal/soft seated (fire safe): Metal seated:Ball, gate, globeISO 5208, rate A0 mm³/s*DN(Note 2)N.A.ISO 5208, rate B(0.3 mm³/s*DN)(Note 2)Butterfly ISO 5208, rate A ISO 5208, rate AISO 5208, rate Aor rate B(Note 3)(8.3.2)Check (i.e.: swing, tilting disc, piston and dual plate types).ISO 5208, rate B(Notes 2 and 4)N.A.ISO 5208, rate D 30 mm³/s*DN(Notes 2 and 4)(A.3)Allowable seat leakage (both seats), tested with helium at specified low temperature,specified low pressure and rated seat test pressure:Maximum allowable leakage rates for valves with seat types:Valve type:resilient (soft) seated: fire safe = metal/soft seated: metal seated:(A.3.1.4) gate, globe, ball andbutterfly (A.3.1.4.d) 33 mm³/s*DN (note 2) 67 mm³/s*DN (note 2) 100 mm³/s*DN (note 2)(A.3.2.4) check, i.e.: swing,tilting disc, piston types and dual plate types. (A.3.2.4.d)67 mm³/s*DN (notes 2 and 4)N.A.BS 6364 appendix A clause A.3.2.4 200 mm³/s*DN(Notes 2 and 4)Notes:1. For control valves: In general the maximum allowable seat leakage shall comply with IEC 60534-4table III, i.e.: 1 * 10E-3 rated valve capacity.For cryogenic applications (see T 2.253.730 section 5.2.4):class A: maximum leakage rate: 5 * 10E-6 rated valve capacity,class B: maximum leakage rate: 1 * 10E-4 rated valve capacity.2. The valve nominal size DN is measured in mm of bore, in accordance with EN-ISO 6708.The nominal bore or reduced (nominal) bore as per BS 6364 appendix A.3. The maximum allowable seat leakage rate for butterfly valves in the non preferred flow direction shallcomply with SPE 77/134 section 6.1.7.4. The purpose of a check valve is to prevent unwanted reverse flow in circumstances of process changeor system failure. Therefore check valves are not intended to be isolation valves and as such does not specify very tight seat leak rates.APPENDIX - B1S c h e m a t i c o f T e s t -R i g A r r a n g e m e n t f o r ‘D u a l P l a t e C h e c k V a l v e ’ T y p e A p p r o v a l T e s t sAppendix-B2APPENDIX C PAGE 1 OF 4 VALVE PRODUCTION TEST RECORD / CERTIFICATEValve make: Valve type:Valve style no: Valve figure no:Valve sealing 2): Uni / bi directional Nominal size:Class rating: Temperature range:Design standard: MESC number:Body material: Seat material:Date of testing:Seatfacingmaterial:Valve is tested inSPE 77/306 Report reference no:accordance with:Principal: Purchase order no:Test results:Actuallimit:Testing at ambient temperature: Specifiedmeasured:Actual ambient temperature: N.A. ºC1st operational test [3.3.7] 5 full strokes:Operational force to open and close: 350/350 N / Ndiameter hand wheel / wrench m mseat test in preferred flow direction atmaximum differential pressure barg bargleakage rate cm³/5 min cm³/5 min leak test medium: Nitrogen/heliuma)seat test in non-preferred flow direction atmaximum differential pressure barg bargleakage rate cm³/5 min cm³/5 min leak test medium: Nitrogen/heliuma)testshellpressure barg barg maximumleakage rate zero cm³/5 min cm³/5 min leak test medium: Helium2nd operational test [3.3.7] 5 full strokes:Operational force to open and close: 350/350 N / Ndiameter hand wheel / wrench m mAPPENDIX C PAGE 2 OF 4 VALVE PRODUCTION TEST RECORD / CERTIFICATECooling down [3.3.5]: Specified limit: Actualmeasured: Testing at low temperature [3.3.6]:3rd operational test [3.3.7]:Specified and actual low temperature: ºC ºCseat test in preferred flow direction[3.3.6.1]:leak test medium: Nitrogen/heliuma)1st increment (low differential pressure) barg bargleakage rate cm³/5 min cm³/5 min 2nd increment (medium diff. Pressure) barg bargleakage rate cm³/5 min cm³/5 minbarg barg 3rd increment (max. differentialpressure)leakage rate cm³/5 min cm³/5 minCooling down [3.3.5]: Specified limit: Actualmeasured: Testing at low temperature [3.3.6]:3rd operational test [3.3.7]:Specified and actual low temperature: ºC ºCseat test in non-preferred flow direction[3.3.6.1]:leak test medium: Nitrogen/heliuma)1st increment (low differential pressure) barg bargleakage rate cm³/5 min cm³/5 min 2nd increment (medium diff. pressure) barg bargleakage rate cm³/5 min cm³/5 minbarg barg 3rd increment (max. differentialpressure)leakage rate cm³/5 min cm³/5 min shell test [3.3.6.2]:pressure barg barg maximumleakage rate zero cm³/5 min cm³/5 min leak test medium: Helium4th operational test [3.3.7] 5 full strokes:Operational force to open and close: 350/350 N / Ndiameter hand wheel/wrench m mAPPENDIX C PAGE 3 OF 4 VALVE PRODUCTION TEST RECORD / CERTIFICATEWarming up [3.3.8]: Specified limit: Actualmeasured: Actual ambient temperature: N.A. ºCSeat test in preferred flow directionleak test medium: Nitrogen/helium a)maximum differential pressure barg barg leakage rate cm³/5 min cm³/5 min Seat test in non-preferred flow directionleak test medium: Nitrogen/helium a)maximum differential pressure barg barg leakage rate cm³/5 min cm³/5 min REMARK: a) Delete what is not applicableAPPENDIX C PAGE 4 OF 4 VALVE PRODUCTION TEST RECORD / CERTIFICATEinspection/examination [3.3 and 3.3.9]:VisualObservations and findings:Valve disassembled: yes/noCondition of components:Any other comments and/or additional test data:by: Signature:Tested/reportedDate:authority: Signature:InspectionDate:Witnessedby: Signature:Date:REMARK: 1) The numbers between brackets refer to the relevant sections in this specification.。

壳牌(shell)产品运输车辆的合同要求资料

壳牌(shell)产品运输车辆的合同要求资料

产品运输车辆的合同要求,包括承运商规范壳牌HSSE & SP 控制框架程序交通运输手册强制性受限版第三版, 2009年10月目的阐明合同要求,管理运输壳牌生产或销售的产品和壳牌拥有的原油产品所带来的道路上风险。

