动态规划法的基本思想
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、动态规划的基本思想
在比较基本的算法设计思想里,动态规划是比较难于理解,难于抽象的一种,但是却又十分重要。动态规划的实质是分治思想和解决冗余,因此它与分治法和贪心法类似,它们都是将问题的实例分解为更小的、相似的子问题,但是动态规划又有自己的特点。
贪心法的当前选择可能要依赖于已经作出的选择,但不依赖于还未做出的选择和子问题,因此它的特征是由顶向下,一步一步地做出贪心选择,但不足的是,如果当前选择可能要依赖子问题的解时,则难以通过局部的贪心策略达到全局最优解。相比而言,动态规划则可以处理不具有贪心实质的问题。
在用分治法解决问题时,由于子问题的数目往往是问题规模的指数函数,因此对时间的消耗太大。动态规划的思想在于,如果各个子问题不是独立的,不同的子问题的个数只是多项式量级,如果我们能够保存已经解决的子问题的答案,而在需要的时候再找出已求得的答案,这样就可以避免大量的重复计算。由此而来的基本思路是,用一个表记录所有已解决的子问题的答案,不管该问题以后是否被用到,只要它被计算过,就将其结果填入表中。
比较感性的说,其实动态规划的思想是对贪心算法和分治法的一种折衷,它所解决的问题往往不具有可爱的贪心实质,但是各个子问题又不是完全零散的,这时候我们用一定的空间来换取时间,就可以提高解题的效率。
二、动态规划的基本步骤
动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值(最大值或最小值)的那个解。设计一个动态规划算法,通常可以按以下几个步骤进行:
(1)找出最优解的性质,并刻画其结构特征。
(2)递归地定义最优值。
(3)以自底向上的方式计算出最优值。
(4)根据计算最优值时得到的信息,构造一个最优解。
其中(1)——(3)步是动态规划算法的基本步骤。在只需要求出最优值的情形,步骤(4)可以省去。若需要求出问题的一个最优解,则必须执行步骤(4)。此时,在步骤(3)中计算最优值时,通常需记录更多的信息,以便在步骤(4)中,根据所记录的信息,快速构造出一个最优解。
三、典型的动态规划举例——矩阵连乘问题
作为经典的动态规划算法举例,矩阵连乘问题很好地展现了动态规划的特点和实用价值。给定n个矩阵{A1,A2,...,An},其中Ai与Ai+1是可乘的,i=1,2,...n-1。现在要计算这n个矩阵的
连乘积。由于矩阵的乘法满足结合律,所以通过加括号可以使得计算矩阵的连乘积有许多不同的计算次序。然而采用不同的加扩号方式,所需要的总计算量是不一样的。若A是一个p*q矩阵,B是一个q*r矩阵,则其乘积C=AB是一个p*r矩阵。如果用标准算法计算C,总共需要pqr次数乘。
现在来看一个例子。A1,A2,A3分别是10*100,100*5和5*50的矩阵。如果按照((A1A2)A3)来计算,则计算所需的总数乘次数是10*100*5+10*5*50=7500。如果按照(A1(A2A3))来计算,则需要的数乘次数是100*5*50+10*100*50=75000,整整是前者的10倍。由此可见,在计算矩阵连乘积时,不同的加括号方式所导致的不同的计算对计算量有很大的影响。如何确定计算矩阵连乘积A1A2,...,An的一个计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少便成为一个问题。
对于这个问题,穷举法虽然易于入手,但是经过计算,它所需要的计算次数是n的指数函数,因此在效率上显得过于低下。现在我们按照动态规划的基本步骤来分析解决这个问题,并比较它与穷举法在时间消耗上的差异。
(1)分析最优解的结构。
现在,将矩阵连乘积AiAi+1...Aj简记为A[i:j]。对于A[1:n]的一个最优次序,设这个计算次序在矩阵Ak和Ak+1之间将矩阵链断开(1 <=k 通过反证法可以证明,问题的关键特征在于,计算A[1:n]的一个最优次序所包含的计算矩阵子链A[1:k]和A[k+1:n]的次序也是最优的。因此,矩阵连乘积计算次序问题的最优解包含着其子问题的最优解。这种最优子结构性质是该问题可以用动态规划解决的重要特征。 (2)建立递归关系定义最优值。 设计算A[i:j](1 <=i <=j <=n)所需的最少数乘次数为m[i][j],则原问题的最优值为m[1][n]。而且易见,当i=j时,m[i][j]=0。 根据上述最优子结构性质,当i 当i=j时,m[i][j]=0。 当i 除此之外,若将对应于m[i][j]的断开位置记为s[i][j],在计算出最优值m[i][j]后,可以递归地由s[i][j]构造出相应的最优解。 (3)计算最优值。 如果直接套用m[i][j]的计算公式,进行简单的递归计算需要耗费指数计算时间。然而,实际上不同的子问题的个数只是n的平方项级(对于1 <=i <=j <=n不同的有序对(i,j)对应于不同的子问题)。用动态规划解决此问题,可依据其递归式以自底向上的方式进行计算。在计算过程中,保存已解决的子问题答案。每个子问题只计算一次,而在后面需要时只要简单查一下,从而避免大量的重复计算,最终得到多项式时间的算法。下面给出计算m[i][j]的动态规划算法: void matrixChain (int * p, int n, int * * m, int * * s) { for ( int i=1;i <=n;i++) m[i][i]=0; for ( int r=2;r <=n;r++) //链长度控制 for ( int i=1;i <=n-r+1;i++) //链起始位置控制 { int j=i+r-1; //链终止位置 m[i][j]=m[i+1][j]+p[i-1]*p[i]*p[j]; s[i][j]=i; for ( int k=i+1;k { int t=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j]; if (t { m[i][j]=t; s[i][j]=k; }