适用对象合同持有人适用范围本规范适用于:•不超过三个月的合同,由壳牌生产或销售的产品,或壳牌拥有的原油产品的道路运输,该车辆或司机由本公司独家租用或聘用;•一段时期的合同,由壳牌生产或销售的产品,或壳牌拥有的原油产品的道路运输,该车辆或司机不专为本公司独家租用或聘用。

本规范不适用于:•在司机安全或专业司机安全范围之内的服务合同;•客户自提或由独立经营的零售商运输;•乘客的道路交通;•本公司产品与其他客户的产品一起混装的道路运输;•产品样品、单件或单一集装箱的道路运输;•设备、零件、工具和建筑材料的道路运输;•邮件和文件的道路运输。

要求合同持有人负责要求11. 包括以下在本规范范围内服务合同的要求。

A. 对司机的要求:A1. 有符合当地和车辆要求的有效的货车驾驶执照。

A2. 在法律允许的情况下,驾驶重型货车的司机,年龄要年满21岁。

A3. 身体和精神上具备驾驶车辆能力。

•在受酒精,毒品,麻醉品或药物影响下不准驾驶。

A4. 在任何时候都要使用三点式安全带,并确保乘客也这样做。

A5. 遵守地方法规规定的工作时间、驾驶时间和休息时间。

在没有相应地方法规的情况下,遵守下表中工作时间、驾驶时间和休息时间的相关规定。

A6. 驾驶车辆时不准拨打或接听手机或传呼机,发送或阅读文字信息,或使用免提移动电话设备。

A6.1.法规允许的情况下手机才可以在车辆里使用:•遇到紧急情况/或涉及人身安全或治安的情况下。

A7. 不能够随意搭载未经批准的乘客。

A8. 完成入职培训,其中包括有关防御性驾驶,疲劳意识,运输危险货物的产品知识等基础知识培训。

A9. 每天进行目视检查车辆性能,包括轮胎和汽车挡风玻璃(挡风玻璃)。

shell HSE手册 中文版

shell HSE手册 中文版

壳牌HSSE(健康、安全、保安、环境)为壳牌运输燃料和其他产品的工作人员,他们每年的运输距离将近15亿公里。

他们在极端条件下建造工厂,在遥远的海上平台工作,还经营炼油厂和化工厂。

保证人的安全是我们优先考虑的。

我们的目标是零死亡率和没有人员伤害事故。

我们的目标是确保我们的行动减少对环境和我们的周边的影响。

管理HSSEHSSE & SP 控制框架HSSE风险和保证我们识别HSSE风险与我们的经济活动相联系,并且通过减轻控制来减少这些风险。

我们减少HSSE风险与我们的经济活动相联系。

壳牌的业务经理有责任识别HSSE危险,评估和记录危险的潜在影响,并用控制和恢复措施减少或消除风险。

我们审计我们的业务和寻求担保,并要求HSSE & SP被有效的执行。

我们业务的带头人被要求在每年年底向公司总裁汇报,他们是如何实施我们的商业原则和标准,以及控制方面的有效性。

壳牌内部审计欺诈、合规管理和其他控制事件,我们向荷兰皇家壳牌公共有限公司执行委员会和董事会报告我们的HSSE政策和执行情况。

我们的进程安全专家管理专门的安全审计。

我们所有主要的工厂都符合国际环境标准ISO14001,外部事务委员会和观察员帮助我们监控环境和社会效益。

“领结”模式遵守HSSE 规定:我们强制性的救生的规定:伤害-全部可记录事故发生率HSSE 能力我们提供持续的培训以确保我们HSSE 管理精益求精的承诺,这是整个壳牌反映。

健康,安全,保安和环境绩效是评价和选择承包商的关键因素。

有力的HSSE 业绩取决于有能力的劳动者。

我们希望个人通过执行任务以达到培训,健康的身体,充分休息和警觉。

壳牌的HSSE 能力要求是根据立法和行业标准,并在壳牌的HSSE 与SP 的控制框架规定。

我们检查每个负责有重大HSSE 风险任务的人有必要的培训和技能。

这些人员包括负责一线关键HSSE 活动的操作者,规划和监督HSSE 关键活动的人员,HSSE 专业人士及起领导责任的人员。

壳牌车队优质柴油机润滑油15W-40 (CI-4) 安全技术说明书

壳牌车队优质柴油机润滑油15W-40 (CI-4) 安全技术说明书

40 (CI-4)最初编制日期: 2019.01.24版本1.1修订日期2019.06.26打印日期2019.06.27第1部分化学品及企业标识化学品中文名: 壳牌车队优质柴油机润滑油15W-40 (CI-4)产品代码: 001H3699制造商或供应商信息供应商: 100004壳牌(中国)有限公司中国北京北京市建国门外大街1号国贸大厦2座32层电话号码: (+86) 4000103288传真: (+86) 4000108097应急咨询电话:发送邮件索要安全技术说明书: 如果您有关于该SDS内容的任何质询,请发电邮联系推荐用途和限制用途推荐用途: 发动机油。

第2部分危险性概述紧急情况概述GHS危险性类别根据现有数据,该物质/混合物不符合分类标准。

GHS标签要素象形图: 无需象形图信号词: 无警示词危险性说明: 物理性危害:按照GHS标准,未被归类为有害物质。

健康危害:40 (CI-4)最初编制日期: 2019.01.24版本1.1修订日期2019.06.26打印日期2019.06.27根据GHS标准,未被列为健康危害物质。

环境危害:根据GHS标准,未被列为环境危害物质。

防范说明:预防措施:无预防用语。

事故响应:无预防用语。

储存:无预防用语。

废弃处置:无预防用语。

GHS未包括的其他危害长期或持续接触皮肤,而不适当清洗,可能会阻塞皮肤毛孔,导致油脂性粉刺/毛囊炎等疾病。

用过的油可能包含有害杂质。

未被评为易燃物,但会燃烧。

第3部分成分/组成信息化学性质: 高度精炼的矿物油及添加剂。

根据 IP346,高度精炼的矿物油含 <3% (w/w) 的 DMSO 提炼物。

: * 包含以下 CAS 编号中的一个或多个:64742-53-6、64742-54-7、64742-55-8 、64742-56-9、64742-65-0、68037-01-4、72623-86-0、72623-87-1、8042-47- 5、848301-69-9。

壳牌规范77-302-2010

壳牌规范77-302-2010

技术规范阀门---基本要求MESC SPE 77/3022008年7月MESC规范文件目录第1部分介绍1.1 范围1.2 应用及常用因素1.3 定义1.4 从先前版本的更改1.5 MESC SPE 的意见第2部分阀门的总要求1 介绍2 材料要求2.1 化学成分2.1.1 概述2.1.2 碳钢2.1.3 1.25Cr-0.5 Mo 钢2.1.4 2.25 Cr-1.0 Mo 钢2.1.5 奥氏体不锈钢2.1.6 双相不锈钢2.1.7 其它材料2.2 热处理2.2.1 概述2.2.2 碳钢2.2.3 Cr-Mo 钢2.2.4 奥氏体不锈钢2.2.5 双相不锈钢2.2.6 13Cr 钢2.2.7 镍合金2.3 冲击测试2.4 腐蚀测试2.4.1 奥氏体不锈钢2.4.2 镍合金2.4.3 双相不锈钢2.4.3.1 蚀点腐蚀2.4.3.2 压力腐蚀裂缝2.4.4 其他材料2.5微观结测试2.5.1.铁素体相位2.5.2.损伤相位3.焊接及硬面处理要求4.锻造棒材/坯料生产的阀门5. 起吊位置6. 短接管7. 无损检测7.1 检测范围7.2 执行7.2.1 方法7.2.2 执行7.2.3 验收标准7.2.4取样及批次验收7.3 缺陷清除及补焊8. 文件9. 证明10. 合同商的监督11. 供应给欧盟的阀门12.阀门类型接受测试第3部分参考文件第1部分介绍1.1 范围本MESC SPE描述了阀门的基本要求。

包含了材料、热处理、腐蚀试验、焊接、无损检测和产品报告(见第2部分)。

本规范必须应用于除了可试用的MESC外的购买描述订单或者需求表。

1.2 分发、主要用途及常规考虑事项除非由Shell GSI另外授权,此MESC规范的分发只限于Shell公司内部,如有必要时,也可由其指定的承包商和厂商/供应商分发。

此MESC规范指定用于炼油、化工、天然气工厂、开发和生产设备,以及供应/分发适用的地方。

若国家和/或当地规章中的某些要求比此MESC规范中的更严格,则承包商要谨慎详细审查后确定哪些要求更严格,以及哪些要求在安全、环境、经济和法律面是允许的。

MESC SPE 77-300 12版 60-64页翻译

MESC SPE 77-300 12版 60-64页翻译

C.4.10除逸散性排放以外的试验的验收标准表C.5和C.6提供了在不同温度下可接受的阀座泄漏量。

表C.5 在环境温度(高于-20°C)和提高温度下进行泄漏测试的验收标准表C.6低温或超低温阀座泄漏测试的验收标准(-29°C至-196°C)注意:1.制造商应计算泄漏接受水平,并在相关概要表的相应部分说明。

2.金属阀座或金属石墨层压阀座蝶阀在优选流动方向上的最大允许阀座泄漏率应符合ISO 5208速率B.这些蝶阀在非优选流动方向上的最大允许阀座泄漏率应符合ISO 5208速率C.3.如果阀门符合ISO 5208中的阀座泄漏率A或B或符合IEC 60534-4的V级或VI级阀门,则认为阀门为TSO。

4.当与填塞器,阀座密封件和阀杆相关的部件在设计和尺寸上相同时,可以使用减小的孔(或文丘里管型)测试阀来限定较小的标称尺寸的全孔(或规则图案)阀。

在这种情况下,允许的平均泄漏率是适用于全孔(或规则型)阀的那些。

5.金属阀止回阀的最大允许阀座泄漏应符合适用的产品标准或ISO 5208 E级,以较低者为准。

表C.5中列出的费率涵盖了这一要求。

止回阀的目的是在过程变化或系统故障的情况下防止不希望的反向流动。

止回阀不是隔离阀,因此不需要非常紧密的阀座泄漏率。

C.4.11逃逸排放测试的验收标准所有温度下的逃逸排放测试的验收标准应符合表C.7和C.8的规定。

表C.7阀杆密封逸散排放泄漏的验收标准表 c.8 阀体/阀盖密封逸散排放泄漏的验收标准表C.7给出了每个阀杆周长或直径的允许泄漏率,而表C.9给出了不同阀杆尺寸的允许泄漏率。

表C.9不同阀杆尺寸的逸散排放泄漏率C.4.12最短测试持续时间最短试验时间应符合表C.10和C.11的规定。

表C.10 阀体/外壳逃逸排放测试的最短测试持续时间Valve sizes 阀门尺寸pressure class 压力等级Minimum test duration (minutes) 最小测试持续时间(分钟)The measurement is complete when a stable reading is reached 达到稳定读数时,测量完成表C.11闭孔密封性试验的最短试验时间Minimum duration for each step 每个步骤的最短持续时间C.4.15最大允许工作扭矩值基于360 N的力,表C.12中显示了不同轮辋尺寸的最大允许扭矩值。

MESC SPE 76-012-2013

MESC SPE 76-012-2013

TECHNICAL SPECIFICATIONSPECTACLE BLINDS, SPADE BLINDS AND SPACERS (AMENDMENTS/SUPPLEMENTS TO ASME B16.48)MESC SPE 76/012June 2013MESC SPECIFICATION DOCUMENTThis document is restricted. Neither the whole nor any part of this document may be disclosed to any third party without the prior written consent of Shell Global Solutions International B.V., The Netherlands. The copyright of this document is vested in this company. All rights reserved. Neither the whole nor any part of this document may be reproduced, stored in any retrieval system or transmitted in any form or by any means (electronic, mechanical, reprographic, recording or otherwise)without the prior written consent of the copyright owner.PREFACEMESC (Materials and Equipment Standards and Code) SPE documents reflect the views, at the time of publication, of:Shell Global Solutions International B.V. (Shell GSI)and/orShell International Exploration and Production B.V. (SIEP)and/orother Shell Service Companies.They are based on the experience acquired during their involvement with the design, construction, operation and maintenance of processing units and facilities, and they are supplemented with the experience of Shell Operating Units. Where appropriate they are based on, or reference is made to, international, regional, national and industry standards. The objective is to set the recommended standard for good design and engineering practice applied by Shell companies operating an oil refinery, gas handling installation, chemical plant, oil and gas production facility, or any other such facility, and thereby to achieve maximum technical and economic benefit from standardization.The information set forth in these publications is provided to Shell companies for their consideration and decision to implement. This is of particular importance where MESC SPEs may not cover every requirement or diversity of condition at each locality. The system of MESC SPEs is expected to be sufficiently flexible to allow individual Operating Units to adapt the information set forth in MESC SPEs to their own environment and requirements.When Contractors or Manufacturers/Suppliers use MESC SPEs they shall be solely responsible for the quality of work and the attainment of the required design and engineering standards. In particular, for those requirements not specifically covered, the Principal will expect them to follow those practices, which will achieve the same level of integrity as reflected in the MESC SPEs. If in doubt, the Contractor or Manufacturer/Supplier shall, without detracting from his own responsibility, consult the Principal or its technical advisor.The right to use MESC SPEs is granted by Shell GSI, in most cases under Service Agreements primarily with Shell companies and other companies receiving technical advice and services from Shell GSI or another Shell Service Company. Consequently, three categories of users of MESC SPEs can be distinguished:1) Operating Units having a Service Agreement with Shell GSI or other Shell Service Company. The use of MESCSPEs by these Operating Units is subject in all respects to the terms and conditions of the relevant Service Agreement.2) Other parties who are authorized to use MESC SPEs subject to appropriate contractual arrangements (whetheras part of a Service Agreement or otherwise).3) Contractors/subcontractors and Manufacturers/Suppliers under a contract with users referred to under 1) or 2)which requires that tenders for projects, materials supplied or - generally - work performed on behalf of the said users comply with the relevant standards.Subject to any particular terms and conditions as may be set forth in specific agreements with users, Shell GSI disclaims any liability of whatsoever nature for any damage (including injury or death) suffered by any company or person whomsoever as a result of or in connection with the use, application or implementation of any MESC SPE, combination of MESC SPEs or any part thereof, even if it is wholly or partly caused by negligence on the part of Shell GSI or other Shell Service Company. The benefit of this disclaimer shall inure in all respects to Shell GSI and/or any Shell Service Company, or companies affiliated to these companies, that may issue MESC SPEs or require the use of MESC SPEs.Without prejudice to any specific terms in respect of confidentiality under relevant contractual arrangements, MESC SPEs shall not, without the prior written consent of Shell GSI, be disclosed by users to any company or person whomsoever and the MESC SPEs shall be used exclusively for the purpose for which they have been provided to the user. They shall be returned after use, including any copies, which shall only be made by users with the express prior written consent of Shell GSI. The copyright of MESC SPEs vests in Shell GSI. Users shall arrange for MESC SPEs to be held in safe custody and Shell GSI may at any time require information satisfactory to them in order to ascertain how users implement this requirement.All administrative queries should be directed to the MESC SPE Administrator in Shell GSI.TABLE OF CONTENTSPART I INTRODUCTION (4)1.1 SCOPE (4)1.2 DISTRIBUTION, INTENDED USE AND REGULATORY CONSIDERATIONS (4)1.3 DEFINITIONS (4)1.4 CHANGES SINCE PREVIOUS EDITION (5)1.5 COMMENTS ON THIS MESC SPE (5)PART II AMENDMENTS/SUPPLEMENTS TO ASME B16.48:2010 (6)PART III REFERENCES (8)PART I INTRODUCTION1.1 SCOPEThis MESC SPE specifies requirements for spectacle blinds, spade blinds and spacers.This MESC SPE shall apply in addition to the applicable MESC Buying Description, purchase order or requisition sheet.The requirements for installation and operation of spectacle blinds, spade blinds and spacers are outside the scope of this MESC SPE.This MESC SPE is written as amendments and supplements to ASME B16.48:2010, which are covered in Part II of this MESC SPE. The clause numbering of ASME B16.48: 2010 has been retained and any amendments are identified as ‘Add’, ‘Modify to read’ or ‘Delete’. Any clauses of ASME B16.48: 2010 that are not amended or supplemented by this MESC SPE shall apply as written.1.2 DISTRIBUTION, INTENDED USE AND REGULATORY CONSIDERATIONSUnless otherwise authorised by Shell GSI, the distribution of this MESC SPE is confined to Shell companies and, where necessary, to Contractors and Manufacturers/Suppliers nominated by them.This MESC SPE is intended for use in oil refineries, chemical plants, gas plants, exploration and production facilities and, where applicable, supply/distribution installations.If national and/or local regulations exist in which some of the requirements may be more stringent than in this MESC SPE the Contractor shall determine by careful scrutiny which of the requirements are the more stringent and which combination of requirements will be acceptable with regards to safety, environmental, economic and legal aspects. In all cases the Contractor shall inform the Principal of any deviation from the requirements of this MESC SPE which is considered to be necessary in order to comply with national and/or local regulations. The Principal may then negotiate with the Authorities concerned, the objective being to obtain agreement to follow this MESC SPE as closely as possible.1.3 DEFINITIONSThe Contractor is the party that carries out all or part of the design, engineering, procurement, construction, commissioning or management of a project, or operation or maintenance of a facility. The Principal may undertake all or part of the duties of the Contractor.The Manufacturer/Supplier is the party that manufactures or supplies equipment and services to perform the duties specified by the Contractor.The Principal is the party that initiates the project and ultimately pays for its design and construction. The Principal will generally specify the technical requirements. The Principal may also include an agent or consultant authorised to act for, and on behalf of, the Principal.The word shall indicates a requirement.The word should indicates a recommendation.Spectacle blind Synonymous with figure-8 blank.Spade Synonymous with paddle blank.Spacer Synonymous with paddle spacer.1.4 CHANGES SINCE PREVIOUS EDITIONThe previous edition of this MESC SPE was dated September 2012. The change is to align reference to standard dimensions for spectacles, spades and spacers u/iDN600 (NPS24) in line with ASME B16.48 rather than to former Shell standard.1.5 COMMENTS ON THIS MESC SPEComments on this MESC SPE may be sent to the MESC SPE Administrator atMESC@. Shell staff may also post comments on this MESC SPE on the SurfaceGlobal Network (SGN) under the Standards folder.PART II AMENDMENTS/SUPPLEMENTS TO ASME B16.48:20101 Add:In addition, this MESC SPE covers requirements for spade blinds and spacers insizes > DN 600 (NPS 24) for installation between ASME B16.47 Series A flanges inthe 150, 300, 600 and 900 pressure classes.2.3 Add:Welding operators and welding procedures shall be qualified in accordance withASME IX.4.2 Add:Flame cutting shall not be used to form the inside or outside diameters of spectacleblinds, spade blinds and spacers.4.3.1 Delete4.3.2 Delete4.3.3 Delete4.3.4 Add Flat face blanksSpectacle blinds, spades and spacers shall have a flat face. The gasket seatingsurface finish shall be in accordance with ASME B16.5.5.1 For MESC buying descriptions of items that make reference to shell Standarddrawing S38.011,S38.042 or S38.043: modify to read:- The amendments and supplements to the dimensions of spectacle blinds (Table 1 through 6) shall be in accordance with Standard Drawing S 38.011.- The amendments and supplements to the dimensions for spade blinds (Table 1 through 6) shall be in accordance with Standard Drawing S 38.042. This alsoincludes the type and dimensions of the handle.- The amendments and supplements to the dimensions for spacers (Table 1 through 6) shall be in accordance with Standard Drawing S 38.043. This alsoincludes the type and dimensions of the handle.6 Modify to read:- Materials shall be in accordance with the MESC Buying Description.- Materials for handles, lifting lugs and web (tie bar) shall be equivalent to the base material of the spectacle blind, spade or spacer.7.1(a) Modify (4) to read:MESC SPE 76/012Add:(7) Charge number and (if heat treatment is required by the material standard) thetype of heat treatment and the heat treatment batch number.(8) Word “Spacer” or “Spade” for respectively spacers or spade blinds.9 Add:Each line blank shall be visually examined in accordance with ASME B31.3,Section 341.4 with acceptance criteria in acordance with Table 341.3.2 for NormalFluid Service.10 Add CertificationUnless specified otherwise, inspection and test certificates shall be supplied to thePrincipal.PART III REFERENCESIn this MESC SPE, reference is made to the following publications:NOTES:1. Unless specifically designated by date, the latest edition of each publication shall be used, together with anyamendments/supplements/revisions thereto.2. Most of the referenced external standards are available to Shell staff on the SWW (Shell Wide Web) at/standards.SHELL STANDARDSSpectacle blinds for ASME flanges S 38.011Spade blinds for ASME flanges S 38.042Spacer for ASME flanges, for replacement of spades S 38.043AMERICAN STANDARDSASME IXASME BPVC Section IX – Welding and brazingqualificationsPipe Flanges and Flanged Fittings – NPS ½ ThroughASME B16.5NPS 24 Metric/Inch StandardLarge Diameter Steel Flanges NPS 26 Through NPS 60 ASME B16.47Line blanks ASME B16.48:2010Process Piping ASME B31.3:2010Issued by:American Society of Mechnical EngineersASME InternationalThree Park Avenue, M/S 10ENew York, NY 10016, USA。

壳牌-HSSE-MS-manual---中文

壳牌-HSSE-MS-manual---中文

壳牌中国油品部健康、安全、治安和环保管理系统手册版本: 1日期: 2001年11月所有人 : OC持有人 : OCO管理人 : OCOE抄送:数量姓名编号职位1 Tan Ek Kia CH SCNEA Chairman2 Tan Chong Meng OC Shell Oil Products East, Vice President - China3 Kenneth Wong OCC Commercial Manager4 David Lau OCF Finance Director5 Albert Young OCR Retail Manager6 Kong Leong Fai OCO Operations & Distribution Manager7 Clement Poon OCB Business Development Manager8 James Shen OCCE Regional Sales Manager - East9 Wang Jing OCH OP China HR Manager10 Tien Che Onn OAFA/5 Internal Audit Manager11 Catherine Min EAC External Affairs Manager - China12 Yang Yao Bin OCOE HSE Advisor13 Gene Tam OCOM Engineering Manager14 Robert Zhu OCOT Tianjin Plant Manager15 Yao Qi Ping OCOZ Zhapu Plant Manager16 Sun Hai Jun OCOB Zhanjiang LOBP17 Ai Hua TIPS TIPS18 Xu Yang OCOD Outbound Logistics Manager19 Winny Liu OCOH HR Manager - Operations签署人:(陈聪敏- 副总裁)目录1 介绍1.1 介绍1.2 概述1.3 HSSE手册1.3.1 HSSE-MS手册的所有人1.3.2 HSSE- MS手册的持有人1.3.3 HSSE- MS手册的管理人1.4 HSSE报告1.4.1 HSSE报告的所有者1.4.2 HSSE报告的持有人1.4.3 HSSE报告的管理人1.4.4 HSSE报告的审核图1.4是HSSE报告结构2 HSSE的政策、目标、程序和计划2.1 介绍2.2 公司HSSE政策2.3 财产的完整性2.4 程序和工作指南2.5 紧急应变计划和组织机构2.6 危机管理3 组织、责任、资源、标准和文件3.1 组织结构3.2 HSSE的主要责任3.2.1 地区高级油品代表LSOR3.2.2 业务经理3.2.3 部门经理/主管3.2.4 公司HSSE顾问3.2.5 公司、合资和承包商的雇员3.2.6 HSSE业务顾问3.2.7 合同所有人3.2.8 合同持有人3.3 对HSSE关键角色的能力要求3.4 HSSE培训3.4.1 HSSE部和人力资源部3.4.2 培训的计划和实施3.4.3 培训课程3.5 沟通和会议3.6 合资企业的HSSE管理3.7 承包商的管理3.8 标准3.9 文件4 HSSE评估报告4.1 介绍4.2 HSSE-MS描述4.3 操作描述4.4 活动目录4.5 危害清单4.6 不足清单4.7 整改计划5 危险及其影响管理5.1 制定HSSE关键活动(活动目录)5.2 制定危害及其影响目录(危害登记)5.3 识别薄弱环节或遗漏地方(不足清单)6 补救整改计划7 执行、表现、监督和整改措施7.1 制定表现标准7.2 表现监督和审查7.3 重大事故/一般事故调查和跟踪7.4 整改措施8 审计和审核1.1 介绍本文件介绍了壳牌中国油品部的HSSE (健康、安全、治安和环保)管理体系手册。

壳牌维斯科克洛克说明书

壳牌维斯科克洛克说明书

MANUALFOR THESHELL VISCOKLOK1PURPOSEWhen the viscosity of a lubricating oil is known at two temperatures, one can read, after drawing a straight line on special-purpose plotting paper, the viscosity at other temperatures.Without drawing and without using plotting paper the same data can be obtained with the Shell Viscoklok.The viscosities can be read from the Shell Viscoklok in the four usual units and in temperatures given in °C and °F. If the viscosity is only known at one temperature, one can use the ShellViscoklok to convert the viscosity at that temperature to other units.2MAIN PARTS AND DESIGNATIONSone of two cursors with hairline and mm scale.°F temperature scale (in black)°C temperature scale (in red)temperature ring with temperature lines viscosity disk with 4 scales SSU R.I °E cS= Sec. Saybolt Universal = Sec. Redwood I = degrees Engler = centiStokes3HOW DOES ONEWORK EASILY WITH THEINSTRUMENT ?•fingertips on the back of the instrument•designations SSU, R.I, etc. aimed towards you•thumbs on thetemperature ring•turn the temperaturering around theviscosity disk bymoving boththumbs in the samerotational directionwhile slightlypressing thetemperature ring.4PRINCIPLES OF OPERATIONKnown are:viscosity 1 at temperature Aviscosity 2 at temperature BAsked: viscosity at temperature C•place the hairlines on the viscosities 1 and 2•rotate the temperature ring so that the hairlinescross the temperature lines A and B at equal radii•remember this radius or write it down (x mm)•rotate one of the cursors so that its hairline alsocrosses C at radius x mm•the required viscosity 3 can be read in the desiredunits from the viscosity disk Note:The viscosity of the given oil at other temperatures can also be found by letting the hairline cross the temperature lines at x mm.5SIMPLER METHODWhen one of the viscosities is known at 50 °C, thetemperature ring can be set more easily than in thecase discussed above.(In this example viscosity 2 is known at 50 °C)In the previous case one had to rotate until bothhairlines crossed temperature lines at equal radii,which meant that one had to look at two placesseveral times, but now it works as follows:•place the hairlines on 1 and 2•rotate the temperature ring so that the hairlineat 2 coincides with the 50 °C line•read the radius at which the other hairlinecrosses A•proceed as under 46EXAMPLE 1Example of the method explained under 4 (Principles of operation).The following viscosities are known:1700 Sec. Redwood I/70 °F and 1.67 °Engler/100 °C Viscosities asked:Sec. Saybolt Universal/100 °F and °Engler/50 °C Solution:•place the hairlines on the given viscosities•rotate the temperature ring until the hairlines cross the70 °F and 100 °C lines at equal radii•read this radius. It is 30 mm•rotate one of the cursors until the 100 °F line crossesthe hairline at 30 mm•read the viscosity in SSU. It is 540 /100 °F•rotate one of the cursors until the hairline coincideswith the 50 °C line•read from the °Engler scale the viscosity (7.5 °E/50°C)7EXAMPLE 2Example of the "Simpler Method" explained under 5.Imagine you are using in hydraulic systems the "SHELL TELLUS" oil 27 with the following viscosities: 10.5 °E/20 °C and 3 °E/50 °C.You want to find out if this oil can also be used for a machine imported from America, for whicha hydraulic oil with a viscosity of 150-170 SSU/100 °F is prescribed.•place the hairlines on 10.5 °E and 3 °E•rotate the temperature ring until the 50 °C line coincides with the hairline on 3°E•read the radius at which the other hairline crosses the 20 °C line (16 mm)•the intersection of the 100 °F line with one of the hairlines at a radius of 16 mmtells us that the viscosity is 160 SSU/100 °F and that the therefore "SHELLTELLUS" oil 27 can be used for the purpose intended.8SOME GENERAL REMARKSA.The normal viscosity-temperature relationship does not hold when the oil temperature approachesthe freezing point. Therefore a viscosity value found on the Shell Viscoklok for a temperature slightly above the freezing point differs from the actual value. Please adhere to the following rule: Read no viscosity values for temperatures less than 10 °C above the freezing pointB.If you need - for instance for bearing calculations - the viscosity expressed in centiPoises (cP),use the Shell Viscoklok to determine the viscosity in centiStokes at the right temperature and multiply the obtained value by the density S.G. of the oil at the same temperature, i.e.:cP = cS x S.G.9DATA ON SHELL LUBRICANTSTo help you determining all desired viscosities of Shell lubricants a list has been added stating for our oils:•the viscosity in °Engler at 20 °C and 50 °C or at 50 °C and 100 °C. You cantherefore always use the "Simpler method"•the freezing point in °C•the density at 15/4 °CFrom the latter data and the accompanying density-temperature curve you can determine the density at other temperatures.The viscosity in centiPoises can be calculated as described under 8.February 1962 Copyright SHELL SHELL NEDERLAND VERKOOPMAATSCHAPPIJ N.V.'s-GravenhageTechnical Service DivisionNotes:1.This Viscoklok manual has been translated from the Dutch language and put into HTML by Andries de Man, as anexample of a calculating device which combines elements of a slide rule and a nomogram.2.The original Viscoklok, of which a picture is available, has a diameter of 18.5 cm and is made of thick plastic. Thething came in a rugged vinyl case, with a separate pocket for the manual and the density-temperature chart. The list with Shell lubricants data is missing.3.By the way, "klok" is Dutch for "clock".Andries de Man 5/2/1998。

壳牌MESC Spec 210-213 条款中文翻译

壳牌MESC  Spec 210-213 条款中文翻译

冲击试验也可以下-46 度下进行,此时冲击值应至少为 33J(标准试样). 5 磁粉探伤 LF3 级的锻材,应执行 AST符合 ASME VIII 1 部分。 附表 6 中规定的要求。
S55. Magnetic Particle Examination S55.1 All accessible surfaces of the finished forging shall beexamined by a magnetic particle method. The method shall bein accordance with Test Method A275/A275M. Acceptancelimits shall be as agreed upon between the certifying organizationand the purchaser.
6-4 ACCEPTANCE STANDARDS
These acceptance standards shall apply unless othermore restrictive standards are specified for specific materials or applications within this Division.All surfaces to be examined shall be free of: (a) relevant linear indications; (b) relevant rounded indications greater than 3/16 in.(5 mm); (c) four or more relevant rounded indications in a lineseparated by 1/16 in. (1.5 mm) or less, edge to edge.

MESC SPE 77-300 12版 60-64页翻译

MESC SPE 77-300 12版 60-64页翻译

C.4.10除逸散性排放以外的试验的验收标准表C.5和C.6提供了在不同温度下可接受的阀座泄漏量。

表C.5 在环境温度(高于-20°C)和提高温度下进行泄漏测试的验收标准表C.6低温或超低温阀座泄漏测试的验收标准(-29°C至-196°C)注意:1.制造商应计算泄漏接受水平,并在相关概要表的相应部分说明。

2.金属阀座或金属石墨层压阀座蝶阀在优选流动方向上的最大允许阀座泄漏率应符合ISO 5208速率B.这些蝶阀在非优选流动方向上的最大允许阀座泄漏率应符合ISO 5208速率C.3.如果阀门符合ISO 5208中的阀座泄漏率A或B或符合IEC 60534-4的V级或VI级阀门,则认为阀门为TSO。

4.当与填塞器,阀座密封件和阀杆相关的部件在设计和尺寸上相同时,可以使用减小的孔(或文丘里管型)测试阀来限定较小的标称尺寸的全孔(或规则图案)阀。

在这种情况下,允许的平均泄漏率是适用于全孔(或规则型)阀的那些。

5.金属阀止回阀的最大允许阀座泄漏应符合适用的产品标准或ISO 5208 E级,以较低者为准。

表C.5中列出的费率涵盖了这一要求。

止回阀的目的是在过程变化或系统故障的情况下防止不希望的反向流动。

止回阀不是隔离阀,因此不需要非常紧密的阀座泄漏率。

C.4.11逃逸排放测试的验收标准所有温度下的逃逸排放测试的验收标准应符合表C.7和C.8的规定。

表C.7阀杆密封逸散排放泄漏的验收标准表 c.8 阀体/阀盖密封逸散排放泄漏的验收标准表C.7给出了每个阀杆周长或直径的允许泄漏率,而表C.9给出了不同阀杆尺寸的允许泄漏率。

表C.9不同阀杆尺寸的逸散排放泄漏率C.4.12最短测试持续时间最短试验时间应符合表C.10和C.11的规定。

表C.10 阀体/外壳逃逸排放测试的最短测试持续时间Valve sizes 阀门尺寸pressure class 压力等级Minimum test duration (minutes) 最小测试持续时间(分钟)The measurement is complete when a stable reading is reached 达到稳定读数时,测量完成表C.11闭孔密封性试验的最短试验时间Minimum duration for each step 每个步骤的最短持续时间C.4.15最大允许工作扭矩值基于360 N的力,表C.12中显示了不同轮辋尺寸的最大允许扭矩值。

阀门密封等级及选用

阀门密封等级及选用

阀门密封等级及选用阀门是石油化工装置管道系统中的重要组成部件,其种类多、数量大,是装置中主要泄漏源之一,因此对阀门的泄漏要求至关重要。

阀门密封性能是指阀门各密封部位阻止介质泄漏的能力。

阀门的主要密封部位有:启闭件与阀座间的吻合面、填料与阀杆和填料函的配合、阀体与阀盖的连接处。

第一处的泄漏叫内漏,它直接影响阀门截断介质的能力和设备的正常运行。

后两处的泄漏叫外漏,即介质从阀内泄漏到阀外,它直接影响安全生产,造成工作介质损失和企业经济损失、环境污染,严重时会造成生产事故。

特别对于高温高压、易燃易爆、有毒或腐蚀性的介质,阀门的外漏根本是不允许的,因其所造成的后果比内漏更为严重,因此阀门必须具有可靠的密封性能,满足其使用工况对泄漏量的要求。

1我国阀门密封等级分类标准目前我国比较常用的阀门密封等级分类标准主要有以下两种。

1.1中国国家标准对阀门密封等级的分类国家标准GB/T13927--2008《工业阀门压力试验》。

1.2中国机械行业标准对阀门密封等级的分类机械行业标准JB/T 9092--1999《阀门的检验与试验》。

2国际上阀门密封等级分类标准目前围际上比较常用的阀门密封等级分类标准主要有以下五种。

2.1前苏联对阀门密封等级的分类为了按阀门的密封程度和规定的用途选择产品,按密封程度对阀门进行了分类,该分类的基本原则见表3和表4。

2.2国际标准化组织对阀门密封等级的分类国际标准化组织标准ISO5208--2008《工业阀门金属阀门的压力试验》。

2.3美国石油协会(APl)对阀门密封等级的分类美国石油协会标准API598--2004《阀门的检查和试验》。

2.4美国阀门和管件工业制造商标准化协会(MSS)对阀门密封等级的分类美国阀门和管件工业制造商标准化协会标准《钢制阀门的压力试验》MSS SP61---2003允许的阀门泄漏量要求如下:(1)在阀门密封副中有一个密封面使用塑料或橡胶的情况下,在密封试验的持续时间内应无可见泄漏。

壳牌润滑油工业油脂产品名称后缀键说明书

壳牌润滑油工业油脂产品名称后缀键说明书

TURBINE
TURBO
WIND TURBINE TRANSFORMER ELECTRIC MOTOR
COMPRESSOR
POWER ENGINE
FACTORY/ MACHINE APPLICATIONS
MINING/ STATIONARY APPLICATIONS
PLAIN BEARING
ROLLER BEARING
PICK-UP
PASSENGER CAR
STREET BIKE
SCRAMBLER BIKE
SCOOTER
RAILROAD/TRAIN
BARGE
FISHING BOAT
MARINE
RECIPROCATING RECIPROCATING AIR COMPRESSOR GAS COMPRESSOR
ROTARY AIR COMPRESSOR
Application icon key
HEAVY TRUCK
HEAVY TRUCK
LARGE TRUCK
MEDIUM TRUCK
BUS/COACH
CONSTRUCTION/ MINING DUMP
MOBIL
TRACTOR
SUV
MOBILE APPLICATIONS
ROTARY GAS COMPRESSOR
MOBILE AIR COMPRESSOR
PNEUMATIC DRILL
BREATHING AIR APPLICATIONS
ROTARY VACUUM PUMP
POWER STATION
NATURAL GAS LANDFILL/BIOGAS PIPELINE
GREASE NAMES
The following naming system is being used for Shell’s greases

壳牌公司的HSSE管理体系

壳牌公司的HSSE管理体系
尊重我们周边的人和环境
Respect our neighbours
90%的安全事故与工作时的违章有关 70%的死亡事故发生时有同事在场共同工作
3.壳牌公司的HSSE管理体系 – 3.6) 执行
12条救命规则 – 它们是什么么? ?
在有要求情况下获得 必要情况下进行 有效的工作许可证 气体测试
工作开始之前 检查隔离情况和 使用专用防护设备
零事故 目标
简化来 促进守规
简化来促进守规
12 条救命规则
“必赢”
道路交通安全
工作现场危害管理 承包商HSSE 管理 资产完整性和工艺安全管理
3.壳牌公司的HSSE管理体系 – 3.6) 执行
工作现场 危害管理
我们HSSE管理的4个重点领域(必赢)
承包商 HSSE管理
资产完整性& 工艺安全管理
道路交通安全
安全对于壳牌最重要的是这句话意味着公众对壳牌的判断将基于我们对于安全的承诺以及我们完美地执行日常作业的能力安全必须是而且一直是我们做的所有事情的核心未来将会有更多的法规出台以及更多的公众监督简单来说我们这个行业需要重新建立与我们工作所在的社会之间的信任因此我们十分努力地作为一个公司与法规制定者和行业伙伴一起管理着这些在富有挑战性情况下并且环境严酷的作业时永远存在着的风险
后果
危 高压 险 天然气 因

威胁
屏障 完好的容器
事件/事故
后果
恢复准备措施
天然气泄漏
气体检测—关断
后果
火灾
3.壳牌公司的HSSE管理体系 3.4) ALARP 原则 “合理可行的尽可能低的原则”
风险可忍受度标准
风险
不可忍受
成本
〈ALARP〉〈不均衡〉

壳牌公司HSE管理体系介绍

壳牌公司HSE管理体系介绍
目标 '99 <0.8 1
0.3 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03
LTIF
TRCF
环境表现
自然环境
社会环境
职业环境
资源
供应商
排放废气
产品
作业公司
土地使用
废水

油气藏中的液、气体 废物
空气 用户 水/土壤 处理
能源和原材料消耗
化学品消耗量 单位钻井进尺化学品消耗 消耗化学品的主要单位 能源消耗量 能耗的主要单位 能源利用率 土地占用情况
一、国际石油界HSE管理的现状与 发展趋势
•现状:
– 是石油公司生存、生产和发展的需要。 各大石油公司都建立了各自特点的HSE管理 体系,收到显著社会、经济、环境效益。 – 全球石油界的HSE管理趋于标准化,HSE 管理体系成为国际石油市场的准入证。 – E&P Forum发布了HSE管理体系标准,各 大石油公司都在依据该标准改进和完善其 HSE管理体系。
400,000 350,000 300,000 250,000 200,000 150,000 100,000
50,000 0 1994 1995 1996 1997 1998 1999
Target Others NAM SPDC Woodsid e PDO Expro
2003
气体排放
天然气放空量 天然气放空主要公司和次要公司 天然气火炬燃烧量 火炬燃烧的主要公司和次要公司 单位油气产量气体燃烧量 油气排放 库存和设备内氟氯烃/氟里昂 散逸到大气中的氟氯烃/氟里昂 二氧化碳排放量 全球变暖潜在趋势 造成酸雨的主要因素和次要因素 臭氧层破坏情况

SHELL MESC SPE 77312和ISO 15848-2标准对比

SHELL MESC SPE 77312和ISO 15848-2标准对比

第59卷第2期2021年4月Apr.202%・24・化肥设计Chemical Fertilizer DesignSHELL MESC SPE 77/312 和ISO 15848-2标准对比焦娟(北京石油化工工程有限公司西安分公司,陕西西安710000#摘 要 介绍了 SHELL MESC SPE 77/312和ISO 15848-2两个标准的不同版本对试验压力、允许泄漏量、保压时间和检测方法4个方面的要求,并进行了相应的整理和差异总结,从而能为指导相关设计、工艺及检验人员工作提 供帮助#关键词SHELL MESC SPE 77/312;ISO 15848-2;试验压力;允许泄漏量;保压时间;检测方法doi%0.3969/j.issn.004—890%.202%.02.007中图分类号TQO55.81 文献标识码B 文章编号1004 — 8901(2021)02 — 0024 — 03Comparison of Shell MESC SPE 77/312 and ISO 15848-2JIAOJuan(Xi an Branch of Beijing petrochemical Engineering Co. $ Ltd. $ Xi an Shaanxi 710000, China )Abstract : The different versions of Shell MESC SPE 77/312 and ISO 15848-2 together with their different requirements on test pressure ,allowa-bleleakageamoun1$pressureholding1imeandde1ecionme1hodarein1roducedandsummarizedin1hispaper $whichcanbeofsomehelpinguid-ingtheworkofdesign $processandinspectionpersonnel.Keywords : Shell MESC SPE 77/312 ;ISO 15848-2; test pressure ; allowable leakage amount ; pressure holding time ; detection methoddoi :10. 3969/j. issn. 1004-8901 2021 02. 007目前,随着我国对环境保护要求的日益提高,对于如何减少阀门有害介质向外界环境的逸散排 放,已引起石油化工等领域的高度重视,同时对阀 门的逸散性能提出更高的要求%对于逸散性试验阀门,大部分用户一般会选择壳牌用SHELLMESC SPE 77/312 或者 ISO15848-2 作为检验阀 门性能的标准%但各个用户在合同书中所指定的SHELL MESC SPE 77/312 和 ISO15848-2 标准的 版本不尽相同,甚至会出现同一项目下不同阀种采用不同版本标准的情况%本文介绍了 SHELLMESC SPE 77/312四个不同版本(包括11 0版/ 13. 0〜13. E 版/14. 0〜14. A 版/14. B 版)和 ISO15848 — 2两种版本(2006版/2015版)对试验压 力、允许泄漏量、保压时间和检测方法4个方面的 要求,并进行整理和差异总结,从而为指导相关设计、工艺及检验人员工作提供帮助%1试验压力对比SHELL MESC SPE 77/312 和 ISO15848-2 两 个标准不同版本对于试验压力的对比整理如下(见 表1)从对比分析看,版本升版对于SHELLMESC SPE 77/312试验压力的影响是较大的,两标准之间也存在明显差距,区别之处在于:①SHELLMESC SPE 77/312 — 14. 0相比上一版本,降压试验改变了降压方式;②SHELL MESC SPE 77/312 —14. B 相比上一版本,取消了降压试验;③SHELLMESC SPE 77/312试验压力大小与阀体材料有关;ISO15848-2试验压力为固定值,除非客户有特殊要求%110和13E 版本B 级阀门降压试验见表2,14.0版本试验压力与系数6 对照见表3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

壳牌石油标准 SHELL MESC SPE
壳牌石油标准 SHELL MESC SPE
SPE 77/100 BS 5351 球阀
SPE 77/101 依照ISO15761的钢闸阀,截止阀和止回阀
SPE 77/102 用于石油和天然气工业的螺栓连接阀盖的钢闸阀的设计按ISO 10434标准。

SPE 77/103 截止阀(根据BS1873 修正/补遗)
SPE 77/104 BS 1868 止回阀
SPE 77/105 根据BS5154:1991版设计的闸阀、截止阀和止回阀—铜合金
SPE 77/106 API 609弹性衬里/软阀座蝶阀
SPE 77/130 法兰端或BW端ISO14313/API 6D的球阀:
SPE 77/132 旋启式止回阀按照ISO 14313和API 6D(常规/全开启)
SPE 77/133 API 594 双瓣止回阀
SPE 77/134 蝶阀API 609,EN 593,MSS SP 67,MSS SP 68或厂家标准
SPE 77/162 阀门及其附件
SPE 77/200 低温介质下的阀门规范
SPE 77/202 蒸汽介质阀门
SPE 77/209 阀门在0到-50摄式度的介质
SPE 77/211 1/4转驱动的阀门之阀杆和阀杆连接盘尺寸及托架钻孔模式
SPE 77/300 工业阀门用类型验收测试(TAT)的程序及技术规范
SPE 77/302 在普通使用条件中对阀门材料,检查和证明要求
SPE 77/303 特殊介质下的阀门
SPE 77/306 低温使用阀门的产品测试
SPE 77/309 双堵双放使用下软阀座闸阀的生产测试
SPE 77/310 闸阀的油漆和涂层
SPE 77/311 衬里
SPE 77/312 工业阀门----挥发泄露(FE)检查测试及鉴定程序
SPE 77/315 自身催化的镀镍磷(无电镀)密封表面用于防摩擦的涂层。

相关文档
最新文档